EP3783445B1 - Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale - Google Patents

Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale Download PDF

Info

Publication number
EP3783445B1
EP3783445B1 EP19193107.0A EP19193107A EP3783445B1 EP 3783445 B1 EP3783445 B1 EP 3783445B1 EP 19193107 A EP19193107 A EP 19193107A EP 3783445 B1 EP3783445 B1 EP 3783445B1
Authority
EP
European Patent Office
Prior art keywords
silicon
sic
silicon carbide
carbide
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19193107.0A
Other languages
German (de)
English (en)
Other versions
EP3783445A1 (fr
Inventor
Sylvain Huot-Marchand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA SA Manufacture Horlogere Suisse
Original Assignee
ETA SA Manufacture Horlogere Suisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETA SA Manufacture Horlogere Suisse filed Critical ETA SA Manufacture Horlogere Suisse
Priority to EP19193107.0A priority Critical patent/EP3783445B1/fr
Priority to TW109120813A priority patent/TWI746020B/zh
Priority to KR1020200085526A priority patent/KR20210024415A/ko
Priority to JP2020124265A priority patent/JP7063953B2/ja
Priority to CN202010849257.XA priority patent/CN112415881B/zh
Priority to US16/999,584 priority patent/US11640139B2/en
Publication of EP3783445A1 publication Critical patent/EP3783445A1/fr
Application granted granted Critical
Publication of EP3783445B1 publication Critical patent/EP3783445B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • G04B13/021Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft
    • G04B13/022Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft with parts made of hard material, e.g. silicon, diamond, sapphire, quartz and the like
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • G04B15/08Lever escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/10Oscillators with torsion strips or springs acting in the same manner as torsion strips, e.g. weight oscillating in a horizontal plane
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/02Regulator or adjustment devices; Indexing devices, e.g. raquettes
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/004Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
    • G04B31/012Metallic bearings
    • G04B31/0123Metallic bearings with metallic ball bearings and metallic roller bearings
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/06Manufacture or mounting processes

Definitions

  • the invention relates to a timepiece regulating mechanism, comprising, arranged to be arranged on a plate, a resonator mechanism with a quality factor greater than 1000, and an escapement mechanism which is intended to be subjected to a torque of motor means comprising a movement, said resonator mechanism comprising an inertial element arranged to oscillate with respect to said plate, said inertial element being subjected to the action of elastic return means intended to be fixed directly or indirectly to said plate, and said inertial element being arranged to cooperate indirectly with an escape wheel set that said escape mechanism comprises, said regulating mechanism comprising at least a pair of components comprising a first component and a second component respectively comprising a first friction surface and a second surface friction which are arranged to cooperate in contact with each other.
  • the invention also relates to a timepiece movement comprising such a regulating mechanism.
  • the invention also relates to a watch comprising such a movement and/or such a regulating mechanism.
  • the invention also relates to a method for making such an escapement mechanism.
  • the invention relates to the field of horological mechanisms comprising permanently moving components, and more particularly to the field of escapement mechanisms.
  • Watch manufacturers have always strived to increase the reliability of movements, by reducing the frequency of maintenance, while ensuring the precise running of watch movements.
  • an operation without lubrication of the escapement mechanisms is sought, by attempting to define couples of materials in friction having a low and stable coefficient of friction as well as low wear, and having excellent resistance over time.
  • the Swiss lever escapement mechanism has a low energy efficiency (about 30%). This low efficiency stems from the fact that the movements of the escapement are jerky, that there are drops or lost paths to accommodate machining errors, and also from the fact that several components transmit their movement to each other via inclined planes that rub against each other.
  • At least one inertial element, a guide means and an elastic return means are required.
  • a spiral spring acts as an elastic return element for the inertial element that constitutes a balance.
  • a new generation of mechanical resonators comprises, in connection with the inertial element, at least two flexible elements which ensure the two functions of guidance in pivoting and of elastic return means.
  • These new resonators allow higher oscillation frequencies, of the order of 10 Hz, even 50 Hz or more, and much higher quality factors, often greater than 1000, and in particular of the order of 2000, than those of the resonators traditional mechanics with balance wheel and hairspring, generally around 280.
  • the energy to be supplied to the resonator at each half-wave is therefore much lower, for example 20 times lower.
  • Silicon oxide (silica) is known for its propensity to adsorb water. This hygroscopic character is also used to dry the air in certain packaging to prevent the goods transported there from being altered by humidity (for example in the form of silica-gel sachets).
  • adhesion phenomena may occur. These surface phenomena can become preponderant if the size of the exhaust components is small. These surface effects (friction and adhesion) in fact become more important than the volume effects (inertia, mass) as the size of the parts decreases. This ultimately results in potentially harmful sticking.
  • the tests carried out have in fact shown a significant loss of yield when the relative humidity increases. Adhesion forces depend on different surface tensions and liquid volume, not on the force applied by one component on another. The influence of these stickings can lead to the movement stopping when the escapement torque is low and the humidity is high, which risks leading to loss of power reserve.
  • the energy exchanged between such a new resonator and the escapement is very low, and is only slightly greater than the energy necessary to detach from the surfaces in contact and to break a meniscus of lubricant.
  • the energy exchanged between the resonator mechanism and the escapement is of the order of three times to ten times the contact break energy. This circumstance naturally makes self-starting difficult after an unexpected stop, for example following a shock.
  • micro-machinable material in particular in silicon and/or silicon oxide
  • this coating must be resistant to abrasion in order to guarantee long-term operation.
  • Self-assembled monolayers or surface-grafting film-forming lubricants may be insufficiently resistant, and reveal the surface of micro-machinable material, in particular silicon and silicon oxide, to wear, again making the mechanism sensitive to humidity.
  • An epilame deposit has the disadvantage of aging over time, which is why it is important to look for materials with the least possible wear, for the contact surfaces of the components in friction such as plate pin, sting , fork with horns, anchor pallet, escape-wheel tooth, etoqueau, and the like.
  • WO2009/049591 in the name of DAMASKO describes a method of manufacturing mechanical functional elements of movements, in particular functional elements for oscillating movement systems, the material or starting material of which is chosen from a group comprising a wide variety of compounds, including nitride of silicon.
  • the document EP3327515A1 in the name of ETA Manufacture Horlogère Suisse describes a timepiece regulator, comprising a free escapement mechanism with anchor, and a resonator of quality factor Q comprising an inertial element comprising a pin cooperating with a fork of the anchor, subjected to the return of two flexible blades fixed to the plate, defining a virtual pivot around a main axis, the anchor pivoting around a secondary axis, and the resonator lift angle ⁇ , during which the pin is in contact with the fork, is less than 10 °, and the ratio IB /IA between the inertia IB of the inertial element with respect to the main axis, and the inertia IA of the anchor with respect to the secondary axis, is greater than 2Q. ⁇ 2 /(0.1. ⁇ . ⁇ 2 ), ⁇ being the angle of lift of the anchor corresponding to the maximum angular travel of the fork.
  • the document EP3182213A1 in the name of AUDEMARS PIGUET describes a mechanism for adjusting an average speed in a clock movement, which comprises an escapement wheel and a mechanical oscillator, several blades of which are elastically flexible in an oscillation plane and carry and recall a balance wheel so that this balance wheel either oscillating angularly in the plane of oscillation.
  • An anchor comprises two rigid vanes which are rigidly integral with the balance wheel and arranged to cooperate alternately with a toothing of the escape wheel when the balance wheel oscillates angularly.
  • the document EP 2 472 340 A1 discloses a first timepiece component comprising a silicon carbide coating and cooperating with a second component having a silicon contact surface.
  • the invention proposes to provide a solution to the problem of intermittent contact components sticking in a watch movement, comprising a new resonator with flexible guides and virtual pivot, with a quality factor greater than 1000, associated with a mechanism of 'exhaust.
  • the invention relates more particularly to the use of silicon carbide, or derived materials comprising essentially silicon carbide, as a high-performance tribological material in the escapement.
  • the invention relates to a regulator mechanism for a watch, comprising a resonator mechanism with flexible guides and virtual pivot, with a quality factor greater than 1000, and comprising an escapement mechanism, with improved tribology, according to claim 1.
  • the invention also relates to a method for producing such a regulating mechanism, characterized in that each pair consisting of a first friction surface and a second antagonistic friction surface is produced by producing a silicon carbide component with a substrate to constitute said first friction surface and/or the second friction surface, either by sintering, or else by massive production.
  • the invention relates to the use of silicon carbide as a material allowing the operation with minimum lubrication of a watch regulator mechanism comprising a resonator mechanism with flexible guides and virtual pivot with a high quality factor greater than 1000, associated to an escape mechanism.
  • the regulating mechanism 300 then preferably comprises a lubricant with a surface tension of less than 50 mN/m, and more particularly less than 40 mN/m, and more particularly still less than or equal to 36 mN/m; the surface tension of the watch lubricant used is then significantly lower than that of water, which is 72 mN/m, ie between approximately half and two thirds.
  • the invention is more particularly described for dry operation, but those skilled in the art will have no difficulty in extrapolating it to a lubricated mechanism.
  • solid a component whose smallest dimension is greater than 0.10 mm
  • a “thin layer” has its smallest dimension. less than 10 micrometers, and preferably less than 1 micrometer.
  • many horological components include areas whose smallest dimension is less than 0.10 mm, such as arms or escape wheel teeth, or the like; the watchmaking components used in the specific case of high quality factor resonators generally come from a wafer with a thickness greater than 0.10 mm, or from an assembly of several thinner wafers (wafer bonding) to produce a wafer resulting in thickness greater than 0.10 mm.
  • experimentation makes it possible to establish that the friction of silicon carbide against silicon or silicon oxide has properties that are particularly desired in a timepiece mechanism, and most particularly in the case of an escapement mechanism.
  • Such a friction couple has a low coefficient of friction, less than 0.17, over a wide force-speed range (1 mN - 200 mN and 1 cm/s - 10 cm/s).
  • the parameter S determines the dependence of the torque on the pressure, and is therefore particularly useful to take into account in the case of dry friction in the escapement where the contact forces and pressures vary greatly, as well as in the interface between the escapement and the resonator.
  • the silicon carbide/Si or silicon carbide/SiO 2 couples have a low dependence of the coefficient of friction as a function of the normal force applied. This results in a very low S-parameter. This behavior is particularly useful in the escapement since the normal force varies greatly, typically from 0 to 200 mN during contact and impacts. During contact losses and contacting, the silicon carbide enables a low friction coefficient of less than 0.2 to be maintained, a value which is usually considered to be the critical operating threshold of the escapement.
  • regulators with a high quality factor they are of the same order of magnitude, and can even be preponderant in certain cases.
  • the underlying mechanisms and the strategies for reducing friction or adhesion are different, and can even turn out to be antagonistic in certain configurations.
  • silicon carbide resists wear well, which guarantees good resistance over time.
  • the invention thus relates to a timepiece regulating mechanism 300, comprising, arranged to be arranged on a plate 1, a resonator mechanism 100 with virtual pivot and flexible guidance, with a quality factor Q greater than 1000, and a mechanism escapement 200 which is intended to be subjected to a torque of motor means 400 that a movement 500 comprises, in particular for the equipment of a watch 1000.
  • the regulator mechanism 300 illustrated in figures 3 and 4 has an exhaust power of the order of 0.7 microwatt, which is about twenty times lower than in the case of a traditional regulator.
  • the resonator mechanism 100 comprises at least one inertial element 2 arranged to oscillate with respect to the plate 1. This inertial element 2 is subjected to the action of elastic return means 3 intended to be fixed directly or indirectly to the plate 1. And this inertial element 2 is arranged to cooperate indirectly with an escapement wheel set 4 that comprises the escapement mechanism 200.
  • the figures show, in a non-limiting way, a plate pin 6 secured to an inertial mass 2, and arranged to cooperate with an anchor 7, which is in turn arranged to cooperate with such an escape wheel set 4 here constituted by an escape wheel.
  • This resonator mechanism 100 is here a rotary resonator with virtual pivot, around a main axis DP, with flexible guidance comprising at least two flexible blades 5, and comprising such a plate pin 6 secured to the inertial element 2.
  • the escapement mechanism 200 comprises an anchor 7 pivoting around a secondary axis DS and comprising an anchor fork 8 arranged to cooperate with the plate pin 6.
  • This escapement mechanism 200 is a free escapement mechanism, in the operating cycle of which the resonator mechanism 100 has at least one phase of freedom where the plate pin 6 is at a distance from the pallet fork 8.
  • This regulating mechanism 300 is a mechanism with improved tribology, according to the observations set out above, and is designed to minimize the phenomena of sticking between the surfaces of the components with variable and/or discontinuous contact.
  • this resonator 100 has a quality factor greater than 1000, more particularly greater than 1800, more particularly still greater than 2500.
  • the technology of resonators with virtual pivot, and in particular with flexible blades does not yet allow large amplitudes of oscillation of the inertial mass.
  • the amplitude of oscillation of the resonator 100 is less than 180°, more particularly less than 90°, more particularly still less than 40°.
  • the oscillation frequency of resonator 100 is greater than 8 Hz, more particularly greater than or equal to 10 Hz, more particularly still greater than or equal to 15 Hz.
  • this regulator mechanism 300 comprises, at the level of the resonator mechanism 100 and/or of the escapement mechanism 200 and/or between the resonator mechanism 100 and the escapement mechanism 200, at least a couple of components, comprising a first component 22 and a second component 32, which respectively comprise a first surface friction 20 and a second friction surface 30 which are arranged to cooperate in contact with each other.
  • this first component 22 and this second component 32 are taken from: plate peg 6, anchor 7, anchor sting, anchor fork 8 with its lugs 26, anchor pallet 72, 81, 82, escape wheel tooth 4, stoker 36 fixed to the plate, and the like.
  • all the pairs of components with variable and/or discontinuous contact of such a regulating mechanism comprise antagonistic surfaces according to the characteristics of the invention, of which at least one component 22 or 32 comprises silicon carbide or its equivalent, that is to say a material comprising at least 90% by mass of silicon carbide SiC and at least one other material, taken from a list given below.
  • the invention relates more particularly to the case of resonator mechanisms in which the energy to be transmitted during each pulse is less than 200 nJ.
  • the invention relates more particularly to the case of resonator mechanisms in which both the energy to be transmitted during each pulse is less than 200 nJ, and the quality factor is greater than 1000.
  • the first friction surface 20 is the surface of a component which comprises silicon carbide which is either stoichiometric silicon carbide SiC, or else non-stoichiometric silicon carbide Si x C y H z , with x equal to 1, including between 0.8 and 5.0, and z between 0.00 and 0.70, or even a so-called equivalent material, that is to say comprising at least 90% by mass of silicon carbide SiC and at least one other material, taken from the following list, the proportions of which are displayed by mass: alpha-SiC 6H, beta-SiC 3C, SiC 4H, fluorinated SiC, silicon carbonitride SiCN, aluminum 400 to 2000 ppm, iron less than 3000 ppm, boron and/or boron carbide B 4 C and/or polyphenyl boron and/ or decaborane B 10 H 14 and/or carborane B 10 H 12 C 2 , the total of materials containing boron being between 0.04% and 0.14%
  • impurities are often harmful for contact problems, and it is preferable to limit them to the lowest possible value, especially with regard to iron, which risks reacting with humidity to form disturbing oxides, which it is better to limit below 400 ppm.
  • the other impurities should be limited, preferably below 100 ppm. Boron is advantageous only when it is made stable by a bond with another element, then boron alone is preferably avoided.
  • amorphous silicon a-Si is understood to mean silicon deposited by PECVD process in a thin layer, from 50 nm to 10 micrometers, of amorphous structure; it can also be hydrogenated or doped N-type or P-type.
  • polycrystalline silicon p-Si is understood here to mean silicon deposited by the LPCVD process, composed of grains of microcrystalline silicon, the size of the grains being from 10 to 2000 nm; it can also be N-type or P-type doped.
  • the modulus of elasticity E is close to 160 GPa.
  • porous silicon means a material with a pore size of 2 nm to 10 micrometers, produced using a complex manufacturing process based on anodization (HF electrolyte and electric current).
  • At least one of these first or second friction surfaces 20, 30 is constituted either by the surface of a solid element made of solid silicon carbide, preferably but not limitatively in the stoichiometric formulation SiC, or else by the surface of a thin layer 21, 31, of silicon carbide in the stoichiometric formulation SiC, or according to a non-stoichiometric composition Si x C y H z , with x equal to 1, including between 0.8 and 5.0, and z between 0.00 and 0.70. More particularly, z is between 0.04 and 0.70.
  • the second friction surface 30 can be either the surface of a solid component, or the surface of a thin layer .
  • a particularly interesting and close application of the invention is the cooperation of SiC lifts, in contact with Si+SiO 2 wheels.
  • Another advantageous application relates to the so-called "solid silicon carbide” application, with wheels in SiC, for example cut or laser, or the like, which are in friction against a one-piece anchor in Si+SiO 2 , or against a conventional anchor equipped with lifts in Si + SiO 2
  • An advantageous application relates to an oxidized Si wheel, and solid SiC pallets, or even oxidized Si pallets covered with silicon carbide.
  • the friction surface 20, 30, which is the surface of a component which comprises silicon carbide is the surface of a component which comprises silicon carbide SiC, or still is made of silicon carbide SiC.
  • first friction surface 20 and the second friction surface 30 are the surfaces of components 22 and 32 which each comprise silicon carbide or its equivalent as defined above. More particularly still, the first friction surface 20 and the second friction surface 30 are the surfaces of components which each comprise silicon carbide SiC, or even consist of silicon carbide SiC.
  • the friction surface 20, 30, which is the surface of a component which comprises silicon carbide, is a surface of a layer of silicon carbide with a thickness of less than 2 micrometers. More particularly, the friction surfaces 20, 30 are each the surface of a layer of silicon carbide with a thickness of less than 2 micrometers.
  • the friction surface 20, 30, which is the surface of a component which comprises silicon carbide, is a surface of a layer of silicon carbide with a thickness greater than 0.5 micrometers. More particularly, the friction surfaces 20, 30 are each the surface of a layer of silicon carbide with a thickness greater than 0.5 micrometers.
  • the thickness of such a layer of silicon carbide is between 50 and 2000 nm. More particularly, this so-called thin layer of silicon carbide has a thickness of between 50 nanometers and 500 nanometers.
  • the friction surface 20, 30, which is the surface of a component which comprises silicon carbide, is the surface of a layer of silicon carbide, which layer covers a substrate consisting of quartz or silicon or a silicon oxide, or a mixture of silicon and silicon oxide. More particularly, the friction surfaces 20, 30 are each the surface of a layer of silicon carbide, which layer covers a substrate made of quartz or of silicon or of a silicon oxide, or of a mixture of silicon and silicon oxide.
  • the friction surface 30, 20, antagonistic to that 20, 30, which is the surface of a component which comprises silicon carbide is the surface of a component which comprises at least one material based on of silicon taken from a group comprising silicon Si, silicon dioxide SiO 2 , amorphous silicon a-Si, polycrystalline silicon p-Si, porous silicon, and is a surface of a layer consisting exclusively of one or several silicon-based materials taken from said group.
  • the friction surfaces 20, 30 are each the surface of a component which comprises at least one silicon-based material taken from a group comprising silicon Si, silicon dioxide SiO 2 , amorphous silicon a- Si, polycrystalline silicon p-Si, porous silicon, and is a surface of a layer consisting exclusively of one or more silicon-based materials taken from said group.
  • the SiC/Si pair gives particularly interesting results, the friction torque is substantially constant, and this without requiring any lubrication. However, there are still friction losses, and the choice of fluid oil lubrication can make it possible to reduce these friction losses, the sticking phenomena inherent in the presence of oil being able to be counteracted by a relatively low surface tension. .
  • the friction surface 20, 30, which is the surface of a component which comprises silicon carbide, has a roughness greater than or equal to 5 nanometers Ra, and more particularly greater than or equal to 9 nanometers Ra, plus particularly still greater than or equal to 25 nanometers Ra, at least at the level of at least one contact surface. More particularly, this friction surface 20, 30 has a roughness greater than or equal to 5 nanometers Ra at each contact surface. More particularly again, these friction surfaces 20, 30 each have a roughness greater than or equal to 5 nanometers Ra at each contact surface.
  • one of the two friction surfaces 20, 30 is smooth so as to avoid excessive friction (interpenetration of roughness for example).
  • the rough surface should be in relative displacement with a smooth surface so as to avoid wear.
  • the surface roughness of the counterpart should preferably be low to limit wear, and its roughness is advantageously less than that of the contact surface, and more particularly but not limitatively less than 5 nanometers Ra.
  • one of the surfaces is the surface of a component which comprises a first screened relief, in relief, for example in the form of a juxtaposition of pyramids, or the like
  • the antagonistic surface is the surface of a component which comprises a second screened relief, which may or may not be similar to the first screened relief, but which differs from it by a relative inclination of its screen direction with that of the first screened relief, so as to prevent any embedding of one into the other.
  • a silicon carbide component is produced with a substrate to constitute the base of one of the first or second friction surfaces 20, 30, either by sintering, or else by massive elaboration.
  • LPCVD chemical vapor deposition low sub-atmospheric pressure
  • PECVD plasma-enhanced chemical vapor deposition
  • CVD atmospheric pressure chemical vapor deposition
  • ALD atomic thin film deposition
  • sputtering implantation ionic, and the like.
  • the Si/C ratio of between 0.8 and 1.2 is chosen. More specifically, the Si/C value of 1 is stoichiometric
  • a hydrogen concentration of between 2 and 30% of H is chosen.
  • a non-limiting Si substrate is chosen.
  • underlayer it is possible to choose, in a non-limiting manner, SiO 2 , typically in a thickness of between 50 and 2000 nm, or poly-Si, SiC, or the like.
  • the thickness of a layer of silicon carbide is preferably between 50 and 2000 nm.
  • the layer of silicon carbide adhere well to the substrate, and that the moduli of elasticity of the materials are not too far apart.
  • the nature of the underlying materials is of lesser importance. If the layer of silicon carbide exceeds a thickness close to 200 nm, to prevent wear from causing the silicon to appear too quickly, quickly oxidized to silicon oxide harmful to adhesion, the friction is determined by the very first peripheral nanometers of this layer of silicon carbide.
  • One-piece SiC pallets can be made by the same techniques as those used for the manufacture of polycrystalline ruby lifts, known to those skilled in the art.
  • Silicon carbide also has the advantage of easy implementation, particularly by PECVD conformal coating, in particular on silicon or silicon oxide. This deposition process is widely known and widespread in the silicon industry.
  • the present invention allows silicon carbide to be used in different forms: PECVD, CVD, sputtering, solid, sintered, and others.
  • the invention makes it possible to solve the sticking problem which hitherto hampered the development and industrialization of regulating mechanisms for watches with a quality factor greater than 1000, and it is understood that other horological problems can also find an improvement.
  • the contact between the peg and the fork of the anchor in a traditional mechanism is also prone to sticking. More generally, this solution is applicable in all cases where the energies involved are low.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Lubricants (AREA)

Description

    Domaine de l'invention
  • L'invention concerne un mécanisme régulateur d'horlogerie, comportant, agencés pour être disposés sur une platine, un mécanisme résonateur d'un facteur de qualité supérieur à 1000, et un mécanisme d'échappement lequel est destiné à être soumis à un couple de moyens moteurs que comporte un mouvement, ledit mécanisme résonateur comportant un élément inertiel agencé pour osciller par rapport à ladite platine, ledit élément inertiel étant soumis à l'action de moyens de rappel élastique destinés à être fixés directement ou indirectement à ladite platine, et ledit élément inertiel étant agencé pour coopérer indirectement avec un mobile d'échappement que comporte ledit mécanisme d'échappement, ledit mécanisme régulateur comportant au moins un couple de composants comportant un premier composant et un deuxième composant comportant respectivement une première surface de frottement et une deuxième surface de frottement qui sont agencées pour coopérer en contact l'une avec l'autre.
  • L'invention concerne encore un mouvement d'horlogerie comportant un tel mécanisme régulateur.
  • L'invention concerne encore une montre comportant un tel mouvement et/ou un tel mécanisme régulateur.
  • L'invention concerne encore un procédé de réalisation d'un tel mécanisme d'échappement.
  • L'invention concerne le domaine des mécanismes horlogers comportant des composants en permanence en mouvement, et plus particulièrement le domaine des mécanismes d'échappement.
  • Arrière-plan de l'invention
  • Les constructeurs horlogers se sont toujours efforcés d'accroître la fiabilité des mouvements, grâce à la réduction de la fréquence des entretiens, tout en assurant la marche précise des mouvements horlogers.
  • La lubrification des mobiles et composants en mouvement est un problème difficile à résoudre. De longues expérimentations tribologiques sont nécessaires pour mettre au point des solutions permettant de simplifier ou même de supprimer la lubrification.
  • Plus particulièrement, on recherche un fonctionnement sans lubrification des mécanismes d'échappement, en tentant de définir des couples de matériaux en frottement présentant un coefficient de frottement bas et stable ainsi qu'une faible usure, et présentant une excellente tenue dans la durée.
  • Beaucoup de montres mécaniques actuelles sont munies d'un résonateur à balancier-spiral, qui constitue la base de temps du mouvement, et associé à un mécanisme d'échappement en général à ancre suisse. Cet échappement, remplit deux fonctions principales:
    • l'entretien des va-et-vient d'au moins une masse inertielle, typiquement un balancier, que comporte le résonateur ;
    • et le comptage de ces va-et-vient.
  • En plus de ces deux fonctions principales, l'échappement doit être robuste, résister aux chocs, et éviter de coincer le mouvement (renversement). Le mécanisme d'échappement à ancre suisse a un rendement énergétique faible (environ 30%). Ce faible rendement provient du fait que les mouvements de l'échappement sont saccadés, qu'il y a des chutes ou chemins perdus pour s'accommoder des erreurs d'usinage, et, aussi du fait que plusieurs composants se transmettent leur mouvement via des plans inclinés qui frottent les uns par rapport aux autres.
  • Pour constituer un résonateur mécanique, il faut au moins un élément inertiel, un moyen de guidage et un moyen de rappel élastique. Traditionnellement, un ressort spiral joue le rôle d'élément de rappel élastique pour l'élément inertiel que constitue un balancier.
  • Quand la masse inertielle est guidée en rotation par des pivots qui tournent dans des paliers lisses en rubis, cela donne lieu à des frottements, et donc à des pertes d'énergie et des perturbations de marche, qui dépendent des positions de la montre dans l'espace par rapport au champ de gravité, et que l'on cherche à supprimer.
  • Une nouvelle génération de résonateurs mécaniques comporte, en liaison avec l'élément inertiel, au moins deux éléments flexibles qui assurent les deux fonctions de guidage en pivotement et de moyen de rappel élastique. Ces nouveaux résonateurs permettent des fréquences d'oscillation plus importantes, de l'ordre de 10 Hz, voire 50 Hz ou plus, et des facteurs de qualité bien plus élevés, souvent supérieurs à 1000, et notamment de l'ordre de 2000, que ceux des résonateurs mécaniques traditionnels avec balancier et spiral, généralement de l'ordre de 280. L'énergie à fournir au résonateur à chaque alternance est donc bien plus faible, par exemple 20 fois plus faible.
  • L'énergie transitant par l'échappement est donc relativement bien plus faible. Cela impose une conception des composants d'échappement avec des inerties réduites. Cette caractéristique est atteinte, d'une part en utilisant des matériaux de densité faible comme par exemple le silicium, ou similaire, et d'autre part en réduisant la taille des composants de l'échappement. Le silicium (ou un de ses oxydes, ou encore tout autre matériau micro-usinable désormais usuel en horlogerie) peut avantageusement être usiné avec une des technologies issues de l'électronique comme le « Deep Reactive Ion Etching » (DRIE) qui permettent une précision adaptée aux contraintes de fonctionnement d'un tel échappement. Le silicium s'oxyde naturellement à l'air mais il peut être oxydé durant le processus de fabrication pour, par exemple, accroître la ténacité des composants ou en modifier le coefficient thermoélastique. La croissance contrôlée du dioxyde de silicium SiO2 permet, en particulier, de créer des précontraintes dans des lames minces, et de créer des composants bistables ou multistables.
  • L'oxyde de silicium (silice) est connu pour sa propension à adsorber de l'eau. Ce caractère hygroscopique est d'ailleurs utilisé pour assécher l'air de certains conditionnements pour éviter que la marchandise y transportée ne soit altérée par l'humidité (par exemple sous forme de sachets de silica-gel).
  • Dans le cas de mécanismes transmettant des énergies très faibles, comme le sont ces nouveaux résonateurs, des phénomènes d'adhésion peuvent se produire. Ces phénomènes de surface peuvent devenir prépondérants si la taille des composants de l'échappement est faible. Ces effets de surface (frottement et adhésion) deviennent en effet plus importants que les effets de volume (inertie, masse) au fur et à mesure que la dimension des pièces diminue. Il en résulte in fine des collements potentiellement néfastes. Les essais réalisés ont en effet montré une perte significative de rendement lorsque l'humidité relative augmente. Les forces d'adhésion dépendent des différentes tensions de surface et du volume de liquide, et non de la force appliquée par un composant sur un autre. L'influence de ces collements peut conduire à des arrêts du mouvement lorsque le couple à l'échappement est faible et que l'humidité est élevée, ce qui risque d'entraîner des pertes de réserve de marche. En l'absence de précaution particulière quant aux surface de contact, on peut constater, quand une montre fonctionne dans une atmosphère avec une humidité supérieure à 80%, des phénomènes de chute brutale d'amplitude de l'oscillateur, voire son arrêt, et ceci d'autant plus que l'énergie à l'échappement est faible ; ces phénomènes peuvent déjà se produire avec une humidité plus réduite, de l'ordre de 50%. Notons qu'avec une humidité faible, de l'ordre de 20%, on ne constate en principe pas de perte d'amplitude ni d'arrêt.
  • On constate en effet, que l'énergie échangée entre un tel nouveau résonateur et l'échappement est très faible, et n'est que peu supérieure à l'énergie nécessaire pour décoller des surfaces en contact et rompre un ménisque de lubrifiant. Par exemple l'énergie échangée entre le mécanisme résonateur et l'échappement est de l'ordre de trois fois à dix fois l'énergie de rupture de contact. Cette circonstance rend naturellement l'auto-démarrage difficile après un arrêt inopiné, par exemple suite à un choc.
  • Une alternative pour remédier à ce problème consiste à déposer un revêtement hydrophobe en surface des composants en matériau micro-usinable (notamment en silicium ou/et oxyde de silicium). Mais, du fait des contraintes de fonctionnement de l'échappement, ce revêtement doit être résistant à l'abrasion de manière à garantir le fonctionnement à long terme. Les monocouches autoassemblées ou les lubrifiants filmogènes greffables en surface peuvent être insuffisamment résistants, et révéler à l'usure la surface en matériau micro-usinable, notamment silicium et oxyde de silicium, rendant de nouveau le mécanisme sensible à l'humidité.
  • Un dépôt d'épilame présente l'inconvénient d'un vieillissement dans le temps, c'est pourquoi il est important de rechercher des matériaux avec la moindre usure possible, pour les surfaces de contact des composants en frottement tels que cheville de plateau, dard, fourchette avec cornes, palette d'ancre, dent de roue d'échappement, étoqueau, et similaires.
  • Le document XP002734688, « A study of static friction between silicon and silicon compounds », de MM. Deng et Ko, décrit l'utilisation en micro-mécanique de précision du couple nitrure de silicium - silicium, pour une faible usure dans la durée, et une tribologie améliorée.
  • Le document XP002734924, « LPCVD against PECVD for micromechanical applications », de MM, Stoffel, Kovacs, Kronast, Müller, décrit l'utilisation de nitrure de silicium non stoechiométrique, obtenu par PECVD ou LPCVD, pour assurer des propriétés tribologiques.
  • Le document WO2009/049591 au nom de DAMASKO décrit un procédé de fabrication d'éléments fonctionnels mécaniques de mouvements, en particulier d'éléments fonctionnels pour faire osciller les systèmes de mouvements, dont le matériau ou le matériau de départ est choisi dans un groupe comportant une grande variété de composés, dont le nitrure de silicium.
  • Le document US2002/114225A1 au nom de DAMASKO décrit un mécanisme d'horlogerie, dans lequel les tourillons de palier du pivot de balancier, et également du pivot d'ancre, ont un diamètre plus grand que dans les mécanismes d'horlogerie connus, puisqu'un revêtement DLC de ces tourillons de roulement et des surfaces correspondantes des roulements assure un très faible frottement, ce qui permet d'augmenter le diamètre du tourillon sans diminuer la fonction et la précision. L'élargissement du diamètre du tourillon de palier se traduit par une meilleure résistance aux chocs, en plus de rendre partiellement, ou totalement, inutiles les éléments prévus pour la résistance aux chocs dans les montres conventionnelles.
  • Le document EP3327515A1 au nom de ETA Manufacture Horlogère Suisse décrit un régulateur d'horlogerie, comportant un mécanisme d'échappement libre à ancre, et un résonateur de facteur de qualité Q comportant un élément inertiel comportant une cheville coopérant avec une fourchette de l'ancre, soumis au rappel de deux lames flexibles fixées à la platine, définissant un pivot virtuel autour d'un axe principal, l'ancre pivotant autour d'un axe secondaire, et l'angle de levée de résonateur β, pendant lequel la cheville est en contact avec la fourchette, est inférieur à 10°, et le rapport I B /I A entre l'inertie I B de l'élément inertiel par rapport à l'axe principal, et l'inertie I A de l'ancre par rapport à l'axe secondaire, est supérieur à 2Q.α2/(0.1.π.β2), α étant l'angle de levée de l'ancre correspondant à la course angulaire maximale de la fourchette.
  • Le document EP3182213A1 au nom de AUDEMARS PIGUET décrit un mécanisme de réglage d'une vitesse moyenne dans un mouvement d'horlogerie, qui comprend une roue d'échappement et un oscillateur mécanique, dont plusieurs lames élastiquement flexibles dans un plan d'oscillation portent et rappellent un balancier de manière que ce balancier soit oscillant angulairement dans le plan d'oscillation. Une ancre comprend deux palettes rigides qui sont rigidement solidaires du balancier et agencées pour coopérer alternativement avec une denture de la roue d'échappement lorsque le balancier oscille angulairement.
  • Le document EP 2 472 340 A1 divulgue un premier composant horloger comprenant un revêtement en carbure de silicium et coopérant avec un deuxième composant ayant une surface de contact en silicium.
  • Résumé de l'invention
  • L'invention se propose de fournir une solution au problème du collement des composants à contact intermittent dans un mouvement d'horlogerie pour montre, comportant un nouveau résonateur à guidages flexibles et pivot virtuel, de facteur qualité supérieur à 1000, associé à un mécanisme d'échappement.
  • L'invention concerne plus particulièrement l'utilisation du carbure de silicium, ou de matériaux dérivés comportant essentiellement du carbure de silicium, comme matériau tribologique à haute performance dans l'échappement.
  • A cet effet, l'invention concerne un mécanisme régulateur pour montre, comportant un mécanisme résonateur à guidages flexibles et pivot virtuel, de facteur qualité supérieur à 1000, et comprenant un mécanisme d'échappement, à tribologie améliorée, selon la revendication 1.
  • L'invention concerne encore un procédé de réalisation d'un tel mécanisme régulateur caractérisé en ce qu'on réalise chaque couple constitué par une première surface de frottement et une deuxième surface de frottement antagonistes, en réalisant un composant en carbure de silicium avec un substrat pour constituer ladite première surface de frottement et/ou la deuxième surface de frottement, ou bien par frittage, ou bien par élaboration massive.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, de façon schématisée et en vue en plan, un mécanisme d'échappement traditionnel comportant notamment une palette d'ancre coopérant en contact avec une roue d'échappement, au niveau de surfaces de contact agencées selon l'invention ;
    • la figure 2 représente, de façon schématisée, la coopération entre les surfaces de contact antagonistes ;
    • la figure 3 représente, de façon schématisée et en vue en plan, un mécanisme régulateur d'horlogerie, selon l'invention, comportant un mécanisme résonateur à guidages flexibles et pivot virtuel avec un haut facteur de qualité supérieur à 1000, comportant une masse inertielle oscillante porteuse d'une cheville de plateau agencée pour coopérer avec une fourchette d'une ancre laquelle est par ailleurs agencée pour coopérer avec les dents d'une roue d'échappement ;
    • la figure 4 est un détail de la figure 3 ;
    • la figure 5 représente, sous forme d'un schéma-blocs, une montre comportant un mouvement lequel comporte un tel mécanisme régulateur d'horlogerie, selon l'invention.
    Description détaillée des modes de réalisation préférés
  • L'invention concerne l'utilisation du carbure de silicium en tant que matériau permettant le fonctionnement à lubrification minimale d'un mécanisme régulateur d'horlogerie comportant un mécanisme résonateur à guidages flexibles et pivot virtuel avec un haut facteur de qualité supérieur à 1000, associé à un mécanisme d'échappement.
  • Le fonctionnement sans lubrification est un cas particulier. Mais les caractéristiques exposées ci-après conviennent aussi à un mécanisme régulateur lubrifié, dont l'avantage est de pouvoir atteindre une amplitude supérieure à celle d'un régulateur fonctionnant à sec, avec notamment un gain de 10% à 20% d'amplitude dans certains cas. Le mécanisme régulateur 300 comporte alors de préférence un lubrifiant avec une tension de surface inférieure à 50 mN/m, et plus particulièrement inférieure à 40 mN/m, et plus particulièrement encore inférieure ou égale à 36 mN/m ; la tension de surface du lubrifiant horloger utilisé est alors significativement plus faible que celle de l'eau, laquelle est de 72 mN/m soit entre la moitié et les deux tiers environ. L'invention est plus particulièrement décrite pour un fonctionnement à sec, mais l'homme du métier n'aura aucune difficulté pour l'extrapoler à un mécanisme lubrifié.
  • Par commodité de langage, on appellera ci-après « carbure de silicium » au sens large un matériau qui est composé:
    • ou bien par du carbure de silicium stoechiométrique SiC, qui peut être massif dans le cas le plus général, ou encore en couche mince ;
    • ou bien selon une composition dite non stoechiométrique SixCyHz, avec x égal à 1, y compris entre 0.8 et 5.0, et z compris entre 0.00 et 0.70, et plus particulièrement entre 0.04 et 0.70, qui est de préférence appliqué en couche mince, mais qui peut aussi être constitutive d'un composant massif.
  • On appelle ici « massif » un composant dont la plus petite dimension est supérieure à 0,10 mm, tandis qu'une « couche mince » a sa plus petite dimension inférieure à 10 micromètres, et de préférence inférieure à 1 micromètre. Bien sûr, beaucoup de composants horlogers comportent des zones dont la plus faible dimension est inférieure à 0.10 mm, comme des bras ou des dents de roue d'échappement, ou similaire ; les composants horlogers utilisés dans le cas d'espèce des résonateurs à haut facteur de qualité sont généralement issues d'un wafer d'épaisseur supérieure à 0.10 mm, ou d'un assemblage de plusieurs wafers plus minces (wafer bonding) pour réaliser un wafer résultant d'épaisseur supérieure à 0.10 mm.
  • En effet l'expérimentation permet d'établir que le frottement du carbure de silicium contre du silicium ou de l'oxyde de silicium présente des propriétés particulièrement souhaitées dans un mécanisme horloger, et tout particulièrement dans le cas d'un mécanisme d'échappement.
  • Un tel couple de frottement présente un coefficient de frottement bas, inférieur à 0.17, sur une large plage de force - vitesse (1mN - 200mN et 1 cm/s - 10 cm/s).
  • La littérature enseigne que, pour des matériaux durs élastiques, en raison de l'augmentation de la contrainte de cisaillement en fonction de la pression, le coefficient de frottement varie habituellement une loi de type: µ = S/P+α, où : S : contrainte de cisaillement limite, P : pression de Hertz, α : paramètre de valeur constante.
  • Le paramètre S détermine la dépendance du couple en fonction de la pression, et est de ce fait particulièrement utile à prendre en compte dans le cas du frottement à sec dans l'échappement où les forces et pressions de contact varient grandement, ainsi que dans l'interface entre l'échappement et le résonateur.
  • En comparaison d'autres couples en frottement, les couples carbure de silicium/Si ou carbure de silicium/SiO2 présentent une faible dépendance du coefficient de frottement en fonction de la force normale appliquée. Cela se traduit par un paramètre S très faible. Ce comportement est particulièrement utile dans l'échappement puisque la force normale varie grandement, typiquement de 0 à 200 mN lors des mises en contact et impacts. Durant les pertes de contact et mises en contact, le carbure de silicium permet de conserver un coefficient de frottement bas inférieur à 0.2, valeur qui est habituellement considérée comme le seuil critique de fonctionnement de l'échappement.
  • Lors des décollements (séparation de la dent de la roue d'échappement d'une part, et de la levée de l'ancre d'autre part, par exemple), ce sont les forces d'adhésion qui interviennent. À sec agissent des forces électrostatiques, de van der Waals, Hydrogène, et autres. Dans le cas d'un contact avec médium liquide (ou fluide), ce sont les forces de tension de surface qui s'opposent au décollement et ainsi consomment de l'énergie. Dans l'absolu, on ne peut pas les considérer comme des forces de frottement. Dans le cas des mécanismes régulateurs classiques à balancier-spiral, on tend à les assimiler à des forces de frottement car les forces d'adhésion sont beaucoup plus faibles que celles de frottement, et sont presque négligeables devant elles. Dans le cas d'espèce des régulateurs à haut facteur de qualité, elles sont du même ordre de grandeur, et peuvent même être prépondérantes dans certains cas. Les mécanismes sous-jacents et les stratégies pour diminuer frottement ou adhésion sont différentes, et peuvent même se révéler antagonistes dans certaines configurations.
  • De surcroît le carbure de silicium résiste bien à l'usure, ce qui garantit une bonne tenue dans la durée.
  • L'expérimentation comparée avec des composants de contact en silicium ou oxyde de silicium montrent que l'emploi du carbure de silicium superficiel permet de réduire à néant les arrêts de l'oscillateur.
  • L'invention concerne ainsi un mécanisme régulateur 300 d'horlogerie, comportant, agencés pour être disposés sur une platine 1, un mécanisme résonateur 100 à pivot virtuel et à guidage flexible, d'un facteur de qualité Q supérieur à 1000, et un mécanisme d'échappement 200 lequel est destiné à être soumis à un couple de moyens moteurs 400 que comporte un mouvement 500, notamment pour l'équipement d'une montre 1000.
  • Par exemple, le mécanisme régulateur 300 illustré aux figures 3 et 4 a une puissance à l'échappement de l'ordre de 0.7 microwatt, ce qui est environ vingt fois plus faible que dans le cas d'un régulateur traditionnel.
  • Le mécanisme résonateur 100 comporte au moins un élément inertiel 2 agencé pour osciller par rapport à la platine 1. Cet élément inertiel 2 est soumis à l'action de moyens de rappel élastique 3 destinés à être fixés directement ou indirectement à la platine 1. Et cet élément inertiel 2 est agencé pour coopérer indirectement avec un mobile d'échappement 4 que comporte le mécanisme d'échappement 200.
  • Les figures montrent, de façon non limitative, une cheville de plateau 6 solidaire d'une masse inertielle 2, et agencée pour coopérer avec une ancre 7, laquelle est à son tour agencée pour coopérer avec un tel mobile d'échappement 4 ici constitué par une roue d'échappement.
  • Ce mécanisme résonateur 100 est ici un résonateur rotatif à pivot virtuel, autour d'un axe principal DP, à guidage flexible comportant au moins deux lames flexibles 5, et comportant une telle cheville de plateau 6 solidaire de l'élément inertiel 2.
  • Le mécanisme d'échappement 200 comporte une ancre 7 pivotant autour d'un axe secondaire DS et comportant une fourchette d'ancre 8 agencée pour coopérer avec la cheville de plateau 6. Ce mécanisme d'échappement 200 est un mécanisme d'échappement libre, dans le cycle de fonctionnement duquel le mécanisme résonateur 100 possède au moins une phase de liberté où la cheville de plateau 6 est à distance de la fourchette d'ancre 8.
  • Ce mécanisme régulateur 300 est un mécanisme à tribologie améliorée, en fonction des constats exposés plus haut, et est conçu pour minimiser les phénomènes de collement entre les surfaces des composants à contact variable et/ou discontinu.
  • Plus particulièrement, ce résonateur 100 a un facteur de qualité supérieur à 1000, plus particulièrement supérieur à 1800, plus particulièrement encore supérieur à 2500.
  • La technologie des résonateurs à pivot virtuel, et en particulier à lames flexibles, n'autorise pas encore de grandes amplitudes d'oscillation de la masse inertielle. Dans le cas de l'invention, l'amplitude d'oscillation du résonateur 100 est inférieure à 180°, plus particulièrement inférieure à 90°, plus particulièrement encore inférieure à 40°.
  • La fréquence d'oscillation du résonateur 100 est supérieure à 8Hz, plus particulièrement supérieure ou égale à 10 Hz, plus particulièrement encore supérieure ou égale à 15 Hz.
  • De façon propre à l'invention, ce mécanisme régulateur 300 comporte, au niveau du mécanisme résonateur 100 et/ou du mécanisme d'échappement 200 et/ou entre le mécanisme résonateur 100 et le mécanisme d'échappement 200, au moins un couple de composants, comportant un premier composant 22 et un deuxième composant 32, lesquels comportent respectivement une première surface de frottement 20 et une deuxième surface de frottement 30 qui sont agencées pour coopérer en contact l'une avec l'autre.
  • Par exemple et non limitativement, ce premier composant 22 et ce deuxième composant 32 sont pris parmi : cheville de plateau 6, ancre 7, dard d'ancre, fourchette 8 d'ancre avec ses cornes 26, palette d'ancre 72, 81, 82, dent de roue d'échappement 4, étoqueau 36 fixé à la platine, et similaires.
  • Dans une exécution particulière, toutes les paires de composants à contact variable et/ou discontinu d'un tel mécanisme régulateur comportent des surfaces antagonistes selon les caractéristiques de l'invention, dont au moins un composant 22 ou 32 comporte du carbure de silicium ou son équivalent c'est-à-dire un matériau comportant au moins 90% en masse de carbure de silicium SiC et au moins un autre matériau, pris parmi une liste exposée ci-dessous.
  • L'invention concerne plus particulièrement le cas des mécanismes résonateurs dans lesquels l'énergie à transmettre lors de chaque impulsion est inférieure à 200 nJ.
  • Plus particulièrement, l'invention concerne plus particulièrement le cas des mécanismes résonateurs dans lesquels à la fois l'énergie à transmettre lors de chaque impulsion est inférieure à 200 nJ, et le facteur de qualité est supérieur à 1000.
  • La première surface de frottement 20 est la surface d'un composant qui comporte du carbure de silicium qui est, ou bien du carbure de silicium stœchiométrique SiC, ou bien du carbure de silicium non stœchiométrique SixCyHz, avec x égal à 1, y compris entre 0.8 et 5.0, et z compris entre 0.00 et 0.70, ou bien encore un matériau, dit équivalent, c'est-à-dire comportant au moins 90% en masse de carbure de silicium SiC et au moins un autre matériau, pris parmi la liste suivante dont les proportions sont affichées en masse :
    alpha-SiC 6H, bêta-SiC 3C, SiC 4H, SiC fluoré, carbonitrure de silicium SiCN, aluminium 400 à 2000 ppm, fer inférieur à 3000 ppm, bore et/ou carbure de bore B4C et/ou bore polyphénylique et/ou décaborane B10H14 et/ou du carborane B10H12C2, le total de matériaux contenant du bore étant compris entre 0.04% à 0.14%, carbone inférieur à 8000 ppm, carbure de vanadium, carbure de zirconium, oxynitrure de silicium alpha : alpha-SiAION dopé yttrium, graphène, autres impuretés sous 500 ppm.
  • Toutefois les impuretés sont souvent nuisibles pour les problématiques de contact, et il est préférable de les limiter à la valeur la plus basse possible, surtout en ce qui concerne le fer qui risque de réagir avec l'humidité pour former des oxydes perturbateurs, qu'il vaut mieux limiter sous 400 ppm. Les autres impuretés sont à limiter, de préférence sous 100 ppm. Le bore n'est avantageux que quand il est rendu stable par une liaison avec un autre élément, on évite alors de préférence le bore seul.
  • Et la deuxième surface de frottement 30 est la surface d'un composant qui comporte au moins un matériau assurant une bonne coopération avec le carbure de silicium tel que :
    • dans des réalisations autres que l'invention : Al2O3, ou CBN, ou TiO2, ou verre, ou quartz, ou diamant, ou DLC ;
    ou, selon l'invention :
    • ou bien un matériau à base de silicium pris parmi un groupe comportant le silicium Si, le silicium désoxydé, le dioxyde de silicium SiO2, le silicium amorphe a-Si, le silicium polycristallin p-Si, le silicium poreux, ou un mélange de silicium et d'oxyde de silicium, le nitrure de silicium stœchiométrique Si3N4, le nitrure de silicium dans une composition dite non stœchiométrique SixNyHz avec x égal à 1 et y compris entre 0.8 et 5.0 et z compris entre 0.00 et 0.70, les oxynitrures SixOyNz, ;
    • ou bien la deuxième surface de frottement 30 est la surface d'un composant qui comporte au moins un matériau à base de silicium pris, comme la première surface de frottement 20, parmi le carbure de silicium qui est, ou bien du carbure de silicium stœchiométrique SiC, ou bien du carbure de silicium non stœchiométrique SixCyHz, avec x égal à 1, y compris entre 0.8 et 5.0, et z compris entre 0.00 et 0.70, ou bien encore un matériau comportant au moins 90% en masse de carbure de silicium SiC et au moins un autre matériau pris parmi la liste suivante dont les proportions sont affichées en masse :
      alpha-SiC 6H, bêta-SiC 3C, SiC 4H, SiC fluoré, carbonitrure de silicium SiCN, aluminium 400 à 2000 ppm, fer inférieur à 3000 ppm, bore et/ou carbure de bore B4C et/ou bore polyphénylique et/ou décaborane B10H14 et/ou du carborane B10H12C2, le total de matériaux contenant du bore étant compris entre 0.04% à 0.14%, carbone inférieur à 8000 ppm, carbure de vanadium, carbure de zirconium, oxynitrure de silicium alpha : alpha-SiAION dopé yttrium, graphène, autres impuretés sous 500 ppm.
  • On entend ici par « silicium amorphe a-Si » du silicium déposé par procédé PECVD en couche mince, de 50 nm à 10 micromètres, de structure amorphe ; il peut également être hydrogéné ou dopé type N ou type P.
  • On entend ici par « silicium polycristallin p-Si » du silicium déposé par procédé LPCVD, composé de grains de silicium microcristallin, la taille des grains étant de 10 à 2000 nm ; il peut également être dopé type N ou type P. Le module d'élasticité E est voisin de 160 GPa.
  • On entend ici par « silicium poreux » un matériau avec une taille de pores de 2 nm à 10 micromètres, réalisé selon un procédé de fabrication complexe basé sur une anodisation (électrolyte HF et courant électrique).
  • Plus particulièrement, une au moins de ces première ou deuxième surface de frottement 20, 30, est constituée, ou bien par la surface d'un élément massif en carbure de silicium massif, de préférence mais non limitativement dans la formulation stoechiométrique SiC, ou bien par la surface d'une couche mince 21, 31, de carbure de silicium dans la formulation stoechiométrique SiC, ou selon une composition non stoechiométrique SixCyHz, avec x égal à 1, y compris entre 0.8 et 5.0, et z compris entre 0.00 et 0.70. Plus particulièrement, z est compris entre 0.04 et 0.70.
  • De la même façon que pour le premier composant 22 avec sa première surface de frottement comportant du carbure de silicium, la deuxième surface de frottement 30 peut être, ou bien la surface d'un composant massif, ou bien la surface d'une couche mince.
  • Une application particulièrement intéressante et voisine de l'invention est la coopération de levées en SiC, en contact avec des roues Si + SiO2.
  • Une autre application avantageuse concerne l'application dite « carbure de silicium massif », avec des roues en SiC, par exemple découpées ou laser, ou similaire, qui sont en frottement contre une ancre monobloc en Si + SiO2, ou contre une ancre classique équipée de levées en Si + SiO2
  • Les combinaisons utilisables en horlogerie sont notamment :
    • roue en SiO2, sous toutes ses formes, quartz massif SiO2, Si + SiO2, coopérant avec des palettes en carbure de silicium, sous toutes ses formes, en couches minces, ou carbure de silicium massif ;
    • roues carbure, sous toutes ses formes, Si + carbure de silicium, carbure de silicium massif, coopérant avec des palettes en SiO2, sous toutes ses formes, Si + SiO2, SiO2 massif notamment ;
    • les palettes peuvent être d'une seule pièce avec l'ancre.
  • Une application avantageuse concerne une roue en Si oxydé, et des palettes en SiC massif, ou encore des palettes en Si oxydé recouvertes de carbure de silicium.
  • Dans une mise en oeuvre avantageuse de l'invention, la surface de frottement 20, 30, qui est la surface d'un composant qui comporte du carbure de silicium, est la surface d'un composant qui comporte du carbure de silicium SiC, ou encore est constitué de carbure de silicium SiC.
  • De façon particulière, la première surface de frottement 20 et la deuxième surface de frottement 30 sont les surfaces de composants 22 et 32 qui comportent chacun du carbure de silicium ou son équivalent tel que défini plus haut. Plus particulièrement encore, la première surface de frottement 20 et la deuxième surface de frottement 30 sont les surfaces de composants qui comportent chacun du carbure de silicium SiC, ou encore est constitué de carbure de silicium SiC.
  • Dans une variante particulière, la surface de frottement 20, 30, qui est la surface d'un composant qui comporte du carbure de silicium est une surface d'une couche de carbure de silicium d'épaisseur inférieure à 2 micromètres. Plus particulièrement, les surfaces de frottement 20, 30, sont chacune la surface d'une couche de carbure de silicium d'épaisseur inférieure à 2 micromètres.
  • Le phénomène d'adhésion concerne la surface du matériau, et à la limite seulement au niveau de la couche atomique ; toutefois les phénomènes d'abrasion inévitables rendent nécessaire l'existence d'une couche sacrificielle, aussi avantageusement la surface de frottement 20, 30, qui est la surface d'un composant qui comporte du carbure de silicium est une surface d'une couche de carbure de silicium d'épaisseur supérieure à 0.5 micromètres. Plus particulièrement, les surfaces de frottement 20, 30, sont chacune la surface d'une couche de carbure de silicium d'épaisseur supérieure à 0.5 micromètres.
  • De préférence, l'épaisseur d'une telle couche de carbure de silicium est comprise entre 50 et 2000 nm. Plus particulièrement, cette couche, dite mince, de carbure de silicium est d'épaisseur comprise entre 50 nanomètres et 500 nanomètres.
  • Dans une variante particulière de l'invention, la surface de frottement 20, 30, qui est la surface d'un composant qui comporte du carbure de silicium est la surface d'une couche de carbure de silicium, laquelle couche recouvre un substrat constitué de quartz ou de silicium ou d'un oxyde de silicium, ou d'un mélange de silicium et d'oxyde de silicium. Plus particulièrement, les surfaces de frottement 20, 30, sont chacune la surface d'une couche de carbure de silicium, laquelle couche recouvre un substrat constitué de quartz ou de silicium ou d'un oxyde de silicium, ou d'un mélange de silicium et d'oxyde de silicium.
  • Dans une variante particulière, la surface de frottement 30, 20, antagoniste à celle 20, 30, qui est la surface d'un composant qui comporte du carbure de silicium, est la surface d'un composant qui comporte au moins un matériau à base de silicium pris parmi un groupe comportant le silicium Si, le dioxyde de silicium SiO2, le silicium amorphe a-Si, le silicium polycristallin p-Si, le silicium poreux, et est une surface d'une couche constituée exclusivement d'un ou plusieurs matériaux à base de silicium pris parmi ledit groupe. Plus particulièrement, les surfaces de frottement 20, 30, sont chacune la surface d'un composant qui comporte au moins un matériau à base de silicium pris parmi un groupe comportant le silicium Si, le dioxyde de silicium SiO2, le silicium amorphe a-Si, le silicium polycristallin p-Si, le silicium poreux, et est une surface d'une couche constituée exclusivement d'un ou plusieurs matériaux à base de silicium pris parmi ledit groupe.
  • Le couple SiC/Si donne des résultats particulièrement intéressants, le couple de frottement est sensiblement constant, et ceci sans nécessiter la moindre lubrification. Toutefois il subsiste des pertes par frottement, et le choix d'une lubrification à l'huile fluide peut permettre de réduire ces pertes par frottement, les phénomènes de collement inhérents à la présence d'huile pouvant être contrecarrés par une tension de surface relativement faible.
  • De façon avantageuse, la surface de frottement 20, 30, qui est la surface d'un composant qui comporte du carbure de silicium, a une rugosité supérieure ou égale à 5 nanomètres Ra, et plus particulièrement supérieure ou égale à 9 nanomètres Ra, plus particulièrement encore supérieure ou égale à 25 nanomètres Ra, au moins au niveau d'au moins une surface de contact. Plus particulièrement cette surface de frottement 20, 30, a une rugosité supérieure ou égale à 5 nanomètres Ra au niveau de chaque surface de contact. Plus particulièrement encore, ces surfaces de frottement 20, 30, ont chacune une rugosité supérieure ou égale à 5 nanomètres Ra au niveau de chaque surface de contact.
  • Dans une variante particulière, une des deux surfaces de frottement 20, 30, est lisse de manière à éviter un frottement trop important (interpénétration des rugosités par exemple). La surface rugueuse doit être en déplacement relatif avec une surface lisse de manière à éviter l'usure. La rugosité de surface de la contrepièce doit de préférence être faible pour limiter l'usure, et sa rugosité est avantageusement inférieure à celle de la surface de contact, et plus particulièrement mais non limitativement inférieure à 5 nanomètres Ra.
  • Dans une autre variante particulière, pour permettre une supra-lubrification, une des surfaces est la surface d'un composant qui comporte un premier relief tramé, en relief, par exemple sous la forme d'une juxtaposition de pyramides, ou similaires, et la surface antagoniste est la surface d'un composant qui comporte un deuxième relief tramé, qui peut être ou non analogue au premier relief tramé, mais qui s'en distingue par une inclinaison relative de sa direction de trame avec celle du premier relief tramé, de façon à prévenir tout encastrement de l'un dans l'autre.
  • On va décrire un procédé de réalisation d'un tel mécanisme d'échappement 200.
  • Selon ce procédé :
    • dans une première alternative on applique une couche de carbure de silicium sur un substrat pour constituer une de ces première ou deuxième surface de frottement 20, 30 :
      • ou bien par un dépôt chimique en phase vapeur assisté par plasma PECVD,
      • ou bien par un dépôt chimique en phase vapeur CVD,
      • ou bien par un dépôt par pulvérisation cathodique « sputtering » ;
    • ou dans une deuxième alternative on effectue une gravure profonde du composant dans un bulk massif de carbure de silicium.
  • Ces variantes ne sont pas exclusives, ce sont les plus économiques. On peut, encore, effectuer une croissance de SiC dans un masque en silicium sacrificiel, mais l'opération est difficile et coûteuse. On peut aussi carburer (ou nitrurer si l'on souhaite obtenir du Si3N4 pour une des surfaces antagonistes) un wafer en silicium, mais il est difficile de contrôler la déformation de la maille qui peut aller jusqu'à la dislocation ou à une modification dimensionnelle notable.
  • Plus particulièrement, on réalise un composant en carbure de silicium avec un substrat pour constituer la base d'une des première ou deuxième surfaces de frottement 20, 30, ou bien par frittage, ou bien par élaboration massive.
  • On peut notamment utiliser, pour le dépôt d'une couche comportant du carbure de silicium, ou constituée de carbure de silicium, une ou plusieurs des technologies connues de l'homme de métier spécialiste des « MEMS » : LPCVD (dépôt chimique en phase vapeur sous basse pression sous-atmosphérique), PECVD (dépôt chimique en phase vapeur assisté par plasma), CVD (dépôt chimique en phase vapeur à pression atmosphérique), ALD (dépôt de couches minces atomiques), « sputtering » (pulvérisation cathodique), implantation ionique, et similaires.
  • De préférence, on choisit le rapport Si/C compris entre 0.8 à 1.2. Plus particulièrement, la valeur Si/C de 1 est stoechiométrique
  • De préférence, quand il s'agit de SixCyHz, on choisit une concentration en hydrogène comprise entre 2 à 30% de H.
  • De préférence, on choisit, de façon non limitative, un substrat habituel en Si.
  • En ce qui concerne la sous-couche, on peut choisir, de manière non limitative du SiO2, typiquement dans une épaisseur comprise entre 50 et 2000 nm, ou du poly-Si, SiC, ou similaire.
  • Les limitations technologiques liées à la déposition du carbure de silicium sont connues de l'homme de métier dans le domaine des MEMS.
  • Ainsi, l'épaisseur d'une couche de carbure de silicium est de préférence comprise entre 50 et 2000nm.
  • En ce qui concerne l'état de compression du carbure de silicium, il est connu de l'homme de métier spécialiste des « MEMS » que l'accroissement de la concentration du Si réduit les tensions dans le carbure de silicium et peut même le rendre compressif. Il est connu que les matériaux présentant un stress compressif favorisent généralement une réduction de l'usure en frottement. Cela correspond à du carbure de silicium riche en Si. Il convient toutefois d'éviter que trop de silicium en surface ne s'oxyde sous forme d'oxyde de silicium, car alors on retombe dans un phénomène d'adhésion que l'on veut précisément combattre.
  • Pour une bonne mise en oeuvre de l'invention, il importe que la couche de carbure de silicium adhère bien au substrat, et que les modules d'élasticité des matériaux ne soient pas trop éloignés. La nature des matériaux sous-jacents est de moindre importance. Si la couche de carbure de silicium dépasse une épaisseur voisine de 200nm, pour éviter que l'usure fasse apparaître trop vite le silicium, rapidement oxydé en oxyde de silicium néfaste pour l'adhésion, le frottement est déterminé par les tous premiers nanomètres périphériques de cette couche de carbure de silicium.
  • Des palettes en SiC monobloc peuvent être réalisées par les mêmes techniques que celles utilisées pour la fabrication des levées en rubis polycristallin, connues de l'homme du métier.
  • Par ailleurs, on peut avantageusement considérer du carbure de silicium massif en frottement contre du Si ou SiO2, par exemple pour une palette en carbure de silicium contre une roue en SiO2.
  • L'invention présente de nombreux avantages dans le cas de la nonlubrification de l'échappement :
    • une faible dépendance du coefficient de frottement en fonction de la vitesse de frottement. Particulièrement utile dans le cas de l'échappement puisque la vitesse varie typiquement entre 0 et 3 cm/s.
    • un coefficient de frottement stable en fonction de la vitesse et pression réduit le risque d'apparition d'effet stick-slip se traduisant généralement par une dégradation accélérée des matériaux en frottement.
    • l'absence de risque de formation d'un troisième corps défavorable au frottement.
    • une faible réactivité chimique du carbure de silicium, particulièrement dans sa forme stoechiométrique SiC, le rendant peu sensible aux nettoyages, à la dégradation, à l'interaction avec le milieu ambiant.
    • une faible usure.
  • On notera que la solution proposée par l'invention est dédiée à la diminution des phénomènes d'adhésion (séparation/déplacement normal et déplacement tangentiel) qui sont différents des phénomènes de frottement (déplacement tangentiel uniquement).
    Le carbure de silicium présente également l'avantage d'une mise en oeuvre facile, particulièrement par revêtement conforme PECVD, notamment sur du silicium ou de l'oxyde de silicium. Ce procédé de dépose est largement connu et répandu dans l'industrie du silicium.
  • La présente invention permet une utilisation du carbure de silicium sous différentes formes : dépôt PECVD, CVD, « sputtering », massif, fritté, et autres.
  • Des applications voisines de l'invention incluent un frottement du carbure de silicium contre des partenaires non limitatifs tels que : Si, SiO2, le silicium amorphe a-Si, le silicium polycristallin p-Si, le silicium poreux.
  • L'invention permet de résoudre le problème de collement qui entravait jusqu'ici le développement et l'industrialisation des mécanismes régulateurs pour montres à facteur de qualité supérieur à 1000, et on comprend que d'autres problématiques horlogères peuvent également trouver une amélioration. Par exemple, le contact entre la cheville et la fourchette de l'ancre dans un mécanisme traditionnel est également sujet à collements. Plus généralement, cette solution est applicable dans tous les cas où les énergies en jeu sont faibles.

Claims (9)

  1. Mécanisme régulateur (300) d'horlogerie, comportant, agencés pour être disposés sur une platine (1), un mécanisme résonateur (100) à pivot virtuel, autour d'un axe principal (DP), et à guidage flexible, d'un facteur de qualité Q supérieur à 1000, et un mécanisme d'échappement (200) lequel est destiné à être soumis à un couple de moyens moteurs (400) que comporte un mouvement (500), ledit mécanisme résonateur (100) comportant un élément inertiel (2) agencé pour osciller par rapport à ladite platine (1), ledit élément inertiel (2) étant soumis à l'action de moyens de rappel élastique (3) destinés à être fixés directement ou indirectement à ladite platine (1), et ledit élément inertiel (2) étant agencé pour coopérer indirectement avec un mobile d'échappement (4) que comporte ledit mécanisme d'échappement (200), ledit mécanisme d'échappement (200) étant libre et, dans son cycle de fonctionnement le mécanisme résonateur (100) possédant au moins une phase de liberté où il est sans contact avec ledit mécanisme d'échappement (200), ledit mécanisme régulateur (300) comportant au moins un couple de composants comportant un premier composant (22) et un deuxième composant (32) comportant respectivement une première surface de frottement (20) et une deuxième surface de frottement (30) agencées pour coopérer en contact l'une avec l'autre, caractérisé en ce que un ledit premier composant (22) comporte, au niveau de sa dite première surface de frottement (20), du carbure de silicium qui est, ou bien du carbure de silicium stœchiométrique SiC, ou bien du carbure de silicium non stœchiométrique SixCyHz, avec x égal à 1, y compris entre 0.8 et 5.0, et z compris entre 0.00 et 0.70, ou bien encore un matériau comportant au moins 90% en masse de carbure de silicium SiC et au moins un autre matériau pris parmi la liste suivante dont les proportions sont affichées en masse : alpha-SiC 6H, bêta-SiC 3C, SiC 4H, SiC fluoré, carbonitrure de silicium SiCN, aluminium 400 à 2000 ppm, fer inférieur à 3000 ppm, bore et/ou carbure de bore B4C et/ou bore polyphénylique et/ou décaborane B10H14 et/ou du carborane B10H12C2, le total de matériaux contenant du bore étant compris entre 0.04% à 0.14%, carbone inférieur à 8000 ppm, carbure de vanadium, carbure de zirconium, oxynitrure de silicium alpha : alpha-SiAION dopé yttrium, graphène, autres impuretés sous 500 ppm,
    et encore caractérisé en ce que ledit deuxième composant (32) comporte, au niveau de sa dite deuxième surface de frottement (30), au moins un matériau à base de silicium pris parmi un groupe comportant le silicium Si inférieur à 400 ppm en masse, le silicium désoxydé, le dioxyde de silicium SiO2 inférieur à 8000 ppm en masse, le silicium amorphe a-Si, le silicium polycristallin p-Si, le silicium poreux, ou un mélange de silicium et d'oxyde de silicium, le nitrure de silicium stoechiométrique Si3N4, le nitrure de silicium dans une composition dite non stœchiométrique SixNyHz avec x égal à 1 et y compris entre 0.8 et 5.0 et z compris entre 0.00 et 0.70, les oxynitrures SixOyNz, ;
    - ou bien la deuxième surface de frottement (30) est la surface d'un composant qui comporte au moins un matériau à base de silicium pris, comme la première surface de frottement (20), parmi le carbure de silicium qui est, ou bien du carbure de silicium stœchiométrique SiC, ou bien du carbure de silicium non stœchiométrique SixCyHz, avec x égal à 1, y compris entre 0.8 et 5.0, et z compris entre 0.00 et 0.70, ou bien encore un matériau comportant au moins 90% en masse de carbure de silicium SiC et au moins un autre matériau pris parmi la liste suivante dont les proportions sont affichées en masse :
    alpha-SiC 6H, bêta-SiC 3C, SiC 4H, SiC fluoré, carbonitrure de silicium SiCN, aluminium 400 à 2000 ppm, fer inférieur à 3000 ppm, bore et/ou carbure de bore B4C et/ou bore polyphénylique et/ou décaborane B10H14 et/ou du carborane B10H12C2, le total de matériaux contenant du bore étant compris entre 0.04% à 0.14%, carbone inférieur à 8000 ppm, carbure de vanadium, carbure de zirconium, oxynitrure de silicium alpha : alpha-SiAION dopé yttrium, graphène, autres impuretés sous 500 ppm.
  2. Mécanisme régulateur (300)selon la revendication 1, caractérisé en ce que ledit premier composant (22) et ledit deuxième composant (32) comportent chacun du carbure de silicium qui est, ou bien du carbure de silicium stœchiométrique SiC, ou bien du carbure de silicium non stœchiométrique SixCyHz, avec x égal à 1, y compris entre 0.8 et 5.0, et z compris entre 0.00 et 0.70, ou bien encore un matériau comportant au moins 90% en masse de carbure de silicium SiC et au moins un autre matériau pris parmi la liste suivante dont les proportions sont affichées en masse : alpha-SiC 6H, bêta-SiC 3C, SiC 4H, SiC fluoré, carbonitrure de silicium SiCN, aluminium 400 à 2000 ppm, fer inférieur à 3000 ppm, bore et/ou carbure de bore B4C et/ou bore polyphénylique et/ou décaborane B10H14 et/ou du carborane B10H12C2, le total de matériaux contenant du bore étant compris entre 0.04% à 0.14%, carbone inférieur à 8000 ppm, carbure de vanadium, carbure de zirconium, oxynitrure de silicium alpha : alpha-SiAION dopé yttrium, graphène, autres impuretés sous 500 ppm
  3. Mécanisme régulateur (300) selon la revendication 2, caractérisé en ce que ledit premier composant (22) et ledit deuxième composant (32) comportent chacun du carbure de silicium.
  4. Mécanisme régulateur (300) selon l'une des revendications 1 à 3, caractérisé en ce que ladite deuxième surface de frottement (30) est constituée par la surface d'un élément massif en carbure de silicium massif.
  5. Mécanisme régulateur (300) selon la revendication 4, caractérisé en ce que ladite deuxième surface de frottement (30) est constituée par la surface d'un élément massif en carbure de silicium massif dans la formulation stoechiométrique SiC.
  6. Mouvement d'horlogerie (500) comportant au moins un mécanisme régulateur (300) selon l'une des revendications 1 à 5.
  7. Montre (1000) comportant au moins un mouvement d'horlogerie (500) selon la revendication 6 et/ou au moins un mécanisme régulateur (300) selon l'une des revendications 1 à 5.
  8. Procédé de réalisation d'un mécanisme régulateur (300) selon l'une des revendications 1 à 5, caractérisé en ce qu'on réalise chaque couple constitué par une première surface de frottement (20) et une deuxième surface de frottement (30) antagonistes comportant du carbure de silicium, et caractérisé en ce qu'on réalise un composant en carbure de silicium avec un substrat pour constituer ladite première surface de frottement (20) et/ou ladite deuxième surface de frottement (30) par frittage.
  9. Procédé de réalisation d'un mécanisme régulateur (300) selon l'une des revendications 1 à 5, caractérisé en ce qu'on réalise chaque couple constitué par une première surface de frottement (20) et une deuxième surface de frottement (30) antagonistes comportant du carbure de silicium, et caractérisé en ce qu'on réalise un composant en carbure de silicium avec un substrat pour constituer ladite première surface de frottement (20) et/ou ladite deuxième surface de frottement (30), par élaboration sous forme d'un composant massif dont l'épaisseur est supérieure à 0,10 mm.
EP19193107.0A 2019-08-22 2019-08-22 Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale Active EP3783445B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19193107.0A EP3783445B1 (fr) 2019-08-22 2019-08-22 Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale
TW109120813A TWI746020B (zh) 2019-08-22 2020-06-19 手錶、鐘錶機芯、鐘錶擺輪機構、和用於生產擺輪機構之方法
KR1020200085526A KR20210024415A (ko) 2019-08-22 2020-07-10 고품질 인자 및 최소 윤활을 갖춘 시계 조절기 기구
JP2020124265A JP7063953B2 (ja) 2019-08-22 2020-07-21 高品質係数および最小限の注油を有する時計調整器機構
CN202010849257.XA CN112415881B (zh) 2019-08-22 2020-08-21 具有高品质因数和最小润滑的钟表调速器机构
US16/999,584 US11640139B2 (en) 2019-08-22 2020-08-21 Horological regulator mechanism with high quality factor and minimal lubrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19193107.0A EP3783445B1 (fr) 2019-08-22 2019-08-22 Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale

Publications (2)

Publication Number Publication Date
EP3783445A1 EP3783445A1 (fr) 2021-02-24
EP3783445B1 true EP3783445B1 (fr) 2023-06-14

Family

ID=67734553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19193107.0A Active EP3783445B1 (fr) 2019-08-22 2019-08-22 Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale

Country Status (6)

Country Link
US (1) US11640139B2 (fr)
EP (1) EP3783445B1 (fr)
JP (1) JP7063953B2 (fr)
KR (1) KR20210024415A (fr)
CN (1) CN112415881B (fr)
TW (1) TWI746020B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865954A1 (fr) * 2020-02-12 2021-08-18 Nivarox-FAR S.A. Procédé de fabrication d'un dispositif à lames flexibles monobloc en silicium, pour l'horlogerie
EP4113220A1 (fr) * 2021-07-02 2023-01-04 Comadur SA Procédé de traitement de surface d'une pierre, notamment pour l'horlogerie
EP4303666A1 (fr) * 2022-07-06 2024-01-10 Association Suisse pour la Recherche Horlogère Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346049A (en) 1978-05-01 1982-08-24 Kennecott Corporation Sintered alpha silicon carbide ceramic body having equiaxed microstructure
JPS60186467A (ja) 1984-03-01 1985-09-21 イビデン株式会社 炭化珪素質焼結体の製造方法
JPS60246263A (ja) 1984-05-18 1985-12-05 日産自動車株式会社 炭化珪素質焼結体
US4853299A (en) * 1985-09-06 1989-08-01 Kabushiki Kaisha Toshiba Silicon carbide sintered body and method of manufacturing the same
FR2715398B1 (fr) 1994-01-27 1996-04-12 Ceramiques Composites Procédé de fabrication de matériaux céramiques de carbure de silicium, essentiellement de forme alpha et matériaux céramiques obtenus notamment par ledit procédé.
FR2731715B1 (fr) * 1995-03-17 1997-05-16 Suisse Electronique Microtech Piece de micro-mecanique et procede de realisation
US6755566B2 (en) * 2001-02-15 2004-06-29 Konrad Damasko Clockwork
US6716800B2 (en) 2002-04-12 2004-04-06 John Crane Inc. Composite body of silicon carbide and binderless carbon, process for producing such composite body, and article of manufacturing utilizing such composite body for tribological applications
ATE416401T1 (de) * 2005-06-28 2008-12-15 Eta Sa Mft Horlogere Suisse Verstärktes mikromechanisches teil
DE102008029429A1 (de) 2007-10-18 2009-04-23 Konrad Damasko Verfahren zum Herstellen von mechanischen Funktionselementen für Uhrwerke sowie nach diesem Verfahren hergestelltes Funktionselement
CH702930A2 (fr) 2010-04-01 2011-10-14 Patek Philippe Sa Geneve Echappement d'horlogerie à protection contre les chocs.
EP2472340B1 (fr) * 2011-01-03 2021-03-03 Patek Philippe SA Genève Composant horloger et son procédé de fabrication
JP6210535B2 (ja) * 2013-07-25 2017-10-11 セイコーインスツル株式会社 脱進機、時計用ムーブメントおよび時計
EP2942147B1 (fr) * 2014-05-08 2018-11-21 Nivarox-FAR S.A. Mécanisme d'échappement d'horlogerie sans lubrification
CH709665A2 (fr) * 2014-05-16 2015-11-30 Nivarox Sa Mécanisme d'horlogerie à couple de contact sans lubrification.
EP2952971B1 (fr) 2014-06-05 2016-10-12 Nivarox-FAR S.A. Ancre pour mécanisme d'échappement d'un mouvement de montre
ES2698115T3 (es) 2015-12-16 2019-01-31 Sa De La Manufacture Dhorlogerie Audemars Piguet & Cie Mecanismo de regulación de una velocidad media en un movimiento de relojería y movimiento de relojería
EP3327515B1 (fr) 2016-11-23 2020-05-06 ETA SA Manufacture Horlogère Suisse Resonateur rotatif a guidage flexible entretenu par un echappement libre a ancre
EP3489763B1 (fr) * 2017-11-22 2021-06-16 Nivarox-FAR S.A. Ancre pour echappement d'un mouvement horloger

Also Published As

Publication number Publication date
TWI746020B (zh) 2021-11-11
CN112415881A (zh) 2021-02-26
EP3783445A1 (fr) 2021-02-24
TW202109219A (zh) 2021-03-01
CN112415881B (zh) 2022-12-02
JP7063953B2 (ja) 2022-05-09
KR20210024415A (ko) 2021-03-05
US11640139B2 (en) 2023-05-02
US20210055695A1 (en) 2021-02-25
JP2021032882A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
EP3783445B1 (fr) Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale
EP1904901B2 (fr) Piece de micro-mecanique renforcee
EP2596406A1 (fr) Mecanisme oscillant a pivot elastique et mobile de transmission d'energie
EP2942147B1 (fr) Mécanisme d'échappement d'horlogerie sans lubrification
EP2690507B1 (fr) Spiral d'horlogerie
CH716518A2 (fr) Mécanisme régulateur d'horlogerie.
EP2631721A1 (fr) Composants horlogers en titane revêtus de diamant
EP2472340B1 (fr) Composant horloger et son procédé de fabrication
CH716331B1 (fr) Arbre horloger à pivot dont le coefficient de frottement est réduit.
EP3037893B1 (fr) Composant micromécanique ou horloger à guidage flexible
CH709609B1 (fr) Mécanisme d'échappement d'horlogerie sans lubrification.
EP3627237B1 (fr) Composant en materiau micro-usinable pour resonateur à haut facteur de qualité
EP2804054B1 (fr) Dispositif anti-adhésion d'un spiral sur un pont
EP3548972B1 (fr) Methode d'optimisation des proprietes tribologiques d'un composant horloger
CH711501A2 (fr) Procédé de fabrication d'une pièce micromécanique horlogère et ladite pièce micromécanique horlogère.
WO2022058159A1 (fr) Composant de micromecanique, notamment un mobile d'horlogerie, notamment un mobile d'echappement, dont la surface est optimisee
CH715360A2 (fr) Composant en matériau micro-usinable pour résonateur à haut facteur de qualité.
EP2976682B1 (fr) Ancre de mécanisme d'échappement d'horlogerie
EP4214581A1 (fr) Procede de fabrication d'un composant de micromecanique, notamment d'un mobile d'horlogerie, dont la surface est optimisee
EP3761122A1 (fr) Mobile d'échappement horloger, mécanisme d'échappement et pièce d'horlogerie associés
EP3908887A1 (fr) Organe régulateur pour mouvement horloger
CH717841A2 (fr) Mobile d'horlogerie, notamment mobile d'échappement, avec surface de contact revêtue.
CH707810A2 (fr) Mécanisme de blocage intermittent, tel une ancre, pour mécanisme d'échappement d'horlogerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210824

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019030914

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1579665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230701

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230914

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 5

Ref country code: CH

Payment date: 20230902

Year of fee payment: 5

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1579665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 5

Ref country code: DE

Payment date: 20230720

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019030914

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230822

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

26N No opposition filed

Effective date: 20240315

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A