EP2724412A2 - Procédé de traitement et/ou de réparation d'une cellule électrochimique et batterie comportant un certain nombre desdites cellules électrochimiques - Google Patents
Procédé de traitement et/ou de réparation d'une cellule électrochimique et batterie comportant un certain nombre desdites cellules électrochimiquesInfo
- Publication number
- EP2724412A2 EP2724412A2 EP12725628.7A EP12725628A EP2724412A2 EP 2724412 A2 EP2724412 A2 EP 2724412A2 EP 12725628 A EP12725628 A EP 12725628A EP 2724412 A2 EP2724412 A2 EP 2724412A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- par
- electrochemical cell
- predetermined
- parameter data
- electrochemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4285—Testing apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a method for the treatment and / or repair of an electrochemical cell and a battery having a number of treated by this method electrochemical cells.
- Electrochemical energy stores also referred to below as electrochemical or galvanic cells, are often produced in the form of stackable units, from which by combining a plurality of such cells batteries for different applications, in particular for use in electrically powered vehicles can be produced.
- the invention will be described in relation to the use in a motor vehicle, although it should be noted that such a method and a battery with appropriately designed electrochemical cells and independent of motor vehicles z. B. in a stationary use, in particular for an uninterruptible power supply or a stationary energy storage can be operated.
- the treatment and / or repair method comprises the steps of: acquiring parameter data of an individual examining the electrochemical cell for determining at least one subsequent treatment step for the individual electrochemical cell, transmitting the parameter data to a control unit, assigning the electrochemical cell to the parameter data, preferably storing the parameter data to the electrochemical cell, determining by means of the control unit whether for the electrochemical cell assigned to the parameter data has a predetermined relationship of the parameter data with respect to predetermined parameter values, and performing a first predetermined electrochemical cell processing step if a presence of the predetermined relationship of the parameter data with respect to the predetermined parameter values has been determined, and preferably performing a second predetermined electrochemical cell processing step if a non-existence of the predetermined relationship of the parameter data with respect to the predetermined parameter values has been determined ,
- An advantage of this method is that for the individual cell after a first treatment specifically subsequent treatment steps are
- an electrode assembly with electrodes and separator is prepared and this electrode assembly is placed in a sheath, it being possible for the electrolyte to be added subsequently, if the separator has been processed without electrolyte.
- charging of the electrochemical cell to preferably 47 percent of their nominal capacity or 3.65 V cell voltage and processing steps such.
- z. B the capture of parameter data to determine further treatment steps to increase the quality or yield, so that optionally a further treatment such.
- hardening, rolling, brushing, stripping, doctoring, resting bearings, tempering, forming or degassing can be done.
- an electrochemical cell is to be understood as meaning an electrochemical energy store, that is to say a device which stores energy in chemical form, delivers it in electrical form to a consumer and preferably can also receive it in electrical form from a charging device.
- electrochemical energy stores are galvanic cells or fuel cells.
- the electrochemical cell has at least a first and a second device for storing electrically different charges, and a means for producing an electrical active connection of these two devices, wherein charge carriers can be moved between these two devices. Under the means for producing an electrical active compound z. B. to understand an electrolyte, which acts as an ion conductor.
- parameter data should be understood to mean not only a plurality of parameter data, but possibly also a single parameter datum. Accordingly, in this context not only a number of predetermined parameter values, but optionally also a single predetermined parameter value are understood.
- the step of acquiring parameter data comprises detecting a change in the internal resistance of the electrochemical cell after applying a pressure, in particular on side surfaces of the preferably flat designed electrochemical cell.
- the change in the internal resistance of the electrochemical cell upon application of pressure to side surfaces of the electrochemical cell has proven to be a preferred parameter for evaluating the quality of an electrochemical cell or determining subsequent processing steps of that electrochemical cell.
- this electrochemical cell can pre-shape depending on its stiffness, resulting in a change in the internal resistance of the electrochemical cell upon application of an external pressure having a predetermined relationship with the state electrochemical cell stands.
- the electrochemical cells which are relatively hard and whose internal resistance changes little after applying a pressure on the side surfaces, do not gas after closing.
- a particularly simple and reliable assignment of the electrochemical cell to different types of quality and thus to corresponding subsequent treatment steps to increase the quality can thus take place.
- the quality z For example, with the following relationship, where dR, the change of the internal resistance and dF, the change of the applied force means:
- a flat electrochemical cell is to be understood as meaning an electrochemical cell whose external shape is characterized by two essentially parallel surfaces whose vertical distance from one another is shorter than the average length of the cell measured parallel to these surfaces. Between these surfaces, often surrounded by a packaging or a cell housing, the electrochemically active components of the cell are arranged. Such cells are often surrounded by a multi-layered film packaging, which has a sealed seam at the edges of the cell packaging, which is formed by permanently connecting or closing the film packaging in the region of the sealed seam. Such cells are often referred to as pouch cells or as coffeebag cells.
- the step of acquiring parameter data may include detecting an internal resistance of the electrochemical cell, detecting an internal pressure of the electrochemical cell, detecting a quiescent voltage of the electrochemical cell, detecting a capacitance of the electrochemical cell, or detecting internal structures of the electrochemical cell Cell by X-ray method.
- the method according to the invention can also be used in the formatting of the electrochemical cells in combination with a GITT method (electrostatic intermittent titration technique), which is adapted to the formatting.
- GITT method electrostatic intermittent titration technique
- the step of determining by means of the control unit has at least one of the following determining steps: determining whether the transmitted parameter data have predetermined first parameter values and / or determining whether the transmitted parameter data does not have predetermined second parameter values ,
- the step of determining by means of the control unit comprises at least one of the following determining steps: determining whether the transmitted parameter data exceeds predetermined third parameter values and / or determining whether the transmitted parameter data falls below predetermined fourth parameter values.
- the treatment and / or repair method comprises at least one of the following treatment steps: selecting and performing at least one predetermined charging, preferably a slow charging with a charging current in the range of 100 to 850 mA over a period of 15 to 60 s, the electrochemical Cell responsive to at least one result of the determining steps, selecting and performing at least one predetermined hardening of the electrochemical cell in response to at least one result of the determining steps, selecting and performing at least one predetermined resting storage of the electrochemical cell depending on at least one result of the determining steps, selecting and performing at least one predetermined forming of the electrochemical cell in dependence on at least one result of the determining steps, selecting and performing at least one vo determining and performing at least one predetermined sweep of the electrochemical cell in response to at least one result of the determining steps, selecting and performing at least one predetermined sweeping of the electrochemical cell in response to at least one of Result of the determining steps selecting and performing at least one predetermined doctoring of the electrochemical cell in dependence on at least one result of the
- An advantage of this embodiment is that when z. B. has been determined by the determination step that the electrochemical cell is particularly soft subsequent steps for curing can be performed, whereas when z. B. has been determined by the determination step that the electrochemical cell has sufficient hardness, subsequent processing steps can be saved.
- Another advantage of the treatment and / or repair method according to the invention is that if, due to predetermined measured values at z.
- X-ray measurements or internal resistance change measurements is found that Elektrodenmaschine, sections, edges or the like are solubilized individually or in combination, no curing, but a slow charging with a charging current in the range of 100 to 850 mA over a period of 15 to 60 s, preferably can be repeatedly performed, whereby the loosened areas are re-solidified or adhered.
- the object is achieved in that the electrochemical cells have been treated or repaired according to one of the above-mentioned manufacturing method.
- the batteries are designed for a temperature range of -60 ° C to + 120 ° C and particularly preferably for a temperature range of -40 ° C to +100 ° C.
- these batteries preferably have a charge capacity greater than 25 Ah, and more preferably a charge capacity of 500 Ah to 1200 Ah.
- these batteries are preferably designed for discharge currents of 25 A to 1200 A and more preferably for discharge currents of 100 A to 400 A.
- a further advantage of this invention is that a maintenance procedure for batteries, e.g. As in the inspection intervals of motor vehicles, can be resolidified or adhered to the loosened electrode parts, sections, edges or the like, so that the life and performance of the batteries can be increased.
- a maintenance procedure for batteries e.g. As in the inspection intervals of motor vehicles, can be resolidified or adhered to the loosened electrode parts, sections, edges or the like, so that the life and performance of the batteries can be increased.
- FIG. 1 shows a flow chart for a treatment and / or repair method of an electrochemical cell according to a first exemplary embodiment.
- step S1 parameter data D Par of an electrochemical cell to be examined is detected.
- step S2 the parameter data D par .
- a control unit is transmitted and in a step S3, these parameter data D Par assigned to the electrochemical cell.
- the control unit it is determined whether these parameter data D Par . a predetermined relationship with respect to predetermined parameter values Wp ar . exhibit. If the parameter data D par . the predetermined relationship with respect to the predetermined parameter values Wp ar.
- a first predetermined subsequent treatment step S5 in particular a further treatment step for a cell corresponding to the requirements, is determined. Otherwise, if the parameter data D par . the predetermined relationship with respect to the predetermined parameter values W Par . can not be determined, for this electrochemical cell optionally a second predetermined subsequent treatment step S5 ⁇ can be determined in particular an additional repair step for a non-requisite cell.
- step S1 may include detecting whether there are any regions detached in the cell. If it is detected that there are no detached regions, the cell is subjected to conventional pre-charging and finishing processes. If, on the other hand, it is detected that the cell does not meet the requirements that e.g. B.
- a cell can be selegiert with z. B. 0.15 to 0.3 C are charged to z. B to repair the detached areas. It is also possible to carry out selected charges at 0.03 C.
- pre-charge processes formation processes (in particular CC / CV processes, pulse processes, wave processes or CV processes) and finishing processes can follow if it is detected that the cell meets the requirements. If it is detected that a cell z. B. should have a charge capacity of more than 40 Ah, does not meet the requirements, treatment steps over a period of 1 min to 5 min, preferably 3 min can be performed. If it is determined after two repair steps that the cell does not meet the quality requirements for electric vehicles, this cell can be sorted out for use in electric vehicles.
- control unit By means of the control unit it is determined whether these parameter data D Par . predetermined first parameter values W Par. i. If the parameter data Dpar. have the predetermined first parameter values Wp ar 1 , a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data D par . If the predetermined first parameter values W Par. i do not exist, a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
- FIG. 3 shows a flowchart for a treatment and / or repair method of electrochemical cells according to a third embodiment, whose steps S1 to S3 correspond to those of the first embodiment, to which reference is made to avoid repetition.
- control unit determines whether these parameter data D Par . exceed predetermined third parameter values W par 3 . If the parameter data Dpar is the predetermined third parameter values Wp ar . 3 , a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data D Par. Does not exceed the predetermined third parameter values W Par .3, a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
- Fig. 5 shows a flow chart for a treatment and / or repair method of electrochemical cells according to a fifth embodiment, whose steps S1 to S3 correspond to the first embodiment, which is referred to avoid repetition.
- FIG. 6 shows a flow chart for a treatment and / or repair method of electrochemical cells according to a sixth embodiment, whose steps S1 to S3 correspond to those of the first embodiment, to which reference is made in order to avoid repetition.
- a predetermined fifth parameter value Wp af . 5 are located. If the parameter data D par . are within the predetermined parameter range by the predetermined fifth parameter value Wp ar .5, a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data D par . are not within the predetermined parameter range to the predetermined fifth parameter value W Par .5, a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
- the step of acquiring parameter data may include a step S1a of detecting a change in the internal resistance of the electrochemical cell after application of a pressure, particularly on side surfaces of the preferably flat-shaped electrochemical cell and / or a step S1b of FIG Detecting an internal resistance of the electrochemical cell and / or a step Sic of detecting an internal pressure of the electrochemical cell and / or a step S1d of detecting a rest voltage of the electrochemical cell and / or a step of detecting a capacity of the electrochemical cell and / or a step S1f of detecting internal structures of the electrochemical cell by means of an X-ray method.
- the subsequent electrochemical cell treating process may include a step S5a of selecting and performing at least one predetermined charging of the electrochemical cell depending on at least one result of the determining steps S4, S4a, S4b, S4c, S4d, S4e and / or a step S5b of selecting and performing at least one predetermined curing of the electrochemical cell in dependence on at least one result of the determination steps S4, S4a, S4b, S4c, S4d, S4e and / or a step S5c of selecting and performing at least one predetermined rest storage of the electrochemical cell in dependence on at least one result of the determination steps S4, S4a, S4b, S4c, S4d, S4e and / or a step S5d of selecting and performing at least one predetermined forming of the electrochemical cell depending on at least one result of the determining steps S4, S4a, S4b
- the present invention furthermore relates to a battery which has these electrochemical cells, in particular a battery designed for use in a motor vehicle, which has these electrochemical cells. Moreover, the present invention also relates to a maintenance method for batteries.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
L'invention concerne un procédé de traitement et/ou de réparation de cellules électrochimiques d'une batterie, ledit procédé comprenant les étapes suivantes : (S1) acquisition de données de paramètre (DPar.) d'une cellule électrochimique individuelle à examiner pour définir au moins une étape ultérieure de traitement (S5) de la cellule électrochimique concernée; (S2) transmission des données de paramètre (DPar.) à une unité de commande; (S3) affectation de la cellule électrochimique aux données de paramètre (DPar.), de préférence mémorisation des données de paramètre (DPar.) relatives à la cellule électrochimique; (S4) détermination au moyen de l'unité de commande de l'existence ou non pour la cellule électrochimique qui a été affectée aux données de paramètre d'une relation prédéterminée entre les données de paramètre (DPar.) et des valeurs de paramètre prédéterminées (WPar, Wpar.1, WPar.2, WPar 3, WPar 4, WPar 5), et mise en œuvre d'une première étape de traitement prédéterminée de la cellule électrochimique s'il a été déterminé qu'il existe une relation prédéterminée entre les données de paramètre (DPar.) et les valeurs de paramètre prédéterminées (WPar, Wpar.1, WPar.2, WPar 3, WPar 4, WPar 5), et de préférence mise en œuvre d'une deuxième étape de traitement prédéterminée de la cellule électrochimique s'il a été déterminé qu'il n'existe pas de relation prédéterminée entre les données de paramètre (DPar.) et les valeurs de paramètre prédéterminées (WPar, Wpar.1, WPar.2, WPar 3, WPar 4, WPar 5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011105424A DE102011105424A1 (de) | 2011-06-22 | 2011-06-22 | Verfahren zur Behandlung und/oder Reparatur einer elektrochemischen Zelle und Batterie mit einer Anzahl dieser elektrochemischen Zellen |
PCT/EP2012/002346 WO2012175169A2 (fr) | 2011-06-22 | 2012-06-01 | Procédé de traitement et/ou de réparation d'une cellule électrochimique et batterie comportant un certain nombre desdites cellules électrochimiques |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2724412A2 true EP2724412A2 (fr) | 2014-04-30 |
Family
ID=46208429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12725628.7A Withdrawn EP2724412A2 (fr) | 2011-06-22 | 2012-06-01 | Procédé de traitement et/ou de réparation d'une cellule électrochimique et batterie comportant un certain nombre desdites cellules électrochimiques |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2724412A2 (fr) |
JP (1) | JP2014520373A (fr) |
KR (1) | KR20140045446A (fr) |
CN (1) | CN103620858A (fr) |
DE (1) | DE102011105424A1 (fr) |
WO (1) | WO2012175169A2 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011108190A1 (de) * | 2011-07-22 | 2013-01-24 | Li-Tec Battery Gmbh | Verfahren und System zur Herstellung einer elektrochemischen Zelle und Batterie mit einer Anzahl dieser elektrochemischen Zellen |
CN104953194B (zh) * | 2014-03-31 | 2017-08-22 | 比亚迪股份有限公司 | 电池均衡控制装置及具有其的电动车和电池均衡控制方法 |
CN116742166B (zh) * | 2023-06-08 | 2024-07-30 | 深圳市朗大科技有限公司 | 一种动力电池修复方法及系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938368A (en) * | 1974-05-31 | 1976-02-17 | General Battery Corporation | Automatic air leak testing apparatus |
JPS62165850A (ja) * | 1986-01-17 | 1987-07-22 | Matsushita Electric Ind Co Ltd | 密閉形鉛蓄電池の検査方法 |
DE3736069A1 (de) * | 1987-10-24 | 1989-05-11 | Digatron Ind Elektronik Gmbh | Verfahren zum formieren elektrischer batterien |
DE3821808C2 (de) * | 1988-06-28 | 1994-06-16 | Helmut Haendel & Partner Mesda | Verfahren und Vorrichtung zum automatischen Testen von Akkumulatoren einer unterbrechungsfreien Stromversorgungsanlage |
JP2967904B2 (ja) * | 1994-03-01 | 1999-10-25 | 本田技研工業株式会社 | 電動車両用バッテリのガス排出装置 |
DE19605481C1 (de) * | 1996-02-14 | 1997-06-12 | Siemens Ag | Batteriemeßmodul für eine USV-Batterie |
US6229285B1 (en) * | 1997-10-03 | 2001-05-08 | Georgia Tech Research Corporation | Detector for rapid charging and method |
US6171723B1 (en) * | 1997-10-10 | 2001-01-09 | 3M Innovative Properties Company | Batteries with porous components |
DE102009018079A1 (de) * | 2009-04-20 | 2010-10-21 | Li-Tec Battery Gmbh | Verfahren zum Betrieb einer Batterie |
-
2011
- 2011-06-22 DE DE102011105424A patent/DE102011105424A1/de not_active Withdrawn
-
2012
- 2012-06-01 CN CN201280030255.1A patent/CN103620858A/zh active Pending
- 2012-06-01 EP EP12725628.7A patent/EP2724412A2/fr not_active Withdrawn
- 2012-06-01 WO PCT/EP2012/002346 patent/WO2012175169A2/fr active Application Filing
- 2012-06-01 KR KR1020137034494A patent/KR20140045446A/ko not_active Application Discontinuation
- 2012-06-01 JP JP2014516218A patent/JP2014520373A/ja active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2012175169A2 * |
Also Published As
Publication number | Publication date |
---|---|
CN103620858A (zh) | 2014-03-05 |
WO2012175169A3 (fr) | 2013-05-02 |
DE102011105424A1 (de) | 2012-12-27 |
JP2014520373A (ja) | 2014-08-21 |
WO2012175169A2 (fr) | 2012-12-27 |
KR20140045446A (ko) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012072235A1 (fr) | Procédé et système pour découper des objets en forme de feuilles ou de plaques | |
EP3314688B1 (fr) | Procédé de commande d'un processus de régénération d'une cellule de batterie au lithium-ion, qui comprend une anode, une cathode et une électrode de régénération | |
DE102011100605A1 (de) | Messverfahren für eine elektrochemische Energiespeichereinrichtung und Messvorrichtung | |
DE112010005906T5 (de) | Batteriesteuerungssystem | |
DE102019115705A1 (de) | Schätzung des Batteriezustands unter Verwendung des Elektrodentransientenmodells | |
DE102015016987A1 (de) | Verfahren zum Feststellen einer Degradation einer wiederaufladbaren Batteriezelle sowie Vorrichtung zur Durchführung des Verfahrens | |
EP2710660A1 (fr) | Procédé de sélection d'éléments électrochimiques lors de la fabrication d'une batterie et batterie présentant des éléments électrochimiques | |
DE102017221033A1 (de) | Verfahren zum Betreiben einer elektrischen Energiespeichereinrichtung für ein Kraftfahrzeug sowie entsprechende Energiespeichereinrichtung | |
EP2724412A2 (fr) | Procédé de traitement et/ou de réparation d'une cellule électrochimique et batterie comportant un certain nombre desdites cellules électrochimiques | |
DE102015002150B3 (de) | Überwachen einer Zustandsgröße wenigstens einer Batteriezelle einer Batterie | |
DE102012201359A1 (de) | Batteriesystem, Kraftfahrzeug mit einem solchen Batteriesystem sowie ein Verfahren zum Balancieren der Batteriezellen eines Batteriesystems | |
DE102011122658A1 (de) | Verfahren und System zur Herstellung elektrochemischer Zellen für elektrochemische Energiespeicher | |
EP2710661A1 (fr) | Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques | |
DE102011120512A1 (de) | Verfahren und Vorrichtung zur Überprüfung der Qualität einer Einzelzelle zumindest bei deren Herstellung | |
WO2014012619A1 (fr) | Procédé de production d'un empilement d'électrodes d'une cellule électrochimique et empilement d'électrodes d'une cellule électrochimique | |
DE102010053341A1 (de) | Verfahren und System zum Schneiden von blatt- oder plattenförmigen Objekten | |
DE102011120278A1 (de) | Verfahren und System zur Herstellung von blatt- oder plattenförmigen Objekten | |
DE102018007151A1 (de) | Verfahren zur Kapazitätsanpassung eines elektrochemischen Energiespeichers eines Kraftfahrzeugs | |
WO2012156091A1 (fr) | Procédé pour augmenter la capacité de charge d'un élément électrochimique doté d'un capteur, élément électrochimique doté d'un capteur et son procédé de production | |
WO2013053440A1 (fr) | Procédé et système de fabrication d'une cellule électrochimique et batterie comprenant une pluralité de ces cellules électrochimiques | |
DE102018221714A1 (de) | Batteriezelle, Herstellung und Verwendung derselben | |
DE102018009099A1 (de) | Verfahren zum Herstellen eines elektrischen Energiespeichers mit einem Anordnen einer Opferelektrode sowie elektrischer Energiespeicher | |
WO2013013764A2 (fr) | Procédé et système de fabrication d'une cellule électrochimique et batterie pourvue d'un certain nombre desdites cellules électrochimiques | |
DE102013216488B4 (de) | Verfahren und Vorrichtung zur Herstellung einer Energiespeichereinheit | |
DE102022107183A1 (de) | Verfahren zur Herstellung eines Elektrode-Separatoren-Verbunds für eine Batterie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131230 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140809 |