EP2711630A1 - Device for cooling a support structure of a heat shield and heat shield - Google Patents

Device for cooling a support structure of a heat shield and heat shield Download PDF

Info

Publication number
EP2711630A1
EP2711630A1 EP12185435.0A EP12185435A EP2711630A1 EP 2711630 A1 EP2711630 A1 EP 2711630A1 EP 12185435 A EP12185435 A EP 12185435A EP 2711630 A1 EP2711630 A1 EP 2711630A1
Authority
EP
European Patent Office
Prior art keywords
heat shield
support structure
cooling air
cooling
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12185435.0A
Other languages
German (de)
French (fr)
Inventor
Sabine GRENDEL
Andre Kluge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12185435.0A priority Critical patent/EP2711630A1/en
Priority to PCT/EP2013/069215 priority patent/WO2014044654A2/en
Priority to KR1020157009794A priority patent/KR20150058383A/en
Priority to US14/429,737 priority patent/US9702560B2/en
Priority to EP13763244.4A priority patent/EP2883000B1/en
Priority to CN201380053375.8A priority patent/CN104718412B/en
Priority to RU2015114794A priority patent/RU2635742C2/en
Publication of EP2711630A1 publication Critical patent/EP2711630A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/04Supports for linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05002Means for accommodate thermal expansion of the wall liner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls

Definitions

  • the invention relates to a device for cooling the support structure of a heat shield and to a heat shield, in particular to a heat shield for a combustion chamber of a gas turbine.
  • the invention also relates to a combustion chamber and to a gas turbine with such a heat shield.
  • heat shields are used, which must withstand hot gases of 1000 to 1600 degrees Celsius.
  • gas turbines such as those used in power-generating power plants and in aircraft engines, have correspondingly large surfaces to be shielded by heat shields in the interior of the combustion chambers.
  • the heat shield must be composed of a plurality of individual, generally ceramic heat shield bricks, spaced apart from each other with a sufficient gap to a support structure. This gap provides the heat shield elements with sufficient space for thermal expansion.
  • cooling air is injected as a countermeasure through the gaps in the direction of the combustion chamber.
  • a generic heat shield thus comprises a support structure and a number of heat shields, which are releasably secured to the support structure by means of stone holders, each heat shield brick having a support structure facing cold side and the cold side opposite, acted upon by a hot medium hot side.
  • Each of the stone holders has at least one holding section for attachment on a heat shield brick and attachable to the tag structure attachment portion.
  • at least one cooling air passage is provided in the support structure.
  • circular circumferential and parallel fastening grooves may be provided in the support structure.
  • the stone holders are inserted in this case with their attachment portions one after the other in the mounting grooves, with subsequent stone holder block the position of the previously positioned stone holder.
  • a circular encircling row of heat shield bricks may be secured to the support structure within a combustor of a gas turbine.
  • the EP 1 701 095 A1 discloses a heat shield of a combustor of a gas turbine having a support structure and a number of heat shield bricks disposed releasably on the support structure.
  • the heat shield bricks are arranged across the surface, leaving expansion gaps on the support structure, wherein each heat shield brick has a cold-side facing the support structure and a hot side which is opposite to the cold side and can be charged with a hot medium.
  • the heat shield bricks are resiliently fastened to the support structure with four metallic stone holders each.
  • each stone holder comprises a holding section in the form of a gripping section and a fixing section.
  • each heat shield brick side retaining grooves are introduced on two opposite circumferential sides, so that for holding the heat shield brick, the gripping portions of the stone holder opposite can engage in the retaining grooves.
  • the stone holders which are fastened on the heat shield brick in opposite directions, are guided with their fastening portion in a fastening groove extending below the heat shield brick in the support structure.
  • the gripping portions of the metallic stone holder are cooled.
  • openings are provided in the stone holders in the area of the holding section and in the holding bars of the heat shield bricks introduced, which are aligned with a cooling air hole arranged in the support structure, so that cooling air from the cooling air hole flowing in direct line on a cold side of the gripping portion bounces.
  • a device for cooling the support structure of a heat shield of the type mentioned above in that the device comprises a longitudinal axis and a cooling air duct, wherein the device with the longitudinal axis perpendicular to the surface of the support structure on the support structure can be arranged.
  • the cooling air duct extends from an end of the device facing the support structure and comprises at least one outlet channel downstream.
  • the at least one exit channel exits the device laterally with respect to the longitudinal axis.
  • the device can be arranged on the support structure such that the cooling air duct corresponds to at least one cooling air passage arranged in the support structure.
  • cooling air can thus be flowed into the intermediate space between the cold side of the heat shield brick and the support structure when heat shield bricks are arranged on the support structure.
  • the cooling air can be introduced into the intermediate space by means of the device from an elevated position above the support structure.
  • the cooling air flows laterally out of the device into the space. This avoids damage to the heat shield stones by impingement cooling and the cooling air is distributed below the heat shield bricks without immediately escape through the expansion gaps between the heat shield bricks. This allows effective cooling of the support structure of the heat shield while avoiding damage to the heat shield stones.
  • cooling air duct corresponds to at least one cooling air passage arranged in the support structure
  • the cooling air duct corresponds to at least one cooling air passage arranged in the support structure
  • the cooling air passage can be, for example, a cooling air bore arranged in the support structure, into which the device can be screwed with its end facing the support structure.
  • the longitudinal axis of the device need not be identical to a longitudinal axis defined by the shape of the body. It is fictitious and, with the device arranged on the support structure, extends through the fastening region of the device and perpendicular to the surface of the support structure. O-surface unevennesses are not to be considered here.
  • the apparatus for cooling the support structure on the support structure also includes those devices that are partially embedded in the support structure embedded therein or that are disposed within a recess extending in the support structure.
  • the device is a threaded pin with integrated cooling air duct.
  • This development of the invention has a particularly simple structure and is thus associated with low production costs.
  • the at least one output channel extends radially to the longitudinal axis.
  • the cooling air emerging from the outlet channel thus flows parallel to the support structure from an elevated position into the gap between the heat shield bricks and the support structure. This allows the cooling of a wide range of the supporting structure and at the same time avoids impact cooling of the heat shield stones.
  • the device comprises two opposing output channels.
  • This embodiment of the invention is particularly suitable for cooling a mounting groove in the support structure.
  • the device has four output channels.
  • Another object of the invention is to provide a heat shield of the type mentioned, with which a scaling of the support structure can be particularly effectively avoided due to hot gas intake.
  • the heat shield for protection against hot gases comprises at least one cooling air passage in the support structure, on which a device according to one of claims 1 to 5 is arranged.
  • the device is arranged on the cooling air passage
  • the cooling air passage in this case is to be understood such that the of Device included cooling air passage with the cooling air passage corresponded.
  • the device can be arranged, for example, below the crossing region of two expansion gaps on the support structure. In this area, cooling air can be injected into the respective gap between the cold side of the heat shield brick and the support structure with only one device with a corresponding number of output channels under the four adjacent heat shield bricks.
  • the device is arranged below a heat shield block on the support structure.
  • below a heat shield brick is here to be understood such that the device is arranged in a region of the support structure, which faces the cold side of the heat shield brick.
  • the device can be arranged in particular below a heat shield brick in the vicinity of a fastening portion of a stone holder.
  • the laterally exiting output channels can be inclined in the direction of the support structure and positioned so that the at least one exiting cooling air jet is directed to those structures that hold the stone holder in its attachment.
  • the mounting portions of the stone holder are releasably secured within extending in the support structure mounting grooves and the cooling air passage opens into the groove bottom of the mounting groove.
  • the device is in this case arranged in the groove bottom on the cooling air passage.
  • the device must either be removed or it is arranged in the groove bottom for installing and removing the heat shield bricks, that the stone holders can be pushed over the device through the mounting groove.
  • the device between two attachment portions of the stone holder is arranged substantially centrally under a heat shield brick.
  • the device is located between two attachment portions of two opposing stone holders, which hold a common heat shield brick on opposite side walls of the heat shield brick. In this way, the cooling air emerging from the device can be injected below the heat shield brick without the stone holders blocking the flow path of the cooling air.
  • a cooling air groove runs in the groove bottom of the fastening groove and the device is lowered into the cooling air bore at least at the height of the groove bottom, the outlet channels of the device opening into the cooling air groove.
  • the device according to this embodiment of the invention can be arranged in the cooling air groove such that it does not protrude beyond the groove bottom of the fastening groove.
  • the stone holders can be moved across the device in the mounting groove. This allows for easy installation and removal of the heat shield stones for repair and maintenance purposes.
  • the cooling air groove comprises an outlet at its ends.
  • the support structure and the device can correspond to one another such that the device for installing and removing the heat shield bricks in the support structure can be lowered.
  • the device may for example be completely screwed into the support structure.
  • the device can be arranged in two interconvertible positions on the support structure. In this case, a first position with the longitudinal axis perpendicular to the support structure surface serves to introduce cooling air and a second position with the longitudinal axis parallel to the surface of the support structure of the sinking of the device.
  • a further object of the invention is to provide a combustion chamber and a gas turbine with at least one combustion chamber, with which a scaling of the support structure due to hot gas intake of a heat shield covered by the combustion chamber can be particularly effectively avoided.
  • the object is achieved in a combustion chamber and a gas turbine of the type mentioned above in that the heat shield is formed according to one of claims 6 to 12.
  • FIG. 1 shows a schematic sectional view of a gas turbine 1 according to the prior art.
  • the gas turbine 1 has inside a rotatably mounted about a rotation axis 2 rotor 3 with a shaft 4, which is also referred to as a turbine runner.
  • a turbine runner which is also referred to as a turbine runner.
  • the rotor 3 successively follow an intake housing 6, a compressor 8, a combustion system 9 with a number of combustion chambers 10, each comprising a burner assembly 11 and a housing 12, a turbine 14th and an exhaust housing 15.
  • the housing 12 is lined with a heat shield (not shown) for protection from hot gases.
  • the combustion system 9 communicates with an annular hot gas duct, for example.
  • a plurality of successively connected turbine stages form the turbine 14.
  • Each turbine stage is formed of blade rings.
  • the guide vanes 17 are fastened to an inner housing of a stator 19, whereas the moving blades 18 of a row are attached to the rotor 3, for example by means of a turbine disk.
  • Coupled to the rotor 3 is, for example, a generator (not shown).
  • the FIG. 2 schematically shows an inventive device 20 for cooling a support structure of a heat shield according to a first embodiment in a sectional view.
  • the device 20 has a longitudinal axis 21 and comprises a cooling air channel 22.
  • the cooling air channel 22 extends from one end 23 of the device and comprises downstream two outlet channels 25a and 25b, which emerge laterally from the device with respect to the longitudinal axis 21 and opposite are arranged.
  • the device is a threaded pin with a running inside the threaded pin cooling air passage 22.
  • the illustrated device 20 may also be referred to asdemade.
  • the threaded pin has on its lateral surface 26 a thread (not shown).
  • the thread may, for example, in the region of the end 23 extend over the lateral surface 26 or pull to the opposite end 27.
  • the device 20 can be arranged with its end 23 on a support structure of a heat shield.
  • the cooling grommet is screwed into a provided with an internal thread cooling air hole in the support structure. In this position, cooling air exiting from the cooling air hole can be introduced into the cooling air passage 22, so that the cooling air flows downstream through the output passages 25a, 25b and leaves the cooling boot in the direction indicated by 24a and 24b.
  • FIG. 3 shows a cross section of a device 29 according to the invention for cooling a support structure according to a second embodiment of the invention.
  • the cross section in this case runs perpendicular to the longitudinal axis 21 at the level of the output channels 30a and 30b.
  • the illustrated device 29 differs from the in FIG. 2 illustrateddemade only by the angle at which exit the output channels 30a and 30b with respect to the longitudinal axis 21 laterally from the device.
  • the output channels extend radially to the longitudinal axis 21 and are arranged opposite one another. Cooling air flowing through the cooling air passage 22 is divided downstream of the output passages 30a and 30b and leaves the cooling boot in the illustrated outflow direction 31a and 31b.
  • FIG. 4 shows a cross section of an inventive device 64 for cooling a support structure according to a third embodiment of the invention.
  • the cross section in this case runs perpendicular to the longitudinal axis 21 at the level of the output channels 66a, 66b, 66c and 66d.
  • the illustrated device 64 differs from that in FIG. 3 shown Cooled only by the number of output channels.
  • the illustrated embodiment comprises four output channels, which extend radially to the longitudinal axis 21 and are arranged in pairs opposite one another. Cooling air flowing through the cooling air passage 22 is divided downstream of the output passages 66a, 66b, 66c, 66d and exits the cooling grate 64 in the illustrated directions 67a, 67b, 67c, 67d.
  • FIG. 5 shows a section of a heat shield 33 according to the invention with a support structure 34 and a number of heat shield bricks, of which a heat shield brick 35 is shown by way of example in the figure.
  • the heat shield brick 35 has a cold side 36 facing the support structure 34 and a hot side 37 which is opposite the cold side 36 and can be charged with a hot medium.
  • the heat shield brick 35 is fastened to the support structure 34 by means of stone holders 38 and 39.
  • the stone holders 38, 39 are fastened on the one hand with their attachment portions 40, 41 on the support structure 34 and on the other hand engage with their holding portions 42, 43 in retaining grooves 44, 47 on opposite side walls of the heat shield brick 35 a.
  • the heat shield brick 35 resiliently held on the support structure 34 in this way, it is possible, when the hot side 37 is acted upon by hot gases, to produce hot gas in the expansion gaps between adjacent heat shield bricks.
  • the gases which penetrate in the direction 45 are distributed here below the heat shield brick 35 in the intermediate space 46, which extends from the cold side 36 of the heat shield brick 35 to a surface region of the support structure 35 facing the heat shield brick 35. This can lead to a scaling of the support structure 34 below the heat shield brick 35.
  • a device 48 according to the invention for cooling the support structure 34 is arranged below the heat shield block on the support structure 34.
  • the device 48 is according to the illustrated embodiment, a threaded pin with a longitudinal axis 21 and a cooling air passage 22.
  • the device 48 may thus also be referred to asdemade 48.
  • Thedemade 48 is arranged with its longitudinal axis 21 perpendicular to the surface 51 of the support structure on the support structure, wherein thedemade 48 is screwed with an end facing the support structure 23 in a cooling air passage 50 of the support structure.
  • the cooling air passage 50 is designed as a cooling air hole.
  • the cooling air channel 22 extends from the screwed-in end 23 and comprises downstream two outlet channels 52a, 52b, which emerge laterally from the longitudinal axis 21 from the cooling grate 48.
  • Cooling air hole 50 and cooling air channel 22 correspond to each other, so that cooling air flowing from the cooling air hole enters the cooling air passage 22 and flows into the gap 46 in directions 53a, 53b by means of the cooling grommet 48.
  • the cooling air is thus introduced far away from the expansion gaps below the heat shield brick 35. This allows a particularly effective cooling of the support structure.
  • an impact cooling of the heat shield brick 35 is avoided according to the invention. Since the cooling grommet 48 is arranged in the illustrated embodiment between two mounting portions 40, 41 of the stone holder 38, 39 centrally below the heat shield brick 35, in particular the areas of the support structure fixing the stone holder are cooled.
  • the length of the cooling air hole 50 may be selected such that the cooling grommet 48 is fully retractable during installation and removal of the heat shield bricks therein.
  • FIG. 6 shows that in Fig. 5 shown heat shield 33 in a further sectional view taken along the plane marked with arrows VI-VI.
  • the stone holders are held with their attachment portions in a mounting groove 55 on the support structure 34.
  • the cooling air hole 50 opens into the groove bottom 56 of this fastening groove 55.
  • the cooling grommet 48 is arranged with the longitudinal axis 21 perpendicular to the surface 51 of the support structure 34 in the groove bottom 56 on the cooling air bore 50 and protrudes a distance 58 from the groove Bottom 56 out.
  • the distance 58 is in this case selected so that the cooling grating 48 does not touch the cold side 36 of the heat shield block 35 and the cooling air from the output channels 52a, 52b flowing into the mounting groove 55 and due the arranged between the stone holders position of thedemade 48 enters the gap 46.
  • FIG. 7 shows a section of a heat shield 60 according to the invention according to a fifth embodiment.
  • This is different from the one in Figure 5 represented in that in addition in the groove bottom of the mounting groove a cooling air groove 62 extends.
  • Thedemade 48 is lowered to the level of the groove bottom of the mounting groove in the cooling air hole 50, wherein the output channels 52a, 52b of thedemade 48 open in the longitudinal direction in the cooling air groove 62.
  • This has the advantage that the stone holder can be moved over thedemade 48 away for installation and removal of the heat shield bricks 35 through the mounting groove.
  • the function of thedemade 48 remains hereby.
  • the effluent from thedemade 48 cooling air is injected into the cooling air groove 62 and flows at the ends by means of an outlet 63 in the gap 46 between the cold side of the heat shield brick 35 and the support structure 34 and cools the Support structure 34 below the heat shield brick 35 while avoiding a baffle cooling of the same.
  • FIG. 8 shows that in Figure 7 illustrated heat shield 60 in a sectional view taken along the plane indicated by the arrows VIII-VIII.
  • the stone holder (not shown in this view) securing the heat shield brick 35 to the support structure 34 are held with their attachment portions in the attachment groove 55 on the support structure 34.
  • the cooling air hole 50 opens into the groove bottom 56 of this fastening groove 55.
  • the cooling grommet 48 is arranged with the longitudinal axis 21 perpendicular to the surface 51 of the support structure 34 in the groove bottom 56 on the cooling air bore 50 and up to the level of the groove bottom 56th lowered in the cooling air hole 50.
  • the cooling air emerging from the output channels 52a, 52b of the cooling grate 48 first flows into the cooling air groove 62 and from here into the intermediate space 46. In this, the cooling air can distribute and effectively cool the support structure below the heat shield brick 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The device (20) arranged on the support structure with the longitudinal axis (21) perpendicular to the surface of supporting structure has a cooling air channel (22) extended downstream from the end (23) of the device main portion pointing towards the support structure and provided with output channels (25a,25b). The cooling air channel is emerged laterally with respect to the longitudinal axis of the device main portion, and arranged to correspond to the cooling air passage in the support structure. An independent claim is included for a heat shield for combustion chamber of gas turbine.

Description

Die Erfindung bezieht sich auf eine Vorrichtung zum Kühlen der Tragstruktur eines Hitzeschildes und auf ein Hitzeschild, insbesondere auf ein Hitzeschild für eine Brennkammer einer Gasturbine.The invention relates to a device for cooling the support structure of a heat shield and to a heat shield, in particular to a heat shield for a combustion chamber of a gas turbine.

Die Erfindung bezieht sich auch auf eine Brennkammer und auf eine Gasturbine mit einem derartigen Hitzeschild.The invention also relates to a combustion chamber and to a gas turbine with such a heat shield.

In vielen technischen Anwendungen werden Hitzeschilde verwendet, welche Heißgasen von 1000 bis 1600 Grad Celsius widerstehen müssen. Insbesondere Gasturbinen, wie sie in stromerzeugenden Kraftwerken und in Flugzeugtriebwerken Verwendung finden, weisen entsprechend große durch Hitzeschilde abzuschirmende Flächen im Innern der Brennkammern auf. Wegen der thermischen Ausdehnung und wegen großer Abmessungen muss das Hitzeschild aus einer Vielzahl einzelner, im Allgemeinen keramischer Hitzeschildsteine zusammengesetzt werden, die voneinander mit einem ausreichenden Spalt beabstandet an einer Tragstruktur befestigt sind. Dieser Spalt bietet den Hitzeschildelementen ausreichenden Raum für die thermische Ausdehnung. Da jedoch der Spalt auch einen direkten Kontakt der heißen Verbrennungsgase mit der metallischen Tragstruktur und den Halteelementen ermöglicht, wird als eine Gegenmaßnahme durch die Spalte in Richtung der Brennkammer Kühlluft eingedüst.In many technical applications heat shields are used, which must withstand hot gases of 1000 to 1600 degrees Celsius. In particular, gas turbines, such as those used in power-generating power plants and in aircraft engines, have correspondingly large surfaces to be shielded by heat shields in the interior of the combustion chambers. Because of thermal expansion and large dimensions, the heat shield must be composed of a plurality of individual, generally ceramic heat shield bricks, spaced apart from each other with a sufficient gap to a support structure. This gap provides the heat shield elements with sufficient space for thermal expansion. However, since the gap also allows direct contact of the hot combustion gases with the metallic support structure and the holding elements, cooling air is injected as a countermeasure through the gaps in the direction of the combustion chamber.

Ein gattungsgemäßes Hitzeschild umfasst somit eine Tragstruktur und eine Anzahl von Hitzeschildsteinen, welche an der Tragstruktur mittels Steinhaltern lösbar befestigt sind, wobei jeder Hitzeschildstein eine der Tragstruktur zugewandte Kaltseite und eine der Kaltseite gegenüberliegende, mit einem heißen Medium beaufschlagbare Heißseite aufweist. Jeder der Steinhalter weist mindestens einen Halteabschnitt zur Befestigung an einem Hitzeschildstein und einen an der Tagstruktur befestigbaren Befestigungsabschnitt auf. Zum Schutz vor Heißgasen ist mindestens eine Kühlluftpassage in der Tragstruktur vorgesehen.A generic heat shield thus comprises a support structure and a number of heat shields, which are releasably secured to the support structure by means of stone holders, each heat shield brick having a support structure facing cold side and the cold side opposite, acted upon by a hot medium hot side. Each of the stone holders has at least one holding section for attachment on a heat shield brick and attachable to the tag structure attachment portion. For protection against hot gases, at least one cooling air passage is provided in the support structure.

Zur Befestigung der Steinhalter an der Tragstruktur können in der Tragstruktur kreisförmig umlaufende und parallele Befestigungs-Nuten vorgesehen sein. Die Steinhalter werden in diesem Fall mit ihren Befestigungsabschnitten nacheinander in die Befestigungs-Nuten eingeschoben, wobei nachkommende Steinhalter die Position der vorher positionierten Steinhalter versperren. Auf diese Weise kann eine kreisförmig umlaufende Reihe von Hitzeschildsteinen an der Tragstruktur innerhalb einer Brennkammer einer Gasturbine befestigt werden.For fixing the stone holder to the support structure, circular circumferential and parallel fastening grooves may be provided in the support structure. The stone holders are inserted in this case with their attachment portions one after the other in the mounting grooves, with subsequent stone holder block the position of the previously positioned stone holder. In this way, a circular encircling row of heat shield bricks may be secured to the support structure within a combustor of a gas turbine.

Die EP 1 701 095 A1 offenbart ein Hitzeschild einer Brennkammer einer Gasturbine mit einer Tragstruktur und einer Anzahl von lösbar an der Tragstruktur angeordneten Hitzeschildsteinen. Zum Schutz der Brennkammerwand sind die Hitzeschildsteine flächendeckend unter Belassung von Dehnungsspalten an der Tragstruktur angeordnet, wobei jeder Hitzeschildstein eine der Tragstruktur zugewandte Kaltseite und eine der Kaltseite gegenüberliegende, mit einem heißen Medium beaufschlagbare Heißseite aufweist. Die Hitzeschildsteine sind mit je vier metallischen Steinhaltern federnd an der Tragstruktur befestigt. Hierzu umfasst jeder Steinhalter einen Halteabschnitt in Form eines Greifabschnitts und einen Befestigungsabschnitt. In jeder Hitzeschildsteinseite sind an zwei gegenüberliegenden Umfangsseiten Haltenuten eingebracht, so dass zum Halten des Hitzeschildsteins die Greifabschnitte der Steinhalter gegenüberliegend in die Haltenuten eingreifen können. Die derart am Hitzeschildstein gegenüberliegend befestigten Steinhalter sind mit ihrem Befestigungsabschnitt in einer unterhalb des Hitzeschildsteins verlaufenden Befestigungs-Nut in der Tragstruktur geführt. Zum Schutz vor Heißgasen sind die Greifabschnitte der metallischen Steinhalter gekühlt. Hierzu sind in die Steinhalter im Bereich des Halteabschnitts und in die Halteriegel der Hitzeschildsteine Öffnungen eingebracht, welche mit einer in der Tragstruktur angeordneten Kühlluftbohrung fluchten, so dass Kühlluft aus der Kühlluftbohrung strömend in direkter Linie auf eine Kaltseite des Greifabschnittes prallt.The EP 1 701 095 A1 discloses a heat shield of a combustor of a gas turbine having a support structure and a number of heat shield bricks disposed releasably on the support structure. To protect the combustion chamber wall, the heat shield bricks are arranged across the surface, leaving expansion gaps on the support structure, wherein each heat shield brick has a cold-side facing the support structure and a hot side which is opposite to the cold side and can be charged with a hot medium. The heat shield bricks are resiliently fastened to the support structure with four metallic stone holders each. For this purpose, each stone holder comprises a holding section in the form of a gripping section and a fixing section. In each heat shield brick side retaining grooves are introduced on two opposite circumferential sides, so that for holding the heat shield brick, the gripping portions of the stone holder opposite can engage in the retaining grooves. The stone holders, which are fastened on the heat shield brick in opposite directions, are guided with their fastening portion in a fastening groove extending below the heat shield brick in the support structure. To protect against hot gases, the gripping portions of the metallic stone holder are cooled. For this purpose, openings are provided in the stone holders in the area of the holding section and in the holding bars of the heat shield bricks introduced, which are aligned with a cooling air hole arranged in the support structure, so that cooling air from the cooling air hole flowing in direct line on a cold side of the gripping portion bounces.

Trotz dieser Kühlung der Greifabschnitte gemäß dem Stand der Technik kann es bei Beaufschlagung des Hitzeschildes mit Heißgas zu Heißgaseinzug im Bereich der Dehnungsspalten zwischen den Hitzeschildsteinen kommen. Das Heißgas kann sich sodann unterhalb des Hitzeschildes ausbreiten und zur Verzunderung der Tragstruktur führen.Despite this cooling of the gripping sections according to the prior art, when hot gas is applied to the heat shield, hot gas intake may occur in the area of the expansion gaps between the heat shield bricks. The hot gas can then spread below the heat shield and lead to scaling of the support structure.

Es ist daher Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Kühlung der Tragstruktur eines gattungsgemäßen Hitzeschildes und ein Hitzeschild anzugeben, mit welchem eine Verzunderung der Tragstruktur aufgrund von Heißgaseinzug besonders effektiv vermieden werden kann.It is therefore an object of the present invention to provide a device for cooling the support structure of a generic heat shield and a heat shield, with which a scaling of the support structure due to hot gas intake can be particularly effectively avoided.

Die Aufgabe wird erfindungsgemäß bei einer Vorrichtung zur Kühlung der Tragstruktur eines Hitzeschildes der eingangs genannten Art dadurch gelöst, dass die Vorrichtung eine Längsachse und einen Kühlluftkanal umfasst, wobei die Vorrichtung mit der Längsachse senkrecht zur Oberfläche der Tragstruktur an der Tragstruktur anordenbar ist. In dieser Position erstreckt sich der Kühlluftkanal von einem zur Tragstruktur weisenden Ende der Vorrichtung aus und umfasst stromab mindestens einen Ausgangskanal. Der mindestens eine Ausgangskanal tritt in Bezug auf die Längsachse seitlich aus der Vorrichtung aus. Die Vorrichtung ist derart an der Tragstruktur anordenbar, dass der Kühlluftkanal mit mindestens einer in der Tragstruktur angeordneten Kühlluftpassage korrespondiert.The object is achieved in a device for cooling the support structure of a heat shield of the type mentioned above in that the device comprises a longitudinal axis and a cooling air duct, wherein the device with the longitudinal axis perpendicular to the surface of the support structure on the support structure can be arranged. In this position, the cooling air duct extends from an end of the device facing the support structure and comprises at least one outlet channel downstream. The at least one exit channel exits the device laterally with respect to the longitudinal axis. The device can be arranged on the support structure such that the cooling air duct corresponds to at least one cooling air passage arranged in the support structure.

Erfindungsgemäß ist somit bei an der Tragstruktur angeordneten Hitzeschildsteinen Kühlluft in den Zwischenraum zwischen Kaltseite des Hitzeschildsteines und der Tragstruktur einströmbar. Die Kühlluft kann hierbei mittels der Vorrichtung von einer über der Tragstruktur erhöhten Position aus in den Zwischenraum eingebracht werden. Zudem strömt die Kühlluft seitlich aus der Vorrichtung in den Zwischenraum ein. Dies vermeidet eine Schädigung der Hitzeschildsteine durch Prallkühlung und die Kühlluft verteilt sich unterhalb der Hitzeschildsteine ohne sofort durch die Dehnungsspalten zwischen den Hitzeschildsteinen zu entweichen. Diese ermöglicht eine effektive Kühlung der Tragstruktur des Hitzeschildes unter Vermeidung einer Schädigung der Hitzeschildsteine.According to the invention, cooling air can thus be flowed into the intermediate space between the cold side of the heat shield brick and the support structure when heat shield bricks are arranged on the support structure. In this case, the cooling air can be introduced into the intermediate space by means of the device from an elevated position above the support structure. In addition, the cooling air flows laterally out of the device into the space. This avoids damage to the heat shield stones by impingement cooling and the cooling air is distributed below the heat shield bricks without immediately escape through the expansion gaps between the heat shield bricks. This allows effective cooling of the support structure of the heat shield while avoiding damage to the heat shield stones.

Dass der Kühlluftkanal (bei an der Tragstruktur angeordneter Vorrichtung) mit mindestens einer in der Tragstruktur angeordneten Kühlluftpassage korrespondiert, ist derart zu verstehen, dass aus der mindestens einen Kühlluftpassage austretende Kühlluft zumindest teilweise in den Kühlluftkanal eintritt. Beispielsweise können Kühlluftkanal und Kühlluftpassage miteinander fluchten oder aneinander angrenzen. Bei der Kühlluftpassage kann es sich beispielsweise um eine in der Tragstruktur angeordnete Kühlluftbohrung handeln, in welche die Vorrichtung mit ihrem der Tragstruktur zugewandten Ende einschraubbar ist.That the cooling air duct (in the case of a device arranged on the support structure) corresponds to at least one cooling air passage arranged in the support structure is to be understood such that cooling air leaving the at least one cooling air passage at least partially enters the cooling air duct. For example, cooling air duct and cooling air passage can be aligned with each other or adjacent to each other. The cooling air passage can be, for example, a cooling air bore arranged in the support structure, into which the device can be screwed with its end facing the support structure.

Die Längsachse der Vorrichtung muss nicht identisch mit einer durch die Form des Körpers vorgegebenen Längsachse sein. Sie ist fiktiv und verläuft bei an der Tragstruktur angeordneter Vorrichtung durch den Befestigungsbereich der Vorrichtung hindurch und senkrecht zur Oberfläche der Tragstruktur. O-berflächenunebenheiten sind hierbei nicht zu berücksichtigen.The longitudinal axis of the device need not be identical to a longitudinal axis defined by the shape of the body. It is fictitious and, with the device arranged on the support structure, extends through the fastening region of the device and perpendicular to the surface of the support structure. O-surface unevennesses are not to be considered here.

Das die Vorrichtung zum Kühlen der Tragstruktur an der Tragstruktur anordenbar ist, umfasst begrifflich auch solche Vorrichtungen, die teilweise in der Tragstruktur versenkt in dieser befestigt sind oder, die innerhalb einer in der Tragstruktur verlaufenden Ausnehmung angeordnet sind.Conceptually, the apparatus for cooling the support structure on the support structure also includes those devices that are partially embedded in the support structure embedded therein or that are disposed within a recess extending in the support structure.

Es kann vorteilhaft vorgesehen sein, dass die Vorrichtung ein Gewindestift mit integriertem Kühlluftkanal ist.It can be advantageously provided that the device is a threaded pin with integrated cooling air duct.

Diese Weiterbildung der Erfindung weist einen besonders einfachen Aufbau auf und ist somit mit geringen Herstellungskosten verbunden.This development of the invention has a particularly simple structure and is thus associated with low production costs.

Vorteilhafterweise kann weiter vorgesehen sein, dass der mindestens eine Ausgangskanal radial zur Längsachse verläuft.Advantageously, it can further be provided that the at least one output channel extends radially to the longitudinal axis.

Die aus dem Ausgangskanal austretende Kühlluft strömt somit parallel zur Tragstruktur von einer erhöhten Position aus in den Zwischenraum zwischen Hitzeschildsteinen und Tragstruktur ein. Dies ermöglicht die Kühlung eines weiten Bereiches der Tragstruktur und vermeidet gleichzeitig eine Prallkühlung der Hitzeschildsteine.The cooling air emerging from the outlet channel thus flows parallel to the support structure from an elevated position into the gap between the heat shield bricks and the support structure. This allows the cooling of a wide range of the supporting structure and at the same time avoids impact cooling of the heat shield stones.

Es kann auch als vorteilhaft angesehen werden, dass die Vorrichtung zwei gegenüberliegende Ausgangskanäle umfasst.It may also be considered advantageous that the device comprises two opposing output channels.

Diese Ausgestaltung der Erfindung eignet sich besonders zur Kühlung einer Befestigungs-Nut in der Tragstruktur.This embodiment of the invention is particularly suitable for cooling a mounting groove in the support structure.

Es kann auch als vorteilhaft angesehen werden, dass die Vorrichtung vier Ausgangskanäle aufweist.It may also be considered advantageous that the device has four output channels.

Dies ermöglicht eine gleichmäßige Kühlung der um die Vorrichtung herum angeordneten Tragstrukturbereiche.This enables uniform cooling of the support structure areas arranged around the device.

Eine weitere Aufgabe der Erfindung ist es, ein Hitzeschild der eingangs genannten Art anzugeben, mit welchem eine Verzunderung der Tragstruktur aufgrund von Heißgaseinzug besonders effektiv vermieden werden kann.Another object of the invention is to provide a heat shield of the type mentioned, with which a scaling of the support structure can be particularly effectively avoided due to hot gas intake.

Hierzu umfasst das Hitzeschild zum Schutz vor Heißgasen mindestens eine Kühlluftpassage in der Tragstruktur, an welcher eine Vorrichtung gemäß einem der Ansprüche 1 bis 5 angeordnet ist.For this purpose, the heat shield for protection against hot gases comprises at least one cooling air passage in the support structure, on which a device according to one of claims 1 to 5 is arranged.

Der Begriff "die Vorrichtung ist an der Kühlluftpassage angeordnet" ist hierbei derart zu verstehen, dass der von der Vorrichtung umfasste Kühlluftkanal mit der Kühlluftpassage korrespondiert.The term "the device is arranged on the cooling air passage" in this case is to be understood such that the of Device included cooling air passage with the cooling air passage corresponded.

Die Vorrichtung kann beispielsweise unterhalb des Kreuzungsbereiches zweier Dehnungsspalten an der Tragstruktur angeordnet sein. In diesem Bereich kann mit nur einer Vorrichtung bei entsprechender Anzahl an Ausgangskanälen unter den vier angrenzenden Hitzeschildsteinen Kühlluft in den jeweiligen Zwischenraum zwischen der Kaltseite des Hitzeschildsteins und der Tragstruktur eingedüst werden.The device can be arranged, for example, below the crossing region of two expansion gaps on the support structure. In this area, cooling air can be injected into the respective gap between the cold side of the heat shield brick and the support structure with only one device with a corresponding number of output channels under the four adjacent heat shield bricks.

Bevorzugt ist die Vorrichtung aber unterhalb eines Hitzeschildsteins an der Tragstruktur angeordnet.Preferably, however, the device is arranged below a heat shield block on the support structure.

Der Begriff "unterhalb eines Hitzeschildsteines" ist hierbei derart zu verstehen, dass die Vorrichtung in einem Bereich der Tragstruktur angeordnet ist, welchem die Kaltseite des Hitzeschildsteines zugewandt ist.The term "below a heat shield brick" is here to be understood such that the device is arranged in a region of the support structure, which faces the cold side of the heat shield brick.

Entsprechend dieser Weiterbildung der Erfindung kann die Vorrichtung insbesondere unterhalb eines Hitzeschildsteines in der Nähe eines Befestigungsabschnitts eines Steinhalters angeordnet sein. Hierbei können die seitlich austretenden Ausgangskanäle in Richtung der Tragstruktur geneigt und derart positioniert sein, dass der mindestens eine austretende Kühlluftstrahl auf diejenigen Strukturen gerichtet ist, welche die Steinhalter in ihrer Befestigung halten.According to this embodiment of the invention, the device can be arranged in particular below a heat shield brick in the vicinity of a fastening portion of a stone holder. Here, the laterally exiting output channels can be inclined in the direction of the support structure and positioned so that the at least one exiting cooling air jet is directed to those structures that hold the stone holder in its attachment.

Vorteilhafterweise sind die Befestigungsabschnitte der Steinhalter innerhalb von in der Tragstruktur verlaufenden Befestigungs-Nuten lösbar befestigt und die Kühlluftpassage mündet in den Nut-Boden der Befestigungs-Nut. Die Vorrichtung ist hierbei im Nut-Boden an der Kühlluftpassage angeordnet.Advantageously, the mounting portions of the stone holder are releasably secured within extending in the support structure mounting grooves and the cooling air passage opens into the groove bottom of the mounting groove. The device is in this case arranged in the groove bottom on the cooling air passage.

Gemäß dieser Weiterbildung der Erfindung muss zum Ein- und Ausbau der Hitzeschildsteine die Vorrichtung entweder entfernt werden oder sie ist derart im Nut-Boden angeordnet, dass die Steinhalter über die Vorrichtung hinweg durch die Befestigungs-Nut geschoben werden können.According to this embodiment of the invention, the device must either be removed or it is arranged in the groove bottom for installing and removing the heat shield bricks, that the stone holders can be pushed over the device through the mounting groove.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist die Vorrichtung zwischen zwei Befestigungsabschnitten der Steinhalter im Wesentlichen mittig unter einem Hitzeschildstein angeordnet.According to an advantageous embodiment of the invention, the device between two attachment portions of the stone holder is arranged substantially centrally under a heat shield brick.

Mit anderen Worten befindet sich die Vorrichtung zwischen zwei Befestigungsabschnitten zweier gegenüberliegender Steinhalter, welche einen gemeinsamen Hitzeschildstein an gegenüberliegenden Seitenwänden des Hitzeschildsteines halten. Auf diese Weise lässt sich die aus der Vorrichtung austretende Kühlluft unterhalb des Hitzeschildsteines eindüsen, ohne dass die Steinhalter den Strömungsweg der Kühlluft blockieren.In other words, the device is located between two attachment portions of two opposing stone holders, which hold a common heat shield brick on opposite side walls of the heat shield brick. In this way, the cooling air emerging from the device can be injected below the heat shield brick without the stone holders blocking the flow path of the cooling air.

Vorteilhafterweise kann weiter vorgesehen sein, dass im Nut-Boden der Befestigungs-Nut eine Kühlluft-Nut verläuft und die Vorrichtung in die Kühlluftbohrung mindestens auf Höhe des Nut-Bodens abgesenkt ist, wobei sich die Ausgangskanäle der Vorrichtung in die Kühlluft-Nut öffnen.Advantageously, it can further be provided that a cooling air groove runs in the groove bottom of the fastening groove and the device is lowered into the cooling air bore at least at the height of the groove bottom, the outlet channels of the device opening into the cooling air groove.

Insbesondere kann die Vorrichtung gemäß dieser Ausbildung der Erfindung derart in der Kühlluft-Nut angeordnet sein, dass sie nicht über den Nutboden der Befestigungs-Nut hinaus ragt. Somit können die Steinhalter über die Vorrichtung hinweg in der Befestigungs-Nut verschoben werden. Dies ermöglicht einen einfachen Ein- und Ausbau der Hitzeschildsteine zu Reparatur- und Wartungszwecken.In particular, the device according to this embodiment of the invention can be arranged in the cooling air groove such that it does not protrude beyond the groove bottom of the fastening groove. Thus, the stone holders can be moved across the device in the mounting groove. This allows for easy installation and removal of the heat shield stones for repair and maintenance purposes.

Es kann auch als vorteilhaft betrachtet werden, dass die Kühlluft-Nut an ihren Enden einen Auslauf umfasst.It can also be considered advantageous that the cooling air groove comprises an outlet at its ends.

Dies ermöglicht einen strömungstechnisch verbesserten Austritt der Kühlluft aus der Kühlluft-Nut.This allows a fluidically improved outlet of the cooling air from the cooling air groove.

Gemäß einer vorteilhaften Weiterbildung der Erfindung können die Tragstruktur und die Vorrichtung derart miteinander korrespondieren, dass die Vorrichtung zum Ein- und Ausbau der Hitzeschildsteine in der Tragstruktur versenkbar ist.According to an advantageous development of the invention, the support structure and the device can correspond to one another such that the device for installing and removing the heat shield bricks in the support structure can be lowered.

Zur Versenkung der Vorrichtung in der Tragstruktur kann die Vorrichtung beispielsweise vollständig in die Tragstruktur einschraubbar sein. Gemäß einer anderen Ausgestaltung der Weiterbildung kann die Vorrichtung in zwei ineinander überführbare Positionen an der Tragstruktur anordenbar sein. Dabei dient eine erste Position mit der Längsachse senkrecht zur Tragstruktur-Oberfläche dem Einleiten von Kühlluft und eine zweite Position mit der Längsachse parallel zur Oberfläche der Tragstruktur der Versenkung der Vorrichtung.For sinking the device in the support structure, the device may for example be completely screwed into the support structure. According to another embodiment of the development, the device can be arranged in two interconvertible positions on the support structure. In this case, a first position with the longitudinal axis perpendicular to the support structure surface serves to introduce cooling air and a second position with the longitudinal axis parallel to the surface of the support structure of the sinking of the device.

Eine weitere Aufgabe der Erfindung ist es, eine Brennkammer und eine Gasturbine mit mindestens einer Brennkammer anzugeben, mit welcher eine Verzunderung der Tragstruktur aufgrund von Heißgaseinzug eines von der Brennkammer umfassten Hitzeschildes besonders effektiv vermieden werden kann.A further object of the invention is to provide a combustion chamber and a gas turbine with at least one combustion chamber, with which a scaling of the support structure due to hot gas intake of a heat shield covered by the combustion chamber can be particularly effectively avoided.

Die Aufgabe wird erfindungsgemäß bei einer Brennkammer und einer Gasturbine der eingangs genannten Art dadurch gelöst, dass das Hitzeschild gemäß einem der Ansprüche 6 bis 12 ausgebildet ist.The object is achieved in a combustion chamber and a gas turbine of the type mentioned above in that the heat shield is formed according to one of claims 6 to 12.

Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figur der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen.Further expedient refinements and advantages of the invention are the subject matter of the description of embodiments of the invention with reference to the figure of the drawing, wherein like reference numerals refer to the same acting components.

Dabei zeigt die

Fig. 1
eine schematische Darstellung einer Gasturbine nach dem Stand der Technik,
Fig. 2
schematisch eine erfindungsgemäße Vorrichtung zum Kühlen einer Tragstruktur eines Hitzeschildes gemäß einem ersten Ausführungsbeispiel in einer Schnittansicht,
Fig. 3
schematisch einen Querschnitt durch eine erfindungsgemäße Vorrichtung zum Kühlen der Tragstruktur gemäß einem zweiten Ausführungsbeispiel,
Fig. 4
schematisch einen Querschnitt einer erfindungsgemäßen Vorrichtung gemäß einem dritten Ausführungsbeispiel,
Fig. 5
schematisch einen Ausschnitt eines erfindungsgemäßen Hitzeschildes mit einer an der Tragstruktur angeordneten Vorrichtung zum Kühlen der Tragstruktur gemäß einem vierten Ausführungsbeispiel,
Fig. 6
eine schematische Darstellung des in Fig.5 dargestellten Hitzeschilds in einer weiteren Schnittansicht entlang der in Fig.5 durch die Pfeile VI-VI gekennzeichneten Ebene,
Fig. 7
schematisch einen Ausschnitt eines erfindungsgemäßen Hitzeschildes gemäß einem fünften Ausführungsbeispiel in einer Schnittansicht und
Fig. 8
das in Fig.7 dargestellte Hitzeschild in einer Schnittansicht entlang der in Fig.7 durch die Pfeile VIII-VIII gekennzeichneten Ebene.
It shows the
Fig. 1
a schematic representation of a gas turbine according to the prior art,
Fig. 2
1 is a schematic sectional view of a device according to the invention for cooling a support structure of a heat shield according to a first exemplary embodiment;
Fig. 3
1 is a schematic cross-section of a device according to the invention for cooling the support structure according to a second embodiment,
Fig. 4
FIG. 2 schematically a cross section of a device according to the invention according to a third embodiment, FIG.
Fig. 5
2 schematically shows a detail of a heat shield according to the invention with a device arranged on the support structure for cooling the support structure according to a fourth exemplary embodiment,
Fig. 6
a schematic representation of the in Figure 5 shown heat shield in a further sectional view along the in Figure 5 level indicated by the arrows VI-VI,
Fig. 7
schematically a section of a heat shield according to the invention according to a fifth embodiment in a sectional view and
Fig. 8
this in Figure 7 shown heat shield in a sectional view along the in Figure 7 indicated by the arrows VIII-VIII level.

Die Figur 1 zeigt eine schematische Schnittansicht einer Gasturbine 1 nach dem Stand der Technik. Die Gasturbine 1 weist im Inneren einen um eine Rotationsachse 2 drehgelagerten Rotor 3 mit einer Welle 4 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 3 folgen aufeinander ein Ansauggehäuse 6, ein Verdichter 8, ein Verbrennungssystem 9 mit einer Anzahl an Brennkammern 10, die jeweils eine Brenneranordnung 11 und ein Gehäuse 12 umfassen, eine Turbine 14 und ein Abgasgehäuse 15. Das Gehäuse 12 ist zum Schutz vor Heißgasen mit einem Hitzeschild (nicht dargestellt) ausgekleidet.The FIG. 1 shows a schematic sectional view of a gas turbine 1 according to the prior art. The gas turbine 1 has inside a rotatably mounted about a rotation axis 2 rotor 3 with a shaft 4, which is also referred to as a turbine runner. Along the rotor 3 successively follow an intake housing 6, a compressor 8, a combustion system 9 with a number of combustion chambers 10, each comprising a burner assembly 11 and a housing 12, a turbine 14th and an exhaust housing 15. The housing 12 is lined with a heat shield (not shown) for protection from hot gases.

Das Verbrennungssystem 9 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal. Dort bilden mehrere hintereinander geschaltete Turbinenstufen die Turbine 14. Jede Turbinenstufe ist aus Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums gesehen, folgt im Heißkanal einer aus Leitschaufeln 17 gebildeten Reihe eine aus Laufschaufeln 18 gebildete Reihe. Die Leitschaufeln 17 sind dabei an einem Innengehäuse eines Stators 19 befestigt, wohingegen die Laufschaufeln 18 einer Reihe beispielsweise mittels einer Turbinenscheibe am Rotor 3 angebracht sind. An dem Rotor 3 angekoppelt ist beispielsweise ein Generator (nicht dargestellt).The combustion system 9 communicates with an annular hot gas duct, for example. There, a plurality of successively connected turbine stages form the turbine 14. Each turbine stage is formed of blade rings. When viewed in the direction of flow of a working medium, the hot runner of a row formed by vanes 17 is followed by a row formed by buckets 18. The guide vanes 17 are fastened to an inner housing of a stator 19, whereas the moving blades 18 of a row are attached to the rotor 3, for example by means of a turbine disk. Coupled to the rotor 3 is, for example, a generator (not shown).

Während des Betriebes der Gasturbine wird vom Verdichter 8 durch das Ansauggehäuse 6 Luft angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 8 bereitgestellte verdichtete Luft wird zu dem Verbrennungssystem 9 geführt und dort im Bereich der Brenneranordnung 11 mit einem Brennstoff vermischt. Das Gemisch wird dann mit Hilfe der Brenneranordnung 11 unter Bildung eines Arbeitsgasstromes im Verbrennungssystem 9 verbrannt. Von dort strömt der Arbeitsgasstrom entlang des Heißgaskanals an den Leitschaufeln 17 und den Laufschaufeln 18 vorbei. An den Laufschaufeln 18 entspannt sich der Arbeitsgasstrom impulsübertragend, so dass die Laufschaufeln 18 den Rotor 3 antreiben und dieser den an ihn angekoppelten Generator (nicht dargestellt).During operation of the gas turbine, air is sucked in and compressed by the compressor 8 through the intake housing 6. The compressed air provided at the turbine-side end of the compressor 8 is led to the combustion system 9 where it is mixed with a fuel in the area of the burner assembly 11. The mixture is then burned by means of the burner assembly 11 to form a working gas stream in the combustion system 9. From there, the working gas stream flows along the hot gas channel past the guide vanes 17 and the rotor blades 18. At the rotor blades 18, the working gas stream relaxes in a pulse-transmitting manner, so that the rotor blades 18 drive the rotor 3 and this drives the generator (not shown) coupled to it.

Die Figur 2 zeigt schematisch eine erfindungsgemäße Vorrichtung 20 zum Kühlen einer Tragstruktur eines Hitzeschildes gemäß einem ersten Ausführungsbeispiel in einer Schnittansicht. Die Vorrichtung 20 weist eine Längsachse 21 auf und umfasst einen Kühlluftkanal 22. Der Kühlluftkanal 22 erstreckt sich von einem Ende 23 der Vorrichtung und umfasst stromab zwei Ausgangskanäle 25a und 25b, welche in Bezug auf die Längsachse 21 seitlich aus der Vorrichtung austreten und gegenüberliegend angeordnet sind. Gemäß dem dargestellten Ausführungsbeispiel ist die Vorrichtung ein Gewindestift mit einem im Inneren des Gewindestifts verlaufenden Kühlluftkanal 22. Die dargestellte Vorrichtung 20 kann auch als Kühlmade bezeichnet werden. Der Gewindestift weist auf seiner Mantelfläche 26 ein Gewinde (nicht dargestellt) auf. Das Gewinde kann sich beispielsweise im Bereich des Endes 23 über die Mantelfläche 26 erstrecken oder sich bis zum gegenüberliegenden Ende 27 ziehen. Die Vorrichtung 20 ist mit ihrem Ende 23 an einer Tragstruktur eines Hitzeschildes anordenbar. Beispielsweise indem die Kühlmade in eine mit einem Innengewinde versehene Kühlluftbohrung in die Tragstruktur eingeschraubt wird. In dieser Position ist aus der Kühlluftbohrung austretende Kühlluft in den Kühlluftkanal 22 einleitbar, so dass die Kühlluft stromab durch die Ausgangskanäle 25a, 25b strömt und die Kühlmade in der mit 24a und 24b bezeichneten Richtung verlässt.The FIG. 2 schematically shows an inventive device 20 for cooling a support structure of a heat shield according to a first embodiment in a sectional view. The device 20 has a longitudinal axis 21 and comprises a cooling air channel 22. The cooling air channel 22 extends from one end 23 of the device and comprises downstream two outlet channels 25a and 25b, which emerge laterally from the device with respect to the longitudinal axis 21 and opposite are arranged. According to the illustrated embodiment, the device is a threaded pin with a running inside the threaded pin cooling air passage 22. The illustrated device 20 may also be referred to as Kühlmade. The threaded pin has on its lateral surface 26 a thread (not shown). The thread may, for example, in the region of the end 23 extend over the lateral surface 26 or pull to the opposite end 27. The device 20 can be arranged with its end 23 on a support structure of a heat shield. For example, by the cooling grommet is screwed into a provided with an internal thread cooling air hole in the support structure. In this position, cooling air exiting from the cooling air hole can be introduced into the cooling air passage 22, so that the cooling air flows downstream through the output passages 25a, 25b and leaves the cooling boot in the direction indicated by 24a and 24b.

Die Figur 3 zeigt einen Querschnitt einer erfindungsgemäßen Vorrichtung 29 zum Kühlen einer Tragstruktur gemäß einem zweiten Ausführungsbeispiel der Erfindung. Der Querschnitt verläuft hierbei senkrecht zu der Längsachse 21 auf Höhe der Ausgangskanäle 30a und 30b. Die dargestellte Vorrichtung 29 unterscheidet sich von der in Figur 2 dargestellten Kühlmade lediglich durch den Winkel, unter dem die Ausgangskanäle 30a und 30b in Bezug auf die Längsachse 21 seitlich aus der Vorrichtung austreten. Bei dem dargestellten Ausführungsbeispiel verlaufen die Ausgangskanäle radial zur Längsachse 21 und sind gegenüberliegend angeordnet. Durch den Kühlluftkanal 22 strömende Kühlluft wird stromab auf die Ausgangskanäle 30a und 30b aufgeteilt und verlässt die Kühlmade in der dargestellten Ausströmrichtung 31a und 31b.The FIG. 3 shows a cross section of a device 29 according to the invention for cooling a support structure according to a second embodiment of the invention. The cross section in this case runs perpendicular to the longitudinal axis 21 at the level of the output channels 30a and 30b. The illustrated device 29 differs from the in FIG. 2 illustrated Kühlmade only by the angle at which exit the output channels 30a and 30b with respect to the longitudinal axis 21 laterally from the device. In the illustrated embodiment, the output channels extend radially to the longitudinal axis 21 and are arranged opposite one another. Cooling air flowing through the cooling air passage 22 is divided downstream of the output passages 30a and 30b and leaves the cooling boot in the illustrated outflow direction 31a and 31b.

Die Figur 4 zeigt einen Querschnitt einer erfindungsgemäßen Vorrichtung 64 zum Kühlen einer Tragstruktur gemäß einem dritten Ausführungsbeispiel der Erfindung. Der Querschnitt verläuft hierbei senkrecht zu der Längsachse 21 auf Höhe der Ausgangskanäle 66a, 66b, 66c und 66d. Die dargestellte Vorrichtung 64 unterscheidet sich von der in Figur 3 dargestellten Kühlmade lediglich durch die Anzahl der Ausgangskanäle. Das dargestellte Ausführungsbeispiel umfasst vier Ausgangskanäle, welche radial zur Längsachse 21 verlaufen und paarweise gegenüberliegend angeordnet sind. Durch den Kühlluftkanal 22 strömende Kühlluft wird stromab auf die Ausgangskanäle 66a, 66b, 66c, 66d aufgeteilt und verlässt die Kühlmade 64 in den dargestellten Richtungen 67a, 67b, 67c, 67d.The FIG. 4 shows a cross section of an inventive device 64 for cooling a support structure according to a third embodiment of the invention. The cross section in this case runs perpendicular to the longitudinal axis 21 at the level of the output channels 66a, 66b, 66c and 66d. The illustrated device 64 differs from that in FIG FIG. 3 shown Cooled only by the number of output channels. The illustrated embodiment comprises four output channels, which extend radially to the longitudinal axis 21 and are arranged in pairs opposite one another. Cooling air flowing through the cooling air passage 22 is divided downstream of the output passages 66a, 66b, 66c, 66d and exits the cooling grate 64 in the illustrated directions 67a, 67b, 67c, 67d.

Die Figur 5 zeigt einen Ausschnitt eines erfindungsgemäßen Hitzeschildes 33 mit einer Tragstruktur 34 und einer Anzahl von Hitzeschildsteinen, von denen beispielhaft ein Hitzeschildstein 35 in der Figur dargestellt ist. Der Hitzeschildstein 35 weist eine der Tragstruktur 34 zugewandte Kaltseite 36 und eine der Kaltseite 36 gegenüberliegende, mit einem heißen Medium beaufschlagbare Heißseite 37 auf. Der Hitzeschildstein 35 ist mittels Steinhaltern 38 und 39 an der Tragstruktur 34 befestigt. Hierzu sind die Steinhalter 38, 39 einerseits mit ihren Befestigungsabschnitten 40, 41 an der Tragstruktur 34 befestigt und greifen andererseits mit ihren Halteabschnitten 42, 43 in Halte-Nuten 44, 47 an gegenüberliegenden Seitenwänden des Hitzeschildsteins 35 ein. Bei dem auf diese Weise federnd an der Tragstruktur 34 gehaltenen Hitzeschildstein 35 kann es bei Beaufschlagung der Heißseite 37 mit heißen Gasen zu Heißgaseinzug in die Dehnungsspalten zwischen benachbarten Hitzeschildsteinen kommen. Die in der Richtung 45 eindringenden Gase verteilen sich hierbei unter dem Hitzeschildstein 35 im Zwischenraum 46, der sich von der Kaltseite 36 des Hitzeschildsteines 35 zu einem dem Hitzeschildstein 35 zugewandten Oberflächenbereich der Tragstruktur 35 erstreckt. Dadurch kann es zu einer Verzunderung der Tragstruktur 34 unterhalb des Hitzeschildsteines 35 kommen. Zum Schutz vor Heißgasen ist eine erfindungsgemäße Vorrichtung 48 zur Kühlung der Tragstruktur 34 unterhalb des Hitzeschildsteines an der Tragstruktur 34 angeordnet. Bei der erfindungsgemäßen Vorrichtung 48 handelt es sich gemäß dem dargestellten Ausführungsbeispiel um einen Gewindestift mit einer Längsachse 21 und einem Kühlluftkanal 22. Die Vorrichtung 48 kann somit auch als Kühlmade 48 bezeichnet werden. Die Kühlmade 48 ist mit ihrer Längsachse 21 senkrecht zur Oberfläche 51 der Tragstruktur an der Tragstruktur angeordnet, wobei die Kühlmade 48 mit einem zur Tragstruktur weisenden Ende 23 in eine Kühlluftpassage 50 der Tragstruktur eingeschraubt ist. Die Kühlluftpassage 50 ist als Kühlluftbohrung ausgeführt. Der Kühlluftkanal 22 erstreckt sich von dem eingeschraubten Ende 23 und umfasst stromab zwei Ausgangskanäle 52a, 52b, welche seitlich der Längsachse 21 aus der Kühlmade 48 austreten. Kühlluftbohrung 50 und Kühlluftkanal 22 korrespondieren miteinander, so dass aus der Kühlluftbohrung strömende Kühlluft in den Kühlluftkanal 22 eintritt und mittels der Kühlmade 48 in Richtungen 53a, 53b in den Zwischenraum 46 einströmt. Die Kühlluft wird somit fern der Dehnungsspalten unterhalb des Hitzeschildsteines 35 eingeleitet. Dies ermöglicht eine besonders effektive Kühlung der Tragstruktur. Zudem ist erfindungsgemäß eine Prallkühlung des Hitzeschildsteines 35 vermieden. Da die Kühlmade 48 in dem dargestellten Ausführungsbeispiel zwischen zwei Befestigungsabschnitten 40, 41 der Steinhalter 38, 39 mittig unter dem Hitzeschildstein 35 angeordnet ist, werden insbesondere die die Steinhalter befestigenden Bereiche der Tragstruktur gekühlt. Auch kann die Länge der Kühlluftbohrung 50 derart gewählt werden, dass die Kühlmade 48 während des Ein- und Ausbaus der Hitzeschildsteine in dieser vollständig versenkbar ist.The FIG. 5 shows a section of a heat shield 33 according to the invention with a support structure 34 and a number of heat shield bricks, of which a heat shield brick 35 is shown by way of example in the figure. The heat shield brick 35 has a cold side 36 facing the support structure 34 and a hot side 37 which is opposite the cold side 36 and can be charged with a hot medium. The heat shield brick 35 is fastened to the support structure 34 by means of stone holders 38 and 39. For this purpose, the stone holders 38, 39 are fastened on the one hand with their attachment portions 40, 41 on the support structure 34 and on the other hand engage with their holding portions 42, 43 in retaining grooves 44, 47 on opposite side walls of the heat shield brick 35 a. In the case of the heat shield brick 35 resiliently held on the support structure 34 in this way, it is possible, when the hot side 37 is acted upon by hot gases, to produce hot gas in the expansion gaps between adjacent heat shield bricks. The gases which penetrate in the direction 45 are distributed here below the heat shield brick 35 in the intermediate space 46, which extends from the cold side 36 of the heat shield brick 35 to a surface region of the support structure 35 facing the heat shield brick 35. This can lead to a scaling of the support structure 34 below the heat shield brick 35. For protection against hot gases, a device 48 according to the invention for cooling the support structure 34 is arranged below the heat shield block on the support structure 34. The device 48 according to the invention is according to the illustrated embodiment, a threaded pin with a longitudinal axis 21 and a cooling air passage 22. The device 48 may thus also be referred to as Kühlmade 48. The Kühlmade 48 is arranged with its longitudinal axis 21 perpendicular to the surface 51 of the support structure on the support structure, wherein the Kühlmade 48 is screwed with an end facing the support structure 23 in a cooling air passage 50 of the support structure. The cooling air passage 50 is designed as a cooling air hole. The cooling air channel 22 extends from the screwed-in end 23 and comprises downstream two outlet channels 52a, 52b, which emerge laterally from the longitudinal axis 21 from the cooling grate 48. Cooling air hole 50 and cooling air channel 22 correspond to each other, so that cooling air flowing from the cooling air hole enters the cooling air passage 22 and flows into the gap 46 in directions 53a, 53b by means of the cooling grommet 48. The cooling air is thus introduced far away from the expansion gaps below the heat shield brick 35. This allows a particularly effective cooling of the support structure. In addition, an impact cooling of the heat shield brick 35 is avoided according to the invention. Since the cooling grommet 48 is arranged in the illustrated embodiment between two mounting portions 40, 41 of the stone holder 38, 39 centrally below the heat shield brick 35, in particular the areas of the support structure fixing the stone holder are cooled. Also, the length of the cooling air hole 50 may be selected such that the cooling grommet 48 is fully retractable during installation and removal of the heat shield bricks therein.

Die Figur 6 zeigt das in Fig. 5 dargestellte Hitzeschild 33 in einer weiteren Schnittansicht entlang der mit Pfeilen VI-VI gekennzeichneten Ebene. In dieser Ansicht ist gezeigt, dass die Steinhalter mit ihren Befestigungsabschnitten in einer Befestigungs-Nut 55 an der Tragstruktur 34 gehalten sind. Die Kühlluftbohrung 50 mündet in den Nut-Boden 56 dieser Befestigungs-Nut 55. Die Kühlmade 48 ist mit der Längsachse 21 senkrecht zur Oberfläche 51 der Tragstruktur 34 im Nut-Boden 56 an der Kühlluftbohrung 50 angeordnet und ragt eine Strecke 58 aus dem Nut-Boden 56 heraus. Die Strecke 58 ist hierbei so gewählt, dass die Kühlmade 48 nicht die Kaltseite 36 des Hitzeschildsteins 35 berührt und die Kühlluft aus den Ausgangskanälen 52a, 52b strömend in die Befestigungs-Nut 55 und aufgrund der zwischen den Steinhaltern angeordneten Position der Kühlmade 48 in den Zwischenraum 46 gelangt.The FIG. 6 shows that in Fig. 5 shown heat shield 33 in a further sectional view taken along the plane marked with arrows VI-VI. In this view, it is shown that the stone holders are held with their attachment portions in a mounting groove 55 on the support structure 34. The cooling air hole 50 opens into the groove bottom 56 of this fastening groove 55. The cooling grommet 48 is arranged with the longitudinal axis 21 perpendicular to the surface 51 of the support structure 34 in the groove bottom 56 on the cooling air bore 50 and protrudes a distance 58 from the groove Bottom 56 out. The distance 58 is in this case selected so that the cooling grating 48 does not touch the cold side 36 of the heat shield block 35 and the cooling air from the output channels 52a, 52b flowing into the mounting groove 55 and due the arranged between the stone holders position of the Kühlmade 48 enters the gap 46.

Die Figur 7 zeigt einen Ausschnitt eines erfindungsgemäßen Hitzeschilds 60 gemäß einem fünften Ausführungsbeispiel. Dieses unterscheidet sich von dem in Fig.5 dargestellten dadurch, dass zusätzlich im Nut-Boden der Befestigungs-Nut eine Kühlluft-Nut 62 verläuft. Die Kühlmade 48 ist bis auf Höhe des Nutbodens der Befestigungs-Nut in der Kühlluftbohrung 50 abgesenkt, wobei die Ausgangskanäle 52a, 52b der Kühlmade 48 sich in Längsrichtung in die Kühlluft-Nut 62 öffnen. Dies hat den Vorteil, dass die Steinhalter über die Kühlmade 48 hinweg zum Ein- und Ausbau der Hitzeschildsteine 35 durch die Befestigungs-Nut bewegt werden können. Die Funktion der Kühlmade 48 bleibt hierbei erhalten. Die aus der Kühlmade 48 ausströmende Kühlluft, deren Strömungsrichtungen beispielhaft mit Pfeilen dargestellt ist, wird in die Kühlluft-Nut 62 eingedüst und strömt an deren Enden mittels eines Auslaufs 63 in den Zwischenraum 46 zwischen Kaltseite des Hitzeschildsteines 35 und der Tragstruktur 34 ein und kühlt die Tragstruktur 34 unterhalb des Hitzeschildsteines 35 unter Vermeidung einer Prallkühlung desselben.The FIG. 7 shows a section of a heat shield 60 according to the invention according to a fifth embodiment. This is different from the one in Figure 5 represented in that in addition in the groove bottom of the mounting groove a cooling air groove 62 extends. The Kühlmade 48 is lowered to the level of the groove bottom of the mounting groove in the cooling air hole 50, wherein the output channels 52a, 52b of the Kühlmade 48 open in the longitudinal direction in the cooling air groove 62. This has the advantage that the stone holder can be moved over the Kühlmade 48 away for installation and removal of the heat shield bricks 35 through the mounting groove. The function of the Kühlmade 48 remains hereby. The effluent from the Kühlmade 48 cooling air, the flow directions is exemplified by arrows, is injected into the cooling air groove 62 and flows at the ends by means of an outlet 63 in the gap 46 between the cold side of the heat shield brick 35 and the support structure 34 and cools the Support structure 34 below the heat shield brick 35 while avoiding a baffle cooling of the same.

Die Figur 8 zeigt das in Fig.7 dargestellten Hitzeschild 60 in einer Schnittansicht entlang der durch die Pfeile VIII-VIII gekennzeichneten Ebene. Die den Hitzeschildstein 35 an der Tragstruktur 34 befestigenden Steinhaltern (in dieser Ansicht nicht dargestellt) werden mit ihren Befestigungsabschnitten in der Befestigungs-Nut 55 an der Tragstruktur 34 gehalten. Die Kühlluftbohrung 50 mündet in den Nut-Boden 56 dieser Befestigungs-Nut 55. Die Kühlmade 48 ist mit der Längsachse 21 senkrecht zur Oberfläche 51 der Tragstruktur 34 im Nut-Boden 56 an der Kühlluftbohrung 50 angeordnet und bis auf Höhe des Nut-Bodens 56 in der Kühlluftbohrung 50 abgesenkt. Dadurch können die Steinhalter zum Ein- und Ausbau der Hitzeschildsteine 35 frei in der Befestigungs-Nut 55 verschoben werden. Die aus den Ausgangskanälen 52a, 52b der Kühlmade 48 austretende Kühlluft strömt zunächst in die Kühlluft-Nut 62 ein und gelangt von hier in den Zwischenraum 46. In diesem kann sich die Kühlluft verteilen und die Tragstruktur unterhalb des Hitzeschildsteines 35 effektiv kühlen.The FIG. 8 shows that in Figure 7 illustrated heat shield 60 in a sectional view taken along the plane indicated by the arrows VIII-VIII. The stone holder (not shown in this view) securing the heat shield brick 35 to the support structure 34 are held with their attachment portions in the attachment groove 55 on the support structure 34. The cooling air hole 50 opens into the groove bottom 56 of this fastening groove 55. The cooling grommet 48 is arranged with the longitudinal axis 21 perpendicular to the surface 51 of the support structure 34 in the groove bottom 56 on the cooling air bore 50 and up to the level of the groove bottom 56th lowered in the cooling air hole 50. As a result, the stone holder for installing and removing the heat shield bricks 35 can be moved freely in the mounting groove 55. The cooling air emerging from the output channels 52a, 52b of the cooling grate 48 first flows into the cooling air groove 62 and from here into the intermediate space 46. In this, the cooling air can distribute and effectively cool the support structure below the heat shield brick 35.

Claims (14)

Vorrichtung (20, 29, 48, 64) zum Kühlen einer Tragstruktur eines Hitzeschildes (33, 60), mit - einer Längsachse (21) und einem Kühlluftkanal (22), - wobei die Vorrichtung (20, 29, 48, 64) mit der Längsachse (21) senkrecht zur Oberfläche (51) der Tragstruktur (34) an der Tragstruktur anordenbar ist, und in dieser Position - der Kühlluftkanal (22) sich von einem zur Tragstruktur weisenden Ende (23) der Vorrichtung (20, 29, 48, 64) aus erstreckt und stromab mindestens einen Ausgangskanal (25a, 25b, 30a, 30b, 52a, 52b, 66a, 66b, 66c, 66d) umfasst, wobei der mindestens eine Ausgangskanal in Bezug auf die Längsachse (21) seitlich aus der Vorrichtung (20, 29, 48, 64) austritt, und - der Kühlluftkanal (22) mit mindestens einer in der Tragstruktur (34) angeordneten Kühlluftpassage (50) korrespondiert. Device (20, 29, 48, 64) for cooling a support structure of a heat shield (33, 60), with a longitudinal axis (21) and a cooling air channel (22), - Wherein the device (20, 29, 48, 64) with the longitudinal axis (21) perpendicular to the surface (51) of the support structure (34) can be arranged on the support structure, and in this position - The cooling air duct (22) extending from an end facing the support structure (23) of the device (20, 29, 48, 64) and downstream at least one output channel (25a, 25b, 30a, 30b, 52a, 52b, 66a, 66b , 66c, 66d), wherein the at least one exit channel emerges laterally from the device (20, 29, 48, 64) with respect to the longitudinal axis (21), and - The cooling air passage (22) with at least one in the support structure (34) arranged cooling air passage (50) corresponds. Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
die Vorrichtung (20, 29, 48, 64) ein Gewindestift mit integriertem Kühlluftkanal (22) ist.
Device according to claim 1,
characterized in that
the device (20, 29, 48, 64) is a threaded pin with integrated cooling air duct (22).
Vorrichtung nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass
der mindestens eine Ausgangskanal (30a, 30b, 52a, 52b, 66a, 66b, 66c, 66d) radial zur Längsachse (21) verläuft.
Device according to one of claims 1 or 2,
characterized in that
the at least one output channel (30a, 30b, 52a, 52b, 66a, 66b, 66c, 66d) extends radially to the longitudinal axis (21).
Vorrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass mindestens zwei gegenüberliegende Ausgangskanäle (25a, 25b, 30a, 30b, 52a, 52b, 66a, 66b, 66c, 66d) umfasst sind.
Device according to one of claims 1 to 3,
characterized in that at least two opposing output channels (25a, 25b, 30a, 30b, 52a, 52b, 66a, 66b, 66c, 66d) are included.
Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet, dass
die Vorrichtung vier Ausgangskanäle (66a, 66b, 66c, 66d) aufweist.
Device according to claim 4,
characterized in that
the device has four output channels (66a, 66b, 66c, 66d).
Hitzeschild (33, 60) für eine Brennkammer (10) einer Gasturbine (1), mit einer Tragstruktur (34) und einer Anzahl von Hitzeschildsteinen (35), welche an der Tragstruktur (34) mittels Steinhaltern (38, 39) lösbar befestigt sind, wobei jeder Hitzeschildstein (35) eine der Tragstruktur (34) zugewandte Kaltseite (36) und eine der Kaltseite gegenüberliegende, mit einem heißen Medium beaufschlagbare Heißseite (37) aufweist, und jeder Steinhalter (38, 39) mindestens einen Halteabschnitt (42, 43) zur Befestigung an einem Hitzeschildstein und einen an der Tagstruktur (34) befestigbaren Befestigungsabschnitt (40, 41) aufweist, wobei zum Schutz vor Heißgasen mindestens eine Kühlluftpassage (50) in der Tragstruktur (34) angeordnet ist,
dadurch gekennzeichnet, dass an mindestens einer Kühlluftpassage (50) eine Vorrichtung (20, 29, 48, 64) gemäß einem der Ansprüche 1 bis 5 angeordnet ist.
Heat shield (33, 60) for a combustion chamber (10) of a gas turbine (1), with a support structure (34) and a number of heat shield bricks (35) which are releasably secured to the support structure (34) by means of stone holders (38, 39) wherein each heat shield brick (35) has a cold side (36) facing the support structure (34) and a hot side (37) facing the cold side, which can be charged with a hot medium, and each brick holder (38, 39) has at least one holding section (42, 43 ) for attachment to a heat shield brick and to the Tagstruktur (34) attachable mounting portion (40, 41), wherein for protection against hot gases at least one cooling air passage (50) in the support structure (34) is arranged,
characterized in that at least one cooling air passage (50), a device (20, 29, 48, 64) according to one of claims 1 to 5 is arranged.
Hitzeschild (33, 60) nach Anspruch 6,
dadurch gekennzeichnet, dass
die Vorrichtung (20, 29, 48, 64) unterhalb eines Hitzeschildsteins (35) an der Tragstruktur (34) angeordnet ist.
Heat shield (33, 60) according to claim 6,
characterized in that
the device (20, 29, 48, 64) is arranged below a heat shield block (35) on the support structure (34).
Hitzeschild (33, 60) nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass
die Befestigungsabschnitte (40, 41) der Steinhalter (38, 39) innerhalb von in der Tragstruktur (34) verlaufenden Befestigungs-Nuten (55) lösbar befestigt sind, wobei die Kühlluftpassage (50) in den Nut-Boden (56) der Befestigungs-Nut (55) mündet, und die Vorrichtung (29, 48, 64) im Nut-Boden (56) an der Kühlluftpassage (50) angeordnet ist.
Heat shield (33, 60) according to one of claims 6 or 7, characterized in that
the attachment sections (40, 41) of the stone holders (38, 39) are releasably secured within mounting grooves (55) extending in the support structure (34), the cooling air passage (50) being inserted into the groove bottom (56) of the attachment Groove (55) opens, and the device (29, 48, 64) in the groove bottom (56) on the cooling air passage (50) is arranged.
Hitzeschild (33, 60) nach Anspruch 8,
dadurch gekennzeichnet, dass
die Vorrichtung (20, 29, 48, 64)zwischen zwei Befestigungsabschnitten (40, 41) der Steinhalter (38, 39) im Wesentlichen mittig unter einem Hitzeschildstein (35) angeordnet ist.
Heat shield (33, 60) according to claim 8,
characterized in that
the device (20, 29, 48, 64) between two attachment portions (40, 41) of the stone holder (38, 39) is arranged substantially centrally under a heat shield brick (35).
Hitzeschild (60) nach Anspruch 8 oder 9,
dadurch gekennzeichnet, dass
im Nut-Boden (56) der Befestigungs-Nut (55) eine Kühlluft-Nut (62) verläuft und die Vorrichtung (20, 29, 48, 64) in die Kühlluftbohrung (50) mindestens auf Höhe des Nut-Bodens (56) abgesenkt ist, wobei sich die Ausgangskanäle (52a, 52b) der Vorrichtung (20, 29, 48, 64) in die Kühlluft-Nut (62) öffnen.
A heat shield (60) according to claim 8 or 9,
characterized in that
in the groove bottom (56) of the fastening groove (55) extends a cooling air groove (62) and the device (20, 29, 48, 64) in the cooling air bore (50) at least at the level of the groove bottom (56) is lowered, wherein the output channels (52a, 52b) of the device (20, 29, 48, 64) open in the cooling air groove (62).
Hitzeschild (60) nach Anspruch 10,
dadurch gekennzeichnet, dass
die Kühlluft-Nut (62) an ihren Enden einen Auslauf (63) umfasst.
A heat shield (60) according to claim 10,
characterized in that
the cooling air groove (62) has an outlet (63) at its ends.
Hitzeschild (33, 60) nach einem der Ansprüche 6 bis 11,
dadurch gekennzeichnet, dass
die Tragstruktur (34) und die Vorrichtung (20, 29, 48, 64) derart miteinander korrespondieren, dass die Vorrichtung (20, 29, 48, 64) zum Ein- und Ausbau der Hitzeschildsteine(35) in der Tragstruktur (34) versenkbar ist.
Heat shield (33, 60) according to one of claims 6 to 11,
characterized in that
the supporting structure (34) and the device (20, 29, 48, 64) correspond to one another in such a way that the device (20, 29, 48, 64) for mounting and dismounting the heat shield bricks (35) can be retracted in the supporting structure (34) is.
Brennkammer (10), welche mit einem Hitzeschild (33, 60) ausgekleidet ist,
dadurch gekennzeichnet, dass
das Hitzeschild (33, 60) gemäß einem der Ansprüche 6 bis 12 ausgebildet ist.
Combustion chamber (10), which is lined with a heat shield (33, 60),
characterized in that
the heat shield (33, 60) is formed according to one of claims 6 to 12.
Gasturbine (1) mit mindestens einer Brennkammer (10),
dadurch gekennzeichnet, dass
mindestens eine Brennkammer (10) nach Anspruch 13 ausgebildet ist.
Gas turbine (1) with at least one combustion chamber (10),
characterized in that
at least one combustion chamber (10) according to claim 13 is formed.
EP12185435.0A 2012-09-21 2012-09-21 Device for cooling a support structure of a heat shield and heat shield Withdrawn EP2711630A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12185435.0A EP2711630A1 (en) 2012-09-21 2012-09-21 Device for cooling a support structure of a heat shield and heat shield
PCT/EP2013/069215 WO2014044654A2 (en) 2012-09-21 2013-09-17 Device for cooling a supporting structure of a heat shield, and heat shield
KR1020157009794A KR20150058383A (en) 2012-09-21 2013-09-17 Device for cooling a supporting structure of a heat shield, and heat shield
US14/429,737 US9702560B2 (en) 2012-09-21 2013-09-17 Device for cooling a supporting structure of a heat shield, and heat shield
EP13763244.4A EP2883000B1 (en) 2012-09-21 2013-09-17 Device for cooling a supporting structure of a heat shield, and heat shield
CN201380053375.8A CN104718412B (en) 2012-09-21 2013-09-17 Device and heat shielding for cooling down the supporting structure of heat shielding
RU2015114794A RU2635742C2 (en) 2012-09-21 2013-09-17 Heat shield with device for cooling its carrying structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12185435.0A EP2711630A1 (en) 2012-09-21 2012-09-21 Device for cooling a support structure of a heat shield and heat shield

Publications (1)

Publication Number Publication Date
EP2711630A1 true EP2711630A1 (en) 2014-03-26

Family

ID=46963540

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12185435.0A Withdrawn EP2711630A1 (en) 2012-09-21 2012-09-21 Device for cooling a support structure of a heat shield and heat shield
EP13763244.4A Active EP2883000B1 (en) 2012-09-21 2013-09-17 Device for cooling a supporting structure of a heat shield, and heat shield

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13763244.4A Active EP2883000B1 (en) 2012-09-21 2013-09-17 Device for cooling a supporting structure of a heat shield, and heat shield

Country Status (6)

Country Link
US (1) US9702560B2 (en)
EP (2) EP2711630A1 (en)
KR (1) KR20150058383A (en)
CN (1) CN104718412B (en)
RU (1) RU2635742C2 (en)
WO (1) WO2014044654A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206033A1 (en) 2015-04-02 2016-10-06 Siemens Aktiengesellschaft stone holder

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023576A1 (en) * 2013-08-15 2015-02-19 United Technologies Corporation Protective panel and frame therefor
US20160313005A1 (en) * 2015-04-23 2016-10-27 United Technologies Corporation Additive manufactured combustor heat shield with cooled attachment stud
DE102016211613A1 (en) * 2016-06-28 2017-12-28 Siemens Aktiengesellschaft Heat shield arrangement of a combustion chamber with disc spring package
US10619857B2 (en) * 2017-09-08 2020-04-14 United Technologies Corporation Cooling configuration for combustor attachment feature
US10670275B2 (en) 2017-09-08 2020-06-02 Raytheon Technologies Corporation Cooling configurations for combustor attachment features
US10670274B2 (en) 2017-09-08 2020-06-02 Raytheon Technologies Corporation Cooling configurations for combustor attachment features
US10670273B2 (en) * 2017-09-08 2020-06-02 Raytheon Technologies Corporation Cooling configurations for combustor attachment features
GB201720121D0 (en) * 2017-12-04 2018-01-17 Siemens Ag Heatshield for a gas turbine engine
EP3839347A1 (en) * 2019-12-20 2021-06-23 Siemens Aktiengesellschaft Heat shield tile of a combustion chamber
EP3845810B1 (en) * 2019-12-31 2023-11-22 ANSALDO ENERGIA S.p.A. Supporting device for a heat-insulating tiles of a combustion chamber of a gas turbine assembly for power plants and a gas turbine assembly
RU209216U1 (en) * 2021-08-30 2022-02-07 Антон Владимирович Новиков HEAT SHIELD FOR GAS TURBINE COMBUSTION CHAMBER
CN114151227B (en) * 2021-10-20 2023-05-05 中国航发四川燃气涡轮研究院 Heat shield structure for binary vector spray pipe
RU209161U1 (en) * 2021-12-01 2022-02-03 Антон Владимирович Новиков HEAT SHIELD FOR GAS TURBINE COMBUSTION CHAMBER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224817A1 (en) * 1985-12-02 1987-06-10 Siemens Aktiengesellschaft Heat shield arrangement, especially for the structural components of a gas turbine plant
US4820097A (en) * 1988-03-18 1989-04-11 United Technologies Corporation Fastener with airflow opening
DE19730751A1 (en) * 1996-07-24 1998-01-29 Siemens Ag Ceramic component for heat-protective cladding
EP1126221A1 (en) * 2000-02-17 2001-08-22 Siemens Aktiengesellschaft Padded refactory tile as liner for a gas turbine combustor
EP1701095A1 (en) 2005-02-07 2006-09-13 Siemens Aktiengesellschaft Heat shield
EP2261564A1 (en) * 2009-06-09 2010-12-15 Siemens Aktiengesellschaft Heat shield element assembly with screw guiding means and method for installing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749298A (en) 1987-04-30 1988-06-07 United Technologies Corporation Temperature resistant fastener arrangement
DE58908665D1 (en) * 1988-06-13 1995-01-05 Siemens Ag HEAT SHIELD ARRANGEMENT WITH LOW COOLING FLUID REQUIREMENT.
RU2088836C1 (en) * 1990-11-29 1997-08-27 Сименс АГ Heat shield
US5431020A (en) * 1990-11-29 1995-07-11 Siemens Aktiengesellschaft Ceramic heat shield on a load-bearing structure
DE50111316D1 (en) * 2001-08-28 2006-12-07 Siemens Ag Heat shield stone and use of a heat shield stone in a combustion chamber
EP1561997A1 (en) * 2004-01-27 2005-08-10 Siemens Aktiengesellschaft Heat Shield
EP1715248A1 (en) * 2005-04-19 2006-10-25 Siemens Aktiengesellschaft Holding element and heatshield member for a heatshield and combustion chamber including said heatshield
EP2236928A1 (en) 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Heat shield element
EP2230454A1 (en) 2009-03-18 2010-09-22 Siemens Aktiengesellschaft Device for mounting a heat shield element
ES2531099T3 (en) 2009-06-09 2015-03-10 Siemens Ag Thermal shield element arrangement and procedure for mounting a thermal shield element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224817A1 (en) * 1985-12-02 1987-06-10 Siemens Aktiengesellschaft Heat shield arrangement, especially for the structural components of a gas turbine plant
US4820097A (en) * 1988-03-18 1989-04-11 United Technologies Corporation Fastener with airflow opening
DE19730751A1 (en) * 1996-07-24 1998-01-29 Siemens Ag Ceramic component for heat-protective cladding
EP1126221A1 (en) * 2000-02-17 2001-08-22 Siemens Aktiengesellschaft Padded refactory tile as liner for a gas turbine combustor
EP1701095A1 (en) 2005-02-07 2006-09-13 Siemens Aktiengesellschaft Heat shield
EP2261564A1 (en) * 2009-06-09 2010-12-15 Siemens Aktiengesellschaft Heat shield element assembly with screw guiding means and method for installing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206033A1 (en) 2015-04-02 2016-10-06 Siemens Aktiengesellschaft stone holder

Also Published As

Publication number Publication date
EP2883000B1 (en) 2018-10-31
RU2635742C2 (en) 2017-11-15
WO2014044654A2 (en) 2014-03-27
CN104718412A (en) 2015-06-17
RU2015114794A (en) 2016-11-10
US9702560B2 (en) 2017-07-11
EP2883000A2 (en) 2015-06-17
WO2014044654A3 (en) 2014-05-30
US20150285496A1 (en) 2015-10-08
CN104718412B (en) 2017-06-09
KR20150058383A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
EP2883000B1 (en) Device for cooling a supporting structure of a heat shield, and heat shield
EP2770260B1 (en) Gas turbine combustion chamber with impingement effusion cooled shingle
EP2992270B1 (en) Heat shield
DE102009044585B4 (en) Method for operating a turbine engine and arrangement in a turbine engine
EP3183497B1 (en) Heat shield element and method for the production thereof
EP2084368B1 (en) Turbine blade
EP1904717B1 (en) Hot gas-conducting housing element, protective shaft jacket, and gas turbine system
EP3017253B1 (en) Ceramic heat shield for a gas turbine combustion chamber, combustion chamber for a gas turbine and method
DE2844701A1 (en) LIQUID-COOLED TURBINE ROTOR
EP2898269B1 (en) Retaining element for retaining a heat shield block and method for cooling the supporting structure of a heat shield
EP2275743A2 (en) Gas turbine combustion chamber with starter film for cooling the combustion chamber wall
EP3121371B1 (en) Turbine with cooled turbine guide vanes
WO2014177371A1 (en) Burner lance having heat shield for a burner of a gas turbine
EP1245806A1 (en) Cooled gas turbine balde
EP0928364A1 (en) Method of compensating pressure loss in a cooling air guide system in a gas turbine plant
WO2015022222A1 (en) Heat shield having at least one helmholtz resonator
EP2883003B1 (en) Heat shield with a supporting structure and method for cooling the supporting structure
EP3134680B1 (en) Heat shield element for a heat shield of a combustion chamber
DE102013219187B3 (en) Dismantling tool for a heat shield element
WO2005019731A1 (en) Combustion chamber, particularly a gas turbine combustion chamber
EP1422479B1 (en) Chamber for the combustion of a fluid combustible mixture
EP3004741B1 (en) Tubular combustion chamber with a flame tube end area and gas turbine
DE102015207760A1 (en) Hot gas carrying housing
DE102015206033A1 (en) stone holder
EP2995859A1 (en) Heat shield element for a heat shield of a combustion chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140927