EP2721696A1 - Wire for sliding contacts and sliding contacts - Google Patents
Wire for sliding contacts and sliding contactsInfo
- Publication number
- EP2721696A1 EP2721696A1 EP12732967.0A EP12732967A EP2721696A1 EP 2721696 A1 EP2721696 A1 EP 2721696A1 EP 12732967 A EP12732967 A EP 12732967A EP 2721696 A1 EP2721696 A1 EP 2721696A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wire
- contact
- silver
- coating
- mating contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000013011 mating Effects 0.000 claims abstract description 28
- 229910001316 Ag alloy Inorganic materials 0.000 claims abstract description 21
- 239000010949 copper Substances 0.000 claims abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 33
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 15
- 239000004332 silver Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 229910001020 Au alloy Inorganic materials 0.000 claims description 11
- 239000003353 gold alloy Substances 0.000 claims description 11
- 238000005253 cladding Methods 0.000 claims description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910000510 noble metal Inorganic materials 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 abstract 1
- 230000000284 resting effect Effects 0.000 abstract 1
- 229910017770 Cu—Ag Inorganic materials 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 239000010970 precious metal Substances 0.000 description 7
- 229910000952 Be alloy Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical group [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 230000007748 combinatorial effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/02—Contact members
- H01R13/33—Contact members made of resilient wire
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R39/00—Rotary current collectors, distributors or interrupters
- H01R39/02—Details for dynamo electric machines
- H01R39/18—Contacts for co-operation with commutator or slip-ring, e.g. contact brush
- H01R39/20—Contacts for co-operation with commutator or slip-ring, e.g. contact brush characterised by the material thereof
Definitions
- the invention relates to a wire for producing a sliding contact.
- the invention also relates to a sliding contact with such a wire.
- the invention relates to a potentiometric sensor, potentiometer, slider, position sensor, rotary switch, electric motor, generator, wind turbine, slip ring system, actuator or pantograph with such a sliding contact.
- Wires for sliding contacts and sliding contacts themselves find a variety of applications when power is to be transferred to moving parts.
- Sheathed wires with an inner core of a first metal, or of a first metallic alloy, and a sheath or a coating of a second metal or a second metallic alloy are also used.
- Such jacket wires are used for example as sliding contacts in Schleifringübertragersystemen. These are used to transmit signal and power currents in rotating systems, such as wind turbines or robot arms.
- Sliding contacts are known for example from DE 40 20 700 A1.
- DE 199 13 246 A1 discloses a grinder for transmitting electrical signals, which is designed as a multi-wire grinder. The multiplicity of contacts should ensure a continuous electrical contact.
- a tuft contact with a slip ring is known as a sliding contact, which consists of a plurality of individual wires.
- the trend in slip ring systems is towards higher currents. At the same time, efforts are increasingly being made to reduce expensive precious metals.
- CONFIRMATION COPY such as to choose stainless steel, while the energy transferring part as a sliding contact body from another, optimized for energy transfer material may consist. It is advantageous that expensive precious metal can be saved because not the entire spring contact must be made of a precious metal or a noble metal alloy. The disadvantage of this is the higher cost of producing such a sliding contact compared to the use of a simple wire.
- a preferred material used for the construction of wires for sliding contacts are copper beryllium alloys, in particular CuBe 2 , which are gladly used because of their good elastic properties. It is also known to use cladding wires having a core of a copper-beryllium alloy and a shell of a noble metal or a noble metal alloy. These sheath wires have due to the cured Cu Be 2 -Kem good spring properties. Also, the contact resistance and corrosion resistance of these sheath wires are very good due to a typically high gold-containing sheath.
- the copper-beryllium alloy has a poor electrical conductivity compared to pure copper.
- the current carrying capacity of such a wire or a coated wire with a core of a copper-beryllium alloy is comparatively low.
- the diameters of the wires or the number of wires must be increased. Both measures are associated with significant additional costs due to the higher use of precious metals in the jacket or the coating.
- Beryllium and beryllium alloys such as CuBe 2 are also increasingly avoided due to their environmental impact.
- the object of the invention is therefore to overcome the disadvantages of the prior art.
- a wire and a sliding contact with such a wire is to be provided, which has a higher conductivity, but at the same time still has sufficiently good elastic properties, which are necessary for a sliding contact.
- Particularly preferred would be a wire that manages without polluting beryllium. Further, it would be advantageous if the manufacturing cost of such a wire and thus a sliding contact constructed with such a wire could be reduced.
- the object of the invention is achieved in that at least one inner core of the wire consists of a copper-silver alloy.
- the copper-silver alloy makes it possible to build up a thin, well-conductive spring contact. It can be provided that the inner core extends along the entire length of the wire.
- the wire is an elastic wire with a round or an angular cross-section. Wires are easy to get. With a round cross section of the wire, this has a symmetrical elasticity, so that a mating contact of a sliding contact, which is constructed with such a wire, may also be uneven.
- the copper-silver alloy has up to 30 wt .-% silver, preferably 1 to 25 wt .-% silver, more preferably 5 to 15 wt .-% silver, most preferably 10% by weight of silver.
- the mechanical and electrical properties are particularly well suited to construct wires according to the invention.
- the wires are then particularly well suited for sliding contacts according to the invention.
- the proportion of silver is given here in percent by weight (wt .-%).
- the copper-silver alloy contains small admixtures of other elements with a proportion of less than 4 wt .-%, in particular Zr and / or Cr, preferably with a proportion of less than 1 wt .-%, particularly preferably with a proportion of less than 0.1 wt .-%.
- chromium (Cr) but also zirconium (Zr) can simplify the application of a gold alloy as a coating, or ensure that a gold alloy holds better on the surface of the wire.
- the wire is extended and has a cross section between 0.1 mm and 4 mm.
- the wire has a thickness of 0.1 mm to 3 mm, preferably a thickness of 0.15 mm to 2 mm.
- the wire is a wound endless wire or has a length of 10 mm to 300 mm, preferably one Length of 20 mm to 180 mm, more preferably has a length of 30 mm to 100 mm.
- Wires with a length between 10 mm and 300 mm are particularly easy to install in sliding contacts according to the invention. By providing wires of suitable length, manual trimming of an endless wire is avoided. Therefore, cut wires for sliding contacts are particularly preferred.
- the wire comprises a coating of a noble metal alloy, preferably a coating of a gold alloy, more preferably of a gold alloy comprising silver, copper and / or palladium, most preferably of an alloy containing 70% by weight of gold, 20% by weight of silver and 10% by weight of copper and / or palladium.
- the coating has the effect that the surface of the wire is not oxidized and thus a low contact resistance of such a wire to a mating contact is ensured in the long term.
- the core of the wire made of a copper-silver alloy, the surprising combinatorial effect that results from the smaller wire cross-section due to the better electrical conductivity of the copper-silver core, a smaller amount of precious metal for coating the wire use. This saves costs when building the wire.
- the Cu-Ag core is particularly good and easy to coat with the specified gold alloys. The durability of such a coating on the Cu-Ag alloy is particularly good, especially in silver-containing gold alloys.
- the coated wire comprises a chromium-containing intermediate layer between the core and the coating.
- wires of coating can be provided that the coating is a galvanic coating, preferably with a layer thickness of 0.1 to 20 ⁇ ⁇ ⁇ , particularly preferably with a layer thickness of 0.5 to ⁇ ⁇ . 2
- the coating is a mechanically applied cladding coating, so that the wire is a cladding wire, preferably with a layer thickness of 5 ⁇ to 50 ⁇ , more preferably with a layer thickness of 10 ⁇ to 25 ⁇ ⁇ ⁇ .
- Coated wires may also be characterized in that the coating is a cylinder jacket that extends around the cylindrical core of the wire.
- the coating of the wire is applied by roller cladding, sputtering or galvanically applied to the base body.
- Uncoated wires can be distinguished according to the invention in that the wire consists of the copper-silver alloy. The wire is then a massive copper-silver wire, which also works without an outer coating.
- the object of the invention is also achieved by a sliding contact with at least one such wire, wherein a mating contact is provided, rests on the conductive surface of at least one of the wires, wherein the spring force of the wire on the conductive surface of the mating contact an electrical contact between the Wire and the mating contact causes and the mating contact is movable against the wire, so that the surface of the wire grinds during a movement of the mating contact on the mating contact.
- the mating contact is rotatably mounted and the conductive surface of the mating contact is at least partially rotationally symmetrical.
- the sliding contact is a multi-wire grinder with a plurality of electrically contacted wires.
- Multiwire grinders are particularly suitable because they can handle the failure of individual contacts and can adapt well to the profile of a mating contact. It can also be provided that the sliding contact is formed such that at least one of the wires rests with its coating on the mating contact.
- the object of the invention is also achieved by a potentiometric sensor, potentiometer, slider, position sensor, rotary switch, electric motor, generator, wind turbine, slip ring system, actuator or pantograph with such a sliding contact.
- the object of the invention is finally solved by a potentiometric sensor, a potentiometer, a slider, a position sensor, a rotary switch, an electric motor, a generator, a wind turbine, a slip ring system, an actuator or a current collector with such a wire as a sliding contact.
- the wires and sliding contacts according to the invention can be used particularly effectively.
- the invention is based on the surprising finding that the material used, namely the copper-silver alloy, is a highly conductive material, which allows the transmission of higher currents with constant cross section, or allows the transmission of constant currents at a smaller cross section, and the Alloy at the same time has suitable mechanical properties, such as the elasticity has to form a spring contact.
- the wire is formed as a sheathed wire or as a coated wire, which comprises a core of such a copper-silver alloy, results from the constant cross section at higher currents, or from the smaller cross section at constant currents, the surprising combinatorial advantage that the coat constructed mostly of expensive precious metals or the coating has a smaller cross-section and therefore less of the expensive jacket material or the coating must be consumed for the production of such a jacket wire or coated wire.
- a corresponding precious metal savings is so connected especially in a mantle wire.
- Cu-Ag-based wires according to the invention can be used in sliding contacts according to the invention, such as slip ring transmission systems.
- slip ring transmitters are essentially used for transmitting electrical signals and electrical power in wind turbines. energy systems are used.
- slipring assemblies are used wherever electrical currents are to be transferred between rotating and static parts, such as robot arms.
- Figure 1 a schematic side view of a sliding contact according to the invention
- Figure 2 is a schematic perspective view of a wire according to the invention.
- Figure 3 a schematic view of an alternative sliding contact according to the invention.
- Figure 1 shows a schematic side view of a sliding contact 1, which is constructed with a wire 2 according to the invention.
- the wire 2 is either made of solid copper-silver alloy or it comprises a core of such an alloy and is coated on its outer surface with a gold alloy.
- the copper-silver alloy conducts the current and provides sufficient elasticity of the wire 2.
- the wire 2 is fixed with a fixation 3 on a device 4.
- the device 4 may be any equipment, such as the mast of a wind turbine or a part that is fixedly connected to the mast of a wind turbine.
- a suspension 5 is arranged, which is fixedly connected to the device 4.
- a roller 6 is mounted as a counter contact to the wire 2 rotatable about an axis 7.
- the roller 6 has a conductive surface and is cylindrically shaped.
- the axis 7 is at the same time the axis of symmetry of the cylindrical roller 6.
- the roller 6 is connected via the suspension 5 is not electrically connected to the device 4.
- the wire 2 is fixed relative to the roller 6 so that it is pressed onto the roller 6. As a result, the wire 2 is elastically deformed. As the roller 6 rotates in the suspension 5, the surface of the wire 2 grinds over the conductive cylinder shell of the roller 6. By the continuous contact which the wire 2 generates with the rotating roller 6, current can flow from the wire 2 be transferred to the roller 6 or vice versa. By the spring force of the wire 2, the contact with the surface of the roller 6 is maintained.
- an electrical line 8 is connected, with the current to further components (not shown) or can be passed from other components to the wire 2.
- the wire 2 having a core made of a copper-silver alloy or made entirely of a copper-silver alloy can be made smaller in diameter than conventional wires for conventional sliding contacts to transmit the same current. Therefore, such a wire 2 is less expensive to manufacture and consumes less resources.
- the wire 2 can be easily manufactured and does not cause any problems in disposal or reprocessing. Finally, the wire 2 comes out completely without beryllium, which meets newer environmental requirements.
- FIG. 2 shows a schematic perspective view of a wire 12 according to the invention for sliding contacts, as shown for example in Figures 1 and 3.
- the wire 12 shown is a cladding wire 12 having a core 19 made of a copper-silver alloy.
- the jacket wire 12 is round in cross section.
- the round surface of the core 19 is surrounded by a jacket 20, which forms a cylindrical coating of the core 19.
- the sheath 20 is made of a gold alloy, which consists of over 50 wt .-% of gold.
- the jacket 20 is mechanically applied to the core 19.
- the wire 12 may also be coated with a thin layer of such a gold alloy.
- the coating 20 may be applied to the copper-silver core 19 of the wire 12 by roll plating, by sputtering, or by electroplating.
- an intermediate layer (not shown) may be provided between the core 19 and the coating 20.
- the intermediate layer can be, for example, a chromium alloy which is applied to the core 19 by electroplating or by vapor deposition.
- FIG. 3 shows a schematic view of an alternative sliding contact 21 according to the invention.
- the sliding contact 21 is constructed with a multiplicity of wires 22 according to the invention and thus forms a multi-wire grinder or a brush contact.
- the wires 22 are held by a fixing 23.
- the fixation 23 positions the wires 22 so as to be spaced apart from a metallic rail 26 that is smaller than the portion of the length of the wires 22 that protrude from the fixation 23.
- the wires 22 are pressed onto the metallic rail 26 and thereby deform elastically.
- By the spring force of the wires 22 these are always ge ⁇ presses on the rail 26, which forms the counter-contact to the wires 22nd Via a line 28 are the Wires 22 of the sliding contact 21 electrically contacted.
- a current may be transmitted from the rail 26 via the wires 22.
- power can always be transferred from the rail 26 to the wires 22.
- the wires 22 comprise a copper-silver alloy and therefore can be made smaller than wires for conventional sliding contacts. As a result, on the one hand less material is consumed and on the other hand smaller structures can be realized. This is advantageous with increasing miniaturization of many components.
- the sliding contact 21 shown can be realized, for example, in a model railway, as shown in Figure 3.
- copper-silver alloys containing up to 25% by weight of silver and the balance of copper are particularly well suited for constructing a wire 2, 12, 22 according to the invention for a sliding contact 1, 21 according to the invention.
- small amounts (less than 4% by weight) of other metals may be included in the alloy. Suitable small admixtures may be, for example, chromium or zirconium.
Landscapes
- Contacts (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011106518.4A DE102011106518B4 (en) | 2011-06-15 | 2011-06-15 | Wire for sliding contacts and sliding contacts |
PCT/EP2012/002478 WO2012171632A1 (en) | 2011-06-15 | 2012-06-12 | Wire for sliding contacts and sliding contacts |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2721696A1 true EP2721696A1 (en) | 2014-04-23 |
EP2721696B1 EP2721696B1 (en) | 2020-09-30 |
Family
ID=46466405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12732967.0A Active EP2721696B1 (en) | 2011-06-15 | 2012-06-12 | Wire for sliding contacts and sliding contacts |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140120743A1 (en) |
EP (1) | EP2721696B1 (en) |
CN (1) | CN103608976B (en) |
DE (1) | DE102011106518B4 (en) |
WO (1) | WO2012171632A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2808873A1 (en) * | 2013-05-28 | 2014-12-03 | Nexans | Electrically conductive wire and method for its manufacture |
CN108233133B (en) * | 2017-12-31 | 2024-07-09 | 扬州海通电子科技有限公司 | Modularized contact assembly and large-scale power transmission slip ring contact device based on same |
KR102358089B1 (en) * | 2021-08-06 | 2022-02-08 | 정호균 | Pin type wire for slip ring |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2269614A (en) * | 1938-07-30 | 1942-01-13 | Zahnradfabrik Friedrichshafen | Sliding current collector for slip rings |
JPS5568849A (en) * | 1978-11-17 | 1980-05-23 | Matsushita Electric Ind Co Ltd | Commutator of small dc motor |
US4277708A (en) * | 1979-06-25 | 1981-07-07 | Westinghouse Electric Corp. | Environment and brushes for high-current rotating electrical machinery |
US4358699A (en) * | 1980-06-05 | 1982-11-09 | The University Of Virginia Alumni Patents Foundation | Versatile electrical fiber brush and method of making |
US4398113A (en) * | 1980-12-15 | 1983-08-09 | Litton Systems, Inc. | Fiber brush slip ring assembly |
CA1230938A (en) * | 1985-02-06 | 1987-12-29 | Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Canada Limited/L'energie Atomique Du Canada Limitee | Sliding electric contacts |
US5119865A (en) * | 1990-02-20 | 1992-06-09 | Mitsubishi Materials Corporation | Cu-alloy mold for use in centrifugal casting of ti or ti alloy and centrifugal-casting method using the mold |
DE4020700A1 (en) * | 1990-06-29 | 1992-01-09 | Kern & Liebers | METHOD AND DEVICE FOR EDGING SPRINGS |
GB2270568A (en) * | 1992-09-15 | 1994-03-16 | Crane Electronics | Torque transducer having a slipring and brush assembly |
JP3351023B2 (en) * | 1993-04-28 | 2002-11-25 | 三菱マテリアル株式会社 | Suspension line |
JPH07166270A (en) * | 1993-12-13 | 1995-06-27 | Mitsubishi Materials Corp | Copper alloy excellent in resistance to ant-lair-like corrosion |
JPH0941056A (en) * | 1995-07-31 | 1997-02-10 | Mitsubishi Materials Corp | Motor commutator material |
WO1997037847A1 (en) * | 1996-04-05 | 1997-10-16 | Kuhlmann Wilsdorf Doris | Continuous metal fiber brushes |
JP2000243139A (en) * | 1999-02-19 | 2000-09-08 | Hitachi Cable Ltd | Bending resisting composite conductor and its manufacture |
DE19913246A1 (en) * | 1999-03-24 | 2000-09-28 | Siedle Horst Gmbh & Co Kg | Wire guide for transmission of electrical signals, has several groups separated by gaps of guide wires in which each wire group is arranged on finger-shaped spring element |
DE102004028838A1 (en) * | 2004-06-16 | 2006-01-26 | W.C. Heraeus Gmbh | sliding contact |
US7495366B2 (en) * | 2004-06-18 | 2009-02-24 | Moog Inc. | Compact slip ring incorporating fiber-on-tips contact technology |
US7105983B2 (en) * | 2004-06-18 | 2006-09-12 | Moog Inc. | Electrical contact technology and methodology for the manufacture of large-diameter electrical slip rings |
US7423359B2 (en) * | 2004-06-18 | 2008-09-09 | Moog Inc. | Fluid-dispensing reservoir for large-diameter slip rings |
DE102005011028A1 (en) * | 2005-03-08 | 2006-09-14 | W.C. Heraeus Gmbh | Copper bonding wire with improved bonding and corrosion properties |
DE102005047799A1 (en) * | 2005-10-05 | 2007-05-24 | W.C. Heraeus Gmbh | Slip ring body for continuous power transmission |
US7179090B1 (en) * | 2005-12-08 | 2007-02-20 | The United States Of America As Represented By The Secretary Of The Navy | Integral dual-component current collection device |
DE102008001361A1 (en) * | 2008-04-24 | 2009-11-05 | Schleifring Und Apparatebau Gmbh | Multiple brush for slip rings |
DE102009058259B4 (en) * | 2009-12-14 | 2015-05-28 | Siemens Aktiengesellschaft | Brush design for slip ring contacts |
-
2011
- 2011-06-15 DE DE102011106518.4A patent/DE102011106518B4/en active Active
-
2012
- 2012-06-12 EP EP12732967.0A patent/EP2721696B1/en active Active
- 2012-06-12 CN CN201280028519.XA patent/CN103608976B/en active Active
- 2012-06-12 WO PCT/EP2012/002478 patent/WO2012171632A1/en active Application Filing
- 2012-06-12 US US14/126,080 patent/US20140120743A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2012171632A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102011106518B4 (en) | 2017-12-28 |
EP2721696B1 (en) | 2020-09-30 |
WO2012171632A1 (en) | 2012-12-20 |
US20140120743A1 (en) | 2014-05-01 |
DE102011106518A1 (en) | 2012-12-20 |
CN103608976A (en) | 2014-02-26 |
CN103608976B (en) | 2020-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3077682B1 (en) | Layer arrangement for connecting components | |
EP2732510B1 (en) | Slip ring brush having a galvanic multi-layer system | |
DE112014004500T5 (en) | Electrical contact material for a connector and method of making the same | |
WO1997031129A1 (en) | Electric contacts | |
EP2721696B1 (en) | Wire for sliding contacts and sliding contacts | |
DE2944065A1 (en) | POWER TRANSFER BRUSH WITH GRAPHITE FILMS | |
EP3224909A1 (en) | Electrical contact element, press-in pin, bushing, and leadframe | |
EP0604710B1 (en) | Electric contact body | |
DE102015110428B4 (en) | sliding contact | |
EP2524384B1 (en) | Electrical contact element and method for producing it | |
EP1935064A1 (en) | Slip ring for continuous current transfer | |
DE102011015579B4 (en) | Elastic sliding contact and method for its production | |
DE102011015219B4 (en) | Solderable electrode and method for producing a solderable electrode | |
DE202013004915U1 (en) | Composite wire and contact element | |
DE102012008908A1 (en) | Method of making a sliding contact with multiple contacts | |
EP2458693B1 (en) | Slip ring unit | |
EP1407060B1 (en) | Hard-chromed sieve basket | |
CH664650A5 (en) | ELECTRICAL SLIDING CONTACT, IN PARTICULAR FOR COMMUTING SYSTEMS. | |
DE202019103166U1 (en) | Electrical contact element | |
EP3871294A1 (en) | Electric contact element for high operating voltages | |
DE202019103167U1 (en) | Electrical contact element for high operating voltages | |
EP2404305B1 (en) | Method for producing components for electrical contact and the corresponding components | |
DE10129492A1 (en) | Sliding carbon contact with cleaning element, has metal part(s) in carbon brush extending into contact from contact surface, especially in pressing direction, that wears as contact is used | |
DE20203507U1 (en) | Electrical surface heating element and manufacture of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131113 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190215 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200717 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DENNEMEYER AG, CH Ref country code: AT Ref legal event code: REF Ref document number: 1319754 Country of ref document: AT Kind code of ref document: T Effective date: 20201015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012016389 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201231 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210201 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012016389 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
26N | No opposition filed |
Effective date: 20210701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120612 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230702 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240620 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240625 Year of fee payment: 13 |