EP2712419A2 - Method for separating air by means of cryogenic distillation - Google Patents

Method for separating air by means of cryogenic distillation

Info

Publication number
EP2712419A2
EP2712419A2 EP12714821.1A EP12714821A EP2712419A2 EP 2712419 A2 EP2712419 A2 EP 2712419A2 EP 12714821 A EP12714821 A EP 12714821A EP 2712419 A2 EP2712419 A2 EP 2712419A2
Authority
EP
European Patent Office
Prior art keywords
air
during
sent
adsorber
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12714821.1A
Other languages
German (de)
French (fr)
Other versions
EP2712419B1 (en
Inventor
Patrick Le Bot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2712419A2 publication Critical patent/EP2712419A2/en
Application granted granted Critical
Publication of EP2712419B1 publication Critical patent/EP2712419B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/72Pressurising or depressurising the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2

Definitions

  • the present invention relates to a process for air separation by air distillation, in particular for producing oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is previously purified by means of at least two adsorbers each of which, in offset, follow a cycle in which an adsorption phase is followed, at a pressure of the cycle, and a regeneration phase ending in a pressurization of the adsorber.
  • the pressures here are absolute pressures.
  • the distillation of the air is carried out cryogenically and therefore requires purifying the air in order to remove the constituents whose solidification temperatures are above the distillation temperature of the air, namely mainly water and carbon dioxide.
  • the main purpose of the distillation of air is to provide, in liquid and / or gaseous form, oxygen and / or nitrogen and / or argon. This production leads to the coproduction of fluids with low oxygen content, such as, for example, impure nitrogen, called residual nitrogen, and higher purity nitrogen, in liquid or gaseous form.
  • the purification of the air to be distilled is commonly carried out by adsorption of the troublesome constituents, generally by means of two bottles containing adsorbent substances arranged in a bed and operating in alternating cycles. While a bottle is in adsorption phase, ie it purifies the air to be distilled, the other bottle is in regeneration phase, that is to say that it is swept by a dry regeneration gas, such as residual nitrogen, desorbing the impurities fixed on the adsorbent during its previous adsorption phase.
  • a dry regeneration gas such as residual nitrogen
  • the regeneration of the adsorbent is all the more effective when it is applied at high temperature and at a low pressure compared with that maintained during the adsorption, which makes it necessary to pressurize a bottle ending its regeneration phase, in order to restore it to a satisfactory pressure condition for its future adsorption phase.
  • the state of the art consists in taking a fraction of purified air at the outlet of the bottle in the adsorption phase and relaxing it towards the bottle at the end of regeneration phase, in order to increase the pressure of the latter.
  • it is however essential to keep constant the flow of air to be sent to the distillation in order to avoid any fluctuation of supply of the distillation apparatus and to maintain the production of oxygen and / or nitrogen and / or argon.
  • the air compression device must provide the excess air that is used for pressurization
  • this additional air flow implies oversizing, and therefore an additional cost, of the compression device. It is indeed required to provide an additional compressed air flow of the order of 5% of the nominal air flow treated by the adsorption bottle (depending on the optimization of the cycle), during a period of pressurization of the 15 minutes for a standard size bottle.
  • the compression apparatus operates at the nominal air flow rate, that is to say that which corresponds to the separating capacity of the air separation apparatus.
  • the normal flow rate of use will be 95 kNm3 / h sent to the cold box where the distillation takes place and 100 kNm3 / h only for the only pressurization phase at the end of regeneration where 5 kNm3 / h of air is sent to pressurize one of the bottles.
  • Some air separation processes use a lost air system in which not all of the purified air is sent to the distillation columns.
  • an expansion turbine is generally found which will depressurise the excess air relative to the oxygen requirement to a pressure close to atmospheric pressure.
  • the object of the invention is to avoid over-sizing the compressors by reducing or even eliminating the increase in the air flow to be compressed in order to supply the additional gas necessary for the pressurization of the adsorbent bottles.
  • the subject of the invention is a process for the distillation of air, in particular intended to produce oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is compressed beforehand in a compressor, purified by means of at least two adsorbers which each follow, in offset, a cycle in which an adsorption phase is followed at a high pressure of the cycle (Pads), and a regeneration phase at a low pressure P a tmos ending with a repressurization phase of the adsorber, purified air is cooled in an exchange line and then sent to a distillation column d a system of columns and fluids enriched in oxygen and nitrogen are withdrawn from a column of the column system, only during the repressurization phase a flow of purified air, constituting between 3 and 20% of the compressed air in the compressor serves to pressurize, at least partially, the adsorber ending its regeneration phase and the compressed air flow in the compressor during the adsorption phase is substantially equal to the compressed air flow rate in the
  • substantially equal covers the case in which the flow rate of compressed air in the compressor during the adsorption phase differs by not more than 5%, preferably not more than 3%, from the compressed air flow rate. the compressor during the pressurization of the adsorber.
  • the two flows are preferably strictly equal.
  • the flow rate of compressed air in the compressor during the adsorption phase of an adsorber is equal to the compressed air flow rate in the compressor during the pressurization of the adsorber;
  • the reduction of the air flow sent to the turbine and then to the air during repressurization is equal to the air flow rate used during the repressurization to pressurize the adsorber ending its repressurization phase;
  • the compressed air flow rate in the compressor increases with respect to the flow rate sent during the remainder of the cycle and the quantity of air sent for distillation remains equal to that sent during the remainder of the cycle;
  • the column system consists of a double column comprising a medium pressure column and a low pressure column
  • a high oxygen flow rate is withdrawn from the low pressure column and vaporized in the exchange line.
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • TPSA pressure swing adsorption
  • Figure 1 is a schematic view of an installation for operating the method according to the invention.
  • FIG. 1 is shown an installation 1 of air distillation according to the invention.
  • This installation is for example intended to produce oxygen gas OG, as well as liquid oxygen OL.
  • the installation 1 essentially comprises:
  • an apparatus 6 for adsorption air purification which apparatus comprises, on the one hand, two adsorbers 7A, 7B in the form of two bottles each containing adsorbent materials, for example molecular sieve with optionally alumina, capable of adsorbing water and carbon dioxide present in the air and, on the other hand, pipes and connecting valves whose arrangement will become clear when describing the process implemented in the installation 1 and which make it possible successively to subject each adsorber 7A, 7B to the flow of air to be distilled and to a regeneration gas of the adsorbent;
  • adsorbent materials for example molecular sieve with optionally alumina, capable of adsorbing water and carbon dioxide present in the air
  • pipes and connecting valves whose arrangement will become clear when describing the process implemented in the installation 1 and which make it possible successively to subject each adsorber 7A, 7B to the flow of air to be distilled and to a regeneration gas of the adsorbent
  • an air distillation apparatus in the form of a double column 10 comprising a medium pressure column 12, a low pressure column 14 and a vaporizer-condenser 16 coupling these two columns, as well as an argon separation column 26; and
  • a reservoir 18 for storing liquid oxygen for storing liquid oxygen.
  • the air to be distilled, previously compressed by the compressor 4, is purified by one of the adsorbers 7A, 7B of the apparatus 6, and then cooled by the main heat exchange line 8 to an intermediate temperature.
  • the adsorption may be of the TSA, PSA or TPSA type.
  • Part of the air is sent to a lost air turbine 27 and the expanded air is sent to the atmosphere after reheating in the exchanger 8. The rest of the air continues cooling.
  • Another part 29 of the air is sent to the cold compressor 3, returned to the exchange line 8.
  • a part of the supercharged flow is expanded in a turbine 5 to the medium pressure to form the expanded flow rate 7.
  • the expanded flow rate 7 in the vicinity of its dew point is introduced into the vat of the medium pressure column 12.
  • the rest of the compressed air 9 continues cooling in the exchange line 8, is expanded in a valve V and is sent to an intermediate level of the medium pressure column 12.
  • the vaporizer-condenser 16 vaporizes liquid oxygen, for example having a purity of 99.5%, of the tank of the low pressure column 14, by condensing nitrogen gas at the top of the medium pressure column 12.
  • Impure nitrogen or "waste" NR withdrawn from the top of the low pressure column 14, is returned to the main heat exchange line 8, where it causes cooling of the air to be distilled.
  • OL liquid oxygen is withdrawn from the tank of the low pressure column 14 and feeds the storage tank 18. After pressurization in the pump P, it vaporizes in the main heat exchange line 8 and distributed by a pipe of production 32 to form gaseous oxygen under pressure.
  • An argon production column 26 is fed from the low pressure column 14.
  • the cycle of FIG. 2, whose period is, for example, equal to approximately 360 minutes for an adsorption pressure substantially equal to 20 bars, comprises 4 successive stages I to IV.
  • the compressed air by the compressor 4 supplies the adsorber 7A via an open valve 40A.
  • the outlet of the adsorber 7A is connected to the exchange line 8 via an open valve 42A.
  • the adsorber 7A is in the regeneration phase, while the adsorber 7B is in the adsorption phase. More specifically, during stage II, a valve 44A for venting the adsorber 7A is opened so that the pressure inside the bottle of the adsorber 7A is reduced to a pressure substantially equal to atmospheric pressure, noted P a tmo in Figure 2.
  • step III the valve 44A remains open and residual nitrogen NR withdrawn at the top of the low pressure column 14 and then heated in the exchanger 8 feeds via an open valve 46A, the adsorber 7A to circulate there against a current. This is the actual phase of regeneration during which impurities are desorbed and the beds regenerated.
  • step IV the valves 44A and 46A are closed, to allow the pressurization of the adsorber.
  • the pressurization of the adsorber is provided by a stream of purified air, via the valve 42A open, this flow of clean air from the bottles 7A, 7B.
  • Sub-step IV continues with sub-step IV "until the pressure inside the adsorber 7A is substantially equal to the high pressure P a ds., By opening the valve 50.
  • the pressurization of each adsorber no longer requires, during step IV, to increase the flow rate of the compressor 4.
  • the compressor 4 is optimally sized, that is, - say so that its nominal flow is substantially constant. The investment and operating costs of this compression apparatus are reduced, compared with those of prior art installations.
  • the compressor 4 compresses 100 kNm3 / h of air and all the purified air is sent to the exchange line 8. 30 kNm3 / h of air are sent to the air turbine lost 5. 70 kNm3 / h of air are sent to the system of distillation columns.
  • the compressor 4 compresses 100 kNm3 / h of air, 95 kNm3 / h are sent to the discharge line 8 and 5 kNm3 / h are sent to pressurize an adsorption bottle. 25 kNm3 / h of air (thus 5 kNm3 / h less) are sent to the lost air turbine 5 and 70 kNm3 / h of air are always sent to the distillation column system. It will be understood that this invention applies to any process involving a lost air turbine, whether there is compression in a cold compressor or not, double column or not, argon production or not, pressurization and vaporization of liquid oxygen or not.

Abstract

In an air-distillation method, purified air is cooled in an exchange line (8) and then sent to a distillation column (12) of a system of columns, and oxygen- and nitrogen-rich fluids are extracted from a column (14) of the system of columns only during the repressurization phase. A purified airflow, constituting between 3% and 20% of the air compressed in the compressor, is used to at least partially pressurize the adsorber completing the regeneration phase thereof, and the airflow compressed in the compressor during the adsorption phase is substantially equal to the airflow compressed in the compressor during the pressurization of the adsorber. A portion of the purified air is sent to a turbine (27) where it is decompressed and then sent into the atmosphere so as to ensure that it is kept at least partially cold during the entire cycle, and the amount of decompressed airflow sent into the air during the pressurization of an adsorber is less than the amount sent into the air during the adsorption phase of the same adsorber.

Description

Procédé de séparation d'air par distillation cryogénique  Process for the separation of air by cryogenic distillation
La présente invention concerne un procédé de séparation d'air par distillation d'air, notamment destiné à produire de l'oxygène et/ou de l'azote et/ou de l'argon, du type dans lequel l'air à distiller est préalablement épuré au moyen d'au moins deux adsorbeurs qui suivent chacun, en décalage, un cycle où se succèdent une phase d'adsorption, à une pression du cycle, et une phase de régénération se terminant par une pressurisation de l'adsorbeur. The present invention relates to a process for air separation by air distillation, in particular for producing oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is previously purified by means of at least two adsorbers each of which, in offset, follow a cycle in which an adsorption phase is followed, at a pressure of the cycle, and a regeneration phase ending in a pressurization of the adsorber.
Les pressions dont il est question ici sont des pressions absolues.  The pressures here are absolute pressures.
Dans ce type d'installation, la distillation de l'air, préalablement comprimé par un appareil de compression, s'effectue par voie cryogénique et nécessite donc de purifier l'air afin d'en él iminer les constituants dont les températures de solidification sont supérieures à la température de distillation de l'air, à savoir principalement l'eau et le dioxyde de carbone. L'objectif principal de la distillation de l'air est de fournir, sous forme liquide et/ou gazeuse, de l'oxygène et/ou de l'azote et/ou de l'argon. Cette production engendre la coproduction de fluides à faible teneur en oxygène, tels que, par exemple, de l'azote impur, dit azote résiduaire, et de l'azote à plus haute pureté, sous forme liquide ou gazeuse.  In this type of installation, the distillation of the air, previously compressed by a compression apparatus, is carried out cryogenically and therefore requires purifying the air in order to remove the constituents whose solidification temperatures are above the distillation temperature of the air, namely mainly water and carbon dioxide. The main purpose of the distillation of air is to provide, in liquid and / or gaseous form, oxygen and / or nitrogen and / or argon. This production leads to the coproduction of fluids with low oxygen content, such as, for example, impure nitrogen, called residual nitrogen, and higher purity nitrogen, in liquid or gaseous form.
La purification de l'air à distiller est couramment effectuée par adsorption des constituants gênants, au moyen en général de deux bouteilles contenant des substances adsorbantes disposées en lit et fonctionnant en cycles alternés. Pendant qu'une bouteille est en phase d'adsorption, c'est à dire qu'elle épure l'air devant être distillé, l'autre bouteille est en phase de régénération, c'est à dire qu'elle est balayée par un gaz de régénération sec, tel que l'azote résiduaire, désorbant les impuretés fixées sur l'adsorbant lors de sa phase d'adsorption précédente. La régénération de l'adsorbant est d'autant plus efficace qu'elle est appliquée à haute température et à une basse pression par rapport à celle maintenue pendant l'adsorption, ce qui oblige à pressuriser une bouteille terminant sa phase de régénération, afin de la remettre en condition de pression satisfaisante pour sa phase d'adsorption à venir.  The purification of the air to be distilled is commonly carried out by adsorption of the troublesome constituents, generally by means of two bottles containing adsorbent substances arranged in a bed and operating in alternating cycles. While a bottle is in adsorption phase, ie it purifies the air to be distilled, the other bottle is in regeneration phase, that is to say that it is swept by a dry regeneration gas, such as residual nitrogen, desorbing the impurities fixed on the adsorbent during its previous adsorption phase. The regeneration of the adsorbent is all the more effective when it is applied at high temperature and at a low pressure compared with that maintained during the adsorption, which makes it necessary to pressurize a bottle ending its regeneration phase, in order to restore it to a satisfactory pressure condition for its future adsorption phase.
Pour cela, l'état de l'art consiste à prélever une fraction d'air épuré en sortie de la bouteille en phase d'adsorption et de la détendre vers la bouteille en fin de phase régénération, afin d'augmenter la pression de cette dernière. Pendant cette opération, il est cependant indispensable de maintenir constant le débit d'air à envoyer à la distillation afin d'éviter toute fluctuation d'alimentation de l'appareil de distillation et pour maintenir la production d'oxygène et/ou d'azote et/ou d'argon. Aussi, pendant chaque repressurisation, l'appareil de compression d'air doit fournir ce surplus d'air qui sert à la pressurisation Cependant, ce débit d'air supplémentaire implique un surdimensionnement, et donc un surcoût, de l'appareil de compression. Il lui est en effet demandé de fournir un débit d'air comprimé supplémentaire de l'ordre de 5% du débit d'air nominal traité par la bouteille en adsorption (selon l'optimisation du cycle), pendant une durée de pressurisation de l'ordre de 15 minutes pour une bouteille de dimension courante. For this, the state of the art consists in taking a fraction of purified air at the outlet of the bottle in the adsorption phase and relaxing it towards the bottle at the end of regeneration phase, in order to increase the pressure of the latter. During this operation, it is however essential to keep constant the flow of air to be sent to the distillation in order to avoid any fluctuation of supply of the distillation apparatus and to maintain the production of oxygen and / or nitrogen and / or argon. Also, during each repressurization, the air compression device must provide the excess air that is used for pressurization However, this additional air flow implies oversizing, and therefore an additional cost, of the compression device. It is indeed required to provide an additional compressed air flow of the order of 5% of the nominal air flow treated by the adsorption bottle (depending on the optimization of the cycle), during a period of pressurization of the 15 minutes for a standard size bottle.
Par suite, en dehors de la durée de pressurisation, l'appareil de compression fonctionne au débit d'air nominal, c'est-à-dire celui qui correspond à la capacité de séparation de l'appareil de séparation d'air.  Consequently, outside the pressurization time, the compression apparatus operates at the nominal air flow rate, that is to say that which corresponds to the separating capacity of the air separation apparatus.
Ainsi pour un débit maximal de compresseur de 1 00 kNm3/h, le débit normal d'utilisation sera 95 kNm3/h envoyé à la boîte froide où a lieu la distillation et 100 kNm3/h uniquement pour la seule phase de pressurisation en fin de régénération où 5 kNm3/h d'air sont envoyés pour pressuriser une des bouteilles.  Thus for a maximum compressor flow rate of 100 kNm3 / h, the normal flow rate of use will be 95 kNm3 / h sent to the cold box where the distillation takes place and 100 kNm3 / h only for the only pressurization phase at the end of regeneration where 5 kNm3 / h of air is sent to pressurize one of the bottles.
Certains procédés de séparation d'air utilisent un système à air perdu dans lequel la totalité de l'air épuré n'est pas envoyée aux colonnes de distillation. On trouve généralement dans ce cas une turbine de détente qui détendra jusqu'à une pression proche de la pression atmosphérique l'air excédentaire par rapport au besoin d'oxygène.  Some air separation processes use a lost air system in which not all of the purified air is sent to the distillation columns. In this case, an expansion turbine is generally found which will depressurise the excess air relative to the oxygen requirement to a pressure close to atmospheric pressure.
Dans ce type de procédé, il est préférable de ne pas appliquer la méthode conventionnelle de pressurisation des adsorbeurs.  In this type of process, it is preferable not to apply the conventional method of adsorber pressurization.
Le but de l'invention est d'éviter le surdimensionnement des compresseurs en réduisant, voire en supprimant, l'augmentation du débit d'air à comprimer pour fournir le gaz supplémentaire nécessaire à la pressurisation des bouteilles d'adsorbant.  The object of the invention is to avoid over-sizing the compressors by reducing or even eliminating the increase in the air flow to be compressed in order to supply the additional gas necessary for the pressurization of the adsorbent bottles.
A cet effet, l'invention a pour objet un procédé de distillation d'air, notamment destiné à produire de l'oxygène et/ou de l'azote et/ou de l'argon, du type dans lequel l'air à distiller est préalablement comprimé dans un compresseur, épuré au moyen d'au moins deux adsorbeurs qui suivent chacun, en décalage, un cycle où se succèdent une phase d'adsorption, à une haute pression du cycle (Pads), et une phase de régénération à une basse pression Patmos se terminant par une phase de repressurisation de l'adsorbeur, de l'air épuré est refroidi dans une ligne d'échange et ensuite envoyé à une colonne de distillation d'un système de colonnes et des fluides enrichis en oxygène et en azote sont soutirés d'une colonne du système de colonnes, uniquement pendant la phase de repressurisation un débit d'air épuré, constituant entre 3 et 20 % de l'air comprimé dans le compresseur, sert à pressuriser, au moins partiellement, l'adsorbeur terminant sa phase de régénération et le débit d'air comprimé dans le compresseur pendant la phase d'adsorption est sensiblement égal au débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur, caractérisé en ce qu'une partie de l'air épuré est envoyée à une turbine où elle est détendue et ensuite envoyée à l'atmosphère pour assurer au moins partiellement le maintien en froid pendant le cycle entier et en ce que le débit d'air détendu envoyé à l'air pendant la pressurisation d'un adsorbeur est inférieur à celui envoyé à l'air pendant la phase d'adsorption du même adsorbeur, voire pendant le reste du cycle en dehors de phase de pressurisation. For this purpose, the subject of the invention is a process for the distillation of air, in particular intended to produce oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is compressed beforehand in a compressor, purified by means of at least two adsorbers which each follow, in offset, a cycle in which an adsorption phase is followed at a high pressure of the cycle (Pads), and a regeneration phase at a low pressure P a tmos ending with a repressurization phase of the adsorber, purified air is cooled in an exchange line and then sent to a distillation column d a system of columns and fluids enriched in oxygen and nitrogen are withdrawn from a column of the column system, only during the repressurization phase a flow of purified air, constituting between 3 and 20% of the compressed air in the compressor serves to pressurize, at least partially, the adsorber ending its regeneration phase and the compressed air flow in the compressor during the adsorption phase is substantially equal to the compressed air flow rate in the compressor during the pressurization of the adsorber, characterized in that a portion of the purified air is sent to a turbine where it is expanded and then sent to the atmosphere to at least partially maintain the cold during the entire cycle and in that the expanded air flow rate sent to the air during the pressurization of an adsorber is lower than that sent to air during the adsorption phase of the same adsorber, or even during the rest of the cycle. out of pressurization phase.
Le terme « sensiblement égal » couvre le cas dans lequel le débit d'air comprimé dans le compresseur pendant la phase d'adsorption diffère d'au plus 5%, de préférence d'au plus 3%, du débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur. Les deux débits sont de préférence strictement égaux.  The term "substantially equal" covers the case in which the flow rate of compressed air in the compressor during the adsorption phase differs by not more than 5%, preferably not more than 3%, from the compressed air flow rate. the compressor during the pressurization of the adsorber. The two flows are preferably strictly equal.
Suivant d'autres caractéristiques de ce procédé, prises isolément ou selon les combinaisons techniquement possibles :  According to other characteristics of this process, taken separately or according to the technically possible combinations:
le débit d'air comprimé dans le compresseur pendant la phase d'adsorption d'un adsorbeur est égal au débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur ;  the flow rate of compressed air in the compressor during the adsorption phase of an adsorber is equal to the compressed air flow rate in the compressor during the pressurization of the adsorber;
la réduction du débit d'air envoyé à la turbine et ensuite à l'air pendant la repressurisation est égale au débit d'air utilisée pendant la repressurisation pour pressuriser l'adsorbeur terminant sa phase de repressurisation ;  the reduction of the air flow sent to the turbine and then to the air during repressurization is equal to the air flow rate used during the repressurization to pressurize the adsorber ending its repressurization phase;
- la quantité d'air envoyée à la distillation est constante pendant tout le cycle ;  the quantity of air sent for distillation is constant throughout the cycle;
la réduction du débit d'air envoyé à la turbine et ensuite à l'air pendant la pressurisation d'un adsorbeur est inférieure au débit d'air utilisée pendant la repressurisation pour pressuriser l'adsorbeur terminant sa phase de repressurisation ; the reduction of the air flow sent to the turbine and then to the air during the pressurization of an adsorber is less than the air flow used during the repressurization to pressurize the adsorber ending its repressurization phase;
pendant la phase de repressurisation le débit d'air comprimé dans le compresseur augmente par rapport au débit envoyé pendant le reste du cycle et la quantité d'air envoyée à la distillation reste égale à celle envoyée pendant le reste du cycle ;  during the repressurization phase the compressed air flow rate in the compressor increases with respect to the flow rate sent during the remainder of the cycle and the quantity of air sent for distillation remains equal to that sent during the remainder of the cycle;
un débit liquide est produit comme produit final ;  a liquid flow is produced as the final product;
lequel le procédé d'épuration est une adsorption de type PSA, TSA ou which the purification process is an adsorption PSA, TSA or
TPSA ; TPSA;
de l'air est détendu dans une turbine et envoyé à une colonne du système de colonnes :  air is expanded in a turbine and sent to a column of the column system:
le système de colonnes est constitué par une double colonne comprenant une colonne moyenne pression et une colonne basse pression  the column system consists of a double column comprising a medium pressure column and a low pressure column
on soutire un débit riche en oxygène de la colonne basse pression et on le vaporise dans la ligne d'échange.  a high oxygen flow rate is withdrawn from the low pressure column and vaporized in the exchange line.
Le terme « PSA » utilisé dans ce document signifie « Adsorption à pression modulée » ou Pressure swing adsorption » en anglais. Le terme « TSA » utilisé d a n s ce docu m e n t s ig n ifi e « Adsorption à température modulée » ou « Température swing adsorption » en anglais. Le terme « TPSA » utilisé dans ce document signifie « Adsorption à pression et température modulées » ou « Température and pressure swing adsorption » en anglais. »  The term "PSA" used in this document means "pressure swing adsorption". The term "TSA" used in this document refers to "Adsorption at modulated temperature" or "Temperature swing adsorption" in English. The term "TPSA" as used herein means "Adsorption at Modulated Pressure and Temperature" or "Temperature and Pressure Swing Adsorption". "
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant au dessin annexé, sur lequel :  The invention will be better understood on reading the description which follows, given solely by way of example and with reference to the appended drawing, in which:
la figure 1 est une vue schématique d'une installation pour opérer le procédé selon l'invention.  Figure 1 is a schematic view of an installation for operating the method according to the invention.
Sur la figure 1 est représentée une installation 1 de distillation d'air selon l'invention. Cette installation est par exemple destinée à produire de l'oxygène gazeux OG, ainsi que de l'oxygène liquide OL.  In Figure 1 is shown an installation 1 of air distillation according to the invention. This installation is for example intended to produce oxygen gas OG, as well as liquid oxygen OL.
L'installation 1 comprend essentiellement :  The installation 1 essentially comprises:
un compresseur d'air 4 ;  an air compressor 4;
- un appareil 6 d'épuration d'air par adsorption, lequel appareil comporte, d'une part, deux adsorbeurs 7A, 7B sous forme de deux bouteilles contenant chacune des matériaux adsorbants, par exemple du tamis moléculaire avec éventuellement de l'alumine, capable d'adsorber l'eau et le dioxyde de carbone présents dans l'air, et, d'autre part, des conduites et des vannes de raccordement dont la disposition apparaîtra clairement lors de la description du procédé mis en œuvre dans l'installation 1 et qui permettent de soumettre successivement chaque adsorbeur 7A, 7B au flux d'air à distiller et à un gaz de régénération de l'adsorbant ; an apparatus 6 for adsorption air purification, which apparatus comprises, on the one hand, two adsorbers 7A, 7B in the form of two bottles each containing adsorbent materials, for example molecular sieve with optionally alumina, capable of adsorbing water and carbon dioxide present in the air and, on the other hand, pipes and connecting valves whose arrangement will become clear when describing the process implemented in the installation 1 and which make it possible successively to subject each adsorber 7A, 7B to the flow of air to be distilled and to a regeneration gas of the adsorbent;
une turbine d'air perdu 27 ;  a lost air turbine 27;
- un compresseur froid 3 ;  a cold compressor 3;
une turbine 5 dite Claude envoyant de l'air à la colonne moyenne pression ;  a so-called Claude turbine 13 sending air to the medium pressure column;
une ligne principale d'échange thermique 8 ;  a main heat exchange line 8;
un appareil de distillation d'air sous forme d'une double colonne 10 comportant une colonne moyenne pression 12, une colonne basse pression 14 et un vaporiseur-condenseur 16 couplant ces deux colonnes, ainsi qu'une colonne de séparation d'argon 26 ; et  an air distillation apparatus in the form of a double column 10 comprising a medium pressure column 12, a low pressure column 14 and a vaporizer-condenser 16 coupling these two columns, as well as an argon separation column 26; and
un réservoir 18 de stockage d'oxygène liquide.  a reservoir 18 for storing liquid oxygen.
Le fonctionnement de l'installation 1 de la figure 1 est le suivant.  The operation of the installation 1 of Figure 1 is as follows.
L'air à distiller, préalablement comprimé par le compresseur 4, est épuré par l'un des adsorbeurs 7A, 7B de l'appareil 6, puis refroidi par la ligne principale d'échange thermique 8 jusqu' à une température intermédiaire. L'adsorption peut être du type TSA, PSA ou TPSA. Une partie 25 de l'air est envoyée à une turbine d'air perdu 27 et l'air détendu est envoyé à l'atmosphère après réchauffage dans l'échangeur 8. Le reste de l'air poursuit son refroidissement. Une autre partie 29 de l'air est envoyée au compresseur froid 3, renvoyée à la ligne d'échange 8 . Une partie du débit surpressé est détendue dans une turbine 5 jusqu'à la moyenne pression pour former le débit détendu 7. Le débit détendu 7 au voisinage de son point de rosée est introduit en cuve de la colonne moyenne pression 12. Le reste de l'air surpressé 9 poursuit son refroidissement dans la ligne d'échange 8, est détendu dans une vanne V puis est envoyé à un niveau intermédiaire de la colonne moyenne pression 12.  The air to be distilled, previously compressed by the compressor 4, is purified by one of the adsorbers 7A, 7B of the apparatus 6, and then cooled by the main heat exchange line 8 to an intermediate temperature. The adsorption may be of the TSA, PSA or TPSA type. Part of the air is sent to a lost air turbine 27 and the expanded air is sent to the atmosphere after reheating in the exchanger 8. The rest of the air continues cooling. Another part 29 of the air is sent to the cold compressor 3, returned to the exchange line 8. A part of the supercharged flow is expanded in a turbine 5 to the medium pressure to form the expanded flow rate 7. The expanded flow rate 7 in the vicinity of its dew point is introduced into the vat of the medium pressure column 12. The rest of the compressed air 9 continues cooling in the exchange line 8, is expanded in a valve V and is sent to an intermediate level of the medium pressure column 12.
Le vaporiseur-condenseur 16 vaporise de l'oxygène liquide, par exemple en ayant une pureté de 99,5%, de la cuve de la colonne basse pression 14, par condensation d'azote gazeux de tête de la colonne moyenne pression 12.  The vaporizer-condenser 16 vaporizes liquid oxygen, for example having a purity of 99.5%, of the tank of the low pressure column 14, by condensing nitrogen gas at the top of the medium pressure column 12.
Du « liquide riche » LR (air enrichi en oxygène), prélevé en cuve de la colonne moyenne pression 12, est injecté, après détente, à un niveau intermédiaire de la colonne basse pression 14, tandis que de l'azote liquide NL, sensiblement pur, est prélevé en tête de la colonne moyenne pression 12 pour alimenter le réservoir 22 et la tête de la colonne basse pression 14. De l'azote liquide et/ou de l'oxygène liquide est produit comme produit final, envoyé au client sous forme liquide. "Rich liquid" LR (air enriched with oxygen), taken from the bottom of the medium pressure column 12, is injected, after expansion, to an intermediate level of the low pressure column 14, while liquid nitrogen NL, substantially pure, is taken at the top of the medium pressure column 12 for supplying the tank 22 and the head of the low pressure column 14. Liquid nitrogen and / or liquid oxygen is produced as the final product, sent to the customer in liquid form.
De l'azote impur ou « résiduaire » NR, soutiré du sommet de la colonne basse pression 14, est renvoyé à la ligne principale d'échange thermique 8, où il provoque le refroidissement de l'air à distiller.  Impure nitrogen or "waste" NR, withdrawn from the top of the low pressure column 14, is returned to the main heat exchange line 8, where it causes cooling of the air to be distilled.
De l'oxygène liquide OL est soutiré de la cuve de la colonne basse pression 14 et alimente le réservoir de stockage 18. Après pressurisation dans la pompe P, il se vaporise dans la ligne principale d'échange thermique 8 et distribué par une conduite de production 32 pour former de l'oxygène gazeux sous pression.  OL liquid oxygen is withdrawn from the tank of the low pressure column 14 and feeds the storage tank 18. After pressurization in the pump P, it vaporizes in the main heat exchange line 8 and distributed by a pipe of production 32 to form gaseous oxygen under pressure.
Une colonne de production d'argon 26 est alimentée à partir de la colonne basse pression 14.  An argon production column 26 is fed from the low pressure column 14.
Le fonctionnement de l'installation qui vient d'être décrit peut être mis en œuvre de façon continue, à l'exception du fonctionnement de l'appareil d'épuration 6, qui suit dans le temps un cycle de pressions de la figure 2. Cependant il est possible que tous les fluides ne soient pas produits en permanence, selon les besoins du client, le coût de l'électricité etc.  The operation of the installation which has just been described can be implemented continuously, with the exception of the operation of the purification apparatus 6, which follows in time a pressure cycle of FIG. 2. However it is possible that not all fluids are produced continuously, depending on the customer's needs, the cost of electricity etc.
Le cycle de la figure 2, dont la période est, à titre d'exemple, égale à 360 minutes environ pour une pression d'adsorption sensiblement égale à 20 bars, comprend 4 étapes successives I à IV.  The cycle of FIG. 2, whose period is, for example, equal to approximately 360 minutes for an adsorption pressure substantially equal to 20 bars, comprises 4 successive stages I to IV.
Ces quatre étapes vont maintenant être décrites successivement pour l'adsorbeur 7A, étant entendu que l'adsorbeur 7B suit ces mêmes étapes avec un décalage temporel valant sensiblement ^ , au moyen de vannes de raccordement ouvertes ou fermées désignées par les mêmes références à venir que celles de l'adsorbeur 7A, la lettre A étant à remplacer par la lettre B et l'état de chaque vanne (ouverte/fermée) étant à inverser (fermée/ouverte).  These four steps will now be described successively for the adsorber 7A, it being understood that the adsorber 7B follows these same steps with a time offset substantially equal to 1, by means of open or closed connection valves designated by the same references to come as those of the adsorber 7A, the letter A being replaced by the letter B and the state of each valve (open / closed) to be reversed (closed / open).
Lors de l'étape I, c'est à dire de t = 0 à t =^ , l'adsorbeur 7A est en phase d'adsorption sous une pression de fonctionnement haute notée Pads, tandis que l'adsorbeur 7B est en phase de régénération. L'air comprimé par le compresseur 4 alimente l'adsorbeur 7A, via une vanne 40A ouverte. La sortie de l'adsorbeur 7A est reliée à la ligne d'échange 8, via une vanne 42A ouverte. Lors des étapes II, III et IV, l'adsorbeur 7A est en phase de régénération, tandis que l'adsorbeur 7B est en phase d'adsorption. Plus précisément, lors de l'étape II, une vanne 44A de mise à l'air de l'adsorbeur 7A est ouverte de façon à ce que la pression à l'intérieur de la bouteille de l'adsorbeur 7A soit ramenée à une pression sensiblement égale à la pression atmosphérique, notée Patmo sur la figure 2. In step I, that is to say from t = 0 to t = 1, the adsorber 7A is in the adsorption phase under a high operating pressure P a ds, while the adsorber 7B is in regeneration phase. The compressed air by the compressor 4 supplies the adsorber 7A via an open valve 40A. The outlet of the adsorber 7A is connected to the exchange line 8 via an open valve 42A. During stages II, III and IV, the adsorber 7A is in the regeneration phase, while the adsorber 7B is in the adsorption phase. More specifically, during stage II, a valve 44A for venting the adsorber 7A is opened so that the pressure inside the bottle of the adsorber 7A is reduced to a pressure substantially equal to atmospheric pressure, noted P a tmo in Figure 2.
Lors de l'étape III, la vanne 44A reste ouverte et de l'azote résiduaire NR soutiré en tête de la colonne basse pression 14 puis réchauffé dans l'échangeur 8 alimente, via une vanne 46A ouverte, l'adsorbeur 7A pour y circuler à contre- courant. Il s'agit de la phase effective de la régénération pendant laquelle les impuretés sont désorbées et les lits régénérés. Lors de l'étape IV, les vannes 44A et 46A sont fermées, afin de permettre la pressurisation de l'adsorbeur. Dans un premier temps, c'est-à-dire lors d'une première sous-étape IV, la pressurisation de l'adsorbeur est assurée par un flux d'air épuré, via la vanne 42A ouverte, ce flux d'air épuré venant des bouteilles 7A, 7B. La sous-étape IV se poursuit par la sous-étape IV" jusqu'à ce que la pression à l'intérieur de l'adsorbeur 7A soit sensiblement égale à la pression haute Pads., par ouverture de la vanne 50. In step III, the valve 44A remains open and residual nitrogen NR withdrawn at the top of the low pressure column 14 and then heated in the exchanger 8 feeds via an open valve 46A, the adsorber 7A to circulate there against a current. This is the actual phase of regeneration during which impurities are desorbed and the beds regenerated. In step IV, the valves 44A and 46A are closed, to allow the pressurization of the adsorber. At first, that is to say during a first sub-step IV, the pressurization of the adsorber is provided by a stream of purified air, via the valve 42A open, this flow of clean air from the bottles 7A, 7B. Sub-step IV continues with sub-step IV "until the pressure inside the adsorber 7A is substantially equal to the high pressure P a ds., By opening the valve 50.
Par le procédé selon l'invention, la pressurisation de chaque adsorbeur ne nécessite plus, pendant l'étape IV, d'augmenter le débit du compresseur 4. De cette façon, le compresseur 4 est dimensionné de façon optimale, c'est-à- dire de sorte que son débit nominal soit sensiblement constant. Les coûts d'investissement et de fonctionnement de cet appareil de compression s'en trouvent diminués, par rapport à ceux des installations relevant de l'art antérieur.  By the method according to the invention, the pressurization of each adsorber no longer requires, during step IV, to increase the flow rate of the compressor 4. In this way, the compressor 4 is optimally sized, that is, - say so that its nominal flow is substantially constant. The investment and operating costs of this compression apparatus are reduced, compared with those of prior art installations.
Lors de la phase d'adsorption, le compresseur 4 comprime 100 kNm3/h d'air et tout l'air épuré est envoyé à la ligne d'échange 8. 30 kNm3/h d'air sont envoyés à la turbine d'air perdu 5. 70 kNm3/h d'air sont envoyés au système de colonnes de distillation.  During the adsorption phase, the compressor 4 compresses 100 kNm3 / h of air and all the purified air is sent to the exchange line 8. 30 kNm3 / h of air are sent to the air turbine lost 5. 70 kNm3 / h of air are sent to the system of distillation columns.
Lors de la phase de pressurisation en fin de phase de régénération, le compresseur 4 comprime 100 kNm3/h d'air, 95 kNm3/h sont envoyés à la ligne d ' éch a ng e 8 et 5 kNm3/h sont envoyés pour pressuriser une bouteille d'adsorption. 25 kNm3/h d'air (donc 5 kNm3/h en moins) sont envoyés à la turbine d'air perdu 5 et 70 kNm3/h d'air sont toujours envoyés au système de colonnes de distillation. Il sera compris que cette invention s'applique à tout procédé impliquant une turbine d'air perdu, qu'il y ait compression dans un compresseur froid ou pas, double colonne ou pas, production d'argon ou pas, pressurisation et vaporisation d'oxygène liquide ou pas. During the pressurization phase at the end of the regeneration phase, the compressor 4 compresses 100 kNm3 / h of air, 95 kNm3 / h are sent to the discharge line 8 and 5 kNm3 / h are sent to pressurize an adsorption bottle. 25 kNm3 / h of air (thus 5 kNm3 / h less) are sent to the lost air turbine 5 and 70 kNm3 / h of air are always sent to the distillation column system. It will be understood that this invention applies to any process involving a lost air turbine, whether there is compression in a cold compressor or not, double column or not, argon production or not, pressurization and vaporization of liquid oxygen or not.
II sera compris également que si la réduction du débit d'air perdu est inférieur au débit envoyé à la pressurisation, soit le débit comprimé devra augmenter pendant la pressurisation et le débit d'air distillé reste inchangé soit moins d'air sera envoyé à la distillation et le débit comprimé restera inchangé.  It will also be understood that if the reduction in the flow of air lost is less than the flow rate sent to the pressurization, the compressed flow will have to increase during the pressurization and the distilled air flow remains unchanged or less air will be sent to the pressurization. distillation and the compressed flow will remain unchanged.

Claims

REVENDICATIONS
1 . Procédé de distillation d'air, notamment destiné à produire de l'oxygène et/ou de l'azote et/ou de l'argon, du type dans lequel l'air à distiller est préalablement comprimé dans un compresseur (4), épuré au moyen d'au moins deux adsorbeurs (7A, 7B) qu i suivent chacun, en décalage, un cycle où se succèdent une phase d'adsorption, à une haute pression du cycle (Pads), et une phase de régénération à une basse pression Patmos se terminant par une phase de repressurisation de l'adsorbeur, de l'air épuré est refroidi dans une ligne d'échange (8) et ensuite envoyé à une colonne de distillation (12) d'un système de colonnes et des fluides enrichis en oxygène et en azote sont soutirés d'une colonne (14) du système de colonnes, uniquement pendant la phase de repressurisation un débit d'air épuré, constituant entre 3 et 20 % de l'air comprimé dans le compresseur, sert à pressuriser, au moins partiellement, l'adsorbeur terminant sa phase de régénération et le débit d'air comprimé dans le compresseur pendant la phase d'adsorption est sensiblement égal au débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur, caractérisé en ce qu'une partie de l'air épuré est envoyée à une turbine (27) où elle est détendue et ensuite envoyée à l'atmosphère pour assurer au moins partiellement le maintien en froid pendant le cycle entier et en ce que le débit d'air détendu envoyé à l'air pendant la pressurisation d'un adsorbeur est inférieur à celui envoyé à l'air pendant la phase d'adsorption du même adsorbeur. 1. Process for the distillation of air, especially for producing oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is previously compressed in a compressor (4), purified by means of at least two adsorbers (7A, 7B) each of which, in offset, follow a cycle in which an adsorption phase is followed, at a high cycle pressure (P ad s), and a regeneration phase at After a low pressure P a tmos ending in a repressurization phase of the adsorber, purified air is cooled in an exchange line (8) and then sent to a distillation column (12) of a distillation system. columns and fluids enriched in oxygen and nitrogen are withdrawn from a column (14) of the column system, only during the repressurization phase a purified air flow, constituting between 3 and 20% of the compressed air in the compressor, serves to pressurize, at least partially, the adsorber ending its regeneration phase and the the flow rate of compressed air in the compressor during the adsorption phase is substantially equal to the compressed air flow rate in the compressor during the pressurization of the adsorber, characterized in that a portion of the purified air is sent to a turbine (27) where it is expanded and then sent to the atmosphere to at least partially maintain the cold during the entire cycle and that the expanded air flow sent to the air during the pressurization of a adsorber is lower than that sent to the air during the adsorption phase of the same adsorber.
2. Procédé selon la revendication 1 dans lequel le débit d'air détendu envoyé à l'air pendant la pressurisation d'un adsorbeur est inférieur à celui envoyé à l'air pendant le reste du cycle en dehors de phase de pressurisation. 2. Method according to claim 1 wherein the expanded air flow rate sent to the air during the pressurization of an adsorber is lower than that sent to air during the rest of the cycle outside the pressurization phase.
3. Procédé selon la revendication 1 , ou 2 dans lequel le débit d'air comprimé dans le compresseur (4) pendant la phase d'adsorption d'un adsorbeur est égal au débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur. 3. Method according to claim 1, wherein the flow rate of compressed air in the compressor (4) during the adsorption phase of an adsorber is equal to the compressed air flow in the compressor during the pressurization of the compressor. adsorber.
4. Procédé selon la revendication 1 ou 2 ou 3 dans lequel la réduction du débit d'air envoyé à la turbine (27) et ensuite à l'air pendant la repressurisation est égale au débit d'air utilisée pendant la repressurisation pour pressuriser l'adsorbeur terminant sa phase de repressurisation. 4. The method of claim 1 or 2 or 3 wherein the reduction of the air flow to the turbine (27) and then to the air during repressurization is equal to the air flow used during the repressurization to pressurize the air. adsorber terminating its repressurization phase.
5. Procédé selon la revendication 4 dans lequel la quantité d'air envoyée à la distillation est constante pendant tout le cycle. 5. The method of claim 4 wherein the amount of air sent to the distillation is constant throughout the cycle.
6. Procédé selon l'une des revendications 1 ou 2 ou 3 dans lequel la réduction du débit d'air envoyé à la turbine (27) et ensuite à l'air pendant la pressurisation d'un adsorbeur est inférieure au débit d'air utilisée pendant la repressurisation pour pressuriser l'adsorbeur terminant sa phase de repressurisation. 6. Method according to one of claims 1 or 2 or 3 wherein the reduction of the air flow to the turbine (27) and then to the air during the pressurization of an adsorber is less than the air flow rate. used during repressurization to pressurize the adsorber completing its repressurization phase.
7. Procédé selon la revendication 6 dans lequel pendant la phase de repressurisation le débit d'air comprimé dans le compresseur (4) augmente par rapport au débit envoyé pendant le reste du cycle et la quantité d'air envoyée à la distillation reste égale à celle envoyée pendant le reste du cycle. 7. The method of claim 6 wherein during the repressurization phase the compressed air flow in the compressor (4) increases relative to the flow rate sent during the rest of the cycle and the amount of air sent to the distillation remains equal to the one sent during the rest of the cycle.
8. Procédé selon l'une des revendications précédentes dans lequel un débit liquide (22) est produit comme produit final. 8. Method according to one of the preceding claims wherein a liquid flow (22) is produced as the final product.
9. Procédé selon l'une des revendications précédentes dans lequel le procédé d'épuration est une adsorption de type PSA, TSA ou TPSA. 9. Method according to one of the preceding claims wherein the purification process is adsorption type PSA, TSA or TPSA.
10. Procédé selon l'une des revendications précédentes dans lequel de l'air est détendu dans une turbine (5) et envoyé à une colonne du système de colonnes. 10. Method according to one of the preceding claims wherein air is expanded in a turbine (5) and sent to a column of the column system.
1 1 . Procédé selon l'une des revendications précédentes dans lequel le débit d'air détendu envoyé à l'air pendant la pressurisation d'un adsorbeur est inférieur à celui envoyé à l'air pendant le reste du cycle en dehors de toute phase de pressurisation. 1 1. Method according to one of the preceding claims wherein the expanded air flow rate sent to the air during the pressurization of an adsorber is less than that sent to the air during the rest of the cycle outside of any pressurization phase.
12. Procédé selon l'une des revendications précédentes dans lequel le système de colonnes est constitué par une double colonne (10) comprenant une colonne moyenne pression (12) et une colonne basse pression (14). 12. Method according to one of the preceding claims wherein the column system is constituted by a double column (10) comprising a medium pressure column (12) and a low pressure column (14).
13. Procédé selon la revendication 12 dans lequel on soutire un débit riche en oxygène de la colonne basse pression (14) et on le vaporise dans la ligne d'échange (8). 13. Process according to claim 12, in which a flow rich in oxygen is withdrawn from the low pressure column (14) and vaporized in the exchange line (8).
EP12714821.1A 2011-03-31 2012-03-21 Method for separating air by means of cryogenic distillation Not-in-force EP2712419B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1152733A FR2973486B1 (en) 2011-03-31 2011-03-31 AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION
PCT/FR2012/050587 WO2012131231A2 (en) 2011-03-31 2012-03-21 Method for separating air by means of cryogenic distillation

Publications (2)

Publication Number Publication Date
EP2712419A2 true EP2712419A2 (en) 2014-04-02
EP2712419B1 EP2712419B1 (en) 2017-08-09

Family

ID=45974440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12714821.1A Not-in-force EP2712419B1 (en) 2011-03-31 2012-03-21 Method for separating air by means of cryogenic distillation

Country Status (5)

Country Link
US (1) US20140013798A1 (en)
EP (1) EP2712419B1 (en)
CN (1) CN104246401B (en)
FR (1) FR2973486B1 (en)
WO (1) WO2012131231A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016025849A1 (en) * 2014-08-15 2016-02-18 Biomerieux, Inc. Methods, systems, and computer program products for detecting pipette tip integrity
US10401083B2 (en) * 2015-03-13 2019-09-03 Linde Aktiengesellschaft Plant for producing oxygen by cryogenic air separation
US10895417B2 (en) 2016-03-25 2021-01-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air with improved front end purification and air compression
FR3074274B1 (en) * 2017-11-29 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US11137205B2 (en) * 2018-12-21 2021-10-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for eliminating heat bumps following regeneration of adsorbers in an air separation unit
US11029086B2 (en) * 2018-12-21 2021-06-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit
CN110787587A (en) 2019-11-08 2020-02-14 乔治洛德方法研究和开发液化空气有限公司 Air separation purification pressure equalizing system and control method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124468A (en) * 1976-04-14 1977-10-19 Kobe Steel Ltd Raw air flowing volume regulation of air separator
US5419136A (en) * 1993-09-17 1995-05-30 The Boc Group, Inc. Distillation column utilizing structured packing having varying crimp angle
US6073463A (en) * 1998-10-09 2000-06-13 Air Products And Chemicals, Inc. Operation of a cryogenic air separation unit which intermittently uses air feed as the repressurization gas for a two bed PSA system
FR2787560B1 (en) * 1998-12-22 2001-02-09 Air Liquide PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES
FR2818920B1 (en) * 2000-12-29 2003-09-26 Air Liquide METHOD FOR TREATING A GAS BY ABSORPTION AND CORRESPONDING INSTALLATION
WO2007033838A1 (en) * 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
FR2895069B1 (en) * 2005-12-20 2014-01-31 Air Liquide APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2896860A1 (en) * 2006-01-31 2007-08-03 Air Liquide Air separation method for use in purification installation, involves separating part of purified air in medium pressure column into oxygen and nitrogen enriched liquids, and sending liquid from column to low pressure column
FR2903483B1 (en) * 2006-07-04 2014-07-04 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2910604B1 (en) * 2006-12-22 2012-10-26 Air Liquide METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE BY CRYOGENIC DISTILLATION
FR2913759B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
WO2009021351A1 (en) * 2007-08-10 2009-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
WO2009021350A1 (en) * 2007-08-10 2009-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012131231A2 *

Also Published As

Publication number Publication date
US20140013798A1 (en) 2014-01-16
WO2012131231A3 (en) 2015-08-20
FR2973486A1 (en) 2012-10-05
FR2973486B1 (en) 2013-05-03
CN104246401A (en) 2014-12-24
EP2712419B1 (en) 2017-08-09
CN104246401B (en) 2016-02-03
WO2012131231A2 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
EP2712419B1 (en) Method for separating air by means of cryogenic distillation
EP0456575B1 (en) Process and apparatus for purifying, by adsorption, air to be distilled
EP0420725B1 (en) Refrigeration production process, the refrigeration cycle used and application in the distillation of air
EP0628778B2 (en) Process and high pressure gas supply unit for an air constituent consuming installation
AU711711B2 (en) Integrated air separation process
EP0848220B1 (en) Method and plant for supplying an air gas at variable quantities
EP0229803B1 (en) Process and plant for the distillation of air
AU2009200347A1 (en) Process for obtaining helium
FR2849172A1 (en) Improved air distillation process, for oxygen production, uses vaporized gas from storage for at least partial pressurization of adsorber ending regeneration phase
EP0914584B1 (en) Method and plant for producing an air gas with a variable flow rate
EP1090670B1 (en) Process for treating a gas using temperature swing adsorption
EP2227309B1 (en) Method for drying a gas flow rich in carbon dioxide
EP0611218B1 (en) Process and installation for producing oxygen under pressure
FR2890575A1 (en) Installation for production of gas enriched in carbon dioxide and gas reduced in carbon dioxide comprises pressure swing adsorption unit, turbine, compressor and an outlet unit to send gas reduced in carbon dioxide to turbine
WO2020128205A1 (en) Apparatus and method for separating air by cryogenic distillation
FR2739304A1 (en) Compressed air purification, esp. prior to distillation
FR2960444A1 (en) Method for purifying air sent to distillation apparatus to produce oxygen and/or nitrogen and/or argon, involves utilizing non-purified air flow from compressor to pressurize absorbers terminating regeneration phase
FR2823256A1 (en) Feeding impure nitrogen to combustion chamber of gas turbine combined with air fractionation plant, includes stage of partial repressurization and nitrogen compressor
EP0359629A1 (en) Process and apparatus for the simultaneous production of hydrogen and carbon monoxide
WO2006079736A1 (en) Method and system for producing carbon monoxide by cryogenic distillation
FR2790823A1 (en) METHOD AND APPARATUS FOR CRYOGENIC AIR PURIFICATION AND SEPARATION WITHOUT PRE-COOLING
WO1999054023A1 (en) Method for purifying gas by adsorption with controlled pressure and temperature levels
FR2896860A1 (en) Air separation method for use in purification installation, involves separating part of purified air in medium pressure column into oxygen and nitrogen enriched liquids, and sending liquid from column to low pressure column
CA3159990A1 (en) Gas purification method and device
FR2776940A1 (en) Pressure swing adsorption for purifying gas containing impurities

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20150820

17P Request for examination filed

Effective date: 20160222

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 917298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012035606

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170809

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 917298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180322

Year of fee payment: 7

Ref country code: GB

Payment date: 20180321

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012035606

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180328

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012035606

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809