EP2711649B1 - Einschraubheizkörper und System - Google Patents

Einschraubheizkörper und System Download PDF

Info

Publication number
EP2711649B1
EP2711649B1 EP13185936.5A EP13185936A EP2711649B1 EP 2711649 B1 EP2711649 B1 EP 2711649B1 EP 13185936 A EP13185936 A EP 13185936A EP 2711649 B1 EP2711649 B1 EP 2711649B1
Authority
EP
European Patent Office
Prior art keywords
screw
power
heater device
heating
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13185936.5A
Other languages
English (en)
French (fr)
Other versions
EP2711649A1 (de
Inventor
Uwe Schaumann
Karl-Heinz Benz
Ewald Bayer
Fabian Hübner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102012217337.4A external-priority patent/DE102012217337B4/de
Priority claimed from DE201310203598 external-priority patent/DE102013203598B3/de
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Publication of EP2711649A1 publication Critical patent/EP2711649A1/de
Application granted granted Critical
Publication of EP2711649B1 publication Critical patent/EP2711649B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/201Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply
    • F24H1/202Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply with resistances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0275Heating of spaces, e.g. rooms, wardrobes
    • H05B1/0277Electric radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/20Wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/40Photovoltaic [PV] modules

Definitions

  • the invention relates to a screw-in and a system with a screw-in.
  • the DE 20 2012 102 677 U1 shows a system for self-consumption control with a PLC that electrically controls a heater without Eigenintelligencez.
  • the PLC adjusts the heat output in accordance with an electrical power generated by a photovoltaic module.
  • the invention has for its object to provide a screw-in and a system with such a screw-in heating available that allow easy implementation of a system with self-consumption maximization and in particular require a relatively low cabling.
  • the invention solves this problem by a radiator and / or screw-in heater according to claim 1 and a system according to claim 6.
  • the radiator or Einschraub carvingSystem (also referred to as screw-in heating device) initially comprises conventional means, such as a thread and / or a bayonet, gaskets, etc., which allow screwing into, for example, a designated hot water tank.
  • conventional means such as a thread and / or a bayonet, gaskets, etc., which allow screwing into, for example, a designated hot water tank.
  • the screw-in heater further comprises an electrically operated heating means, which is provided for example for heating water in a hot water tank.
  • a data transmission device or interface of the screw-in heating element is designed to receive a current feed-in power or a value of a current feed-in power (or a variable derived therefrom) from a conventional feed-in counter, the feed-in counter having a corresponding data transmission device or interface.
  • the feed-in meter (also counter or energy and / or power measuring device) is designed to be a current or current at a grid transfer point in a public network fed electrical (active) power to measure and integrate over time, the input electrical power is generated for example by means of an energy converter, the energy from renewable energy sources, such as solar or wind energy, converts into electrical energy.
  • the feed-in meter may be part of a so-called bidirectional meter, which comprises a conventional utility-related electricity metering reference meter and the feed-in metering meter for the electricity fed into the utility grid. It should also be noted in the relevant literature to avoid repetition.
  • a control device of the Einschraubcomposing stresses is adapted to control a heating power of the electrically operated heating means in dependence on the received instantaneous feed power in such a way (or to regulate or optimize) that self-consumption is optimized.
  • the control device can for example set or increase the heating power of the electrically operated heating means in such a way that the feed-in power is reduced, ideally to approximately zero.
  • the controller can adjust the heating power continuously or stepped, for example, in seven stages. In the event that currently no electrical power is fed into the public grid, the controller can reduce the heating power of the electrically operated heating means to zero.
  • an electrical load such as a conventional non-remotely controllable screw-in heater
  • an energy management device i. the power management device and the electrical load are connected together with mains voltage carrying lines.
  • the electrical switching functions, the heating power setting and the corresponding provision of electrical energy take place predominantly or completely in the energy management device.
  • the screw-in heating element Due to the data transmission capability of the screw-in heating element according to the invention and its intrinsic intelligence, the latter can autonomously carry out self-consumption optimization as a function of a current feed-in power. It is therefore not necessary to provide a central energy management device, which is to be connected to the screw-in with mains voltage-carrying lines. Therefore, the cabling effort is significantly reduced compared to conventional solutions.
  • the control device can further be designed to control the operation of the screw-in heating element as a function of predefinable operating parameters, for example to operate the electrically operated heating means with different heating power stages, to realize a thermostatic function, etc.
  • the data transmission device can be designed to receive the presettable operating parameters from an energy management device.
  • the energy management device may be a feed-in meter in the simplest case, and the predeterminable operating parameters may include an instantaneous feed-in power detected by the feed-in counter.
  • the screw-in heater can be controlled remotely by means of the energy management device.
  • the electrical load such as a conventional non-remotely controllable screw-in heater
  • the power management device i. the power management device and the electrical load are connected together with mains voltage carrying lines.
  • the electrical switching functions, the heating power setting and the corresponding provision of electrical energy take place predominantly or completely in the energy management device.
  • the data transmission device can be configured to receive the operating parameters wirelessly, for example via Bluetooth, ZigBee, WiFi (WLAN), etc., from the energy management device.
  • a wired data transmission for example via Powerline, possible.
  • the operating parameters may include a heating power setpoint for the electrically powered heating means and a temperature setpoint.
  • the data transmission device may be configured to transmit status information, such as a current temperature, error states, etc., to the energy management device.
  • the electrically operated heating means may be a conventional tubular heater.
  • the electrically powered heating means may be a thin film or thick film resistive heating element.
  • the data transmission device can be designed to receive the instantaneous feed-in power wirelessly, for example via Bluetooth, ZigBee, WiFi (WLAN), etc., from the feed-in counter.
  • a wired data transmission for example via Powerline, SO interface, etc. possible.
  • the Einschraubloom stresses may include one or more, coupled to the controller temperature sensors, so that, for example, a thermostatic operation or a thermostat function can be realized.
  • the control device can generate, for example, heating power by means of the electrically operated heating means as long as a temperature setpoint is not exceeded. If the temperature set point is exceeded, the control unit can stop heating power generation.
  • the control device can be designed to carry out a self-monitoring.
  • self-monitoring can take place by means of a mechanical STB integrated in the screw-in heater or an integrated electronic security element.
  • the system comprises an energy converter, for example in the form of a photovoltaic module, a wind turbine, a combined heat and power plant, etc., which converts energy from non-electrical or regenerative energy sources such as solar or wind into electrical energy.
  • an energy converter for example in the form of a photovoltaic module, a wind turbine, a combined heat and power plant, etc., which converts energy from non-electrical or regenerative energy sources such as solar or wind into electrical energy.
  • the system further includes a hot water tank and a above-mentioned screw-in, which is coupled to the hot water tank, for example, screwed into this, and is provided for heating the hot water tank.
  • the system further has a feed-in counter, which is designed to transmit an instantaneous feed-in power to the screw-in heating element, so that the screw-in heating element optimizes self-consumption of the energy converted by means of the energy converter.
  • the energy converter can be directly, i. without the interposition of further functional groups, in particular without the interposition of an inverter, be electrically connected to the screw-in.
  • the energy converter can be designed to generate a DC voltage, wherein the screw-in heating element is electrically supplied with the DC voltage generated by means of the energy converter.
  • the energy converter can have one or more PV modules or be embodied as one or more PV modules.
  • Fig. 1 shows a EinschraubdistributingMech 1 with an electrically operated heating means in the form of a tubular heater 2 or an alternative resistance heating element.
  • a control device in the form of a microcontroller 3 is provided, which is designed to control the operation of the screw-in heater 1 and to carry out a self-monitoring.
  • an integrated mechanical / electronic STB (not shown) may be provided for safety shutdown in the event of a fault.
  • a Bluetooth data transmission device 4 of the Einschraubdistributing stresses 1 is adapted to a current electrical feed power at a network feed point 14 from a corresponding Bluetooth data transmission device 13 of a feed meter 12 (see Fig. 2 ) to receive wirelessly.
  • the EinschraubdistributingSystem 1 comprises a temperature sensor 7, which detects a temperature of a heated by means of the tubular heater 1 liquid, wherein a temperature setpoint by means of a rotary selector switch or potentiometer 5 can be predetermined.
  • a conventional single-phase or three-phase mains voltage can be connected, wherein the heating means 2 is acted upon by a voltage obtained, for example, by switching from the mains voltage by switching.
  • Fig. 2 shows a system with an energy converter in the form of a photovoltaic module 9, the solar energy converts into electrical energy, a downstream conventional PV inverter 11, a hot water tank or floor storage 10, a EinschraublikSystem described above 1, which screwed into the hot water tank 10 and to heat the Hot water tank 10 is provided, and the Einspeiseschreiber 12th
  • An output of the PV inverter 11, a terminal of the feed meter 12 and the power supply terminal 6 of the screw-in heater 1 are connected to each other via a line voltage leading line / lines.
  • the feed-in meter 12 is further conventionally connected to another connection to a home connection point or feed-in point 14, the home connection point 14 being connected to an AC voltage network 15 of a network operator.
  • the screw-in heater 1 may, for example, have a plurality of programmable or predefinable power levels of 1 kW, 2 kW and 3 kW at 230 V AC.
  • the heating power can be infinitely preset when the screw-in heater 1 is a clocked control by means of a relay or power control with semiconductors, such as triac.
  • the data transmission device 4 can be provided, for example, as a Bluetooth or ZigBee interface for connection to a solar inverter or smart home automation. Of course, other data transmission systems or data transmission standards can be used.
  • the screw-in heater 1 may have further temperature sensors for determining a state of charge of the stationary memory 10.
  • the photovoltaic module 9 directly ie, bypassing the PV inverter 11, with the screw-1 are electrically DC-coupled.
  • the DC voltage generated by the photovoltaic module 9 then serves without previous conversion to the electrical supply of the screw-1 and thus to the heating power generation.
  • a direct voltage (DC) bus between the photovoltaic module 9 and 1 Einschraubcroscalescale be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

  • Die Erfindung betrifft einen Einschraubheizkörper und ein System mit einem Einschraubheizkörper.
  • Bei der Verwendung von Photovoltaik(PV)- oder Windkraftanlagen ist es wünschenswert, den Eigenverbrauch der erzeugten elektrischen Energie zu maximieren.
  • Die DE 20 2012 102 677 U1 zeigt ein System zur Eigenverbrauchssteuerung mit einer SPS, die eine Heizeinrichtung ohne Eigenintelligenz elektrisch ansteuert. Die SPS stellt die Heizleistung in Abhängigkeit von einer von einem Photovoltaikmodul erzeugten elektrischen Leistung ein.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Einschraubheizkörper und ein System mit einem solchen Einschraubheizkörper zur Verfügung zu stellen, die eine einfache Realisierung eines Systems mit Eigenverbrauchsmaximierung ermöglichen und die insbesondere einen vergleichsweise geringen Verkabelungsaufwand erfordern.
  • Die Erfindung löst diese Aufgabe durch einen Heizkörper und/oder Einschraubheizkörper nach Anspruch 1 und ein System nach Anspruch 6.
  • Der Heizkörper bzw. Einschraubheizkörper (auch als einschraubbare Heizvorrichtung bezeichnet) umfasst zunächst herkömmliche Mittel, wie ein Gewinde und/oder einen Bajonettverschluss, Dichtungen, usw., die ein Einschrauben in beispielsweise einen hierfür vorgesehenen Warmwasserspeicher ermöglichen. Insoweit sei auch auf die einschlägige Fachliteratur verwiesen.
  • Der Einschraubheizkörper umfasst weiter ein elektrisch betriebenes Heizmittel, das beispielsweise zur Erwärmung von Wasser in einem Warmwasserspeicher vorgesehen ist.
  • Eine Datenübertragungseinrichtung bzw. Schnittstelle des Einschraubheizkörpers ist dazu ausgebildet, eine momentane Einspeiseleistung bzw. einen Wert einer momentanen Einspeiseleistung (oder einer davon abgeleiteten Größe) von einem herkömmlichen Einspeisezähler zu empfangen, wobei der Einspeisezähler eine korrespondierende Datenübertragungseinrichtung bzw. Schnittstelle aufweist.
  • Der Einspeisezähler (auch Zähler oder Energie- und/oder Leistungsmesseinrichtung) ist dazu ausgebildet, eine momentan bzw. aktuell an einem Netzübergabepunkt in ein öffentliches Netz eingespeiste elektrische (Wirk-) Leistung zu messen und über der Zeit zu integrieren, wobei die eingespeiste elektrische Leistung beispielsweise mittels eines Energiewandlers erzeugt wird, der Energie aus regenerativen Energiequellen, wie beispielsweise Sonnenenergie oder Windenergie, in elektrische Energie wandelt. Der Einspeisezähler kann Bestandteil eines so genannten Zweirichtungszählers sein, der einen herkömmlichen Bezugszähler für aus dem Versorgungsnetz bezogenen Strom und den Einspeisezähler für den in das Versorgungsnetz eingespeisten Strom umfasst. Im Übrigen sei auch auf die einschlägige Fachliteratur verwiesen, um Wiederholungen zu vermeiden.
  • Eine Steuereinrichtung des Einschraubheizkörpers ist dazu ausgebildet, eine Heizleistung des elektrisch betriebenen Heizmittels in Abhängigkeit von der empfangenen momentanen Einspeiseleistung derart zu steuern (bzw. zu regeln oder zu optimieren), dass ein Eigenverbrauch optimiert wird. Für den Fall, dass momentan elektrische Leistung in das öffentliche Netz eingespeist wird, kann die Steuereinrichtung beispielsweise die Heizleistung des elektrisch betriebenen Heizmittels derart einstellen bzw. erhöhen, dass die Einspeiseleistung reduziert wird, im Idealfall in etwa Null ist. Die Steuereinrichtung kann die Heizleistung stufenlos oder gestuft, beispielsweise in sieben Stufen, einstellen. Für den Fall, dass momentan keine elektrische Leistung in das öffentliche Netz eingespeist wird, kann die Steuereinrichtung die Heizleistung des elektrisch betriebenen Heizmittels auf Null reduzieren.
  • Bei herkömmlichen Lösung zur Eigenverbrauchsoptimierung wird ein elektrischer Verbraucher, wie beispielsweise ein herkömmlicher nicht fernsteuerbarer Einschraubheizkörper, unmittelbar von einer Energiemanagementvorrichtung elektrisch gespeist, d.h. die Energiemanagementvorrichtung und der elektrische Verbraucher sind mit netzspannungsführenden Leitungen miteinander verbunden. Die elektrischen Schaltfunktionen, die Heizleistungseinstellung und die entsprechende Bereitstellung von elektrischer Energie erfolgen überwiegend oder vollständig in der Energiemanagementvorrichtung.
  • Aufgrund der Datenübertragungsfähigkeit des erfindungsgemäßen Einschraubheizkörpers und seiner Eigenintelligenz kann dieser in Abhängigkeit von einer momentanen Einspeiseleistung autonom eine Eigenverbrauchsoptimierung durchführen. Es ist daher nicht notwendig, eine zentrale Energiemanagementvorrichtung vorzusehen, die mit dem Einschraubheizkörper mit netzspannungsführenden Leitungen zu verbinden ist. Daher reduziert sich der Verkabelungsaufwand verglichen mit herkömmlichen Lösungen deutlich.
  • Die Steuereinrichtung kann weiter dazu ausgebildet sein, den Betrieb des Einschraubheizkörpers in Abhängigkeit von vorgebbaren Betriebsparametern zu steuern, beispielsweise das elektrisch betriebene Heizmittel mit unterschiedlichen Heizleistungsstufen zu betreiben, eine thermostatische Funktion zu realisieren, usw.
  • Die Datenübertragungseinrichtung kann für diesen Fall dazu ausgebildet sein, die vorgebbaren Betriebsparameter von einer Energiemanagementvorrichtung zu empfangen. Die Energiemanagementvorrichtung kann im einfachsten Fall ein Einspeisezähler sein und die vorgebbaren Betriebsparameter können eine von dem Einspeisezähler erfasste momentane Einspeiseleistung umfassen.
  • Der Einschraubheizkörper kann mittels der Energiemanagementvorrichtung fernsteuerbar sein. Bei einer herkömmlichen Lösung wird der elektrische Verbraucher, wie beispielsweise ein herkömmlicher nicht fernsteuerbarer Einschraubheizkörper, unmittelbar von der Energiemanagementvorrichtung elektrisch gespeist, d.h. die Energiemanagementvorrichtung und der elektrische Verbraucher sind mit netzspannungsführenden Leitungen miteinander verbunden. Die elektrischen Schaltfunktionen, die Heizleistungseinstellung und die entsprechende Bereitstellung von elektrischer Energie erfolgen überwiegend oder vollständig in der Energiemanagementvorrichtung.
  • Aufgrund der Datenübertragungsfähigkeit des erfindungsgemäßen Einschraubheizkörpers und seiner Eigenintelligenz ist dieser von der Energiemanagementvorrichtung zur Eigenverbrauchsoptimierung fernsteuerbar. Es ist daher nicht notwendig, die Energiemanagementvorrichtung und den Einschraubheizkörper mit netzspannungsführenden Leitungen miteinander zu verbinden. Daher reduziert sich der Verkabelungsaufwand verglichen mit herkömmlichen Lösungen deutlich. Bei einer drahtlosen Datenübertragung zwischen Energiemanagementvorrichtung und Einschraubheizkörper entfällt der Verkabelungsaufwand zwischen Energiemanagementvorrichtung und Einschraubheizkörper vollständig.
  • Die Datenübertragungseinrichtung kann dazu ausgebildet sein, die Betriebsparameter drahtlos, beispielsweise über Bluetooth, ZigBee, WiFi (WLAN), etc., von der Energiemanagementvorrichtung zu empfangen. Alternativ ist auch eine drahtgebundene Datenübertragung, beispielsweise über Powerline, möglich.
  • Die Betriebsparameter können einen Heizleistungssollwert für das elektrisch betriebene Heizmittel und einen Temperatursollwert umfassen.
  • Die Datenübertragungseinrichtung kann dazu ausgebildet sein, Statusinformationen, wie eine momentane Temperatur, Fehlerzustände, etc., zu der Energiemanagementvorrichtung zu übertragen.
  • Es können Betriebsparametereinstellmittel vorgesehen sein, beispielswiese in Form von Drehwahlschaltern, Potentiometern, etc., wobei mindestens ein Teil der vorgebbaren Betriebsparameter auch mittels der Betriebsparametereinstellmittel (stufenlos) vorgebbar sind.
  • Das elektrisch betriebene Heizmittel kann ein herkömmlicher Rohrheizkörper sein. Alternativ kann das elektrisch betriebene Heizmittel ein Dünnschicht- oder Dickschicht-Widerstandsheizelement sein.
  • Die Datenübertragungseinrichtung kann dazu ausgebildet sein, die momentane Einspeiseleistung drahtlos, beispielsweise über Bluetooth, ZigBee, WiFi (WLAN), etc., von dem Einspeisezähler zu empfangen. Alternativ ist auch eine drahtgebundene Datenübertragung, beispielsweise über Powerline, SO-Schnittstelle, usw. möglich.
  • Der Einschraubheizkörper kann einen oder mehrere, mit der Steuereinrichtung gekoppelte Temperatursensoren umfassen, so dass beispielsweise ein thermostatischer Betrieb bzw. eine Thermostatfunktion realisierbar ist. Für den Fall, dass momentan elektrische Leistung in das öffentliche Netz eingespeist wird, kann die Steuereinrichtung beispielsweise Heizleistung mittels des elektrisch betriebenen Heizmittels erzeugen, solange ein Temperatursollwert nicht überschritten ist. Wenn der Temperatursollwert überschritten ist, kann die Steuereinheit die Heizleistungserzeugung beenden.
  • Die Steuereinrichtung kann dazu ausgebildet sein, eine Selbstüberwachung durchzuführen. Alternativ oder zusätzlich kann eine Selbstüberwachung mittels eines in den Einschraubheizkörper integrierten mechanischen STB oder eines integrierten elektronischen Sicherheitselements erfolgen.
  • Das System weist einen Energiewandler auf, beispielswiese in Form eines Photovoltaikmoduls, einer Windkraftanlage, eines Blockheizkraftwerks, usw., der Energie aus nicht-elektrischen Energieformen bzw. regenerativen Energiequellen, wie beispielsweise Sonnenenergie oder Windenergie, in elektrische Energie wandelt.
  • Das System weist weiter einen Warmwasserspeicher und einen oben genannten Einschraubheizkörper auf, der mit dem Warmwasserspeicher gekoppelt, beispielsweise in diesen eingeschraubt ist, und zur Erwärmung des Warmwasserspeichers vorgesehen ist.
  • Das System weist weiter einen Einspeisezähler auf, der dazu ausgebildet ist, eine momentane Einspeiseleistung zu dem Einschraubheizkörper zu übertragen, so dass der Einschraubheizkörper einen Eigenverbrauch der mittels des Energiewandlers gewandelten Energie optimiert.
  • Der Energiewandler kann direkt, d.h. ohne Zwischenschaltung weiterer Funktionsgruppen, insbesondere ohne Zwischenschaltung eines Wechselrichters, mit dem Einschraubheizkörper elektrisch verbunden sein.
  • Der Energiewandler kann dazu ausgebildet sein, eine Gleichspannung zu erzeugen, wobei der Einschraubheizkörper elektrisch mit der mittels des Energiewandlers erzeugten Gleichspannung versorgt ist.
  • Der Energiewandler kann ein oder mehrere PV-Module aufweisen bzw. als ein oder mehrere PV-Module verkörpert sein.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen näher beschrieben. Hierbei zeigt schematisch:
    • Fig. 1 einen intelligenten Einschraubheizkörper mit einer Datenübertragungseinrichtung und
    • Fig. 2 ein System mit einer Photovoltaikanlage und einem in Fig. 1 gezeigten Einschraubheizkörper.
  • Fig. 1 zeigt einen Einschraubheizkörper 1 mit einem elektrisch betriebenen Heizmittel in Form eines Rohrheizkörpers 2 oder eines alternativen Widerstandsheizelements.
  • Weiter ist eine Steuereinrichtung in Form eines Mikrocontrollers 3 vorgesehen, der dazu ausgebildet ist, den Betrieb des Einschraubheizkörpers 1 zu steuern und eine Selbstüberwachung durchzuführen. Weiter kann ein nicht gezeigter integrierter mechanischer/elektronischer STB zur Sicherheitsabschaltung im Fehlerfall vorgesehen sein.
  • Eine Bluetooth-Datenübertragungseinrichtung 4 des Einschraubheizkörpers 1 ist dazu ausgebildet, eine momentane elektrische Einspeiseleistung an einem Netzeinspeisepunkt 14 von einer korrespondierenden Bluetooth-Datenübertragungseinrichtung 13 eines Einspeisezählers 12 (siehe Fig. 2) drahtlos zu empfangen.
  • Um eine thermostatische Regelung zu ermöglichen, umfasst der Einschraubheizkörper 1 einen Temperatursensor 7, der eine Temperatur einer mittels des Rohrheizkörpers 1 erwärmten Flüssigkeit erfasst, wobei ein Temperatursollwert mittels eines Drehwahlschalters oder Potentiometers 5 vorgebbar ist.
  • An einem Netzspannungsanschluss 6 kann eine herkömmliche einphasige oder dreiphasige Netzspannung angeschlossen werden, wobei das Heizmittel 2 mit einer aus der Netzspannung beispielswiese durch Schalten gewonnenen Spannung beaufschlagt wird.
  • Fig. 2 zeigt ein System mit einem Energiewandler in Form eines Photovoltaikmoduls 9, das Sonnenenergie in elektrische Energie wandelt, einem nachgeschalteten, herkömmlichen PV-Wechselrichter 11, einem Warmwasserspeicher oder Standspeicher 10, einem oben beschriebenen Einschraubheizkörper 1, der in den Warmwasserspeicher 10 eingeschraubt und zur Erwärmung des Warmwasserspeichers 10 vorgesehen ist, und dem Einspeisezähler 12.
  • Ein Ausgang des PV-Wechselrichters 11, ein Anschluss des Einspeisezählers 12 und der Netzspannungsanschluss 6 des Einschraubheizkörpers 1 sind über eine Netzspannung führende Leitung/Leitungen miteinander verbunden.
  • Der Einspeisezähler 12 ist weiter herkömmlich mit einem anderen Anschluss mit einem Hausanschlusspunkt bzw. Netzeinspeisepunkt 14 verbunden, wobei der Hausanschlusspunkt 14 mit einem Wechselspannungsnetz 15 eines Netzbetreibers verbunden ist.
  • Wenn ein Überschuss an erzeugter elektrischer Leistung vorhanden ist, was mittels des Einspeisezählers 12 detektierbar ist, wird diese teilweise oder vollständig mittels des Heizmittels 2 in Heizleistung umgewandelt, wodurch eine Eigenverbrauchserhöhung bewirkt wird.
  • Der Einschraubheizkörper 1 kann beispielsweise mehrere programmierbare bzw. vorgebbare Leistungsstufen von 1 kW, 2 kW und 3 kW bei 230 V AC aufweisen. Alternativ kann die Heizleistung stufenlos vorgegeben werden, wenn der Einschraubheizkörper 1 eine getaktete Ansteuerung mittels eines Relais oder eine Leistungssteuerung mit Halbleitern, wie z.B. Triac, vorsieht.
  • Die Datenübertragungseinrichtung 4 kann beispielsweise als Bluetooth- oder ZigBee-Interface zur Anbindung an Solar-Wechselrichter bzw. Smart Home Automation vorgesehen sein. Selbstverständlich sind auch weitere Datenübertragungssysteme bzw. Datenübertragungsstandards verwendbar.
  • Der Einschraubheizkörper 1 kann weitere Temperatursensoren zur Ermittlung eines Ladezustandes des Standspeichers 10 aufweisen.
  • Anders als in Fig. 2 dargestellt, kann das Photovoltaikmodul 9 direkt, d.h. unter Umgehung des PV-Wechselrichters 11, mit dem Einschraubheizkörper 1 elektrisch DC-gekoppelt sein. Die vom Photovoltaikmodul 9 erzeugte Gleichspannung dient dann ohne vorige Wandlung zur elektrischen Versorgung des Einschraubheizkörpers 1 und somit zur Heizleistungserzeugung. Hierzu kann ein Gleichspannungs(DC)-Bus zwischen Photovoltaikmodul 9 und Einschraubheizkörper 1 vorgesehen sein.

Claims (9)

  1. Einschraubheizkörper (1), aufweisend:
    - ein elektrisch betriebenes Heizmittel (2),
    gekennzeichnet durch
    - eine Datenübertragungseinrichtung (4), die dazu ausgebildet ist, eine momentane Einspeiseleistung von einem Einspeisezähler (12) zu empfangen, und
    - eine Steuereinrichtung (3), die dazu ausgebildet ist, eine Heizleistung des elektrisch betriebenen Heizmittels (2) in Abhängigkeit von der empfangenen momentanen Einspeiseleistung zu steuern.
  2. Einschraubheizkörper nach Anspruch 1, dadurch gekennzeichnet, dass das elektrisch betriebene Heizmittel ein Rohrheizkörper oder ein Widerstandsheizelement ist.
  3. Einschraubheizkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Datenübertragungseinrichtung dazu ausgebildet ist, die momentane Einspeiseleistung drahtlos von dem Einspeisezähler zu empfangen.
  4. Einschraubheizkörper nach einem der vorhergehenden Ansprüche, gekennzeichnet durch mindestens einen Temperatursensor (7).
  5. Einschraubheizkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung dazu ausgebildet ist, eine Thermostatfunktion zu realisieren.
  6. System, aufweisend:
    - einen Energiewandler (9), der nicht-elektrische Energie in elektrische Energie wandelt,
    - einen Warmwasserspeicher (10),
    - einen Einschraubheizkörper (1) nach einem der vorhergehenden Ansprüche, der mit dem Warmwasserspeicher gekoppelt und zur Erwärmung des Warmwasserspeichers vorgesehen ist, und
    - einen Einspeisezähler (12), der dazu ausgebildet ist, eine momentane Einspeiseleistung zu dem Einschraubheizkörper zu übertragen.
  7. System nach Anspruch 6, dadurch gekennzeichnet, dass der Energiewandler direkt mit dem Einschraubheizkörper elektrisch verbunden ist.
  8. System nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Energiewandler eine Gleichspannung erzeugt, wobei der Einschraubheizkörper mit der Gleichspannung beaufschlagt ist.
  9. System nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Energiewandler ein oder mehrere PV-Module aufweist.
EP13185936.5A 2012-09-25 2013-09-25 Einschraubheizkörper und System Active EP2711649B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012217337.4A DE102012217337B4 (de) 2012-09-25 2012-09-25 Einschraubheizkörper und System
DE201310203598 DE102013203598B3 (de) 2013-03-04 2013-03-04 Einschraubheizkörper und System

Publications (2)

Publication Number Publication Date
EP2711649A1 EP2711649A1 (de) 2014-03-26
EP2711649B1 true EP2711649B1 (de) 2017-01-11

Family

ID=49253153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13185936.5A Active EP2711649B1 (de) 2012-09-25 2013-09-25 Einschraubheizkörper und System

Country Status (1)

Country Link
EP (1) EP2711649B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013017900A1 (de) * 2013-10-29 2015-04-30 Stiebel Eltron Gmbh & Co. Kg Stromversorgungsanlage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293447A (en) * 1992-06-02 1994-03-08 The United States Of America As Represented By The Secretary Of Commerce Photovoltaic solar water heating system
DE4435881C2 (de) * 1994-10-07 1997-01-30 Michael Roser Heizanlage
US20090180765A1 (en) * 2008-01-14 2009-07-16 Ming-Hsiang Yeh Multiple-power-selection heat storage device
GB2457139A (en) * 2008-02-11 2009-08-12 Nicholas Julian Jan Francis Macphail Water heating system comprising an immersion heater supplied with electricity generated by an alternative energy source
US9702586B2 (en) * 2008-02-25 2017-07-11 Samuel L. Thomasson Energy storage for PV water heater
US20090214195A1 (en) * 2008-02-25 2009-08-27 Thomasson Samuel L PV water heating system
EP2427917A2 (de) * 2009-05-08 2012-03-14 7AC Technologies, Inc. Sonnenenergiesysteme
WO2011073938A2 (en) * 2009-12-16 2011-06-23 Eds-Usa Inc. Photovoltaic heater
DE102010031830A1 (de) * 2010-07-20 2012-01-26 Hans-Georg Fleischmann Adaptiver Störgrößensensor und adaptives Regelungssystem für eine witterungsgeführte Haustechnikregelung sowie Verfahren zum Betreiben dieser
DE202010008307U1 (de) * 2010-08-17 2011-11-21 Florian M. Krenner Heißwasserspeicher
GB2488800A (en) * 2011-03-09 2012-09-12 Simon Madin Fluid heating system having an immersion heater that may be powered by a renewable energy source
DE202012102677U1 (de) * 2012-07-18 2012-08-21 Ilja Ruhland Vorrichtung zur Eigenverbrauchssteuerung bei der Energiegewinnung mittels photovoltaischer Anlagen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2711649A1 (de) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2012136346A1 (de) Elektrische energieverteilungsvorrichtung für ein gebäude
RU2019137194A (ru) Способ эксплуатации зарядной станции
KR101181403B1 (ko) 태양광 및 풍력 하이브리드 발전을 이용한 계통 연계 시스템 및 이를 이용한 태양광 및 풍력 하이브리드 계통 연계 발전 장치
CA2810993C (en) Thermal energy storage apparatus, controllers and thermal energy storage control methods
CN105191046A (zh) 用于将电功率馈送到供电网中的方法
US9927131B2 (en) Electric water heater systems for power grids with distributed generation
JP6203016B2 (ja) 太陽光発電システム
AU2014301996B2 (en) System for producing hot water
EP2610999A2 (de) Verfahren und Vorrichtung zur Nutzung elektrischer Energie einer an ein Hausstromnetz angeschlossenen Einrichtung zur Erzeugung erneuerbarer elektrischer Energie
AU2023237040A1 (en) Generation load control
DE202012102677U1 (de) Vorrichtung zur Eigenverbrauchssteuerung bei der Energiegewinnung mittels photovoltaischer Anlagen
DE102012112962A1 (de) Vorrichtung und Verfahren zur Warmwasserbereitung
EP2711649B1 (de) Einschraubheizkörper und System
DE102013203598B3 (de) Einschraubheizkörper und System
DE102017002193A1 (de) Verfahren und Anordnung zur ferngesteuerten Verwertung von Strom mit Heizkesseln
DE102012217337B4 (de) Einschraubheizkörper und System
DE202010016992U1 (de) Steuereinheit zur Pufferung elektrischer Energie an der Hausverteilung
EP3024106B1 (de) Zuschaltvorrichtung für eine elektrische anlage zum zeitverzögerten anfahren nach empfang eines steuersignals
EP2858053A2 (de) Regelungssystem für Elektrospeicherheizungen, ein Schnittstellengerät hierzu sowie ein Verfahren zur Regelung von Elektrospeicherheizungen
CN204143219U (zh) 一种电气加热控制装置
JP2016181969A (ja) 分散型電源のシステム制御装置、分散型電源のシステム制御方法、及びパワーコンディショナ
DE102014111094A1 (de) Verfahren und Vorrichtung zum Betreiben einer an einem Stromnetz angeschlossenen Photovoltaikanlage
DE102012017631A1 (de) Verfahren und Vorrichtung zur Regelung von Netz gekoppelten Eigenverbrauchs-Netzen mit einspeise fähigen Wechselspannungs-Generatoren, ohne Netz-Einspeisung und ohne elektrische Energie-Speicher, sowie mit optionalen Insel- bzw. Notstrom-Betrieb
EP2952823A1 (de) Heizanlage für ein wohngebäude, elektro-speicherheizgerät für eine solche heizanlage sowie verfahren zum steuern einer solchen heizanlage
Trzmiel et al. The use of the SCADA system in the monitoring and control of the performance of an autonomous hybrid power supply system using renewable energy sources

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140926

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 1/02 20060101ALI20160629BHEP

Ipc: F24H 1/20 20060101AFI20160629BHEP

INTG Intention to grant announced

Effective date: 20160725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006047

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013006047

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170925

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170925

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170925

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230915

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 12