EP2710298B1 - Ringbrennkammer für ein turbinentriebwerk - Google Patents

Ringbrennkammer für ein turbinentriebwerk Download PDF

Info

Publication number
EP2710298B1
EP2710298B1 EP12728666.4A EP12728666A EP2710298B1 EP 2710298 B1 EP2710298 B1 EP 2710298B1 EP 12728666 A EP12728666 A EP 12728666A EP 2710298 B1 EP2710298 B1 EP 2710298B1
Authority
EP
European Patent Office
Prior art keywords
swirler
fuel
channels
downstream
venturi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12728666.4A
Other languages
English (en)
French (fr)
Other versions
EP2710298A1 (de
Inventor
Denis Jean Maurice Sandelis
Didier Hippolyte Hernandez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1154302A external-priority patent/FR2975466B1/fr
Priority claimed from FR1154303A external-priority patent/FR2975467B1/fr
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2710298A1 publication Critical patent/EP2710298A1/de
Application granted granted Critical
Publication of EP2710298B1 publication Critical patent/EP2710298B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Definitions

  • the present invention relates to an annular combustion chamber of a turbomachine such as a turbojet or an airplane turboprop.
  • An annular combustion chamber comprises two coaxial annular walls, internal and external respectively, interconnected at their upstream ends by an annular chamber bottom wall comprising openings in each of which is mounted a fuel injection system.
  • Requests FR-A1-2 918 716 , FR-A1-2 925 146 and FR-A1-2 941 288 describe fuel injection systems for such annular chambers.
  • a conventional injection system comprises means for supporting and centering an injector head, and primary and secondary augers which are mounted downstream of the support means, coaxially with these means, and which each deliver the flows of radial air downstream of the injector in order to produce a mixture of air and fuel intended to be injected and then burned in the combustion chamber.
  • the air leaving the primary spinner is accelerated in a venturi inserted between the two tendrils.
  • a frustoconical mixing bowl is mounted downstream of the augers for spraying the air / fuel mixture which enters the combustion chamber.
  • the augers of the injection system each comprise substantially radial channels which deliver a swirling air flow or "swirl" in English terminology.
  • these channels have a section in the form of a square or rectangle having a longitudinal axis, their upstream and downstream faces being perpendicular to this longitudinal axis and interconnected by lateral faces parallel to this axis.
  • the combustion chamber is fitted with an annular row of fuel injectors which extend around the longitudinal axis of the bedroom.
  • Each injector comprises one or two fuel circuits which each feed a helical channel located in the head of the injector, this helical channel making it possible to put the fuel in rotation around the longitudinal axis of the head and to produce a layer of fuel.
  • the speed vectors of the atomized drops of fuel are all oriented in the same direction (clockwise or anti-clockwise) with respect to the longitudinal axis of the injector head and all form the same angle with respect to this longitudinal axis.
  • This angle is substantially equal to the helix angle of the aforementioned helical channel, that is to say the angle formed between a straight line tangent at a point of the helical channel and the longitudinal angle of the injector head.
  • annular combustion chamber for a turbomachine, comprising two coaxial annular walls, respectively internal and external, connected at their upstream ends by an annular wall forming a bottom of the chamber, and an annular row of fuel injectors of which the heads are engaged in fuel injection systems mounted in openings in the chamber end wall, each injector head comprising at least one helical fuel passage channel for rotating this fuel around the longitudinal axis of the injector head, and each injection system comprising at least one swirler coaxial with the injector head and comprising substantially radial air passage channels with elongated section having a longitudinal axis.
  • US 6247317 furthermore teaches the possible presence of vortices having an axial component on said longitudinal axis and at +/- 10 ° near a helix angle of the helical channel of the injection head ( figure 7 ) as offering benefits.
  • the helix angle is used to reduce the diverging angle of the cone and configure the combustion chamber accordingly (see page 7, lines 23-36).
  • each injector in the known prior art is engaged axially in the aforementioned support means of an injection system, these support means comprising axial air purge orifices which open radially inside the primary swirler for ventilation of the venturi.
  • This deposit can hinder the injection of the air / fuel mixture into the chamber and locally create hot spots inside the chamber, which in particular promotes the emission of harmful gases such as nitrogen oxides (NOx).
  • NOx nitrogen oxides
  • the object of the invention is in particular to provide a simple, effective and economical solution to this problem.
  • the axes of the sections of the channels of the twist will therefore be substantially parallel, to within +/- 10 °, to the speed vectors of the fuel drops sprayed into the injection system, which allows the air flow delivered by the tendril to shear the web of fuel by limiting recirculation of the air-fuel mixture downstream of the spinneret and the risk of coke depositing on the internal surface of the venturi.
  • the axes of the sections of the channels of the auger are inclined at an angle which is substantially equal to the helix angle of the helical channel of the injector head.
  • the axes of the sections of the channels of the twist are, for example, inclined at an angle of between approximately 20 and 40 ° relative to the longitudinal axis of the twist.
  • Each fuel injector may include a fuel circuit for supplying a first helical channel and another independent fuel circuit for supplying a second helical (outer) channel of greater diameter than the first helical (inner) channel.
  • These fuel circuits provide two coaxial cone-shaped fuel layers having different opening angles. The smallest opening angle fuel layer can be optimized at engine start and for full throttle speed and the second largest opening angle fuel layer can be optimized for the engine start to full throttle range.
  • the axes of the sections of the channels of the auger are preferably inclined at the same angle and in the same direction as the external helical channel for producing the fuel layer with the greatest opening angle.
  • Each channel of the tendril can have a square, rectangle or diamond shaped section.
  • the auger is formed integrally with the support means of the injection system.
  • the auger may include at its downstream end a cylindrical peripheral rim for hooking onto a venturi located downstream of the auger.
  • the orifices of the blades could usefully communicate with through orifices formed in the venturi for the passage of an air flow. intended to flow along the outer surface of the venturi and the inner surface of the bowl.
  • each injection system comprises two augers, respectively upstream and downstream
  • the mixing bowl comprises at least one annular row of air passage orifices intended to mix with the fuel
  • the axes of the sections channels of the upstream auger are inclined at the same angle and in the same direction as the helical channel of the injector head
  • the axes of the sections of the channels of the downstream auger are oriented in the same direction as the helical channel of the injector head.
  • the mixing bowl has orifices of the aforementioned type, it is in fact advantageous for the air flows delivered by the augers to be co-current at the speed vectors of the drops of the fuel layer.
  • the angle between the axes of the sections of the channels of the downstream twist and the longitudinal axis of the twist may be the same as or different from that between the axes of the sections of the channels of the upstream twist and the longitudinal axis.
  • each injection system comprises two augers, upstream and downstream respectively, and a mixing bowl without air passage orifices intended to mix with the fuel
  • the axes of the sections of the the upstream auger are inclined at the same angle and in the same direction as the helical channel of the injector head
  • the axes of the sections of the downstream auger channels are oriented in the opposite direction to the helical channel of the injector head around the longitudinal axis of the auger.
  • the mixing bowl does not have orifices of the aforementioned type, it is in fact advantageous that the flow of air delivered by the upstream swirler is co-current at the speed vectors of the fuel drops and that the flow of air delivered by the downstream spiral is against the current of these speed vectors, so that the air flow delivered by the downstream spiral stabilizes the flame in the hearth of the combustion chamber.
  • the angle between the axes of the sections of the channels of the downstream swirler and the longitudinal axis of the swirler may be identical to that between the axes of the sections of the channels of the upstream swirler and this axis.
  • trailing edges or radially internal ends of the blades will advantageously extend over a frustoconical surface flared downstream around the longitudinal axis of the injection system.
  • the swirling air flow delivered by the injection system spinner is intended to sweep and ventilate the injector head and the venturi and to mix with the fuel injected into the chamber.
  • the auger therefore provides in addition to its main function a function similar to that of the purge ports of the prior art and can therefore be considered as a "purging" auger.
  • the injection system is therefore advantageously free of purge orifices of the aforementioned type, which makes it possible to eliminate the turbulence linked to the interaction of the air flows exiting the purge orifices and the auger of the prior art, thus that the risks of coke deposit on the venturi due to this turbulence.
  • each vane of the auger may include a curved surface (concave inward) and inclined upstream to downstream outward.
  • the frustoconical surface on which the trailing edges extend has an opening angle of the order of 45 to 65 ° for example, which substantially corresponds to that of the layer of fuel sprayed by the injector into the system.
  • the trailing edges of the blades therefore extend parallel to the outer peripheral surface of the fuel pool, which facilitates mixing of air and fuel in the venturi.
  • the elimination of the purge orifices makes it possible to reduce the number of orifices of the injection system compared to those of the prior art and to increase the diameter of the remaining orifices for a given permeability of the system (equal to the sum effective sections of the orifices and of the air passage channels of the system), which facilitates their machining and reduces their production cost, and makes it possible to produce an injection system of small diameter for a small turbine.
  • Each injection system can include a venturi and a mixing bowl located downstream of the auger, the auger providing ventilation of the venturi, by guiding the air flow leaving the auger along the internal surface of the venturi.
  • the swirler comprises at its downstream end a cylindrical peripheral rim for hooking onto a venturi.
  • Each injection system can comprise means for supporting and centering an injector head, these support means comprising an internal cylindrical surface which is intended to surround the head of the injector and which is connected to its downstream end. at the upstream end of smaller diameter of the aforementioned frustoconical surface.
  • the present invention also relates to a turbomachine, such as a turbojet or an airplane turboprop, characterized in that it comprises an annular combustion chamber as described above.
  • the figure 1 represents an annular combustion chamber 10 of a turbomachine, such as a turbojet or an airplane turboprop, this chamber being arranged at the outlet of a diffuser 12, itself located at the outlet of a compressor (not shown) .
  • a turbomachine such as a turbojet or an airplane turboprop
  • the chamber 10 comprises an internal wall of revolution 14 and an external wall of revolution 16 which are connected upstream by an annular wall 18 at the bottom of the chamber.
  • An annular shroud 20 is fixed to the upstream ends of the walls 14, 16 of the chamber and comprises openings 22 for passage air aligned with openings 24 of the chamber bottom wall 18 in which are mounted fuel injection systems 26, the fuel being supplied by injectors 28 regularly distributed around the axis of the chamber.
  • Each injector 28 comprises a fuel injection head 30 engaged in an injection system 26 and aligned with the axis of an opening 24 in the end wall of chamber 18.
  • the figure 2 shows on a larger scale the head 30 of a fuel injector 28 of the type comprising two fuel circuits, which is described in detail in the application FR-A1-2 817 016 of the plaintiff.
  • the first fuel circuit of the injector 28 comprises a supply tube 34, one end of which is engaged and fixed in a cylindrical bore 36 of a cylindrical part 38 which is itself mounted inside a sleeve 40.
  • the fuel is brought by the tube into the bore 36 of the part 38 then circulates in helical channels 42 opening out at the downstream free end of the part 38 to rotate the fuel around the longitudinal axis XX of the injector head.
  • the downstream free end of the sleeve 40 is located downstream of the cylindrical part 38 and comprises a fuel ejection orifice 43, the downstream end portion of which has a frustoconical section to form a cone-shaped fuel layer having a predetermined opening angle A.
  • the second fuel circuit of the injector 28 comprises a supply tube 44, coaxial with tube 34 and of greater diameter, one end of which is engaged and fixed in a cylindrical bore 46 of the cylindrical part 38, this bore 46 being in fluid communication with helical channels 48 of the aforementioned sleeve 40.
  • These channels 48 are formed by external helical grooves formed on a cylindrical surface. of the sleeve 40 and closed by a cylindrical end piece 50 surrounding the cylindrical part 38, the sleeve 40 and the downstream end parts of the tubes 34, 44.
  • the fuel is rotated about the longitudinal axis XX as it passes through the channels 48 which open out at the downstream end of the sleeve 40.
  • the free downstream end of the nozzle 50 is located downstream of the sleeve 40 and comprises an orifice 52 for ejection of the fuel coaxial with the orifice 42 and the downstream end portion of which has a frustoconical section to form a cone-shaped fuel layer having a predetermined opening angle B (B being greater than AT).
  • Each layer of fuel produced by an injector 28 is formed of a multitude of drops, the speed vectors of which are substantially all oriented in the same way with respect to the longitudinal axis XX of the injector head.
  • the speed vectors of these drops form an angle ⁇ (beta) with the axis XX, this angle ⁇ being substantially equal to the helix angle of the aforementioned helical channels 42 or 48 which deliver the fuel layer.
  • the fuel drops are between approximately 10 and 100 microns in size.
  • An injection system 26 of the prior art comprises two coaxial swirlers, an upstream or internal swirler 54 and a downstream or external swirler 56, which are separated from each other by a venturi 58 and which are connected upstream to means 60 for supporting the head 30 an injector 28, and downstream to a mixing bowl 62 which is mounted axially in the opening 24 of the chamber end wall 18.
  • the augers 54, 56 each comprise a plurality of blades extending substantially radially around the axis XX of the augers and regularly distributed around this axis to deliver swirling air flows downstream of the injection head 30.
  • the vanes define between them air passage channels, which are inclined or curved around the axis XX of the tendrils.
  • the means 60 for supporting the injection head 30 comprise a ring 64 traversed axially by the injection head 30 and slidably mounted in a sleeve 66 fixed to the internal swirler 54.
  • the ring 64 comprises an annular flange 68 extending radially outwards and housed in an annular groove of the sleeve 66, the internal diameter of the groove of the sleeve 66 being greater than the external diameter of the rim 68 of the ring 64.
  • the rim 68 of the ring 64 comprises substantially axial purge orifices 70 for the passage of an air flow intended to sweep the head 30 of the injector in order to prevent a flashback towards the injector in operation.
  • the mixing bowl 62 has a substantially frustoconical wall flared downstream and connected at its downstream end to a cylindrical rim 72, extending upstream and mounted axially in the opening 24 of the chamber bottom wall 18.
  • the upstream end of the frustoconical wall of the bowl 62 is connected to an intermediate annular part 74 fixed to the external swirler 56.
  • the frustoconical wall of the bowl 62 comprises an annular row of air passage orifices 76, extending around the axis XX.
  • the bowl 62 further comprises, in the vicinity of its rim 72, a second annular row of air passage orifices 78, this air being intended to impact an annular flange extending radially outwards from the end. downstream of the frustoconical wall of the bowl.
  • the venturi 58 has a substantially L-shaped cross-section and comprises at its upstream end an outer annular flange 80 extending radially outwardly and interposed axially between the two swirlers 54, 56.
  • the venturi 58 extends axially towards the outside. 'downstream inside the outer auger 56 and separates the air flows from the inner 54 and outer 56 augers.
  • the venturi 58 internally delimits a premix chamber in which part of the injected fuel mixes with the air flow delivered by the internal spiral 54, this air / fuel premix then mixing downstream of the venturi with the air flow coming from the external spiral 56 to form a cone of atomized fuel inside the chamber.
  • the number of vanes of the internal swirler 54 is different from that of the purge orifices 70 and the angular positions of the orifices and of the vanes around the axis XX are defined randomly.
  • the channels of the tendrils 54, 56 each have a section in the form of a square or rectangle and comprise an upstream face 86 and a downstream face 88, which are connected to each other by side faces 90 extending parallel to each other.
  • axis XX of the injection system axis XX of the injection system.
  • the invention overcomes these problems by means of an injection system 126 as shown in figure 5 whose channels 100 of the swirler 154 (upstream in the case of a two-twist system) have elongated sections having a longitudinal axis parallel to the side faces 190 of the channels and which are inclined at an angle ⁇ 'with respect to the 'axis XX of the twist, this angle ⁇ ' being substantially equal (within +/- 10 °) to the helix angle ⁇ of the aforementioned helical channels 48 of the injection head 30 and to the speed vectors of the drops of fuel from the slick produced by these channels.
  • the air flow delivered by the spinner 154 is parallel and co-current to the velocity vectors of the drops of fuel in the web, which allows this air flow to shear the web while limiting the risks of recirculation of the air mixture.
  • fuel and coke deposit on the venturi (not shown) located downstream of the spinner.
  • the support means 160 of the injector head 30 are formed integrally with the swirler 154 which has at its downstream end an external peripheral rim 102 for hooking onto the venturi.
  • each channel 100 of the swirler 154 is interconnected at their upstream ends by an upstream wall perpendicular to the axis XX.
  • the channels 100 are closed downstream by an upstream radial face of the venturi which defines the downstream walls of the channels 100, these downstream walls of the channels being perpendicular to the axis XX.
  • the channels 100 of the swirler 154 are separated from each other by substantially radial vanes which are pierced with purge holes 104 passing through the swirler over its entire axial dimension.
  • These purge orifices 104 open at their upstream ends onto an upstream radial face of the swirler 154 and their downstream ends communicate with corresponding orifices of the venturi for the passage of a flow of purge air over the outer surface of the venturi and the internal frustoconical surface of the mixing bowl located downstream of the venturi, the venturi and the mixing bowl of the injection system according to the invention being similar to those shown in figure 3 .
  • the purge orifices 104 are inclined at the same angle ⁇ 'around the axis XX.
  • the axes of the sections of the channels of the twists can be oriented in the same direction or in opposite directions around the axis XX, as is shown schematically in figures 6 and 7 .
  • the axes of the sections of the channels of the upstream 254 and downstream 256 swirlers are oriented in the same direction and deliver co-current air flows to the velocity vectors of the drops of the fuel slick.
  • the angle ⁇ 1 between the axes of the sections of the channels of the upstream swirler 254 and the angle XX is substantially equal, within +/- 10 °, to the aforementioned angle between the speed vectors of the drops and the axis XX, and the angle ⁇ 2 between the axes of the sections of the channels of the downstream spinner 256 and the angle XX is equal to ⁇ 1 or different from ⁇ 1.
  • This embodiment of the invention is particularly suitable for an injection system, the mixing bowl of which comprises orifices for the passage of air intended to mix with the fuel in operation, that is to say orifices of the type of. those referenced 76 in figure 3 .
  • the axes of the sections of the channels of the upstream 354 and downstream 356 swirlers are oriented in opposite directions and respectively deliver co-current and counter-current air flows to the speed vectors of the drops of the fuel slick.
  • the angle ⁇ 1 'between the axes of the sections of the channels of the upstream swirler 354 and the angle XX is substantially equal, within +/- 10 °, to the aforementioned angle between the speed vectors of the drops and the axis XX , and the angle ⁇ 2 ′ between the lateral faces 390 of the channels of the downstream swirler 256 and the angle XX is substantially equal to ⁇ 1 ′.
  • This embodiment of the invention is particularly suitable for an injection system in which the mixing bowl does not have air passage orifices intended to mix with the fuel in operation, that is to say orifices of the fuel. type of those referenced 76 in figure 3 .
  • the air flow delivered by the downstream swirler is then intended to stabilize the flame in the combustion chamber.
  • the aforementioned injection system may include a purging screw intended both to sweep the head of the injector and the internal surface of the venturi (and thus to provide a purging function) and to mix with the fuel supplied by the injector. .
  • the purging swirler according to the invention comprises substantially radial vanes, the radially internal trailing edges of which are inclined from upstream to downstream towards the outside and extend over a tapered surface flared towards the downstream around the axis A of the injection system.
  • the channels of the twist have upstream and downstream radial faces which are substantially parallel to each other and to a transverse plane perpendicular to the axis A of the injection system.
  • the means 140 for supporting the head 130 of the injector and the upstream 134 or internal swirler are formed in one piece.
  • the support means 140 comprises an internal cylindrical surface 174, the downstream end of which is connected to the upstream end of the frustoconical surface 176 defined by the trailing edges 178 of the blades 180 of the swirler 134.
  • the trailing edge 178 of each vane 180 comprises a curved surface that is concave inward and inclined from upstream to downstream outward.
  • the support means 140 comprise a cylindrical wall 184 internally defining the aforementioned cylindrical surface 174 and connected at its upstream end to a frustoconical wall 182 flared upstream, and at its downstream end to a radial wall 186 extending towards the outside.
  • the blades 180 of the swirler 134 are connected at their upstream ends to the radial wall 186 of the support means 140.
  • the channels 188 delimited by the vanes 180 of the swirler are formed by slots opening axially downstream and closed by a upstream radial face of a venturi 138 separating the swirler 134 from the bowl 142.
  • blades 180 include at their downstream ends an outer peripheral rim 189 of cylindrical shape which serves for centering and for hooking the auger onto the venturi 138.
  • Each vane 180 of the auger 134 comprises a portioned outer peripheral rim. cylinder ( figures 9 and 10 )
  • the trailing edges 178 of the augers of the auger 134 extend parallel to the peripheral surface outer layer of fuel 191 which is delivered in the form of a cone by the injector.
  • the injector can supply two coaxial layers of fuel, a first cone-shaped fuel layer 192 having an opening angle ⁇ 1 and a second coaxial fuel layer 191 in cone shape with an opening angle ⁇ 2 (greater than ⁇ 1).
  • the first fuel layer 192 can be optimized at engine start and for full throttle speed and the second fuel layer 191 can be optimized for the speed range from start up to full throttle.
  • the trailing edges 178 of the blades 180 of the swirler 134 are parallel to the outer peripheral surface of the second fuel layer 191, and therefore forms an angle ⁇ 2 with the axis A, a2 being for example between 45 and 65 °.
  • the trailing edges 178 of the blades 180 are located at the same distance from the outer peripheral surface of the web 191.
  • the momentum of the air flow delivered by the auger 134 is constant over the entire axial dimension of the auger. This air flow shears the fuel layer 191 identically over the entire axial dimension of the spinner.
  • the part 194 of the air flow exiting at the level of the upstream end parts of the trailing edges 178 of the blades 180 is intended to purge the end of the head 130 of the injector and to shear the fuel slick. 191 without disturbance.
  • the channels 188 of the swirler 134 have a section of square shape which is constant over the entire radial dimension of the swirler.
  • an axial air passage orifice 196 is formed in each vane 180 and communicates with an axial air passage orifice 197 of the venturi 138.
  • the orifices 196 open at their upstream ends on the upstream radial face of the radial wall 186. centering means, and the orifices 197 open out at their downstream ends radially outside the venturi 138.
  • the air 198 which leaves the orifices 197 is intended to circulate on the outer surface of the venturi and to form a film of purging air from the radially inner surface of the bowl 142, to prevent the deposition of coke on this surface.
  • the mixing bowl 142 of the injection system is mounted downstream of the swirler 136 and comprises, as in the prior art, a substantially frustoconical wall flared downstream and connected at its downstream end to a cylindrical rim 152, extending upstream.
  • the frustoconical wall comprises an annular row of air passage orifices 156, extending around the axis A.
  • the flange 152 comprises an annular row of air passage orifices 158, this air being intended to come in. impact on an annular flange 159 extending radially outward from the downstream end of the frustoconical wall of the bowl.
  • the rows of orifices 156, 158 are located on circumferences whose diameters are substantially equal to or greater than the maximum external diameter of the support means 140 and of the swirler 134.
  • the air flow 161 which supplies these orifices therefore does not bypass the injection system, which limits the disturbances of this flow and optimizes the supply to the orifices 156, 158.
  • the invention makes it possible (by eliminating the purge orifices), for a given permeability of the injection system, to precisely optimize the diameter of the orifices 156, 158 of the mixing bowl and the dimensions of the channels of the augers 134, 136.
  • the cumulative sections of the orifices 158 of the mixing bowl and of the channels of the external swirler 136 represent 20 to 30% of the total permeability of the system
  • the cumulative sections of the orifices 156 of the mixing bowl and channels 188 of the internal tendril 134 representing 70 to 80% of this permeability. 70 to 80% of the air flow supplying the injection system is therefore intended to mix with the fuel supplied by the injector.
  • the injection system differs from that previously described in that the channels 288 of its internal twist 234 have a section which decreases radially from the outside to the inside.
  • each channel 288 at the level of the downstream ends of the trailing edges 276 of the blades 280 extending on either side of this channel is greater than that of this same channel at the level of the upstream ends of the blades. aforementioned trailing edges ( figure 11 ).
  • the air outlet section at the trailing edges 276 of the blades 280 is therefore greater at the downstream ends of the trailing edges than at their upstream ends. Because this section is calibrating, the amount of air movement is greater at the downstream end of the spinner than at its upstream end (arrows 294) and increases regularly between its upstream end and its downstream end. due to the increase in the outlet width of the channels between these ends.
  • the section of the channels of the internal swirler of the injection system may have a rectangular or trapezoidal shape, and not a square shape as in the examples described above.
  • each vane of the tendril may have its side faces which converge from downstream to upstream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Claims (13)

  1. Ringförmige Brennkammer (10) für ein Turbotriebwerk, enthaltend zwei koaxiale ringförmige Wände (14, 16), nämlich eine innere und eine äußere, die an ihren stromaufwärtigen Enden durch eine ringförmige Wand (18) verbunden sind, die einen Boden der Kammer bildet, und eine ringförmige Reihe von Kraftstoffinjektoren (28), deren Köpfe (30) in Kraftstoffeinspritzsysteme (126) eingreifen, die in Öffnungen (24) in der Bodenwand der Kammer montiert sind, wobei jeder Injektorkopf mindestens einen schraubenförmigen Kraftstoffdurchlasskanal (42, 48) zum Versetzen des Kraftstoffs in Drehung um die Längsachse (XX) des Kopfes aufweist, und jedes Einspritzsystem mindestens einen Verwirbler (154) umfasst, der koaxial zum Injektorkopf verläuft und im Wesentlichen radiale Luftdurchlasskanäle (100) mit länglichen Querschnitt umfasst, die eine Längsachse aufweisen,
    dadurch gekennzeichnet, dass
    - die Längsachsen der Abschnitte der Kanäle (100) in Bezug auf die Längsachse des Verwirblers um einen Winkel (β') geneigt sind, der auf +/- 10° genau im Wesentlichen gleich dem Steigungswinkel (β) des vorgenannten schraubenförmigen Kanals des Injektorkopfes ist, und die in der gleichen Richtung wie dieser Kanal um die Längsachse des Verwirblers ausgerichtet sind, und
    - die Kanäle (100) des Verwirblers (154) durch Schaufeln voneinander getrennt sind, wobei jede dieser Schaufeln mindestens eine durchgehende Luftdurchlassöffnung (104) aufweist, die bezüglich der Längsachse (XX) des Verwirblers um den gleichen Winkel (β') und in der gleichen Richtung wie die Achsen der Kanalabschnitte, die sich beiderseits dieser Schaufel befinden, geneigt ist.
  2. Kammer nach Anspruch 1, dadurch gekennzeichnet, dass die Achsen der Abschnitte der Kanäle (100) des Verwirblers (154) um einem Winkel (β') zwischen etwa 20° und 40° gegenüber der Längsachse (XX) des Verwirblers geneigt sind.
  3. Kammer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jeder Kraftstoffinjektor (28) einen Kraftstoffkreislauf zur Versorgung eines ersten schraubenförmigen Kanals (42) und einen weiteren unabhängigen Kraftstoffkreislauf zur Versorgung eines zweiten schraubenförmigen Kanals (48) mit größerem Durchmesser als der erste schraubenförmige Kanal aufweist, wobei die Achsen der Kanalabschnitte des Verwirblers um den gleichen Winkel und in der gleichen Richtung wie dieser zweite schraubenförmige Kanal geneigt sind.
  4. Kammer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jeder Kanal (100) des Verwirblers (154) einen Querschnitt in Form eines Quadrats, Rechtecks oder einer Raute aufweist.
  5. Kammer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jedes Einspritzsystem zwei Verwirbler, nämlich einen stromaufwärtigen (254) und einen stromabwärtigen (256), aufweist und eine Mischschale enthält, die mindestens eine ringförmige Reihe von Luftdurchlassöffnungen für Luft aufweist, die dazu bestimmt ist, sich mit dem Kraftstoff zu vermischen, wobei die Achsen der Kanalabschnitte des stromaufwärtigen Verwirblers im gleichen Winkel (β1) und in der gleichen Richtung geneigt sind wie der schraubenförmige Kanal des Injektorkopfes, und die Achsen der Kanalabschnitte des stromabwärtigen Verwirblers in der gleichen Richtung wie der schraubenförmige Kanal des Injektorkopfes um die Längsachse des Verwirblers ausgerichtet sind.
  6. Kammer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jedes Einspritzsystem zwei Verwirbler, nämlich einen stromaufwärtigen (354) und einen stromabwärtigen (356), aufweist und eine Mischschale ohne Luftdurchlassöffnungen für Luft zum Vermischen mit dem Kraftstoff umfasst, wobei die Achsen der Kanalabschnitte des stromaufwärtigen Verwirblers im gleichen Winkel (β1') und in der gleichen Richtung wie der schraubenförmige Kanal des Injektorkopfes geneigt sind und die Achsen der Kanalabschnitte des stromabwärtigen Verwirblers in entgegengesetzter Richtung zum schraubenförmigen Kanal des Injektorkopfes um die Längsachse des Verwirblers ausgerichtet sind.
  7. Kammer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kanäle in einer radialen Ebene enthalten sind, wobei sich die Hinterkanten (178) bzw. radial inneren Enden der Schaufeln über eine kegelstumpfförmige Fläche erstrecken, die sich stromabwärts um die Längsachse des Einspritzsystems erweitert.
  8. Kammer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jedes Einspritzsystem ein Venturirohr (138) und eine Mischschale (142) aufweist, die stromabwärts des Verwirblers angeordnet sind, wobei der Verwirbler eine Belüftung des Venturirohrs durch Führen des aus dem Verwirbler austretenden Luftstroms entlang der Innenfläche des Venturirohrs sicherstellt.
  9. Kammer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Verwirbler (134, 154) an seinem stromabwärtigen Ende einen zylindrischen Umfangsrand (189) zur Befestigung an dem Venturirohr (138) aufweist.
  10. Kammer nach Anspruch 9, dadurch gekennzeichnet, dass jedes Einspritzsystem ein Venturirohr (138) und eine Mischschale (142) aufweist, die stromabwärts des Verwirblers angeordnet sind, wobei der Verwirbler eine Belüftung des Venturirohrs durch Führen des aus dem Verwirbler austretenden Luftstroms entlang der Innenfläche des Venturirohrs sicherstellt.
  11. Kammer nach Anspruch 10, dadurch gekennzeichnet, dass die Öffnungen (104) der Schaufeln mit Durchgangsöffnungen kommunizieren, die in dem Venturirohr zum Durchlassen eines Luftstroms ausgebildet sind, der dazu bestimmt ist, entlang der Außenfläche des Venturirohrs und der Innenfläche der Schale zu strömen.
  12. Kammer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jedes Einspritzsystem Mittel (140) zum Tragen und Zentrieren eines Injektorkopfes (28) umfasst, wobei diese Tragmittel eine zylindrische Innenfläche (174) aufweisen, die dazu bestimmt ist, den Kopf (130) des Injektors zu umgeben, und die an ihrem stromabwärtigen Ende mit dem stromaufwärtigen Ende der vorgenannten kegelstumpfförmigen Fläche mit kleinerem Durchmesser verbunden ist.
  13. Turbotriebwerk, wie etwa Turbostrahltriebwerk oder Turboprop-Triebwerk für Flugzeuge, dadurch gekennzeichnet, dass es eine ringförmige Brennkammer (10) nach einem der vorangehenden Ansprüche aufweist.
EP12728666.4A 2011-05-17 2012-05-11 Ringbrennkammer für ein turbinentriebwerk Active EP2710298B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1154302A FR2975466B1 (fr) 2011-05-17 2011-05-17 Chambre annulaire de combustion pour une turbomachine
FR1154303A FR2975467B1 (fr) 2011-05-17 2011-05-17 Systeme d'injection de carburant pour une chambre de combustion de turbomachine
PCT/FR2012/051056 WO2012156631A1 (fr) 2011-05-17 2012-05-11 Chambre annulaire de combustion pour une turbomachine

Publications (2)

Publication Number Publication Date
EP2710298A1 EP2710298A1 (de) 2014-03-26
EP2710298B1 true EP2710298B1 (de) 2020-09-23

Family

ID=46321091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12728666.4A Active EP2710298B1 (de) 2011-05-17 2012-05-11 Ringbrennkammer für ein turbinentriebwerk

Country Status (7)

Country Link
US (1) US9951955B2 (de)
EP (1) EP2710298B1 (de)
CN (1) CN103562641B (de)
BR (1) BR112013028196B1 (de)
CA (1) CA2835361C (de)
RU (1) RU2604260C2 (de)
WO (1) WO2012156631A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8375548B2 (en) * 2009-10-07 2013-02-19 Pratt & Whitney Canada Corp. Fuel nozzle and method of repair
US9188063B2 (en) 2011-11-03 2015-11-17 Delavan Inc. Injectors for multipoint injection
US8943834B2 (en) 2012-11-20 2015-02-03 Niigata Power Systems Co., Ltd. Pre-mixing injector with bladeless swirler
EP2735797B1 (de) * 2012-11-23 2019-01-09 Niigata Power Systems Co., Ltd. Gasturbinenbrennkammer
CN104713128B (zh) * 2013-12-12 2018-09-11 中国航发商用航空发动机有限责任公司 喷嘴杆部、燃油喷嘴及航空发动机燃气轮机
KR102083928B1 (ko) * 2014-01-24 2020-03-03 한화에어로스페이스 주식회사 연소기
CN104308320B (zh) * 2014-08-27 2016-08-24 北京动力机械研究所 喷油环的钎焊定位装置
US9822980B2 (en) 2014-09-24 2017-11-21 Pratt & Whitney Canada Corp. Fuel nozzle
US10317083B2 (en) 2014-10-03 2019-06-11 Pratt & Whitney Canada Corp. Fuel nozzle
US9752774B2 (en) 2014-10-03 2017-09-05 Pratt & Whitney Canada Corp. Fuel nozzle
US9765974B2 (en) 2014-10-03 2017-09-19 Pratt & Whitney Canada Corp. Fuel nozzle
DE102014116411B4 (de) * 2014-11-11 2024-05-29 Choren Industrietechnik GmbH Drallkörper und Brenner mit Drallkörper sowie Verfahren zur Herstellung des Drallkörpers
US9897321B2 (en) 2015-03-31 2018-02-20 Delavan Inc. Fuel nozzles
US10385809B2 (en) 2015-03-31 2019-08-20 Delavan Inc. Fuel nozzles
FR3035707B1 (fr) * 2015-04-29 2019-11-01 Safran Aircraft Engines Chambre de combustion coudee d'une turbomachine
FR3038699B1 (fr) * 2015-07-08 2022-06-24 Snecma Chambre de combustion coudee d'une turbomachine
CN105781835B (zh) * 2016-04-22 2018-08-03 天津成立航空技术有限公司 一种航空航天发动机用旋风槽等静压分油器组件及其分油方法
GB201617369D0 (en) 2016-10-13 2016-11-30 Rolls Royce Plc A combustion chamber and a combustion chamber fuel injector seal
US10859264B2 (en) * 2017-03-07 2020-12-08 8 Rivers Capital, Llc System and method for combustion of non-gaseous fuels and derivatives thereof
GB2564913A (en) * 2017-07-21 2019-01-30 Rolls Royce Plc A combustion chamber and a combustion chamber fuel injector seal
US10801726B2 (en) * 2017-09-21 2020-10-13 General Electric Company Combustor mixer purge cooling structure
FR3080437B1 (fr) * 2018-04-24 2020-04-17 Safran Aircraft Engines Systeme d'injection pour une chambre annulaire de combustion de turbomachine
FR3091333B1 (fr) * 2018-12-27 2021-05-14 Safran Aircraft Engines Nez d’injecteur pour turbomachine comprenant un circuit primaire de carburant agencé autour d’un circuit secondaire de carburant
US11226101B2 (en) * 2019-02-01 2022-01-18 General Electric Company Combustor swirler
FR3099547B1 (fr) * 2019-07-29 2021-10-08 Safran Aircraft Engines Nez d'injecteur de carburant pour turbomachine comprenant une chambre de mise en rotation intérieurement délimitée par un pion
FR3103540B1 (fr) * 2019-11-26 2022-01-28 Safran Aircraft Engines Système d'injection de carburant d'une turbomachine, chambre de combustion comprenant un tel système et turbomachine associée
FR3105984B1 (fr) 2020-01-03 2023-07-14 Safran Aircraft Engines Système d’injection de carburant antirotatif
US11280495B2 (en) * 2020-03-04 2022-03-22 General Electric Company Gas turbine combustor fuel injector flow device including vanes
US12011734B2 (en) * 2020-09-15 2024-06-18 Rtx Corporation Fuel nozzle air swirler
CN115807947A (zh) * 2021-09-15 2023-03-17 中国船舶重工集团公司第七0三研究所 一种轴向预混的低排放火焰筒
CN114413284A (zh) * 2021-12-28 2022-04-29 北京动力机械研究所 一种与环形燃烧室头部匹配的异形旋流器
CN115013839A (zh) * 2022-05-12 2022-09-06 中国航发四川燃气涡轮研究院 加力燃烧室燃油喷杆结构
US12111056B2 (en) * 2023-02-02 2024-10-08 Pratt & Whitney Canada Corp. Combustor with central fuel injection and downstream air mixing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488829A (en) * 1994-05-25 1996-02-06 Westinghouse Electric Corporation Method and apparatus for reducing noise generated by combustion
US6247317B1 (en) * 1998-05-22 2001-06-19 Pratt & Whitney Canada Corp. Fuel nozzle helical cooler
US7334410B2 (en) * 2004-04-07 2008-02-26 United Technologies Corporation Swirler
FR2925146A1 (fr) * 2007-12-14 2009-06-19 Snecma Sa Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
FR2952166A1 (fr) * 2009-11-05 2011-05-06 Snecma Dispositif melangeur de carburant pour chambre de combustion de turbomachine comprenant des moyens ameliores d'alimentation en air

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811278A (en) * 1973-02-01 1974-05-21 Gen Electric Fuel injection apparatus
US6141967A (en) * 1998-01-09 2000-11-07 General Electric Company Air fuel mixer for gas turbine combustor
RU2145039C1 (ru) * 1999-03-18 2000-01-27 Федеральное государственное унитарное предприятие "Исследовательский центр им.М.В.Келдыша" Способ подачи горючего в камеру теплового двигателя и устройство для его реализации
FR2817016B1 (fr) 2000-11-21 2003-02-21 Snecma Moteurs Procede d'assemblage d'un injecteur de combustible pour chambre de combustion de turbomachine
FR2859272B1 (fr) * 2003-09-02 2005-10-14 Snecma Moteurs Systeme d'injection air/carburant, dans une chambre de combustion de turbomachine, ayant des moyens de generation de plasmas froids
US7013649B2 (en) * 2004-05-25 2006-03-21 General Electric Company Gas turbine engine combustor mixer
FR2891314B1 (fr) * 2005-09-28 2015-04-24 Snecma Bras d'injecteur anti-cokefaction.
CN100504175C (zh) * 2006-04-13 2009-06-24 中国科学院工程热物理研究所 燃气轮机低热值燃烧室喷嘴结构与燃烧方法
FR2903169B1 (fr) 2006-06-29 2011-11-11 Snecma Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1985924A1 (de) * 2007-04-23 2008-10-29 Siemens Aktiengesellschaft Drallvorrichtung
FR2918716B1 (fr) 2007-07-12 2014-02-28 Snecma Optimisation d'un film anti-coke dans un systeme d'injection
FR2920523B1 (fr) * 2007-09-05 2009-12-18 Snecma Chambre de combustion de turbomachine a circulation helicoidale de l'air.
GB2455729B (en) 2007-12-19 2012-06-13 Rolls Royce Plc A fuel distribution apparatus
FR2941288B1 (fr) 2009-01-16 2011-02-18 Snecma Dispositif d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
RU89671U1 (ru) * 2009-08-06 2009-12-10 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" Горелочное устройство для камеры сгорания газотурбинной установки

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488829A (en) * 1994-05-25 1996-02-06 Westinghouse Electric Corporation Method and apparatus for reducing noise generated by combustion
US6247317B1 (en) * 1998-05-22 2001-06-19 Pratt & Whitney Canada Corp. Fuel nozzle helical cooler
US7334410B2 (en) * 2004-04-07 2008-02-26 United Technologies Corporation Swirler
FR2925146A1 (fr) * 2007-12-14 2009-06-19 Snecma Sa Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
FR2952166A1 (fr) * 2009-11-05 2011-05-06 Snecma Dispositif melangeur de carburant pour chambre de combustion de turbomachine comprenant des moyens ameliores d'alimentation en air

Also Published As

Publication number Publication date
BR112013028196B1 (pt) 2021-06-22
CN103562641B (zh) 2015-11-25
EP2710298A1 (de) 2014-03-26
US9951955B2 (en) 2018-04-24
US20140090382A1 (en) 2014-04-03
RU2604260C2 (ru) 2016-12-10
BR112013028196A2 (pt) 2017-01-17
CA2835361A1 (fr) 2012-11-22
CN103562641A (zh) 2014-02-05
WO2012156631A1 (fr) 2012-11-22
RU2013155913A (ru) 2015-06-27
CA2835361C (fr) 2019-03-26

Similar Documents

Publication Publication Date Title
EP2710298B1 (de) Ringbrennkammer für ein turbinentriebwerk
CA2593186C (fr) Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1806535B1 (de) Multimodales Einspritzsystem für eine Brennkammer, insbesondere für eine Gasturbine
EP2071242B1 (de) Vorrichtung zum Einspritzen eines Gemisches aus Luft und Brennstoff in eine Brennkammer eines Turbotriebwerks
EP1806536B1 (de) Kühlung einer multimodalen Einspritzvorrichtung für eine Brennkammer, insbesondere für eine Gasturbine
EP2539638B1 (de) Injektionssystem für eine turbinenmotorbrennkammer mit luftinjektionsvorrichtung für verbessertes luft-kraftstoff-gemisch
CA2750856C (fr) Ensemble diffuseur-redresseur pour une turbomachine
WO2010081940A1 (fr) Dispositif d'injection d'un mélange d'air et de carburant dans une chambre de combustion de turbomachine
EP2761226B1 (de) Ringförmige brennkammer für eine turbomaschine
FR2942296A1 (fr) Injecteur de carburant comportant des aubes de deviation helicoidales de forme aerodynamique
FR2975467A1 (fr) Systeme d'injection de carburant pour une chambre de combustion de turbomachine
EP3368826B1 (de) Aerodynamisches einspritzsystem für flugzeugtriebwerk mit verbesserter luft-kraftstoff-mischung
EP3784958B1 (de) Einspritzsystem für eine annulare verbrennungskammer einer gasturbine
FR3116592A1 (fr) Vrille pour dispositif d’injection étagé de turbomachine
EP3887720A1 (de) Einspritzsystem für turbomaschine mit drall- und mischschüsselwirbelbohrungen
FR2948749A1 (fr) Systeme d'injection de carburant pour une chambre de combustion de turbomachine
FR3029271A1 (fr) Paroi annulaire de deflection pour systeme d'injection de chambre de combustion de turbomachine offrant une zone etendue d'atomisation de carburant
EP3449185B1 (de) Turbomaschineneinspritzsystem mit einem aerodynamischen deflektor an seinem einlass und einem lufteinlassverwirbler
EP4004443B1 (de) Brennkammer mit sekundäreinspritzsystemen und verfahren zur kraftstoffversorgung
FR2975466A1 (fr) Chambre annulaire de combustion pour une turbomachine
FR2956725A1 (fr) Systeme d'injection de carburant pour une chambre de combustion de turbomachine
FR3057648A1 (fr) Systeme d'injection pauvre de chambre de combustion de turbomachine
FR2943762A1 (fr) Systeme d'injection de carburant dans une chambre de combustion de turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170810

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012072445

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1316766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012072445

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120511

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240418

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923