EP2711657B1 - Kondensator - Google Patents
Kondensator Download PDFInfo
- Publication number
- EP2711657B1 EP2711657B1 EP13182584.6A EP13182584A EP2711657B1 EP 2711657 B1 EP2711657 B1 EP 2711657B1 EP 13182584 A EP13182584 A EP 13182584A EP 2711657 B1 EP2711657 B1 EP 2711657B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- region
- condenser
- swelling
- refrigerant
- flow channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 claims description 65
- 239000011324 bead Substances 0.000 claims description 21
- 239000002826 coolant Substances 0.000 claims description 16
- 239000012530 fluid Substances 0.000 claims description 14
- 238000013461 design Methods 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 3
- 206010042674 Swelling Diseases 0.000 claims 15
- 230000008961 swelling Effects 0.000 claims 15
- 230000002093 peripheral effect Effects 0.000 claims 5
- 238000005520 cutting process Methods 0.000 description 76
- 239000003990 capacitor Substances 0.000 description 68
- 230000008719 thickening Effects 0.000 description 24
- 238000009833 condensation Methods 0.000 description 22
- 230000005494 condensation Effects 0.000 description 22
- 239000002274 desiccant Substances 0.000 description 12
- 238000003780 insertion Methods 0.000 description 12
- 230000037431 insertion Effects 0.000 description 12
- 238000007789 sealing Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 7
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 4
- 241000209035 Ilex Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000003746 feather Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
- F28D9/005—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/043—Condensers made by assembling plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/007—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0084—Condensers
Definitions
- the invention relates to a capacitor according to the preamble of claim 1.
- a capacitor is made WO 2010/108907 A1 known.
- condensers are used to cool the refrigerant to the condensation temperature and thereby condense the refrigerant.
- the refrigerant is further cooled in a region of the condenser, which is arranged after the condensation region, to a temperature which is below the condensation temperature of the refrigerant.
- Condensers according to the prior art in part, have a collector in which a volume of refrigerant is kept in order to compensate for volume fluctuations in the refrigerant circuit and to achieve a stable supercooling of the refrigerant.
- the collector In addition, partially provided in the collector means for drying and / or means for filtering the refrigerant.
- the collector is partially arranged in capacitors of the prior art in the immediate vicinity of the capacitor. It is flowed through by the refrigerant, which has already flowed through part of the condenser. After flowing through the collector, the refrigerant is returned to the condenser and subcooled in a subcooling below the condensation temperature.
- Air-cooled condensers in rib-tube design compete in this case, in modern vehicles with high demands on the intercooler, with the intercoolers to a position in the, seen in the direction of air flow, foremost level of the cooling module.
- liquid-cooled capacitors An alternative to air-cooled capacitors are therefore the liquid-cooled capacitors, since they can also be arranged in an area in which they are not directly flowed around by an air flow. Only the coolant flowing through the liquid-cooled condenser must then undergo cooling by, for example, an air flow.
- a stacked disc capacitor in which a first stack of disk elements represents a first cooling and condensing region and a second stack of disk elements represents a subcooling region.
- the first stack is separated from the second stack by a housing containing a collector and dryer.
- a disadvantage of the devices of the prior art is that the integration of collectors and subcoolers in capacitors in stacked disc design has been solved quite expensive.
- the capacitors from the prior art are characterized by an increased production cost. This results in the use of the capacitors additional costs that make their use unattractive.
- the object of the present invention to provide a condenser capable of condensing a refrigerant and further cooling it, the condenser being characterized by a simple structure and inexpensive to manufacture.
- the capacitor should be able to be easily connected to a collector.
- the object of the present invention is achieved by a capacitor in stacking disk construction with the features of claim 1.
- One embodiment of the invention relates to a stacked disc condenser having a first flow channel for a refrigerant and a second flow channel for a coolant, wherein a plurality of disc elements is provided, which form stacked adjacent channels between the disc elements, wherein a first part of the channels the first flow channel is assigned and a second part of the channels to the second flow channel is assigned, wherein the flow channel of the refrigerant has a first region for desuperheating and condensation of the vapor refrigerant and a second region for subcooling the condensed refrigerant, wherein the first region is separated from the second region by a cutting disc, with a collector for storing and or filtering and / or drying a refrigerant, wherein a refrigerant transfer from the first region leads into the second region through the collector, wherein the collector in fluid communication with the first region via a first flow path, which is in fluid communication with the fluid inlet of the collector is, wherein a connecting element as the fluid outlet of the collector is
- the construction of a capacitor in stacked disk design is particularly advantageous because the capacitor is essentially constructed from a plurality of identical disc elements. Only the condenser to the outside limiting disc elements and disc elements with special functions require a separate version. Special functions include, for example, the deflection of flow channels within the condenser or the blocking of flow channels in the condenser.
- a collector is provided at or in the vicinity of the condenser, which stores a defined volume of the refrigerant and can thus compensate for volume fluctuations in the refrigerant circuit.
- the collector may include means for drying and / or for filtering the refrigerant.
- the collector is advantageously integrated at a location of the refrigerant circuit which is located between the condensation region and the subcooling region of the condenser.
- both the inlet, as well as the drain of the collector takes place through one of the existing openings in the disc elements.
- Particularly advantageous here is the arrangement of the inlet and the drain of the collector at least partially into each other.
- the feed to the collector is realized via a flow path which is formed along mutually adjacent openings in the disk elements, and the outlet from the collector is realized by a line arranged in the same flow path.
- the first flow path is formed along first openings, in adjacent disc elements, wherein the disc elements are part of the first region of the first flow channel.
- the first flow path is formed by an area which results along the successive openings, of stacked disk elements.
- the openings in the disk elements are preferably concentric with each other in a line.
- the first flow path forms a partial region of the first region, the first flow channel.
- a further advantageous exemplary embodiment is characterized in that the disk elements, which are part of the second region of the first flow channel, have first openings along which a second flow path is formed
- the second flow path forms a partial region of the second region of the first flow channel.
- the second flow path is in the direct extension of the first flow path and is also formed by an area which results along successive openings, stacked disk elements.
- the openings which form the second flow path are advantageously concentric with the openings which form the first flow path. This is facilitated by the use of uniform disk elements.
- the first flow path from the second, through a cutting disc Separated is the first flow path from the second, through a cutting disc. If an opening is provided in the cutting disc, it may be closed by a plug, for example.
- the cutting disk has a second opening, wherein the connecting element penetrates the cutting disk from the first region to the second region through the second opening.
- the cutting disc In order to operate only as little as possible in the production of the disc elements, it is advantageous if the cutting disc also has an opening. In order to still be able to realize a functioning separation of the first and the second region of the first flow channel additional precautions must be taken. For this purpose, it may be advantageous to close the second opening of the cutting disc, for example by a plug, or to provide a connection element, which can be passed through the second opening of the cutting disc or the plug. The inflow or outflow of the refrigerant into the second region of the first flow channel is then realized via this connection element.
- a stopper is arranged, which has a third opening, which is smaller compared to the second opening of the cutting disc and the connecting element through the third opening of the plug is guided.
- the opening in the cutting disk sometimes has the same diameter.
- the opening in the cutting disc advantageously be smaller than the openings of the disk elements above and below it.
- a plug can be inserted into the opening, which has a smaller opening in comparison to the opening of the cutting disc.
- the connection element which connects the output of the collector to the second region of the first flow channel can be inserted.
- connection element which connects the collector to the second region of the first flow channel
- the cutting disc itself may have an opening with a smaller diameter.
- the connecting element can then be inserted directly into the opening of the cutting disc.
- the production of such a cutting disc is more complex.
- the cutting disc is at least substantially fluid-tightly connected to the connecting element and / or the plug.
- a fluid-tight connection between the cutting disc and the connecting element or the plug is particularly important, since in this way the first region of the first flow channel is separated from the second region of the first flow channel.
- a fluid-tight connection can be achieved for example by the pressing of the plug or the connecting element in the opening of the cutting disc.
- the plug and / or the connecting element have an excess compared to the opening in the cutting disc.
- the fluid-tight connection is particularly advantageous, but not a decisive criterion for the functionality of the capacitor.
- a leakage current resulting from a slight leakage therefore has no significant influence on the functionality of the capacitor.
- the highest possible sealing between the first region and the second region of the flow channel is achieved.
- a further preferred embodiment is characterized in that the plug has a first radial thickening and has a second thickening adjacent to the first thickening, wherein the separating disk is enclosed between the first thickening and the second thickening.
- the plug Via the first and second thickening, which are preferably arranged at the radial edge of the plug, the plug can be positioned in the opening of the cutting disc.
- the cutting disc is preferably positioned between the two thickenings. The thickening effectively prevents the plug from sliding up or down.
- the connecting element has a third radial thickening at its end region facing the second region of the first flow channel and has a fourth thickening adjacent to the third thickening, the cutting disc or the stopper being enclosed between the third thickening and the fourth thickening is.
- connection element likewise advantageously has two thickenings lying adjacent to one another. Between the thickenings, the plug can be positioned. In this case, then the connection element is inserted through the opening of the plug in the plug.
- the cutting disc between the thickenings of the connecting element can be positioned, in the event that the connecting element is inserted directly into the cutting disc.
- the thickenings on the connection element and / or on the plug are formed by radially at least partially encircling holding elements and / or by beads.
- the thickenings on the plug and / or on the connecting element are advantageously formed either by beads, which may be formed for example by a material compression, or by the provision of additional material thickness in the production of the plug or the connecting element.
- the beads can also be realized as at least partially circumferential paragraphs or flanges.
- the thickening on the two elements can also be formed by at least partially circumferential holding elements, such as projecting snap hooks.
- the elements have snap hooks, they can be easily inserted through the openings.
- the snap hooks are pressed in during the insertion process inside and jump back after insertion into a position which projects radially beyond the outer radius of the element. As a result, the elements are securely fixed and held in their inserted position.
- first thickening and / or the second thickening and / or the third thickening and / or the fourth thickening has a seal directed towards the cutting disc and / or the stopper.
- the thickenings have sealing elements which additionally seal the connecting points between the elements.
- a further preferred embodiment provides that in the first flow path and / or in the second flow path, a sleeve is inserted, which has radially circumferentially arranged recesses.
- a sleeve which can be inserted into the first and / or second flow path can increase the stability of the capacitor.
- the edges of the openings which form the first and the second flow path can be supported on the outer wall of the sleeve.
- a plug which is either inserted into the opening of the cutting disc, or in the sleeve itself, are supported by the sleeve.
- the sleeve is fixed by an at least partially radially circumferential shoulder and / or by a radially at least partially encircling holding element and / or by a press fit on the disc elements.
- the sleeve can be fixed, for example by a circumferential shoulder in the stack of discs of the capacitor by being supported with the shoulder on one of the disc elements.
- the sleeve may also have snap hooks with which it can be fixed to one of the disc elements.
- the stopper is fixed in the sleeve by an interference fit and / or an at least partially circumferential shoulder and / or a radially at least partially circumferential retaining element.
- the collector which otherwise may contain means for drying, can then be dimensioned smaller, for example.
- the connecting element is formed by a dip tube.
- a dip tube is a particularly favorable component, which realizes the purpose of a further flow channel within the first flow path particularly simple.
- the refrigerant flows in the dip tube, in a direction opposite to the flow direction in the first flow path, opposite direction.
- the supply line and the discharge can be realized so easily.
- first openings and / or the second openings and / or the third openings are arranged concentrically to each other.
- the concentric position of the first, the second and the third openings of the basic structure of the capacitor is substantially simplified.
- the elements, such as a plug, a connection element or a sleeve can be so easily inserted into the capacitor. Since it is often tried to construct the individual disc elements as identical as possible, the concentric position of the individual openings is usually already given.
- the FIG. 1 shows a schematic diagram of a capacitor 1, which is constructed in stacked disc design.
- the condenser 1 is subdivided into a condensation region 2 and a subcooling region 3.
- the condensation region 2 serves for cooling and condensing the vaporous refrigerant which flows through the condenser 1.
- the subcooling region 3 connected to the condensation region 2 is provided for subcooling the completely liquid refrigerant to a temperature below the condensation temperature of the refrigerant.
- a collector 8 is connected between the condensation region 2 and the subcooling region 3.
- This collector 8 takes over the function of refrigerant storage and possibly the drying of the refrigerant and the filtering of the refrigerant.
- the collector 8 has a dryer 9 in the interior. After flowing through the collector 8, the refrigerant is conducted further into the subcooling region 3.
- the condenser 1 is flowed through in addition to the refrigerant with a coolant.
- the coolant flows into the condenser 1 through the inflow point 16 indicated in the upper region of the condenser 1. There, the coolant is distributed over the condensation region 2 and the subcooling region 3 and flows through the condenser 1 to the outflow point 17.
- the coolant may flow in parallel, serially or in parallel and serially through the various flow channels which result between the disc elements of which the condenser 1 is constructed.
- the refrigerant flows through an inflow point 6 at the upper region of the condenser 1 into the condenser 1 and is distributed along the condensation region 2 over the width of the condenser 1.
- the refrigerant flows along the flow path 5 through the condensation region 2. Subsequently, the refrigerant enters the Outflow point 7 from the condenser 1 and flows along the inflow direction 11 into the collector 8 inside.
- the refrigerant is dried, filtered and stored. Subsequently, the refrigerant flows along the outflow direction 12 of the collector via the inflow point 13 back into the condenser 1.
- the inflow point 13 is arranged concentrically with the outflow point 7.
- the inflow point 13 is formed by a connection element 4, which in the FIG. 1 represented by a tube.
- the connection element 4 has a smaller diameter than the outflow point 7.
- connection element 4 is in fluid communication with the outlet of the collector 8. Through the connection element 4, the refrigerant flows into the subcooling region 3 of the capacitor 1. In this case, the connection element 4 extends through the condensation region 2 of the capacitor 1 directly into the subcooling region 3, so that from the collector 8 outflowing refrigerant flows only in the subcooling 3. In the subcooling region 3, the refrigerant flows along the flow path 14 through the subcooling region 3 and finally leaves the condenser 1 via the outflow point 15.
- the refrigerant can also flow through the individual flow channels formed between the disk elements of the condenser 1 in series, in parallel or in series and in parallel. Also can be provided for both the refrigerant, as well as for the coolant deviating from the shown embodiment arrangement of the inflow and outflow.
- FIG. 1 is an exemplary representation of a condenser 1 in stacked disc design and should basically show the subdivision into the condensation region 2 and the subcooling 3 and the arrangement of the collector 8 outside of the capacitor 1. Furthermore, by the FIG. 1 the possible flow through the capacitor 1 explained.
- FIG. 2 shows a sectional view through a capacitor 30, which is constructed in a stacked disk design.
- the upper end of the disk stack forms the upper end disk element 32. Downwards, the lower end disk element 33 forms the boundary of the disk stack.
- the disc elements 42 used between the upper end plate member 32 and the lower end disc member 33 are substantially identical and differ only in orientation to each other. The only exception here is the cutting disk 31, which has an opening 41 which deviates from the openings 34 of the other disk elements.
- the disk elements 42 each have an opening 34.
- the opening 34 of the disc elements 42 is larger in comparison to the opening 41 of the cutting disc 31.
- the disk elements 42 are stacked on each other so that the individual openings 34 of the disk elements 42 lie concentrically on one another.
- the upper portion of the condenser 30 and the lower portion of the condenser 30 are separated by the partition 31.
- the first flow path 35 is in direct fluid communication with the flow channels 36 which are associated with the first region of the first flow channel. Through this, the refrigerant flows for the purpose of condensation.
- the flow channels 36 are each arranged alternately with the flow channels 45 which guide the coolant. In this way, the heat transfer between the refrigerant and the coolant is realized.
- an arrangement of coolant and refrigerant-carrying flow channels can be done in a different Reihung.
- the second flow path 37 is in fluid communication with the flow channels 40, which are associated with the second region of the first flow channel.
- the flow channels 40 are arranged here alternately with flow channels 45 of the coolant. As with the upper range, the lower range may vary depending on the embodiment.
- connection element 38 which forms a flow channel 39 in its interior.
- This connection element 38 is arranged concentrically with the openings 34 in the disk elements 42.
- the arrangement of the connection element 38 may not be concentric.
- the connection element 38 leads through the upper region of the condenser 30 through the cutting disk 31 and opens into the upper flow channel 40 of the second region of the first flow channel.
- connection element 38 assumes the function of in FIG. 1 It is therefore supplied through the connection element 38, the refrigerant from the collector into the subcooling region of the capacitor 30.
- the refrigerant flows toward the flow path 35 and from there upwards into the in FIG. 2 not shown collectors.
- the refrigerant flows through the flow channel 39 of the connection element 38 into the second flow path 37 of the condenser 30. From there, the refrigerant flows along the channels 40 of the second region of the first flow channel through the condenser 30.
- connection element 38 is in the FIG. 2 inserted through the opening 41 of the blade 31.
- the connecting element 38 may be, for example, a plastic tube, which is provided in comparison to the opening 41 with an oversize. By inserting force into the opening 41, the connecting element 38 can be fluid-tightly connected to the cutting disk 31.
- a connection element 38 for example, from a metallic material and to widen it after insertion into the opening 41 in such a way that a fluid-tight connection with the separation disk 31 is created.
- FIGS. 3 to 5 each show a sectional view through the already in FIG. 2 As described in contrast to the FIG. 2 are in the FIGS. 3 to 5 alternative connections of the connecting element 52, 60, 70 shown with the cutting wheel 31.
- the basic structure of the capacitor 30 with its disc elements 42 and the blade 31 remains unchanged.
- flow channels 45 of the coolant alternate with flow channels 36 or 40 of the first region of the first flow channel or of the second region of the flow channel.
- the capacitors 30 are the FIGS. 3 to 5 likewise delimited by an upper end disk element 32 and at the bottom by a lower end disk element 33. It is therefore in the description of the FIGS. 3 to 5 mainly on the connection of the connecting element 52, 60, 70 received with the cutting disk 31.
- connection element 52 which has a flow channel 53 inside.
- the connection element 52 likewise runs concentrically with the openings 34 of the disk elements 42 and penetrates the cutting disk 31 provided with a smaller opening 41 with one of its end regions.
- the lower portion of the capacitor 30 facing end portion of the connecting element 52 has a circumferential shoulder 50 and adjacent to a circumferential bead 51.
- the lower bead 51 is thereby pushed from above through the opening 41 of the blade 31 therethrough.
- the cutting disk 31 is thus fixed between the circumferential shoulder 50 and the circumferential bead 51.
- the formation of the shoulder 50 or the bead 51 serves here for fixing the connection element 52 and at the same time for sealing the connection element against the cutting disk 31.
- the lower bead 51 of the FIG. 3 has a smaller radial extent than the upper shoulder 50. In this way, it is possible for the connection element 52 to be inserted without much effort and without the risk of damaging the cutting disk 31 through the opening 41 of the cutting disk 31.
- connection elements 38, 52, 60, 70 to the cutting disk 31 are therefore not the highest scale to apply. A most optimal fluid seal between the connecting elements 38, 52, 60, 70 and the cutting disc 31 is still desirable.
- the FIG. 4 shows a connection element 60, which is guided through the opening 41 of the cutting disk 31.
- the connection element 60 which forms the flow channel 61 in the interior, has an at least partially encircling flange 63 at its end region facing the subcooling region and snap-in hooks 62 adjacent thereto.
- the encircling flange 63 furthermore has a circumferential groove 65, which extends in the separation disk 31 facing surface of the flange 63 is arranged. Within the groove 65, a seal 64 extends. In the mounted state, the seal 64 is clamped between the at least partially circumferential flange 63 and the cutting disc 31, so that it develops a sealing effect between the upper portion of the capacitor 30 and the lower portion of the capacitor 30.
- the snap hooks 62 are mounted in the connecting element 60 so that they are pressed by the insertion movement from above through the opening 41 by the insertion and after the penetration of the cutting disc 31 to the outside in a position which extends radially beyond the outer diameter of the remaining connection element 60, rebound and thus engage behind the blade 31.
- the snap hooks 62 thus prevent unintentional detachment of the connecting element 60 from the cutting disk 31.
- the cutting disk 31 is thus fixed between the snap hook 62 and the overlying at least partially circumferential flange 63.
- the snap hooks 62 can be positioned both largely circumferentially and only at certain intended intervals.
- FIG. 5 shows a connection element 70 with an internal flow channel 71.
- the connecting element 70 has in its the lower portion of the capacitor 30 end region facing at least partially circumferential shoulder 72 and adjacent snap hooks 73rd
- the snap hooks are dimensioned so that they are pressed in the insertion of the opening 41 of the cutting disc 31 inside and feathers after pushing through the cutting disc 31 in a radially beyond the outer radius of the connecting element 70 projecting position and engage behind the blade 31.
- the connecting element 70 is fixed by the lower snap hooks 73 and the upper at least partially circumferential shoulder 72 on the cutting disk 31. Deviating from the FIG. 4 has the connection in FIG. 5 no additional seal on.
- connecting means shown such as at least partially circumferential flanges, fully circumferential flanges, snap hooks, heels or beads are used in any combination with each other.
- more than one seal for sealing the connecting element 38, 52, 60, 70 is provided against the cutting disk 31.
- FIGS. 2 to 5 described embodiments are exemplary and have no limiting character.
- FIGS. 6 to 10 show a capacitor 90 in stacked disk design.
- the basic structure of the capacitor 90 corresponds to the structure of the capacitor 30 of the FIGS. 2 to 5 .
- Deviating from the FIGS. 2 to 5 now has the capacitor 90 of the FIGS. 6 to 10 a different cutting disc 96.
- the blade 31 of the FIGS. 2 to 5 an opening 41 which is smaller than the openings 34 of the disc elements 42
- now the cutting disc 96 has an opening 97 which corresponds in diameter to the openings 95 of the disc elements 114. This brings with it in particular the advantage that also the cutting disk 96 now corresponds to the remaining disk elements 114 of the capacitor 90.
- the FIG. 6 has a connection element 102, which forms the flow channel 103 in its interior.
- the flow principle of FIGS. 6 to 10 is with the one already described FIGS. 2 to 5 identical.
- the concentric openings 95 of the disk elements 114 form a first flow path 91.
- This first flow path 91 extends along the openings 95 in the upper region of the condenser 90, in which the condensation takes place.
- the second flow path 92 is formed through the openings 95.
- the second flow path 92 extends over the entire subcooling region of the condenser 90.
- the refrigerant flows along the channels 93, which are associated with the first region of the first flow channel in the first flow path 91 and from there into the collector. After flowing through the collector, the refrigerant flows along the flow channel 103 into the lower subcooling region of the condenser 90 into the second flow path 92. From there it flows through the channels 94, which are assigned to the second region of the first flow channel through the condenser 90.
- connection element 102 is received in a plug 98.
- the plug 98 has an opening 104 through which the connection element 102 is guided. At its periphery, the plug 98 is supported on the cutting disk 96 and the underlying disk element 114.
- the plug 98 has for this purpose at its radial edge region 101 on a circumferential bead 99 and adjacent snap hook 100.
- the bead 99 of the plug 98 rests on the upper portion of the condenser 90 facing side of the cutting disk 96.
- the snap-action hooks 100 engage from below against the disk element 114 which is connected to the cutting disk 96.
- the snap-action hooks 100 are designed so that they are pressed inwardly upon insertion of the plug 98 into the opening 97 of the cutting disk 96. After being pushed through the cutting disk 96 and through the disk element 114 underneath, the snap hooks spring outward into a position protruding radially beyond the outer radius of the plug 98. The snap hooks thus engage behind the disk element 114.
- the plug 98 is fixed relative to the separating disk 96 and the underlying disk element 114 in the capacitor 90.
- connection element 102 and the stopper 98 can analogously to those already in the FIGS. 2 to 5 Connections shown between the connecting elements 38, 5, 60, 70 and the cutting disc 31 done.
- the connections of the connecting elements 38, 52, 60, 70 shown in FIGS. 2 to 5 each relate to the connection of these connecting elements to the separating disk 31.
- the connecting principle is also applicable to the connecting elements 102, 120, 140 of FIG FIGS. 6 to 10 transferable and then refers to the connection of the connection elements 102, 120, 140 with the plugs 98, 110, 122, 145.
- the plug 98, 110, 122, 145 can also be designed in one piece with the connection element 102, 120, 140.
- FIG. 7 shows a capacitor 90 analogous to the FIG. 6 ,
- the plug 110 now has two mutually adjacent circumferential beads 111 and 112.
- the plug 110 is fixed to the cutting disk 96 and the underlying disk element 114 via the two beads 111 and 112.
- the bead 111 lies on the Upper area of the capacitor 90 facing surface of the cutting disk 96 and the lower bead 112 is located on the lower portion facing surface of the disk element 114 at.
- connection element 102 is inserted into the opening 113 of the plug 110.
- the construction of the plug 110 with the circumferential beads 111 and 112 results in that the plug 110 can be inserted into the openings 95 of the condenser 90 without much effort until it is finally positioned at its intended position on the cutting disc 96 and the underlying disc element 114 can be.
- FIG. 8 shows a connection element 120 with an inner flow channel 121.
- a sleeve 124 is inserted, which has recesses 128 along its circumference. Through these recesses 128, the refrigerant, which flows along the flow channel 121 into the second flow path 92, into the channels 94 of the second region of the first flow channel, which form between the disc elements 114, flow.
- the sleeve 124 is in the FIG. 8 supported on the lower end plate member 107 of the capacitor 90. Furthermore, the sleeve 124 on its periphery snap hook 127. These snap hooks are designed so that they are pressed inward during insertion of the sleeve 124 along the openings 95 of the disk elements 114. After pushing through the cutting disc 96 and the underlying disk element 114, the snap hooks 127 spring radially over the outer contour analogously to the snap hooks already described in advance the sleeve 124 addition. As a result, the sleeve 124 is fixed between the lower end disk element 107 and the disk element 114, which is arranged below the cutting disk 96.
- the fixation of the sleeve 124 is further enhanced by the fact that the plug 122 is pressed into the interior of the sleeve 124.
- the plug has a conically tapering from top to bottom outer contour.
- a circumferential shoulder 125 and, moreover, snap hooks 126 are arranged above the snap hooks 127.
- the plug 122 has a smaller outer diameter than the openings 95 of the capacitor 90. He can therefore be introduced without effort from above into the openings 95. However, the plug 122 has, at least in its widest region of the conically tapered region, a larger outer diameter than the inner diameter of the sleeve 124 above the at least partially circumferential shoulder 125.
- the plug 122 is therefore jammed by being pressed into the sleeve in the sleeve 124.
- the plug 122 comes to rest on the at least partially circumferential shoulder 125.
- snap hooks 126 are arranged in the interior of the sleeve 124 so that they are pressed by the insertion of the plug 122 to the outside and after pushing through the plug 122 on the wall of the sleeve 124 inwardly spring into the sleeve 124 inside. Thereby, the plug 122 is fixed between the at least partially circumferential shoulder 125 and the snap hook 126.
- the sealing of the upper portion of the condenser 90, in which condensation takes place, to the lower portion of the condenser in which the subcooling occurs is accomplished by the sleeve 124, which bears against the blade 96 and underlying disc member 114, and inside the sleeve 124 via the plug 122, which sits with a press fit in the sleeve 124 and between the at least partially circumferential shoulder 125 and the snap hook 126 of the sleeve 124 is fixed.
- the plug can also be fixed only by the fixation between the heel and the snap hook in the sleeve.
- the additional sealing effect which is caused by a press fit, is to be regarded as optiohal and is not absolutely necessary.
- the plug can also have a non-conical shape.
- FIG. 9 shows a connection element 140 with an internal flow channel 141.
- the connection element 140 is plugged into a plug 145, which has an opening 146.
- the plug 145 has similar to the plug 122 in FIG. 8 a tapered from top to bottom shape. In this way, the plug is advantageously inserted into the openings 95 of the capacitor 90.
- a sleeve 142 is introduced.
- This sleeve 142 corresponds in its outer radius to the radius of the openings 95 of the disc elements 114.
- the sleeve 142 has an at least partially circumferential flange 143, with which the sleeve 142 comes to rest on the upper end plate element 106.
- the sleeve 142 further has recesses 144 along its circumference. Via these recesses 144, the refrigerant from the channels 93 of the first region of the first flow channel can flow into the first flow path 91.
- an at least partially circumferential shoulder 149 is arranged inside the sleeve 142. This at least partially circumferential shoulder 149 is arranged in the lower end region of the sleeve 142. Above this at least partially encircling paragraph 149, the sleeve 142 snap hook 148.
- the plug 145 may be pressed on its tapered shape in the interior of the sleeve 142. By such a compression, the sealing effect of the sleeve 142 against the cutting disc 96 and the underlying disc member 114 can be further increased.
- radially outwardly directed forces which act on the wall of the sleeve 142 arise. These forces increase the sealing of the sleeve 142 relative to the capacitor 90.
- the sleeve 142 also has snap hooks 147 on its exterior. These snap hooks 147 are positioned so that they engage behind the disc element 114, which is arranged directly under the cutting disc 96, in the fully inserted state of the sleeve 142. The sleeve 142 is thus fixed by the snap hook 147 in the capacitor 90.
- the at least partially circumferential shoulder 143 of the sleeve 142 defines the maximum insertion depth of the sleeve 142 in the capacitor 90th
- FIG. 10 shows that already in the FIG. 9 shown construction.
- an additional drying agent 150 is now introduced in the region of the sleeve 142.
- the desiccant 150 corresponds to a desiccant, which is also used in an external collector. Due to the arrangement of the drying agent 150 within the sleeve 142, the refrigerant, which flows through the first region of the first flow channel into the first flow path 91 and then flows on to the collector, are already partially dried within the condenser 90.
- the region of the first flow path 91 within the sleeve 142 is filled with desiccant 150.
- the arrangement of desiccant 150 is shown in all FIGS. 2 to 10 be provided.
- the drying agent is advantageously provided in the condenser 30, 90, in particular in a region upstream of the collector. It is important to ensure that the desiccant can not flow freely through the condenser, so can be entrained by the refrigerant. Therefore, the arrangement of the desiccant 150, as in FIG. 10 shown inside the sleeve 142 or other device preventing the spreading of the desiccant.
- the structure of the capacitors 30, 90 of FIGS. 2 to 10 is intended to illustrate the basic structure of a capacitor 30, 90 in stacked disk design.
- the illustrated illustration of the disc elements 42 and 114 or the cutting discs 31 and 96 has no limiting character and represents only one possible embodiment. Likewise, the number of stacked discs is not limiting.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Description
- Die Erfindung betrifft einen Kondensator nach dem Oberbegriff des Anspruchs 1. Solch ein Kondensator ist aus
WO 2010/108907 A1 bekannt. - In Kältemittelkreisläufen von Klimaanlagen für Kraftfahrzeuge werden Kondensatoren eingesetzt, um das Kältemittel auf die Kondensationstemperatur abzukühlen und dabei das Kältemittel zu kondensieren. Das Kältemittel wird weiterhin in einem Bereich des Kondensators, welcher nach dem Kondensationsbereich angeordnet ist, auf eine Temperatur abgekühlt, die unterhalb der Kondensationstemperatur des Kältemittels liegt.
- Kondensatoren nach dem Stand der Technik, weisen zum Teil einen Sammler auf, in welchem ein Kältemittelvolumen vorgehalten ist, um Volumenschwankungen im Kältemittelkreislauf auszugleichen und um eine stabile Unterkühlung des Kältemittels zu erreichen.
- Zusätzlich sind in dem Sammler teilweise Mittel zur Trocknung und/oder Mittel zur Filterung des Kältemittels vorgesehen. Der Sammler ist bei Kondensatoren nach dem Stand der Technik teilweise in unmittelbarer Nähe des Kondensators angeordnet. Er wird von dem Kältemittel durchströmt, welches bereits einen Teil des Kondensators durchströmt hat. Nach dem Durchströmen des Sammlers wird das Kältemittel in den Kondensator zurückgeleitet und in einer Unterkühlungsstrecke unter die Kondensationstemperatur unterkühlt.
- Bei konventionellen Kondensatoren in Rippe-Rohr-Bauweise wird das Kältemittel hierfür aus einem, der seitlich am Rohr-Rippenblock angeordneten, Sammelrohre aus dem Kondensator hinausgeleitet und in den Sammler eingeleitet.
- Luftgekühlte Kondensatoren in Rippe-Rohr-Bauweise konkurrieren dabei, in modernen Fahrzeugen mit hohen Anforderungen an die Ladeluftkühlung, mit den Ladeluftkühlem um eine Position in der, in Luftdurchströmungsrichtung gesehen, vordersten Ebene des Kühlmoduls.
- Eine Alternative zu luftgekühlten Kondensatoren stellen daher die flüssigkeitsgekühlten Kondensatoren dar, da diese auch in einem Bereich angeordnet werden können, in dem sie nicht direkt von einem Luftstrom umströmt werden. Lediglich das durch den flüssigkeitsgekühlten Kondensator strömende Kühlmittel muss dann eine Abkühlung durch beispielsweise einen Luftstrom erfahren.
- Bei Kondensatoren, welche in Stapelscheibenbauweise gebaut sind, sind Möglichkeiten im Stand der Technik bekannt, den Sammler als eine zusätzliche Lage von Scheibenelementen an den Kondensator anzufügen.
- Weiterhin offenbart die
US 2006/0053833 einen Kondensator in Stapelscheibenbauweise, bei dem ein erster Stapel von Scheibenelementen einen ersten Abkühlungs- und Kondensationsbereich darstellt und ein zweiter Stapel von Scheibenelementen einen Unterkühlungsbereich darstellt. Der erste Stapel ist von dem zweiten Stapel durch ein Gehäuse getrennt, welches einen Sammler und Trockner beinhaltet. - Nachteilig an den Vorrichtungen nach dem Stand der Technik ist, dass die Integration von Sammlern und Unterkühlern in Kondensatoren in Stapelscheibenbauweise bisher recht aufwändig gelöst ist. Neben einem komplexen Aufbau, zeichnen sich die Kondensatoren aus dem Stand der Technik durch einen erhöhten Fertigungsaufwand aus. Dadurch ergeben sich hinsichtlich der Verwendung der Kondensatoren Mehrkosten, die ihren Einsatz unattraktiv machen.
- Daher ist es die Aufgabe der vorliegenden Erfindung einen Kondensator bereitzustellen, der geeignet ist ein Kältemittel zu kondensieren und es weiterhin zu unterkühlen, wobei der Kondensator durch einen einfachen Aufbau gekennzeichnet ist und kostengünstig herzustellen ist. Darüber hinaus soll der Kondensator auf einfach Weise mit einem Sammler verbunden werden können.
- Die Aufgabe der vorliegenden Erfindung wird durch einen Kondensator in Stapelscheibenbauweise mit den Merkmalen des Anspruchs 1 gelöst.
- Ein Ausführungsbeispiel der Erfindung betrifft einen Kondensator in Stapelscheibenbauweise, mit einem ersten Strömungskanal für ein Kältemittel und mit einem zweiten Strömungskanal für ein Kühlmittel, wobei eine Mehrzahl von Scheibenelementen vorgesehen ist, die aufeinandergestapelt zueinander benachbarte Kanäle zwischen den Scheibenelementen ausbilden, wobei ein erster Teil der Kanäle dem ersten Strömungskanal zugeordnet ist und ein zweiter Teil der Kanäle dem zweiten Strömungskanal zugeordnet ist, wobei der Strömungskanal des Kältemittels einen ersten Bereich zur Enthitzung und Kondensation des dampfförmigen Kältemittels aufweist und einen zweiten Bereich zur Unterkühlung des kondensierten Kältemittels aufweist, wobei der erste Bereich von dem zweiten Bereich durch eine Trennscheibe getrennt ist, mit einem Sammler zur Bevorratung und/oder Filterung und/oder Trocknung eines Kältemittels, wobei ein Kältemittelübertritt aus dem ersten Bereich in den zweiten Bereich durch den Sammler führt, wobei der Sammler über eine erste Strömungsstrecke, welche mit dem Fluideinlass des Sammlers in Fluidkommunikation steht, mit dem ersten Bereich in Fluidkommunikation steht, wobei ein Anschlusselement als Fluidauslass des Sammlers mit dem zweiten Bereich in Fluidkommunikation steht, wobei das Anschlusselement zumindest teilweise innerhalb der ersten Strömungsstrecke verläuft.
- Der Aufbau eines Kondensators in Stapelscheibenbauweise ist besonders vorteilhaft, da der Kondensator im Wesentlichen aus einer Vielzahl von identischen Scheibenelementen aufgebaut ist. Lediglich die den Kondensator nach Außen begrenzenden Scheibenelemente und Scheibenelemente mit Sonderfunktionen bedürfen einer gesonderten Ausführung. Zu Sonderfunktionen zählen etwa, das Umlenken von Strömungskanälen innerhalb des Kondensators oder das Blockieren von Strömungskanälen im Kondensator.
- Vorteilhafterweise wird an oder in der Nähe des Kondensators ein Sammler vorgesehen, der ein definiertes Volumen des Kältemittels bevorratet und so Volumenschwankungen im Kältemittelkreislauf ausgleichen kann. Zusätzlich kann der Sammler Mittel zur Trocknung und/oder zur Filterung des Kältemittels enthalten.
- Der Sammler ist vorteilhafterweise an einer Stelle des Kältemittelkreislaufes integriert, die zwischen dem Kondensationsbereich und dem Unterkühlbereich des Kondensators gelegen ist.
- Um einen außerhalb des Kondensators liegenden Sammler an einen Stapelscheibenkondensator anzuschließen, ohne dabei den Aufbau der einzelnen Scheibenelemente wesentlich abändern zu müssen, ist es vorteilhaft, wenn sowohl der Zulauf, als auch der Ablauf des Sammlers durch eine der bestehenden Öffnungen in den Scheibenelementen erfolgt. Besonders vorteilhaft ist hierbei die Anordnung des Zulaufs und des Ablaufs des Sammlers zumindest teilweise ineinander.
- Dies kann beispielsweise dadurch erreicht werden, dass der Zulauf zum Sammler über eine Strömungsstrecke, welche entlang von zueinander benachbarten Öffnungen in den Scheibenelementen gebildet ist, realisiert ist und der Ablauf aus dem Sammler durch eine in der gleichen Strömungsstrecke angeordnete Leitung realisiert ist.
- In einer bevorzugten Weiterbildung der Erfindung kann es vorgesehen sein, dass die erste Strömungsstrecke entlang erster Öffnungen, in zueinander benachbarten Scheibenelementen gebildet ist, wobei die Scheibenelemente Teil des ersten Bereiches des ersten Strömungskanals sind.
- Die erste Strömungsstrecke ist durch einen Bereich gebildet, welcher sich entlang der aufeinanderfolgenden Öffnungen, von aufeinander gestapelten Scheibenelementen ergibt. Die Öffnungen in den Scheibenelementen liegen dabei vorzugsweise in einer Linie konzentrisch zueinander. Die erste Strömungsstrecke bildet dabei einen Teilbereich des ersten Bereiches, des ersten Strömungskanals.
- Ein weiteres vorteilhaftes Ausführungsbeispiel, ist dadurch gekennzeichnet, dass die Scheibenelemente, welche Teil des zweiten Bereiches des ersten Strömungskanals sind, erste Öffnungen aufweisen, entlang welcher eine zweite Strömungsstrecke gebildet ist
- Die zweite Strömungsstrecke bildet einen Teilbereich des zweiten Bereiches des ersten Strömungskanals. Die zweite Strömungsstrecke liegt dabei in der direkten Verlängerung der ersten Strömungsstrecke und wird ebenfalls durch einen Bereich gebildet, welcher sich entlang aufeinanderfolgender Öffnungen, von aufeinandergestapelten Scheibenelementen ergibt.
- Die Öffnungen, welche die zweite Strömungsstrecke bilden liegen vorteilhafterweise konzentrisch mit den Öffnungen, welche die erste Strömungsstrecke bilden. Dies ist durch die Verwendung von einheitlichen Scheibenelementen begünstigt.
- Getrennt ist die erste Strömungsstrecke von der zweiten, durch eine Trennscheibe. Sofern eine Öffnung in der Trennscheibe vorgesehen ist, kann diese beispielsweise durch einen Stopfen verschlossen sein.
- Auch ist es vorteilhaft, wenn die Trennscheibe eine zweite Öffnung aufweist, wobei das Anschlusselement die Trennscheibe vom ersten Bereich aus zum zweiten Bereich durch die zweite Öffnung durchdringt.
- Um nur einen möglichst geringen Aufwand bei der Herstellung der Scheibenelemente betreiben zu müssen ist es vorteilhaft, wenn die Trennscheibe ebenfalls eine Öffnung aufweist. Um trotzdem eine funktionierende Trennung des ersten und des zweiten Bereiches des ersten Strömungskanals realisieren zu können müssen zusätzlich Vorkehrungen getroffen werden. Hierzu kann es vorteilhaft sein, die zweite Öffnung der Trennscheibe beispielsweise durch einen Stopfen zu verschließen, oder ein Anschlusselement vorzusehen, welche durch die zweite Öffnung der Trennscheibe oder den Stopfen geführt werden kann. Über dieses Anschlusselement wird dann der Zu- oder Ablauf des Kältemittels in den zweiten Bereich des ersten Strömungskanals realisiert.
- Gemäß einer besonders günstigen Weiterbildung der Erfindung, kann es vorgesehen sein, dass in der zweiten Öffnung der Trennscheibe ein Stopfen angeordnet ist, welche eine dritte Öffnung aufweist, welche im Vergleich zur zweiten Öffnung der Trennscheibe kleiner ist und das Anschlusselement durch die dritte Öffnung des Stopfens geführt ist.
- Die Öffnung in der Trennscheibe weist aufgrund der identischen Herstellungsmethode mit den Scheibenelementen oberhalb und unterhalb der Trennscheibe mitunter den gleichen Durchmesser auf.
- Um nun erfindungsgemäß die Zuleitung zum Sammler, entlang der ersten Öffnungen in den Scheibenelementen des ersten Bereiches des ersten Strömungskanals, darzustellen und gleichzeitig eine Ableitung aus dem Sammler in den zweiten Bereich des ersten Strömungskanals, innerhalb der ersten Strömungsstrecke, zu realisieren, muss die Öffnung in der Trennscheibe vorteilhafterweise kleiner sein, als die Öffnungen der darüber und darunter liegenden Scheibenelemente. Hierzu kann beispielsweise ein Stopfen in die Öffnung eingesetzt werden, welcher eine im Vergleich zur Öffnung der Trennscheibe kleinere Öffnung aufweist. In die Öffnung des Stopfens kann dann das Anschlusselement, welches den Ausgang des Sammlers mit dem zweiten Bereich des ersten Strömungskanals verbindet, eingesteckt werden.
- Auf diese Weise kann eine Anordnung des Anschlusselementes, welches den Sammler mit dem zweiten Bereich des ersten Strömungskanals verbindet, innerhalb der ersten Strömungsstrecke erreicht werden.
- In einer ebenfalls vorteilhaften Ausführung, kann die Trennscheibe selbst eine Öffnung mit geringerem Durchmesser aufweisen. Das Anschlusselement kann dann direkt in die Öffnung der Trennscheibe eingesteckt werden. Die Herstellung einer solchen Trennscheibe ist jedoch aufwändiger.
- Außerdem ist es zweckmäßig, wenn die Trennscheibe zumindest im Wesentlichen fluiddicht mit dem Anschlusselement und/oder dem Stopfen verbunden ist.
- Eine fluiddichte Verbindung zwischen der Trennscheibe und dem Anschlusselement oder dem Stopfen ist besonders wichtig, da hierdurch der erste Bereich des ersten Strömungskanals von dem zweiten Bereich des ersten Strömungskanals getrennt wird.
- Eine fluiddichte Verbindung kann beispielsweise durch das Einpressen des Stopfens oder des Anschlusselementes in die Öffnung der Trennscheibe erreicht werden. Insbesondere, wenn der Stopfen und/oder das Anschlusselement ein Übermaß im Vergleich zur Öffnung in der Trennscheibe haben.
- Es sei hier erwähnt, dass die fluiddichte Verbindung besonders vorteilhaft ist, jedoch nicht ein entscheidendes Kriterium für die Funktionstüchtigkeit des Kondensators darstellt. Zwischen dem ersten Bereich und dem zweiten Bereich des ersten Strömungskanals herrscht nur eine geringe treibende Druckdifferenz. Ein durch eine geringe Undichtigkeit entstehender Leckagestrom, hat daher keinen wesentlichen Einfluss auf die Funktionstüchtigkeit des Kondensators. Trotzdem ist in einer vorteilhaften Ausgestaltung eine möglichst hohe Abdichtung zwischen dem ersten Bereich und dem zweiten Bereich des Strömungskanals zu erreichen.
- Ein weiteres bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass der Stopfen eine erste radiale Aufdickung aufweist, und eine zur ersten Aufdickung benachbarte zweite Aufdickung aufweist, wobei die Trennscheibe zwischen der ersten Aufdickung und der zweiten Aufdickung eingefasst ist.
- Über die erste und zweite Aufdickung, welche vorzugsweise am radialen Rand des Stopfens angeordnet sind, kann der Stopfen in der Öffnung der Trennscheibe positioniert werden. Dabei wird die Trennscheibe vorzugsweise zwischen den beiden Aufdickungen positioniert. Durch die Aufdickungen wird wirksam das Verrutschen des Stopfens nach oben oder nach unten vermieden.
- Weiterhin ist es vorteilhaft, wenn das Anschlusselement an seinem, dem zweiten Bereich des ersten Strömungskanals zugewandten Endbereich, eine dritte radiale Aufdickung aufweist und eine zur dritten Aufdickung benachbarte vierte Aufdickung aufweist, wobei die Trennscheibe oder der Stopfen zwischen der dritten Aufdickung und der vierten Aufdickung eingefasst ist.
- Das Anschlusselement weist ebenfalls vorteilhafterweise zwei zueinander benachbart liegende Aufdickungen auf. Zwischen den Aufdickungen kann der Stopfen positioniert werden. Hierbei ist dann das Anschlusselement durch die Öffnung des Stopfens in den Stopfen eingesteckt. Alternativ kann auch die Trennscheibe zwischen den Aufdickungen des Anschlusselementes positioniert werden, für den Fall, dass das Anschlusselement direkt in die Trennscheibe eingesteckt wird.
- Gemäß einer alternativen Ausgestaltung der Erfindung ist es zu bevorzugen, wenn die Aufdickungen am Anschlusselement und/oder am Stopfen durch radial zumindest teilweise umlaufende Halteelemente und/oder durch Wülste gebildet sind.
- Die Aufdickungen am Stopfen und/oder am Anschlusselement sind vorteilhafterweise entweder durch Wülste gebildet, die beispielsweise durch eine Materialstauchung gebildet sein können, oder durch das Vorsehen von zusätzlicher Materialstärke bei der Herstellung des Stopfens oder des Anschlusselementes. Die Wülste können auch als zumindest teilweise umlaufende Absätze oder Flansche realisiert werden.
- Alternativ kann die Aufdickung an den beiden Elementen auch durch zumindest teilweise umlaufende Haltelemente, wie etwa hervorstehende Schnapphaken gebildet sein.
- Sofern die Elemente Schnapphaken aufweisen, können diese besonders einfach durch die Öffnungen gesteckt werden. Die Schnapphaken werden beim Einsteckvorgang nach innen gedrückt und springen nach dem Einstecken in eine Position zurück, welche radial über den Außenradius des Elementes hinausragt. Dadurch werden die Elemente sicher fixiert und in ihrer eingesteckten Position gehalten.
- Auch ist es zweckmäßig, wenn die erste Aufdickung und/oder die zweite Aufdickung und/oder die dritte Aufdickung und/oder die vierte Aufdickung eine zur Trennscheibe und/oder zum Stopfen gerichtete Dichtung aufweist.
- Um die Dichtwirkung zwischen den Elementen Trennscheibe, Stopfen und Anschlusselement weiter zu erhöhen ist es besonders vorteilhaft, wenn die Aufdickungen Dichtungselemente aufweisen, welche die Verbindungsstellen zwischen den Elementen zusätzlich abdichten.
- Ein weiteres bevorzugtes Ausführungsbeispiel sieht vor, dass in die erste Strömungsstrecke und/oder in die zweite Strömungsstrecke eine Hülse einführbar ist, welche radial umlaufend angeordnete Aussparungen aufweist.
- Eine Hülse, welche in die erste und/oder zweite Strömungsstrecke eingeführt werden kann, kann die Stabilität des Kondensators erhöhen. Die Ränder der Öffnungen, welche die erste bzw. die zweite Strömungsstrecke bilden können an der Außenwandung der Hülse abgestützt werden. Außerdem kann ein Stopfen, welcher entweder in die Öffnung der Trennscheibe eingesetzt ist, oder in die Hülse an sich, durch die Hülse abgestützt werden.
- Weiterhin ist es zu bevorzugen, wenn die Hülse durch einen zumindest teilweise radial umlaufenden Absatz und/oder durch ein radial zumindest teilweise umlaufendes Halteelement und/oder durch eine Presspassung an den Scheibenelementen fixiert ist.
- Die Hülse kann beispielsweise durch einen umlaufenden Absatz in dem Scheibenstapel des Kondensators fixiert werden, indem sie sich mit dem Absatz auf einem der Scheibenelemente abstützt. Alternativ kann die Hülse ebenfalls Schnapphaken aufweisen, mit denen sie sich an einem der Scheibenelemente fixieren lässt. Durch Absätze oder Halteelementen lässt sich eine Hülse besonders vorteilhaft im Kondensator fixieren.
- In einer besonders günstigen Ausgestaltung der Erfindung ist es außerdem vorgesehen, dass der Stopfen durch eine Presspassung und/oder einen zumindest teilweise umlaufenden Absatz und/oder ein radial zumindest teilweise umlaufendes Halteelement in der Hülse fixiert ist.
- Dies ist besonders vorteilhaft, da durch den Stopfen, welcher im Inneren der Hülse an der Hülse abgestützt ist, eine weitere Fixierung der Hülse erfolgen kann. Wenn der Stopfen beispielsweise mit einer Presspassung in die Hülse eingepresst wird, übt dies eine radial nach außen gerichtet Kraft auf die Hülse aus, wodurch diese gegen den Scheibenstapel gedrückt wird.
- Außerdem ist es günstig, wenn im Bereich der ersten Strömungsstrecke Mittel zur Trocknung des Kältemittels vorgesehen sind.
- Durch das Einbringen eines Trocknungsmittels, kann bereits ein Teil des Strömungskanals im Kondensator dazu genutzt werden, um das Kältemittel zu trocknen. Der Sammler, welcher sonst Mittel zur Trocknung enthalten kann, kann dann beispielsweise kleiner dimensioniert werden.
- Auch ist es zweckmäßig, wenn das Anschlusselement durch ein Tauchrohr gebildet ist.
- Ein Tauchrohr ist ein besonders günstiges Bauteil, welches den Zweck eines weiteren Strömungskanal innerhalb der ersten Strömungsstrecke besonders einfach realisiert. Das Kältemittel strömt im Tauchrohr, in einer im Vergleich zu der Strömungsrichtung in der ersten Strömungsstrecke, entgegengesetzten Richtung. Die Zuleitung und die Ableitung können so besonders einfach realisiert werden.
- Gemäß einer besonders günstigen Weiterbildung der Erfindung ist es zu bevorzugen, wenn die ersten Öffnungen und/oder die zweiten Öffnungen und/oder die dritten Öffnungen konzentrisch zueinander angeordnet sind.
- Durch eine konzentrische Lage der ersten, der zweiten und der dritten Öffnungen ist der grundsätzliche Aufbau des Kondensators wesentlich vereinfacht. Die Elemente, wie etwa ein Stopfen, ein Anschlusselement oder eine Hülse können so einfacher in den Kondensator eingeführt werden. Da oft versucht wird, die einzelnen Scheibenelemente möglichst identisch aufzubauen, ist die konzentrische Lage der einzelnen Öffnungen im Regelfall bereits vorgegeben.
- Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und der nachfolgenden Figurenbeschreibung beschrieben.
- Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
- Fig. 1
- eine Prinzipskizze eines Kondensators in Stapelscheibenbauweise mit einem externen Sammler,
- Fig. 2
- eine Schnittansicht eines Kondensators iri Stapelscheibenbauweise, mit einem Anschlusselement, welches entlang der in einer Linie liegenden Öffnungen vom Kondensationsbereich durch eine Trennscheibe in den Uhterkühlbereich des Kondensators geführt ist,
- Fig. 3
- eine Schnittansicht eines Kondensators gemäß
Figur 2 , mit einem Anschluselement mit einem umlaufenden Absatz und einem umlaufenden Wulst, an dem durch die Trennscheibe geführten Endbereich, - Fig. 4
- eine Schnittansicht eines Kondensators gemäß der
Figuren 2 und3 , mit einem Anschlusselement, mit einem umlaufenden Absatz, welcher eine zur Trennscheibe gerichtete Dichtung aufweist und Schnapphaken, welche die Trennscheibe in montiertem Zustand hintergreifen, - Fig. 5
- eine Schnittansicht eines Kondensators gemäß der
Figuren 2 bis 4 , mit einem Anschlusselement, mit einem umlaufenden Absatz und dazu benachbart angeordneten Schnapphaken, welche die Trennscheibe in montiertem Zustand hintergreifen, - Fig. 6
- eine weitere Schnittansicht eines Kondensators, mit einem Stopfen in der Trennscheibe und einem Anschlusselement, welches durch den Stopfen geführt ist, wobei der Stopfen einen Wulst und dazu benachbart Schnapphaken aufweist, welche in montiertem Zustand die Trennscheibe hintergreifen,
- Fig. 7
- eine Schnittansicht eines Kondensators gemäß
Figur 6 , mit einem Stopfen mit zwei zueinander benachbart liegenden umlaufenden Wülsten, - Fig. 8
- eine Schnittansicht eines Kondensators gemäß der
Figuren 6 und7 , mit einer in den Kondensator eingeführten Hülse, welche im Unterkühlbereich des Kondensators durch Schnapphaken fixiert ist, - Fig. 9
- eine Schnittansicht eines Kondensators gemäß der
Figuren 6 bis 8 , mit einer in den Kondensator eingesteckten Hülse, welche mittels eines zumindest teilweise umlaufenden Flansches und mit Schnapphaken im Kondensator fixiert ist, und - Fig. 10
- eine Schnittansicht durch einen Kondensator gemäß der
Figur 9 , mit einem Trocknungsmittel in der in den Kondensator eingesteckten Hülse. - Die
Figur 1 zeigt eine Prinzipskizze eines Kondensators 1, welcher in Stapelscheibenbauweise aufgebaut ist. Der Kondensator 1 unterteilt sich dabei in einen Kondensationsbereich 2 und einen Unterkühlbereich 3. Der Kondensationsbereich 2 dient zum Abkühlen und Kondensieren des dampfförmig vorliegenden Kältemittels, welches durch den Kondensator 1 strömt. Der an den Kondensationsbereich 2 angeschlossene Unterkühlbereich 3 ist für die Unterkühlung des vollständig flüssigen Kältemittels auf eine Temperatur unterhalb der Kondensationstemperatur des Kältemittels vorgesehen. - Zwischen den Kondensationsbereich 2 und den Unterkühlbereich 3 ist ein Sammler 8 geschaltet. Dieser Sammler 8 übernimmt die Funktion der Kältemittelbevorratung und eventuell der Trocknung des Kältemittels sowie der Filterung des Kältemittels. Zum Trocknen des Kältemittels weist der Sammler 8 einen Trockner 9 im Inneren auf. Nach dem Durchströmen des Sammlers 8 wird das Kältemittel weiter in den Unterkühlbereich 3 geleitet.
- Der Kondensator 1 ist außer dem Kältemittel auch mit einem Kühlmittel durchströmt. Das Kühlmittel strömt durch die im oberen Bereich des Kondensators 1 angedeutete Einströmstelle 16 in den Kondensator 1 hinein. Dort verteilt sich das Kühlmittel über den Kondensationsbereich 2 und den Unterkühlbereich 3 und durchströmt den Kondensator 1 hin zur Ausströmstelle 17.
- Im Inneren des Kondensators 1 kann das Kühlmittel parallel, seriell oder parallel und seriell durch die verschiedenen Strömungskanäle strömen, welche sich zwischen den Scheibenelementen, aus denen der Kondensator 1 aufgebaut ist, ergeben.
- Das Kältemittel strömt durch eine Einströmstelle 6 am oberen Bereich des Kondensators 1 in den Kondensator 1 ein und verteilt sich entlang des Kondensationsbereiches 2 über die Breite des Kondensators 1. Das Kältemittel strömt entlang des Strömungsweges 5 durch den Kondensationsbereich 2. Anschließend tritt das Kältemittel an der Ausströmstelle 7 aus dem Kondensator 1 aus und strömt entlang der Einströmrichtung 11 in den Sammler 8 hinein.
- Dort wird, wie bereits erwähnt, das Kältemittel getrocknet, gefiltert und bevorratet. Anschließend strömt das Kältemittel entlang der Ausströmrichtung 12 des Sammlers über die Einströmstelle 13 zurück in den Kondensator 1. Die Einströmstelle 13 liegt konzentrisch angeordnet mit der Ausströmstelle 7. Die Einströmstelle 13 ist durch ein Anschlusselement 4 gebildet, welches in der
Figur 1 durch ein Rohr dargestellt ist. Das Anschlusselement 4 weist dabei einen kleineren Durchmesser, als die Ausströmstelle 7 auf. - Dieses Anschlusselement 4 steht in Fluidkommunikation mit dem Auslass des Sammlers 8. Durch das Anschlusselement 4 strömt das Kältemittel in den Unterkühlbereich 3 des Kondensators 1. Dabei verläuft das Anschlusselement 4 durch den Kondensationsbereich 2 des Kondensators 1 direkt in den Unterkühlbereich 3, so dass das aus dem Sammler 8 ausströmende Kältemittel nur in den Unterkühlbereich 3 strömt. Im Unterkühlbereich 3 strömt das Kältemittel entlang des Strömungsweges 14 durch den Unterkühlbereich 3 und verlässt den Kondensator 1 schließlich über die Ausströmstelle 15.
- Wie das Kühlmittel kann auch das Kältemittel die einzelnen zwischen den Scheibenelementen des Kondensators 1 gebildeten Strömungskanäle seriell, parallel oder seriell und parallel durchströmen. Ebenfalls kann sowohl für das Kältemittel, als auch für das Kühlmittel eine von der gezeigten Ausführung abweichende Anordnung der Einströmstellen und Ausströmstellen vorgesehen sein.
- Die
Figur 1 ist eine beispielhafte Darstellung für einen Kondensator 1 in Stapelscheibenbauweise und soll grundsätzlich die Unterteilung in den Kondensationsbereich 2 und den Unterkühlbereich 3 zeigen sowie die Anordnung des Sammlers 8 außerhalb des Kondensators 1. Weiterhin wird durch dieFigur 1 die mögliche Durchströmung des Kondensators 1 erläutert. - Die
Figur 2 zeigt eine Schnittansicht durch einen Kondensator 30, welcher in Stapelscheibenbauweise aufgebaut ist. Den oberen Abschluss des Scheibenstapels bildet das obere Abschlussscheibenelement 32. Nach unten bildet das untere Abschlussscheibenelement 33 die Begrenzung des Scheibenstapels. Die zwischen dem oberen Abschlussscheibenelement 32 und dem unteren Abschlussscheibenelement 33 verwendeten Scheibenelemente 42 sind im Wesentlichen identisch und unterscheiden sich nur durch die Orientierung zueinander. Die einzige Ausnahme bildet hierbei die Trennscheibe 31, welche eine von den Öffnungen 34 der anderen Scheibenelemente abweichende Öffnung 41 aufweist. - Die Scheibenelemente 42 weisen jeweils eine Öffnung 34 auf. Die Öffnung 34 der Scheibenelemente 42 ist im Vergleich zur Öffnung 41 der Trennscheibe 31 größer.
- Die Scheibenelemente 42 sind so aufeinandergestapelt, dass die einzelnen Öffnungen 34 der Scheibenelemente 42 konzentrisch aufeinanderliegen. Der Bereich entlang der Öffnungen 34 im oberen Bereich des Kondensators, welcher oberhalb der Trennscheibe 31 liegt, bildet die erste Strömungsstrecke 35. Der Bereich entlang der Öffnungen 34 im unteren Unterkühlbereich des Kondensators, welcher unterhalb der Trennscheibe 31 liegt, bildet die zweite Strömungsstrecke 37. Der obere Bereich des Kondensators 30 und der untere Bereich des Kondensators 30 sind durch die Trennscheibe 31 getrennt.
- Die erste Strömungsstrecke 35 steht in direkter Fluidkommunikation mit den Strömungskanälen 36, welche dem ersten Bereich des ersten Strömungskanals zugeordnet sind. Durch diesen strömt das Kältemittel zum Zwecke der Kondensation. Die Strömungskanäle 36, sind jeweils abwechselnd mit den Strömungskanälen 45 angeordnet, welche das Kühlmittel führen. Auf diese Weise wird der Wärmübergang zwischen dem Kältemittel und dem Kühlmittel realisiert.
- Abweichend zu der Anordnung, welche in der
Figur 2 gezeigt ist, kann auch eine Anordnung von kühlmittel- und kältemittelführenden Strömungskanälen in einer anderen Reihung erfolgen. So sind beispielsweise auch Reihungen mit zwei aufeinanderfolgenden Kühlmittelkanälen und einem darauffolgenden Kältemittelkanal vorsehbar. - Im unteren Bereich des Kondensators 30 steht die zweite Strömungsstrecke 37 in Fluidkommunikation mit den Strömungskanälen 40, welche dem zweiten Bereich des ersten Strömungskanals zugeordnet sind. Die Strömungskanäle 40, sind hier abwechselnd mit Strömungskanälen 45 des Kühlmittels angeordnet. Wie auch für den oberen Bereich kann auch die Reihung für den unteren Bereich je nach Ausführungsform variieren.
- In
Figur 2 ist ein Anschlusselement 38 gezeigt, welches in seinem Inneren einen Strömungskanal 39 ausbildet. Dieses Anschlusselement 38 ist konzentrisch mit den Öffnungen 34 in den Scheibenelementen 42 angeordnet. In alternativen Ausführungsformen kann die Anordnung des Anschlusselementes 38 auch nicht konzentrisch erfolgen. Das Anschlusselement 38 führt dabei durch den oberen Bereich des Kondensators 30 hindurch durch die Trennscheibe 31 und mündet in den oberen Strömungskanal 40 des zweiten Bereiches des ersten Strömungskanals. - Das in
Figur 2 gezeigte Anschlusselement 38 übernimmt die Funktion des inFigur 1 beschriebenen Anschlusselementes 4. Es wird also durch das Anschlusselement 38 das Kältemittel aus dem Sammler in den Unterkühlbereich des Kondensators 30 zugeführt. Entlang der Strömungskanäle 36, welche den ersten Bereich des ersten Strömungskanals zugeordnet sind, strömt das Kältemittel hin zur Strömungsstrecke 35 und von dort nach oben hinaus in den inFigur 2 nicht gezeigten Sammler. Nach dem Durchströmen des Sammlers strömt das Kältemittel durch den Strömungskanal 39 des Anschlusselementes 38 in die zweite Strömungsstrecke 37 des Kondensators 30. Von dort strömt das Kältemittel entlang der Kanäle 40 des zweiten Bereiches des ersten Strömungskanals durch den Kondensator 30. - Das Anschlusselement 38 ist in der
Figur 2 durch die Öffnung 41 der Trennscheibe 31 gesteckt. Das Anschlusselement 38 kann dabei beispielsweise ein Kunststoffrohr sein, welches im Vergleich zur Öffnung 41 mit einem Übermaß versehen ist. Durch das Einstecken unter Kraftaufwendung in die Öffnung 41 kann das Anschlusselement 38 fluiddicht mit der Trennscheibe 31 verbunden werden. Alternativ ist es ebenso vorsehbar, ein Anschlusselement 38 beispielsweise aus einem metallischen Werkstoff zu fertigen und dieses nach dem Einstecken in die Öffnung 41 so aufzuweiten, dass eine fluiddichte Verbindung mit der Trennscheibe 31 entsteht. - Die nachfolgenden
Figuren 3 bis 5 zeigen jeweils eine Schnittansicht durch den bereits inFigur 2 beschriebenen Kondensator 30. Abweichend zu derFigur 2 sind in denFiguren 3 bis 5 alternative Verbindungen des Anschlusselementes 52, 60, 70 mit der Trennscheibe 31 dargestellt. Der grundsätzliche Aufbau des Kondensators 30 mit seinen Scheibenelementen 42 und der Trennscheibe 31 bleibt unverändert. Wie auch in derFigur 2 wechseln sich jeweils Strömungskanäle 45 des Kühlmittels mit Strömungskanälen 36 bzw. 40 des ersten Bereiches des ersten Strömungskanals bzw. des zweiten Bereiches des Strömungskanals ab. Nach oben sind die Kondensatoren 30 derFiguren 3 bis 5 ebenfalls durch ein oberes Abschlussscheibenelement 32 und nach unten hin durch ein unteres Abschlussscheibenelement 33 begrenzt. Es wird daher in der Beschreibung zu denFiguren 3 bis 5 vorwiegend auf die Verbindung des Anschlusselementes 52, 60, 70 mit der Trennscheibe 31 eingegangen. - Die
Figur 3 zeigt ein Anschlusselement 52, welches im Inneren einen Strömungskanal 53 aufweist. Das Anschlusselement 52 verläuft ebenfalls konzentrisch zu den Öffnungen 34 der Scheibenelemente 42 und durchdringt die mit einer kleineren Öffnung 41 versehene Trennscheibe 31 mit einem seiner Endbereiche. - Der dem unteren Abschnitt des Kondensators 30 zugewandte Endbereich des Anschlusselementes 52 weist einen umlaufenden Absatz 50 auf und dazu benachbart einen umlaufenden Wulst 51. Der untere Wulst 51 ist dabei von oben durch die Öffnung 41 der Trennscheibe 31 hindurch geschoben. Die Trennscheibe 31 ist somit zwischen dem umlaufenden Absatz 50 und dem umlaufenden Wulst 51 fixiert. Die Ausbildung des Absatzes 50 bzw. des Wulstes 51 dient hier zur Fixierung des Anschlusselementes 52 und gleichzeitig zur Abdichtung des Anschlusselementes gegen die Trennscheibe 31.
- Der untere Wulst 51 der
Figur 3 weist eine geringere radiale Ausdehnung als der obere Absatz 50 auf. Auf diese Weise ist es möglich das Anschlusselement 52 ohne großen Kraftaufwand und ohne das Risiko einer Beschädigung der Trennscheibe 31 durch die Öffnung 41 der Trennscheibe 31 zu stecken. - Es sei darauf hingewiesen, dass zwischen dem oberen Kondensationsbereich und dem unteren Unterkühlbereich des Kondensators 30 im Regelfall keine große Druckdifferenz herrscht. Daher können auch leichte Leckagen zwischen dem Anschlusselement 52 und der Trennscheibe 31 hingenommen werden.
- Leichte Leckageströme führen nicht zur Funktionsuntüchtigkeit des Kondensators 30. An die Abdichtung der Anschlüsselemente 38, 52, 60, 70 zur Trennscheibe 31 ist daher nicht der höchste Maßstab anzulegen. Eine möglichst optimale Fluidabdichtung zwischen den Anschlusselementen 38, 52, 60, 70 und der Trennscheibe 31 ist trotzdem wünschenswert.
- Die
Figur 4 zeigt ein Anschlusselement 60, welches durch die Öffnung 41 der Trennscheibe 31 geführt ist. Das Anschlusselement 60, welches im Inneren den Strömungskanal 61 ausbildet, weist an seinem dem Unterkühlbereich zugewandten Endbereich einen zumindest teilweise umlaufenden Flansch 63 auf und dazu benachbart Schnapphaken 62. Der umlaufende Flansch 63 weist weiterhin eine umlaufende Nut 65 auf, welche in der der Trennscheibe 31 zugewandten Fläche des Flansches 63 angeordnet ist. Innerhalb der Nut 65 verläuft eine Dichtung 64. Im montierten Zustand ist die Dichtung 64 zwischen dem zumindest teilweise umlaufenden Flansch 63 und der Trennscheibe 31 verklemmt, so dass sie eine Dichtwirkung zwischen dem oberen Bereich des Kondensators 30 und dem unteren Bereich des Kondensators 30 entfaltet. - Die Schnapphaken 62 sind so im Anschlusselement 60 angebracht, dass sie bei dem Einschieben von oben durch die Öffnung 41 durch die Einschiebbewegung eingedrückt werden und nach dem Durchdringen der Trennscheibe 31 nach außen in eine Position, welche radial über den Außendurchmesser des restlichen Anschlusselementes 60 hinausragt, ausfedern und somit die Trennscheibe 31 hintergreifen.
- Die Schnapphaken 62 verhindern damit ein unbeabsichtigtes Herauslösen des Anschlusselementes 60 aus der Trennscheibe 31. Die Trennscheibe 31 wird somit zwischen dem Schnapphaken 62 und dem darüber liegenden zumindest teilweise umlaufenden Flansch 63 fixiert. Durch eine optimale Positionierung der Schnapphaken relativ zu dem zumindest teilweise umlaufenden Flansch 63 ist ein spielfreier Sitz des Anschlusselementes 60 in der Trennscheibe 31 zu erreichen. Je passgenauer dieser Sitz ist, umso höher ist die Abdichtwirkung, welche aufgrund der Dichtung 64 entsteht.
- Während es besonders vorteilhaft ist den Flansch 63 vollständig umlaufend um das Anschlusselement 60 auszuführen, können die Schnapphaken 62 sowohl weitestgehend umlaufend positioniert sein als auch nur in gewissen vorgesehenen Abständen.
- Die
Figur 5 zeigt ein Anschlusselement 70 mit einem im Inneren liegenden Strömungskanal 71. Das Anschlusselement 70 weist in seinem dem unteren Bereich des Kondensators 30 zugewandten Endbereich einen zumindest teilweise umlaufenden Absatz 72 auf und dazu benachbart Schnapphaken 73. - Ähnlich dem Prinzip in
Figur 4 sind die Schnapphaken so dimensioniert, dass sie bei dem Einstecken in die Öffnung 41 der Trennscheibe 31 nach innen gedrückt werden und nach dem Durchschieben durch die Trennscheibe 31 in eine radial über den Außenradius des Anschlusselementes 70 hinausragende Position federn und die Trennscheibe 31 hintergreifen. In derFigur 5 ist das Anschlusselement 70 durch die unteren Schnapphaken 73 und den oberen zumindest teilweise umlaufenden Absatz 72 an der Trennscheibe 31 fixiert. Abweichend zu derFigur 4 weist die Verbindung inFigur 5 keine zusätzliche Dichtung auf. - Alle in den
Figuren 2 bis 5 gezeigten Verbindungsmittel, wie etwa zumindest teilweise umlaufende Flansche, vollständig umlaufende Flansche, Schnapphaken, Absätze oder Wulste sind in beliebiger Kombination miteinander verwendbar. Ebenso ist es vorsehbar, dass mehr als eine Dichtung zur Abdichtung des Anschlusselementes 38, 52, 60, 70 gegen die Trennscheibe 31 vorgesehen ist. - Die in den
Figuren 2 bis 5 beschriebenen Ausführungsformen sind beispielhaft und besitzen keinen beschränkenden Charakter. - Die
Figuren 6 bis 10 zeigen einen Kondensator 90 in Stapelscheibenbauweise. Der grundsätzliche Aufbau des Kondensators 90 entspricht dem Aufbau des Kondensators 30 derFiguren 2 bis 5 . Abweichend zu denFiguren 2 bis 5 weist nun der Kondensator 90 derFiguren 6 bis 10 eine abweichende Trennscheibe 96 auf. Während die Trennscheibe 31 derFiguren 2 bis 5 eine Öffnung 41 aufweist, welche kleiner ist als die Öffnungen 34 der Scheibenelemente 42, weist nun die Trennscheibe 96 eine Öffnung 97 auf, welche im Durchmesser den Öffnungen 95 der Scheibenelemente 114 entspricht. Dies bringt insbesondere den Vorteil mit sich, dass auch die Trennscheibe 96 nun den übrigen Scheibenelementen 114 des Kondensators 90 entspricht. - Die
Figur 6 weist ein Anschlusselement 102 auf, welches in seinem Inneren den Strömungskanal 103 ausbildet. Das Durchströmungsprinzip derFiguren 6 bis 10 ist mit dem in den bereits beschriebenenFiguren 2 bis 5 identisch. Die konzentrisch zueinander liegenden Öffnungen 95 der Scheibenelemente 114 bilden eine erste Strömungsstrecke 91 aus. Diese erste Strömungsstrecke 91 erstreckt sich entlang der Öffnungen 95 im oberen Bereich des Kondensators 90, in welchem die Kondensation stattfindet. Im unteren Bereich des Kondensators 90 ist durch die Öffnungen 95 die zweite Strömungsstrecke 92 gebildet. Die zweite Strömungsstrecke 92 erstreckt sich über den gesamten Unterkühlbereich des Kondensators 90. - Das Kältemittel strömt entlang der Kanäle 93, welche dem ersten Bereich des ersten Strömungskanals zugeordnet sind in die erste Strömungsstrecke 91 und von dort in den Sammler. Nach dem Durchströmen des Sammlers strömt das Kältemittel entlang des Strömungskanals 103 in den unteren Unterkühlbereich des Kondensators 90 in die zweite Strömungsstrecke 92. Von dort strömt es durch die Kanäle 94, welche dem zweiten Bereich des ersten Strömungskanals zugeordnet sind durch den Kondensator 90.
- Das Anschlusselement 102 ist in einem Stopfen 98 aufgenommen. Der Stopfen 98 weist eine Öffnung 104 auf, durch welche das Anschlusselement 102 geführt ist. An seinem Umfang ist der Stopfen 98 an der Trennscheibe 96 und dem darunterliegenden Scheibenelement 114 abgestützt.
- Der Stopfen 98 weist hierzu an seinem radialen Randbereich 101 einen umlaufenden Wulst 99 auf sowie dazu benachbart Schnapphaken 100. Der Wulst 99 des Stopfens 98 liegt dabei auf der dem oberen Bereich des Kondensators 90 zugewandten Seite der Trennscheibe 96 auf. Die Schnapphaken 100 greifen von unten gegen das mit der Trennscheibe 96 in Verbindung stehende Scheibenelement 114. Die Schnapphaken 100 sind so ausgestaltet, dass sie beim Einschieben des Stopfens 98 in die Öffnung 97 der Trennscheibe 96 nach innen gedrückt werden. Nach dem Durchschieben durch die Trennscheibe 96 und durch das darunter liegende Scheibenelement 114 federn die Schnapphaken in eine radial über den Außenradius des Stopfens 98 hinausragende Position nach außen. Die Schnapphaken hintergreifen somit das Scheibenelement 114.
- Durch die Kombination des umlaufenden Wulstes 99 und den Schnapphaken 100 ist der Stopfen 98 gegenüber der Trennscheibe 96 und dem darunterliegenden Scheibenelement 114 im Kondensator 90 fixiert.
- Die Verbindung zwischen dem Anschlusselement 102 und dem Stopfen 98 kann analog zu den bereits in den
Figuren 2 bis 5 gezeigten Verbindungen zwischen den Anschlusselementen 38, 5, 60, 70 und der Trennscheibe 31 erfolgen. Die in den Figuren 2 bis 5 gezeigten Verbindungen der Anschlusselemente 38, 52, 60, 70 beziehen sich jeweils auf die Verbindung dieser Anschlusselemente mit der Trennscheibe 31. Das Verbindungsprinzip ist jedoch auch auf die Anschlusselemente 102, 120, 140 derFiguren 6 bis 10 übertragbar und bezieht sich dann auf die Verbindung der Anschlusselemente 102, 120, 140 mit den Stopfen 98, 110, 122, 145. - Alternativ kann der Stopfen 98, 110, 122, 145 auch einteilig mit dem Anschlusselement 102, 120, 140 ausgeführt sein.
- Die
Figur 7 zeigt einen Kondensator 90 analog derFigur 6 . Der Stopfen 110 weist nun zwei zueinander benachbarte umlaufende Wülste 111 und 112 auf. Der Stopfen 110 ist an der Trennscheibe 96 sowie dem darunterliegenden Scheibenelement 114 über die beiden Wülste 111 und 112 fixiert. Der Wulst 111 liegt dabei auf der dem oberen Bereich des Kondensators 90 zugewandten Fläche der Trennscheibe 96 auf und der untere Wulst 112 liegt an der dem unteren Bereich zugewandten Fläche des Scheibenelementes 114 an. - Das Anschlusselement 102 ist in die Öffnung 113 des Stopfens 110 eingesteckt.
- Der Aufbau des Stopfens 110 mit den umlaufenden Wülsten 111 und 112 führt dazu, dass der Stopfen 110 ohne großen Kraftaufwand in die Öffnungen 95 des Kondensators 90 eingeführt werden kann, bis er schließlich an seiner vorgesehenen Position an der Trennscheibe 96 und dem darunterliegenden Scheibenelement 114 positioniert werden kann.
- Grundsätzlich ist es vorteilhaft, einen Kompromiss zwischen möglichst hoher Dichtwirküng zwischen dem Stopfen 98, 110, 122, 145 und der Trennscheibe 96 sowie der einfachen Einführbarkeit des Stopfens 98, 110, 122, 145 in den Kondensator 90 zu erreichen.
- Die
Figur 8 zeigt ein Anschlusselement 120 mit einem inneren Strömungskanal 121. Zusätzlich ist in derFigur 8 in die zweite Strömungsstrecke 92 eine Hülse 124 eingesteckt, welche entlang ihres Umfanges Aussparungen 128 aufweist. Durch diese Aussparungen 128 kann das Kältemittel, welches entlang des Strömungskanals 121 in die zweite Strömungsstrecke 92 strömt, in die Kanäle 94 des zweiten Bereiches des ersten Strömungskanals, welche sich zwischen den Scheibenelementen 114 ausbilden, strömen. - Die Hülse 124 ist in der
Figur 8 auf dem unteren Abschlussscheibenelement 107 des Kondensators 90 abgestützt. Weiterhin weist die Hülse 124 an ihrem Umfang Schnapphaken 127 auf. Diese Schnapphaken sind so konstruiert, dass sie beim Einschieben der Hülse 124 entlang der Öffnungen 95 von den Scheibenelementen 114 nach innen gedrückt werden. Nach dem Durchschieben der Trennscheibe 96 und des darunterliegenden Scheibenelementes 114 federn die Schnapphaken 127 analog der bereits im Vorfeld beschriebenen Schnapphaken radial über die Außenkontur der Hülse 124 hinaus. Dadurch wird die Hülse 124 zwischen dem unteren Abschlussscheibenelement 107 und dem Scheibenelement 114, welches unterhalb der Trennscheibe 96 angeordnet ist, fixiert. - Die Fixierung der Hülse 124 wird weiterhin dadurch verstärkt, dass der Stopfen 122 in das Innere der Hülse 124 eingepresst ist. Dafür weist der Stopfen eine konisch von oben nach unten zulaufende Außenkontur auf. Im Inneren der Hülse 124 sind oberhalb der Schnapphaken 127 ein umlaufender Absatz 125 sowie darüber weitere Schnapphaken 126 angeordnet.
- Der Stopfen 122 weist einen geringeren Außendurchmesser als die Öffnungen 95 des Kondensators 90 auf. Er kann daher ohne Kraftaufwand von oben in die Öffnungen 95 eingeführt werden. Der Stopfen 122 weist jedoch zumindest in seinem breitesten Bereich des konisch zulaufenden Bereiches einen größeren Außendurchmesser auf als der Innendurchmesser der Hülse 124 oberhalb des zumindest teilweise umlaufenden Absatzes 125.
- Der Stopfen 122 wird daher durch das Eindrücken in die Hülse in der Hülse 124 verklemmt. Der Stopfen 122 kommt dabei auf dem zumindest teilweise umlaufenden Absatz 125 zu liegen. Die im Inneren der Hülse 124 angeordneten Schnapphaken 126 sind so angeordnet, dass sie durch das Einführen des Stopfens 122 nach außen gedrückt werden und nach dem Durchschieben des Stopfens 122 über die Wandung der Hülse 124 nach innen in die Hülse 124 hineinfedern. Dadurch wird der Stopfen 122 zwischen dem zumindest teilweise umlaufenden Absatz 125 und den Schnapphaken 126 fixiert.
- Die Abdichtung des oberen Bereiches des Kondensators 90, in dem die Kondensation stattfindet, zum unteren Bereich des Kondensators, in dem die Unterkühlung stattfindet, erfolgt durch die Hülse 124, welche sich gegen die Trennscheibe 96 und das darunterliegende Scheibenelement 114 abstützt und im Inneren der Hülse 124 über den Stopfen 122, welcher mit einer Presspassung in der Hülse 124 sitzt und zwischen dem zumindest teilweise umlaufenden Absatz 125 und den Schnapphaken 126 der Hülse 124 fixiert ist.
- In einer alternativen Ausführung kann der Stopfen auch nur durch die Fixierung zwischen dem Absatz und den Schnapphaken in der Hülse fixiert werden. Die zusätzliche Dichtwirkung, welche durch eine Presspassung hervorgerufen wird, ist als optiohal anzusehen und ist nicht zwingend notwendig. Der Stopfen kann dabei auch eine nicht konische Form aufweisen.
- Die
Figur 9 zeigt ein Anschlusselement 140 mit einem im Inneren liegenden Strömungskanal 141. Das Anschlusselement 140 ist in einen Stopfen 145, welcher eine Öffnung 146 aufweist, eingesteckt. Der Stopfen 145 weist ähnlich dem Stopfen 122 inFigur 8 eine von oben nach unten konisch zulaufende Form auf. Auf diese Weise ist der Stopfen vorteilhaft in die Öffnungen 95 des Kondensators 90 einführbar. - Abweichend zur
Figur 8 ist nun im oberen Bereich des Kondensators 90, in welchem die Kondensation stattfindet, eine Hülse 142 eingebracht. Diese Hülse 142 entspricht in ihrem Außenradius dem Radius der Öffnungen 95 der Scheibenelemente 114. Die Hülse 142 weist einen zumindest teilweise umlaufenden Flansch 143 auf, mit welchem die Hülse 142 auf dem oberen Abschlussscheibenelement 106 zu liegen kommt. - Die Hülse 142 weist weiterhin entlang ihres Umfanges Aussparungen 144 auf. Über diese Aussparungen 144 kann das Kältemittel aus den Kanälen 93 des ersten Bereiches des ersten Strömungskanals in die erste Strömungsstrecke 91 strömen. Im Inneren der Hülse 142 ist ein zumindest teilweise umlaufender Absatz 149 angeordnet. Dieser zumindest teilweise umlaufende Absatz 149 ist im unteren Endbereich der Hülse 142 angeordnet. Oberhalb dieses zumindest teilweise umlaufenden Absatzes 149 weist die Hülse 142 Schnapphaken 148 auf. Diese sind, wie auch in
Figur 8 bereits beschrieben, nach innen gerichtet, so dass sie durch das Einstecken des Stopfens 145 nach außen gedrückt werden und nach dem Vorbeischieben des Stopfens 145 über die Innenwandung der Hülse 142 nach innen heraus federn. Der eingesteckte Stopfen 145 wird somit zwischen dem teilweise umlaufenden Absatz 149 und den Schnapphaken 148 in der Hülse 142 fixiert. - Zusätzlich kann je nach geometrischer Gestaltung der Stopfen 145 über seine konisch zulaufende Form im Inneren der Hülse 142 verpresst sein. Durch eine solche Verpressung kann die Abdichtwirkung der Hülse 142 gegen die Trennscheibe 96 und das darunterliegende Scheibenelement 114 weiter erhöht werden. Durch eine Einpressung des Stopfens 145 entstehen radial nach außen gerichtete Kräfte, welche auf die Wandung der Hülse 142 einwirken. Diese Kräfte erhöhen die Abdichtung der Hülse 142 gegenüber dem Kondensator 90.
- Die Hülse 142 weist ebenfalls an ihrem Außenbereich Schnapphaken 147 auf. Diese Schnapphaken 147 sind so positioniert, dass sie das Scheibenelement 114, welches direkt unter der Trennscheibe 96 angeordnet ist, im voll eingeschobenen Zustand der Hülse 142 hintergreifen. Die Hülse 142 wird somit durch die Schnapphaken 147 im Kondensator 90 fixiert. Der zumindest teilweise umlaufende Absatz 143 der Hülse 142 definiert dabei die maximale Einschubtiefe der Hülse 142 in den Kondensator 90.
- Die
Figur 10 zeigt den bereits in derFigur 9 gezeigten Aufbau. Zusätzlich ist nun im Bereich der Hülse 142 ein zusätzliches Trocknungsmittel 150 eingebracht. Das Trocknungsmittel 150 entspricht dabei einem Trocknungsmittel, welches auch in einem externen Sammler Verwendung findet. Durch die Anordnung des Trocknungsmittels 150 innerhalb der Hülse 142 kann das Kältemittel, welches durch den ersten Bereich des ersten Strömungskanals in die erste Strömungsstrecke 91 einströmt und anschließend weiter zum Sammler strömt, bereits innerhalb des Kondensators 90 teilgetrocknet werden. - In dem in
Figur 10 gezeigten Ausführungsbeispiel ist der Bereich der ersten Strömungsstrecke 91 innerhalb der Hülse 142 mit Trocknungsmittel 150 befüllt. - Die Anordnung von Trocknungsmittel 150 ist in allen gezeigten
Figuren 2 bis 10 vorsehbar. Hierzu ist das Trocknungsmittel vorteilhafterweise insbesondere in einem Bereich, welcher dem Sammler vorgelagert ist, im Kondensator 30, 90 vorzusehen. Es ist dabei darauf zu achten, dass das Trocknungsmittel nicht frei durch den Kondensator strömen kann, also von dem Kältemittel mitgerissen werden kann. Daher empfiehlt sich die Anordnung des Trocknungsmittels 150, wie inFigur 10 gezeigt, innerhalb der Hülse 142 oder einer anderen, die Verbreitung des Trocknungsmittels verhindernden, Vorrichtung. - Der Aufbau der Kondensatoren 30, 90 der
Figuren 2 bis 10 soll den grundsätzlichen Aufbau eines Kondensators 30, 90 in Stapelscheibenbauweise darstellen. Die gezeigte Darstellung der Scheibenelemente 42 bzw. 114 oder der Trennscheiben 31 bzw. 96 hat keinen beschränkenden Charakter und stellt nur ein mögliches Ausführungsbeispiel dar. Ebenso ist die Anzahl der aufeinandergeschichteten Scheiben nicht beschränkend.
Claims (16)
- Kondensator (1, 30, 90) in Stapelscheibenbauweise, mit einem ersten Strömungskanal (36, 40, 93, 94) für ein Kältemittel und mit einem zweiten Strömungskanal (45, 105) für ein Kühlmittel, wobei eine Mehrzahl von Scheibenelementen (42, 114) vorgesehen ist, die aufeinandergestapelt zueinander benachbarte Kanäle (36, 40, 45, 93, 94, 105) zwischen den Scheibenelementen (42, 114) ausbilden, wobei ein erster Teil der Kanäle (36, 40, 45, 93, 94, 105) dem ersten Strömungskanal (36, 40, 93, 94) zugeordnet ist und ein zweiter Teil der Kanäle (36, 40, 45, 93, 94, 105) dem zweiten Strömungskanal (45, 105) zugeordnet ist, wobei der Strömungskanal (36, 40, 93, 94) des Kältemittels einen ersten Bereich (2) zur Enthitzung und Kondensation des dampfförmigen Kältemittels aufweist und einen zweiten Bereich (3) zur Unterkühlung des kondensierten Kältemittels aufweist , mit einem Sammler (8) zur Bevorratung und/oder Filterung und/oder Trocknung eines Kältemittels, wobei ein Kältemittelübertritt aus dem ersten Bereich (2) in den zweiten Bereich (3) durch den Sammler (8) führt; wobei der Sammler (8) über eine erste Strömungsstrecke (35, 91), welche mit dem Fluideinlass des Sammlers (8) in Fluidkommunikation steht, mit dem ersten Bereich (2) in Fluidkommunikation steht, wobei ein Anschlusselement (4, 38, 52, 60, 70, 102, 120, 140) als Fluidauslass des Sammlers (8) mit dem zweiten Bereich (3) in Fluidkommunikation steht, dadurch gekennzeichnet, dass das Anschlusselement (4, 38, 52, 60, 70, 102, 120, 140) zumindest teilweise innerhalb der ersten Strömungsstrecke (35, 91) verläuft, und dass der erste Bereich (2) von dem zweiten Bereich (3) durch eine Trennscheibe (31, 96) getrennt ist.
- Kondensator (1, 30, 90) nach Anspruch 1, dadurch gekennzeichnet, dass die erste Strömungsstrecke (35, 91) entlang erster Öffnungen (34, 95), in zueinander benachbarten Scheibenelementen (42, 114) gebildet ist, wobei die Scheibenelemente (42, 114) Teil des ersten Bereiches (2) des ersten Strömungskanals (36, 40, 93, 94) sind.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Scheibenelemente (42, 114), welche Teil des zweiten Bereiches (3) des ersten Strömungskanals (36, 40, 93, 94) sind, erste) Öffnungen (34, 95) aufweisen, entlang welcher eine zweite Strömungsstrecke (37, 92) gebildet ist.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trennscheibe (31, 96) eine zweite Öffnung (41, 97) aufweist, wobei das Anschlusselement (4, 38, 52, 60, 70, 102, 120, 140) die Trennscheibe (31, 96) vom ersten Bereich (2) aus zum zweiten Bereich (3) durch die zweite Öffnung (41, 97) durchdringt.
- Kondensator (1, 30, 90) nach Anspruch 4, dadurch gekennzeichnet, dass in der zweite Öffnung (97) der Trennscheibe (96) ein Stopfen (98, 110, 122, 145) angeordnet ist, welcher eine dritte Öffnung (104, 113, 123, 146) aufweist, welche im Vergleich zur zweiten Öffnung (97) der Trennscheibe (96) kleiner ist und das Anschlusselement (102, 120, 140) durch die dritte Öffnung (104, 113, 123, 146) des Stopfens (98, 110, 122, 145) geführt ist.
- Kondensator (1, 30, 90) nach Anspruch 5, dadurch gekennzeichnet, dass die Trennscheibe (31, 96) zumindest im Wesentlichen fluiddicht mit dem Anschlusselement (4, 38, 52, 60, 70, 102, 120, 140) und/oder dem Stopfen (98, 110, 122, 145) verbunden ist.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche 5 und 6, dadurch gekennzeichnet, dass der Stopfen (98, 110, 122, 145) eine erste radiale Aufdickung aufweist, und eine zur ersten Aufdickung benachbarte zweite Aufdickung aufweist, wobei die Trennscheibe (96) zwischen der ersten Aufdickung und der zweiten Aufdickung eingefasst ist.
- Kondensator (1, 30, 90) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass das Anschlusselement (52, 60, 70) an seinem dem zweiten Bereich (3) des ersten Strömungskanals zugewandten Endbereich, eine dritte radiale Aufdickung aufweist und eine zur dritten Aufdickung benachbarte vierte Aufdickung aufweist, wobei die Trennscheibe (31) oder der Stopfen zwischen der dritten Aufdickung und der vierten Aufdickung eingefasst ist.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche 7 und 8, dadurch gekennzeichnet, dass die Aufdickungen am Anschlusselement (52, 60, 70) und/oder am Stopfen (98, 110, 122, 145) durch radial zumindest teilweise umlaufende Halteelemente (62, 73, 100) und/oder durch Wülste (50, 51, 63, 72, 99, 111, 112) gebildet sind.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die erste Aufdickung und/oder die zweite Aufdickung und/oder die dritte Aufdickung und/oder die vierte Aufdickung eine zur Trennscheibe (31) und/oder zum Stopfen gerichtete Dichtung (64) aufweist.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in die erste Strömungsstrecke (91) und/oder in die zweite Strömungsstrecke (92) eine Hülse (124, 142) einführbar ist, welche radial umlaufend angeordnete Aussparungen (128, 144) aufweist.
- Kondensator (1, 30, 90) nach dem vorhergehenden Anspruch 11, dadurch gekennzeichnet, dass die Hülse (124, 142) durch einen zumindest teilweise radial umlaufende Absatz (143) und/oder durch ein radial zumindest teilweise umlaufendes Halteelement (127, 147) und/oder durch eine Presspassung an den Scheibenelementen (114) fixiert ist.
- Kondensator (1, 30, 90) nach dem vorhergehenden Anspruch 5 bis 12, dadurch gekennzeichnet, dass der Stopfen (122, 145) durch eine Presspassung und/oder einen zumindest teilweise umlaufenden Absatz (125, 149) und/oder ein radial zumindest teilweise umlaufendes Halteelement (126, 148) in der Hülse (124, 142) fixiert ist.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich der ersten Strömungsstrecke (91) Mittel zur Trocknung (150) des Kältemittels vorgesehen sind.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Anschlusselement (4, 38, 50, 60, 70, 102, 120, 140) durch ein Tauchrohr gebildet ist.
- Kondensator (1, 30, 90) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Öffnungen (34, 95) und/oder die zweiten Öffnungen (41, 97) und/oder die dritten Öffnungen (104, 113, 123, 146) konzentrisch zueinander angeordnet sind.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012217087.1A DE102012217087A1 (de) | 2012-09-21 | 2012-09-21 | Kondensator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2711657A1 EP2711657A1 (de) | 2014-03-26 |
EP2711657B1 true EP2711657B1 (de) | 2015-07-29 |
Family
ID=49123673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13182584.6A Active EP2711657B1 (de) | 2012-09-21 | 2013-09-02 | Kondensator |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2711657B1 (de) |
DE (1) | DE102012217087A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101461872B1 (ko) * | 2012-10-16 | 2014-11-13 | 현대자동차 주식회사 | 차량용 응축기 |
KR101461871B1 (ko) * | 2012-10-19 | 2014-11-13 | 현대자동차 주식회사 | 차량용 응축기 |
DE102013209157A1 (de) * | 2013-05-16 | 2014-12-04 | Behr Gmbh & Co. Kg | Kondensator |
EP3667199B1 (de) * | 2018-12-10 | 2022-10-05 | Valeo Autosystemy SP. Z.O.O. | Wärmetauscher mit filter für kühlmittelkreislauf |
DE102019132955B4 (de) * | 2019-12-04 | 2022-03-31 | Hanon Systems | Wärmeübertrager mit integriertem Trockner und Platte für einen Plattenwärmeübertrager |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2846733B1 (fr) * | 2002-10-31 | 2006-09-15 | Valeo Thermique Moteur Sa | Condenseur, notamment pour un circuit de cimatisation de vehicule automobile, et circuit comprenant ce condenseur |
FR2943774B1 (fr) * | 2009-03-24 | 2013-12-20 | Valeo Systemes Thermiques | Condenseur a deux blocs d'echange de chaleur pour circuit de climatisation |
FR2947041B1 (fr) * | 2009-06-23 | 2011-05-27 | Valeo Systemes Thermiques | Condenseur avec reserve de fluide frigorigene pour circuit de climatisation |
FR2950682B1 (fr) * | 2009-09-30 | 2012-06-01 | Valeo Systemes Thermiques | Condenseur pour vehicule automobile a integration amelioree |
DE102010026507A1 (de) * | 2010-07-07 | 2012-01-12 | Behr Gmbh & Co. Kg | Kältemittelkondensatormodul |
DE102011005177A1 (de) * | 2011-03-07 | 2012-09-13 | Behr Gmbh & Co. Kg | Kondensator |
-
2012
- 2012-09-21 DE DE102012217087.1A patent/DE102012217087A1/de not_active Withdrawn
-
2013
- 2013-09-02 EP EP13182584.6A patent/EP2711657B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
DE102012217087A1 (de) | 2014-03-27 |
EP2711657A1 (de) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2711657B1 (de) | Kondensator | |
EP2909563B1 (de) | Kondensator | |
EP2031338B1 (de) | Wärmetauscher | |
EP2997318B1 (de) | Kondensator | |
DE102016012331A1 (de) | Rundfilterelement, insbesondere zur Gasfiltration | |
DE102010062813A1 (de) | Kraftstofffilter | |
DE102007009923A1 (de) | Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges | |
DE102013217287A1 (de) | Innerer Wärmeübertrager für einen Kältemittelkreislauf, insbesondere für eine Klimaanlage eines Kraftfahrzeuges, und einen Kältemittelkreislauf mit einem Verdampfer | |
DE102019210022A1 (de) | Wärmeübertragermodul und Verfahren zum Herstellen des Wärmeübertragermoduls | |
WO2012000905A2 (de) | Wärmetauscher | |
EP1664659A2 (de) | Ölmodul für eine brennkraftmaschine | |
EP2353692A2 (de) | Filtereinrichtung | |
EP3203171A1 (de) | Stapelscheibenwärmetauscher, insbesondere für ein kraftfahrzeug | |
DE102016104971B4 (de) | Verfahren zum verbinden einer filteranordnung mit einem filteranordnungsbehälter und einem deckel | |
DE102015106476B4 (de) | Schmierölsystem einer Brennkraftmaschine | |
EP2798298B1 (de) | Wärmeübertrager | |
DE102014220403A1 (de) | Verfahren zur Montage einer Wärmetauschereinrichtung und Wärmetauschereinrichtung | |
EP1890102B1 (de) | Gewölbter Bodenteil für einen Sammelkasten eines Wärmeaustauschers | |
DE102015220579A1 (de) | Stapelscheiben-Wärmeübertrager | |
DE102009034348A1 (de) | Filter | |
WO2015074823A1 (de) | Wärmeübertrager | |
DE202020101747U1 (de) | Membranpumpe und Kaffeemaschine mit Membranpumpe | |
DE102015114322A1 (de) | Fluidfilter und Filtereinsatz dafür | |
DE102021114345B4 (de) | Schmiermittelfangschale | |
DE102011002976A1 (de) | Kältemittelkondensatorbaugruppe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20140926 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 40/02 20060101ALI20141021BHEP Ipc: F28D 9/00 20060101AFI20141021BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141218 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAHLE BEHR GMBH & CO. KG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
INTG | Intention to grant announced |
Effective date: 20150605 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 739654 Country of ref document: AT Kind code of ref document: T Effective date: 20150815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013000942 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151029 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151030 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150902 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013000942 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20160502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170902 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180924 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 739654 Country of ref document: AT Kind code of ref document: T Effective date: 20180902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240521 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240918 Year of fee payment: 12 |