WO2013053440A1 - Procédé et système de fabrication d'une cellule électrochimique et batterie comprenant une pluralité de ces cellules électrochimiques - Google Patents

Procédé et système de fabrication d'une cellule électrochimique et batterie comprenant une pluralité de ces cellules électrochimiques Download PDF

Info

Publication number
WO2013053440A1
WO2013053440A1 PCT/EP2012/004100 EP2012004100W WO2013053440A1 WO 2013053440 A1 WO2013053440 A1 WO 2013053440A1 EP 2012004100 W EP2012004100 W EP 2012004100W WO 2013053440 A1 WO2013053440 A1 WO 2013053440A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
electrochemical cell
par
electrochemical
parameter data
Prior art date
Application number
PCT/EP2012/004100
Other languages
German (de)
English (en)
Inventor
Tim Schaefer
Original Assignee
Li-Tec Battery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li-Tec Battery Gmbh filed Critical Li-Tec Battery Gmbh
Publication of WO2013053440A1 publication Critical patent/WO2013053440A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method and a system for producing an electrochemical cell and to a battery having a number of electrochemical cells produced by this method.
  • Electrochemical energy stores also referred to below as electrochemical or galvanic cells
  • electrochemical or galvanic cells are often produced in the form of stackable units, from which by combining a plurality of such cells batteries for different applications, in particular for use in electrically powered vehicles can be produced.
  • the invention will be described in relation to the use in a motor vehicle, although it should be pointed out that such a method and a correspondingly designed electrochemical cell also independent of motor vehicles z. B. can be operated in a stationary operation.
  • the present invention is based on the object, an improved method and an improved system for producing electrochemical cells and to provide a battery having a number of correspondingly manufactured electrochemical cells.
  • the production method comprises the following steps: feeding a Vorpro- product of the electrochemical cell to a filling device, filling the precursor of the electrochemical cell with an electrolyte, a Supplying the preliminary product of the electrochemical cell to a charging device, carrying out a first charging of the precursor of the electrochemical cell, feeding a precursor of the electrochemical cell to a rolling device, rolling the precursor of the electrochemical cell with at least one, preferably two rolling Rolling, supplying the precursor of the electrochemical cell to a measuring device, detecting parameter data of the precursor of the electrochemical cell for determining at least one subsequent treatment for the precursor of electrochemical cell, transmitting the parameter data to a control unit, assigning the precursor of the electrochemical cell to the parameter data, preferably storing the parameter data to the precursor of the electrochemical cell, determining by means of the control unit, whether for the product data assigned precursor of the electrochemical cell there is a predetermined relationship of the parameter data with
  • an electrochemical cell is to be understood as meaning an electrochemical energy store, that is to say a device which stores energy in chemical form, delivers it in electrical form to a consumer and, preferably, can also receive it in electrical form from a charging device.
  • electrochemical energy stores are galvanic cells or fuel cells.
  • the electrochemical cell has at least one first and one second device for storing electrically different charges, as well as a means for producing an electrically active connection of these two devices, whereby charge carriers can be displaced between these two devices. Under the means for producing an electrical active compound z. B. to understand an electrolyte, which acts as an ion conductor.
  • a precursor of an electrochemical cell is to be understood as meaning, in particular, an electrode arrangement already provided with a cladding.
  • the sheath may protect the chemical components of the electrode assembly from undesirable interaction with the environment.
  • the sheath protects the electrode assembly from the ingress of water or water vapor from the environment.
  • the 'envelope is preferably formed like a film.
  • the envelope should affect the passage of heat energy as little as possible.
  • the envelope has at least two molded parts.
  • An electrode arrangement in this context means the arrangement of at least two electrodes and an electrolyte arranged therebetween.
  • the electrolyte may be partially absorbed by a separator. Then the separator separates the electrodes.
  • the electrode arrangement serves also for storing chemical energy and for its conversion into electrical energy.
  • the electrode assembly is also capable of converting electrical to chemical energy.
  • the electrodes are formed plate-shaped or foil-like.
  • the electrodes are preferably arranged in the form of a stack. According to another preferred embodiment, the electrodes may also be wound up.
  • the electrode arrangement may preferably also comprise lithium or another alkali metal in ionic form.
  • parameter data should be understood to mean not only a plurality of parameter data, but possibly also a single parameter data. Accordingly, in this context, not only a number of predetermined parameter values but, if appropriate, also a single predetermined parameter value should be understood by predetermined parameter values.
  • the step of first charging the precursor of the electrochemical cell is performed within 4 hours, and preferably within 3 hours after the step of performing the charging of the precursor of the electrochemical cell with an electrolyte.
  • the step of first charging the precursor of the electrochemical cell is performed with a charging current that is in a range of 0.02 to 0.04 C, and is preferably 0.03 C.
  • the step of first charging the preliminary product of the electrochemical cell is performed with a charging time that is in a range of 0.5 min to 2.0 min, and preferably 1 min.
  • the electrochemical cell manufacturing process comprises the steps of: supplying the preliminary product of the electrochemical cell to an aging apparatus and performing a first aging of the precursor of the electrochemical cell, in particular a Tempems the precursor of the electrochemical cell.
  • the electrochemical cell manufacturing process comprises the steps of: feeding the precursor of the electrochemical cell to an aging device and performing a first aging of the precursor of the electrochemical cell; in particular a tempering of the precursor of the electrochemical cell.
  • the electrochemical cell preparation process comprises supplying the precursor of the electrochemical cell to the rolling apparatus and rolling the precursor of the electrochemical cell with at least one, preferably two, rolling rollers.
  • the production method preferably has the following step before the step of feeding the preliminary product of the electrochemical cell to the filling device. an application of the precursor of the electrochemical cell to a workpiece carrier.
  • the step of acquiring parameter data includes at least one of the following detection steps: detecting a change in the internal resistance of the electrochemical cell precursor after applying a pressure, particularly detecting a change in internal resistance after application of a Pressure on side surfaces of the preferably flat-shaped electrochemical cell, detecting an internal resistance of the precursor of the electrochemical cell, detecting a hardness of the precursor of the electrochemical cell, detecting an internal pressure of the precursor of the electrochemical cell, detecting a rest voltage of the precursor of the electrochemical cell, detecting a capacitance of the precursor of the electrochemical cell or detecting internal structures of the precursor of the electrochemical cell by means of an X-ray method.
  • the change in the internal resistance of the precursor of the electrochemical cell after applying pressure to side surfaces of the precursor electrochemical cells or the hardness of the precursor electrochemical cells have become the preferred parameters for assessing the quality of the precursors of electrochemical cells or for the determination of subsequent treatments of the precursors electrochemical cells proved.
  • a pressure is applied to a precursor of the electrochemical cell and the precursor yields to the electrochemical cell
  • the internal resistance changes. Therefore, a pressure can be applied to the precursor of the electrochemical cell and the change of the internal resistance can be measured.
  • the precursors of the electrochemical cells which are relatively hard and whose internal resistance changes little after applying pressure to the side surfaces, do not gas after closure.
  • a flat electrochemical cell is to be understood as meaning an electrochemical cell whose external shape is characterized by two essentially parallel surfaces whose vertical distance from one another is shorter than the average length of the cell measured parallel to these surfaces. Between these surfaces, often surrounded by a packaging or a cell housing, the electrochemically active constituents of the Cell arranged. Such cells are often surrounded by a multilayer foil packaging, which has at the edges of the cell packaging a sealed seam, which is formed by a permanent joining or closing of the foil packaging in the region of the sealed seam. Such cells are often referred to as pouch cells or as coffeebag cells.
  • the step of determining by the control unit comprises at least one of the following determining steps: determining whether the transmitted parameter data has predetermined first parameter values, determining whether the transmitted parameter data does not have predetermined second parameter values, determining whether the transmitted parameter data exceed predetermined third parameter values, determining whether the transmitted parameter data falls below predetermined fourth parameter values or determining whether the transmitted parameter data are within a predetermined parameter value range by a predetermined fifth parameter value.
  • the step of performing the first predetermined treatment of the precursor of the electrochemical cell comprises supplying the precursor of the electrochemical cell to a charging device and performing a second charging of the precursor of the electrochemical cell. More preferably, after the step of performing the second charging of the precursor of the electrochemical cell, the manufacturing process comprises supplying the precursor of the electrochemical cell to the rolling apparatus and rolling the precursor of the electrochemical cell with at least one, preferably two, rolling rollers.
  • the step of performing the first predetermined treatment of the precursor of the electrochemical cell comprises supplying the precursor of the electrochemical cell to an aging device and performing a second aging of the precursor of the electrochemical cell, in particular a second annealing of the precursor of the electrochemical cell.
  • the electrochemical cell manufacturing process comprises, after the step of performing the second aging of the precursor of the electrochemical cell: feeding the precursor of the electrochemical cell to the rolling apparatus and rolling the precursor of the electrochemical cell with at least one, preferably two, rolling rollers ,
  • the step of performing the first predetermined treatment of the precursor of the electrochemical cell comprises supplying the precursor of the electrochemical cell to a forming device and performing a forming treatment of the precursor of the electrochemical cell.
  • the step of performing a forming treatment of the precursor of the electrochemical cell comprises: performing a first forming of the precursor of the electrochemical cell in a range of 25 to 40% of the rated capacity, performing a second forming of the precursor of the electrochemical cell in a range of 75 to 90% of the rated capacity and performing a third forming of the precursor of the electrochemical cell to 100% of the rated capacity.
  • performing the predetermined treatment of the precursor of the electrochemical cell in response to at least one of the determining steps comprises: advancing the electrochemical cell precursor to subsequent manufacturing stations when the presence of the predetermined relationship of the parameter data with respect to the predetermined parameter values has been determined ,
  • this object is achieved in a system for producing electrochemical cells characterized in that the system comprises: a filling device configured for filling the precursor of an electrochemical cell with an electrolyte, a first supply device configured to supply the preliminary product of the electrochemical cell to the filling device, a charging device configured to carry out a first charging of the precursor of the electrochemical cell, a second supply device configured to supply the precursor of the electrochemical cell to the charging device, a rolling device with at least one, preferably two rolling rollers arranged and configured for rolling the precursor of the electrochemical cell, a fourth feeding device configured for supplying the precursor of the electrochemical cell to the rolling device, a measuring device configured for detecting parameter data of the precursor of the electrochemical cell for determination at least one subsequent treatment of the precursor of the electrochemical cell, a fifth supply device configured to m feeding the precursor of the electrochemical cell to the measuring device, a control unit to which the detected parameter data of the precursor of the electrochemical cell are transmitted and which is configured, assigning the precursor of the electrochemical cell to
  • the measuring device is preferably designed to detect at least one of the following parameters: Change of the internal resistance of the precursor of the electrochemical cell after application of a pressure, in particular change of the internal resistance after application of pressure to side surfaces of the preferably flat precursor of the electrochemical cell Cell, internal resistance of the precursor of the electrochemical cell, hardness of the precursor of the electrochemical cell, internal pressure of the precursor of the electrochemical cell, rest voltage of the precursor of the electrochemical cell, capacity of the precursor of the electrochemical cell or internal structures of the precursor of the electrochemical cell.
  • the system for producing electrochemical cells preferably has at least one of the following devices: an aging device designed for aging, in particular for tempering the precursor of the electrochemical cell, and a third supply device configured for supplying the precursor of the electrochemical cell to the aging device.
  • the object is achieved for a battery in that its electrochemical cells have been produced according to one of the manufacturing methods listed above and / or with one of the production systems listed above.
  • FIG. 1 shows a schematic representation of an electrochemical cell
  • FIG. 2 shows a schematic illustration of a system for producing electrochemical cells according to the present invention
  • FIG. 4a is a flowchart of a first preferred embodiment
  • 4b is a flowchart of a second preferred embodiment
  • FIG. 4c is a flowchart of a third preferred embodiment
  • FIG. 5 is a flowchart of electrochemical forming treatment
  • Fig. 7 is an illustration of preferred steps in determining whether a predetermined relationship of the parameter data with respect to predetermined parameter values exists.
  • 1 shows a schematic representation of an electrochemical cell 1.
  • the electrochemical cell 1 has an active region 5, a cell packing 4 which surrounds the active region 5, and a first current conductor 2 and a second current conductor 3.
  • FIG. 2 shows a schematic representation of a system for producing electrochemical cells 1 according to an exemplary embodiment.
  • the production system 100 comprises a filling device 11, which is designed and arranged to fill the intermediate product of the electrochemical cell 1 with an electrolyte, and a first supply device 10, which is designed and arranged to supply the preliminary product of the electrochemical cell 1 to the first filling device 11 is.
  • the manufacturing system 100 has a charging device 13, which is designed and arranged to charge the precursor of the electrochemical cell 1, and a second feeding device 12, which is designed and arranged to supply the precursor of the electrochemical cell 1 to the charging device 13.
  • the manufacturing system 100 comprises an aging device 15 configured and arranged to age the precursor of the electrochemical cell 1, and a third supply device 14 configured and arranged to supply the precursor of the electrochemical cell 1 to the aging device 15.
  • the manufacturing system 100 has a rolling device 17 with at least one rolling element Roller, preferably two rollers 18, 19, and a fourth feeding device 16, which is designed and arranged for supplying the precursor of the electrochemical cell 1 to the rolling device 17.
  • the production system 100 has a measuring device 21, which is used to acquire parameter data D Par . of the precursor of the electrochemical cell 1 is designed and arranged, and a fifth feeding device 20, which is designed and arranged to supply the precursor of the electrochemical cell 1 to the measuring device 21.
  • the production system 100 has a control unit 22 to which the acquired parameter data D Par . be transmitted. Particularly preferably, the transport of the precursor of the electrochemical cell 1 via a roller conveyor or a rail guide.
  • FIG. 3 shows a flowchart for a manufacturing method of electrochemical cells 1 according to an embodiment of the present invention.
  • the precursor of the electrochemical cell 1 of the filling device 11 is supplied in a step S2.
  • the precursor of the electrochemical cell 1 is filled with an electrolyte.
  • the precursor of the electrochemical cell 1 of the charging device 13 is supplied.
  • a first charging of the precursor of the electrochemical cell 1 is performed in a step S5.
  • a step S6 and / or in a step S10 the precursor of the electrochemical cell 1 of the rolling device 17 is supplied.
  • the precursor of the electrochemical cell 1 is rolled with at least one, preferably two rolling rollers 18, 19.
  • the precursor of the electrochemical cell 1 is supplied to the measuring device 21, and in a step S13, the parameter data D Par . of the precursor of the electrochemical cell 1, wherein in a step S14 the detected parameter data Dpar. the control unit 22 and assigned in a step S15 this parameter data D Par the precursor of the electrochemical cell 1.
  • the control unit 22 it is determined in a step S16 whether these parameter data D Par. have a predetermined relationship with respect to predetermined parameter values W Par .
  • a first predetermined treatment is selected and carried out for this preliminary product of the electrochemical cell. Otherwise, if the parameter data D Par the predetermined relationship with respect to the predetermined parameter values W Par ., W Par , W Par . 2 - Par 3 , W Par 4 , W Part . 5 , a second predetermined treatment may optionally be selected and performed for this precursor of the electrochemical cell.
  • a second predetermined treatment may optionally be selected and performed for this precursor of the electrochemical cell.
  • a first predetermined treatment on the precursor of electrochemical cell 1 performed.
  • the precursor of the electrochemical cell 1 can be applied to a workpiece carrier.
  • FIG. 4 a shows a flow chart of a partial section of a preferred embodiment, in which the precursor of the electrochemical cell 1 is supplied to the aging device 15 in a step S 8 and subsequently a first aging of the precursor of the electrochemical cell 1 is performed in a step S 9.
  • the precursor of the electrochemical cell 1 of the rolling device 17 is supplied and in a step S7, the precursor of the electrochemical cell 1 with at least one, preferably two rolling rollers 18, 19 rolled.
  • 4b shows a flow chart of a subsection of a further preferred embodiment, in which the precursor of the electrochemical cell 1 is supplied to the charging device 13 in a step S18 and subsequently, in a step S19, a second charging of the precursor of the charging device 13 is effected. chemical cell 1 is performed.
  • the precursor of the electrochemical cell 1 of the rolling device 17 is supplied and in a step S21, the precursor of the electrochemical cell 1 with at least one, preferably two rolling Rolls 18, 19 rolled.
  • FIG. 4c shows a flowchart of a subsection of a further preferred embodiment, in which the precursor of the electrochemical cell 1 is supplied to the aging device 15 in a step S22 and a second aging of the precursor of the electrochemical cell 1 is subsequently performed in a step S23.
  • the precursor of the electrochemical cell 1 of the rolling device 17 is supplied and in a step S25, the product of the electrochemical cell 1 with at least one, preferably rolled two rolling rollers 18, 19.
  • an aging device 15 was used for the step S9 of the first aging of the precursor of the electrochemical cell 1 and the step S23 of the second aging of the precursor of the electrochemical cell 1, but it is also possible according to the present invention for these steps to use different aging devices.
  • a charging device 13 was used for the step S5 of the first charging of the preliminary product of the electrochemical cell 1 and for the step S18 of the second charging of the precursor of the electrochemical cell 1, but it is also possible according to the present invention These steps use different charging devices.
  • a rolling Device 17 is used, but it is also possible according to the present invention to use different rolling devices for these steps.
  • FIGS. 4 a, 4 b and 4 c can be combined as desired both with one another and with the embodiment shown in FIG. 5.
  • Fig. 5 shows a flow chart of a portion of the electrochemical cell manufacturing process 1.
  • a first predetermined treatment is selected and performed when the parameter data Dpar. the predetermined relationship with respect to the predetermined parameter values Wpar., Wpar.1, W Par . 2 , W par. 3, Wp ar .4, Wp art . 5
  • a second predetermined treatment may be selected and performed for the precursor of the electrochemical cell 1 when the parameter data Dp ar has the predetermined relationship with respect to the predetermined parameter values W Par ., Wp ar , W Par2 , W Par . 3 , W Par 4 , Wp art 5 not have.
  • the first predetermined treatment includes a step S27 of performing a forming treatment of the precursor of the electrochemical cell 1.
  • the step S27 of performing the forming treatment preferably comprises the steps of first forming the precursor of the electrochemical cell 1 in a step S27a, preferably in a range of 25 to 40% of the rated capacity, and in step S27b a second forming of the precursor of the electrochemical cell 1, preferably in a range of 75 to 90% of the rated capacity is performed, and in which a third forming of the precursor of the electrochemical cell 1, preferably to 100% of the rated capacity is performed in a step S27c.
  • the step of acquiring parameter data may include a step S13a of detecting a change of the indoor data.
  • FIG. 7 shows a representation of preferred embodiments in the determination in step S16 as to whether the parameter data D Par . a predetermined relationship with respect to predetermined parameter values W Par ., W Par. i, Wp ar . 2 , Wp ar 3 , W par . 4 , Wpart.5 have.
  • step S16 may include a step S16a of determining whether the parameter data D Par . first predetermined parameter values W Par 1 and / or a step S16b of determining whether the parameter data D Par. second predetermined parameter values W Par . 2 and / or a step S16c of determining whether the parameter data D par . predetermined third parameter values W Par .
  • the present invention further relates to a battery having these electrochemical cells, in particular a designed for use in a motor vehicle battery having these electrochemical cells. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de fabrication de cellules électrochimiques (1) destinées à une batterie, comprenant les étapes consistant à : (S2) amener un semi-fini de la cellule électrochimique (1) à un dispositif de remplissage (11), (S3) remplir le semi-fini de la cellule électrochimique (1) avec un électrolyte, (S4) amener le semi-fini de la cellule électrochimique (1) à un dispositif de charge (13), (S5) effectuer une première charge du semi-fini de la cellule électrochimique (1), (S10) amener un semi-fini de la cellule électrochimique (1) à un dispositif de laminage (17), (S11) laminer le semi-fini de la cellule électrochimique (1) à l'aide d'au moins un, de préférence deux cylindres de laminage (18, 19), (S12) amener le semi-fini de la cellule électrochimique (1) à un dispositif de mesure (21), (S13) acquérir des données paramétriques (Dpar) du semi-fini de la cellule électrochimique (1) afin de déterminer au moins un traitement consécutif du semi-fini de la cellule électrochimique (1), (S14) transmettre les données paramétriques (Dpar) à un module de commande (22), (S15) associer le semi-fini de la cellule électrochimique (1) aux données paramétriques (Dpar), de préférence mémoriser les données paramétriques (Dpar) concernant le semi-fini de la cellule électrochimique (1), (S16) déterminer au moyen du module de commande (22) s'il existe pour le semi-fini de la cellule électrochimique (1) associé aux données paramétriques une relation prédéfinie des données paramétriques (Dpar) avec des valeurs paramétriques (Wpar, Wpar1, Wpar2, Wpar3, Wpar4, Wpar5) prédéfinies, (S17a) effectuer un premier traitement prédéfini du semi-fini de la cellule électrochimique (1) lorsqu'il a été déterminé qu'il existe une relation prédéfinie des données paramétriques (Dpar) avec les valeurs paramétriques (Wpar, Wpar1, Wpar2, Wpar3, Wpar4, Wpar5) prédéfinies et, de préférence, (S17b) effectuer un deuxième traitement prédéfini du semi-fini de la cellule électrochimique (1) lorsqu'il a été déterminé qu'il n'existe pas de relation prédéfinie des données paramétriques (Dpar) avec les valeurs paramétriques (Wpar, Wpar1, Wpar2, Wpar3, Wpar4, Wpar5) prédéfinies.
PCT/EP2012/004100 2011-10-10 2012-09-28 Procédé et système de fabrication d'une cellule électrochimique et batterie comprenant une pluralité de ces cellules électrochimiques WO2013053440A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011115495.0 2011-10-10
DE102011115495A DE102011115495A1 (de) 2011-10-10 2011-10-10 Verfahren und System zur Herstellung einer elektrochemischen Zelle und Batterie mit einer Anzahl dieser elektrochemischen Zellen

Publications (1)

Publication Number Publication Date
WO2013053440A1 true WO2013053440A1 (fr) 2013-04-18

Family

ID=47018125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/004100 WO2013053440A1 (fr) 2011-10-10 2012-09-28 Procédé et système de fabrication d'une cellule électrochimique et batterie comprenant une pluralité de ces cellules électrochimiques

Country Status (2)

Country Link
DE (1) DE102011115495A1 (fr)
WO (1) WO2013053440A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022004497B3 (de) 2022-12-01 2024-01-11 Mercedes-Benz Group AG Batterieeinzelzelle, Befüllvorrichtung und Verfahren zum Befüllen der Batterieeinzelzelle mit Elektrolyt

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518527A (en) * 1947-09-18 1950-08-15 Gen Motors Corp Manufacture of storage batteries
US2528266A (en) * 1947-12-13 1950-10-31 Gen Motors Corp Battery charging and forming apparatus
US3929505A (en) * 1971-04-23 1975-12-30 Mcculloch Corp Formation of battery plates
JPH07211353A (ja) * 1994-01-13 1995-08-11 Toshiba Battery Co Ltd アルカリ二次電池の製造方法
US5510213A (en) * 1994-11-16 1996-04-23 General Motors Corporation Method of preparing electrodes for lead-acid electrode battery
WO2000014820A1 (fr) * 1998-09-04 2000-03-16 Moltech Power Systems, Inc. PROCEDE DE FORMATION DE CoOOH ET DE NiOOH DANS UNE CELLULE ELECTROCHIMIQUE A NiMH ET CELLULE ELECTROCHIMIQUE ELABOREE A L'AIDE DE CELUI-CI
US20030057917A1 (en) * 2001-09-26 2003-03-27 Brost Ronald David Replacement battery formation system
WO2005020353A2 (fr) * 2003-08-18 2005-03-03 Powergenix Systems, Inc. Procede de fabrication de piles nickel-zinc

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518527A (en) * 1947-09-18 1950-08-15 Gen Motors Corp Manufacture of storage batteries
US2528266A (en) * 1947-12-13 1950-10-31 Gen Motors Corp Battery charging and forming apparatus
US3929505A (en) * 1971-04-23 1975-12-30 Mcculloch Corp Formation of battery plates
JPH07211353A (ja) * 1994-01-13 1995-08-11 Toshiba Battery Co Ltd アルカリ二次電池の製造方法
US5510213A (en) * 1994-11-16 1996-04-23 General Motors Corporation Method of preparing electrodes for lead-acid electrode battery
WO2000014820A1 (fr) * 1998-09-04 2000-03-16 Moltech Power Systems, Inc. PROCEDE DE FORMATION DE CoOOH ET DE NiOOH DANS UNE CELLULE ELECTROCHIMIQUE A NiMH ET CELLULE ELECTROCHIMIQUE ELABOREE A L'AIDE DE CELUI-CI
US20030057917A1 (en) * 2001-09-26 2003-03-27 Brost Ronald David Replacement battery formation system
WO2005020353A2 (fr) * 2003-08-18 2005-03-03 Powergenix Systems, Inc. Procede de fabrication de piles nickel-zinc

Also Published As

Publication number Publication date
DE102011115495A1 (de) 2013-04-11

Similar Documents

Publication Publication Date Title
DE102018110154A1 (de) Minimierung einer lithium-beschichtung in einer lithium-ionen-batterie
DE102010052397A1 (de) Verfahren und Vorrichtung zum Befüllen einer elektrochemischen Zelle
EP2901514B1 (fr) Procédé de remplissage de cellules électrochimiques
DE102017216138A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE102014206813A1 (de) Elektrische Energiespeicher und Verfahren zum Betreiben eines elektrischen Energiespeichers
EP2656429A2 (fr) Procédé et système de fabrication de cellules électriques pour des dispositifs accumulateurs d'énergie électrochimiques
WO2012150194A1 (fr) Procédé et dispositif de fabrication d'enroulements d'électrode
EP3314688B1 (fr) Procédé de commande d'un processus de régénération d'une cellule de batterie au lithium-ion, qui comprend une anode, une cathode et une électrode de régénération
DE102015100109A1 (de) Lithiumionensekundärbatterie und verfahren des herstellens derselben
EP2810317A1 (fr) Procédé et dispositif de fabrication d'un élément d'accumulateur d'énergie électrochimique et élément d'accumulateur d'énergie
WO2012156031A1 (fr) Procédé de sélection d'éléments électrochimiques lors de la fabrication d'une batterie et batterie présentant des éléments électrochimiques
WO2013053440A1 (fr) Procédé et système de fabrication d'une cellule électrochimique et batterie comprenant une pluralité de ces cellules électrochimiques
EP2798688A1 (fr) Procédé et système de fabrication d'éléments d'accumulateurs d'énergie électrochimiques
DE102017216184A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE102017216143A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
EP2724412A2 (fr) Procédé de traitement et/ou de réparation d'une cellule électrochimique et batterie comportant un certain nombre desdites cellules électrochimiques
WO2013013764A2 (fr) Procédé et système de fabrication d'une cellule électrochimique et batterie pourvue d'un certain nombre desdites cellules électrochimiques
WO2020249750A1 (fr) Électrode pour une batterie lithium ainsi que procédé pour la fabrication de celle-ci
DE102016215666A1 (de) Elektrodenanordnung für Lithium-basierte galvanische Zellen und Verfahren zu deren Herstellung
EP2710661A1 (fr) Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques
DE102015101122A1 (de) Sekundärbatterie mit nichtwässrigem Elektrolyt
DE102013216488B4 (de) Verfahren und Vorrichtung zur Herstellung einer Energiespeichereinheit
WO2014012619A1 (fr) Procédé de production d'un empilement d'électrodes d'une cellule électrochimique et empilement d'électrodes d'une cellule électrochimique
DE102013213578B4 (de) Verfahren und Vorrichtung zur Herstellung einer Energiespeicherzelle
DE102011120278A1 (de) Verfahren und System zur Herstellung von blatt- oder plattenförmigen Objekten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12772227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12772227

Country of ref document: EP

Kind code of ref document: A1