EP2702333B1 - Verfahren zum betreiben einer lüftungsanlage mit einer mischkammer - Google Patents

Verfahren zum betreiben einer lüftungsanlage mit einer mischkammer Download PDF

Info

Publication number
EP2702333B1
EP2702333B1 EP11802331.6A EP11802331A EP2702333B1 EP 2702333 B1 EP2702333 B1 EP 2702333B1 EP 11802331 A EP11802331 A EP 11802331A EP 2702333 B1 EP2702333 B1 EP 2702333B1
Authority
EP
European Patent Office
Prior art keywords
air
flap
mixing chamber
duct
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11802331.6A
Other languages
English (en)
French (fr)
Other versions
EP2702333A1 (de
Inventor
Albert Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2702333A1 publication Critical patent/EP2702333A1/de
Application granted granted Critical
Publication of EP2702333B1 publication Critical patent/EP2702333B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/04Air-mixing units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1413Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre using more than one tilting member, e.g. with several pivoting blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • F24F3/0522Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned in which warm or cold air from the central station is delivered via individual pipes to mixing chambers in the space to be treated, the cold air/warm air ratio being controlled by a thermostat in the space concerned, i.e. so-called Dual-duct System

Definitions

  • the invention relates to a method for operating a ventilation system with a mixing chamber according to the type specified in the preamble of claim 1 and a method for operating a ventilation system according to the type specified in the preamble of claim 10.
  • a mixing chamber of a ventilation system is fed by at least two air-supplying channels, which can supply, for example, fresh air and / or circulating air. Downstream of the mixing chamber is a fan, which generates a negative pressure in the mixing chamber.
  • the mixed air is supplied to the ventilator via a duct which discharges air from the mixing chamber, where it is further mixed and finally forwarded in the ventilation system as intended to the room to be ventilated or to the rooms to be ventilated. It is also known to supply the mixing chamber more than two channels.
  • Each feeding channel has in each case a supply air flap, which may have several damper blades.
  • the inlet flap or flap is the whole unit, which has at least one damper blade.
  • flap units For large feeding channels also several damper blades can be summarized to flap units.
  • the damper blades of a flap unit are coupled with respect to their drive with each other. These mutually coupled damper blades form a unit, each occupying the same opening positions.
  • flap units form a Zulufklappe. To distinguish this is the structural summary of damper blades in a frame. These are not flap units in the sense of the invention.
  • damper blades per air inlet flap or more flap units per air inlet flap are provided.
  • the damper blades are coupled together so that the damper blades each occupy a same open position.
  • the position of adjacent damper blades to each other is normally in opposite directions, ie the opening angles are the same, as they are coupled together via a shaft and / or a gear, but the orientation of the flaps and the folding direction is different.
  • the open positions of the inlet flaps of the two channels supplying air to the mixing chamber are interdependent. For example, there is an open position in an air-feeding channel of 90%, in the other air-feeding channel of 10%. Also possible is an opening position in both air-feeding channels of 100%.
  • the US 2006/0183419 A1 discloses a mixing chamber having a first inlet, a second inlet and an outlet. From the EP 1 096 208 A2 is a room ventilation system with two fresh air supply lines with fresh air outlet flaps known. The DE 1 454 652 discloses a mixing device.
  • the invention is based on the object to further develop a method for operating a ventilation system with a mixing chamber according to the type specified in the preamble of claim 1 or claim 10, that while avoiding the disadvantages mentioned the conditions for better mixing, but also for a higher efficiency of the ventilation system can be created.
  • the invention is based on the finding that the kinetic energy of the air supplied to the mixing chamber is utilized in order to ensure better mixing of the air in the mixing chamber. If necessary, now direct the damper blades or flap units, the supply air of one channel in the direction of the other channel. This then leads to a meeting of the air streams and to an improved mixing.
  • the flow resistance increases. If, for example, the air has the same temperatures, thus mixing is not desired, the damper blades are aligned in the sense of reducing the flow resistance. The flow resistance is thus changed depending on the subject so that the flaps are adjusted in the sense of better mixing or minimizing the flow resistance. This ensures an individual control of the damper blades or the flap units, which can increase the efficiency of the ventilation system in a simple manner.
  • damper blades can also be combined in a frame for structural reasons, which then also form a structural unit. However, as long as the damper blades are not drivingly coupled to each other in the unit, these are not damper units within the meaning of this patent application.
  • the damper blades in a structural unit are individually driven and driven according to the invention. If, on the other hand, flap units are provided which each have mutually coupled flap leaves, the flap units are individually controlled and driven.
  • the damper blades and / or the flap units are individually controlled.
  • the damper blades or damper units each have their own drive.
  • An individual opening position of the respective damper blades or the flap units with the damper blades is thus made possible.
  • the conditions are created to change the orientation of the damper blades as needed, namely from the point of view of a better mixing, an optimization of the flow resistance and / or the optimization of the noise.
  • the damper blades or the units of damper blades of the damper units are aligned such that the air supplied from one duct is directed in the direction of the other infeed duct.
  • the feature "towards the other feeding channel” is unique with respect to mutually angled feeding channels. With respect to opposing feeding channels, this feature is to be understood as meaning that the flap leaves are oriented away from the discharging channel for better mixing. The air is thus initially directed away from the laxative channel before the negative pressure forces the air into the laxative channel.
  • the need for a good mixing arises especially with different physical characteristics of the air, such as temperature, pressure, density, humidity, and / or different quality of air, such as oxygen content, CO 2 content, pollutant content, in the individual feeding channels.
  • the mixing is optimized by aligning the damper blades in these cases.
  • the individual damper blades and / or the units of damper blades of the damper units are aligned such that the air supplied via the feeding ducts is directed in the direction of the discharging duct.
  • This effect can be further improved according to an embodiment of the method according to the invention, if, depending on the orientation of the opening angle of the damper blades for guiding the air - energy conservation, mixing - a prioritized control of the individual damper blades or flap units with respect to the order of the first to be opened Damper blades or flap units of the respective supplying channels associated flaps is made.
  • damper blades or flap units can also be provided more than two supplying channels, in which case the damper blades or flap units are controlled accordingly. It is also possible that several laxative channels are provided.
  • air is supplied into the duct passing through a first feeding duct and via at least one further feeding duct. Air is removed from the mixing chamber via a discharging channel.
  • the air supply - volume control - into the mixing chamber is controlled from the feeding channels each by flaps, each with at least one damper blade.
  • the damper blade is in each case aligned in such a way that the air supplied in one feeding duct is directed in the direction of the other feeding duct.
  • the damper blade is then aligned so that the supplied air is directed in the direction of the laxative channel.
  • the damper blades are pivoted in different open positions and orientations.
  • the mixing optimized by alignment of the damper blades.
  • the energy savings by aligning the damper blades be optimized.
  • the orientation of the damper blades and the need are thus determined by the same or different physical characteristics and / or air qualities. Additionally or alternatively, the orientation of the damper blades can also take place as a function of optimization of the noise development in the mixing chamber.
  • FIG. 1 is a schematic view of a mixing chamber 10 of a ventilation system with two of the mixing chamber 10 air-supplying channels 12 and 14 and one of the mixing chamber 10 air-discharging channel 16 according to the prior art.
  • the first air-supplying channel 12 is arranged opposite the second air-supplying channel 14 at a right angle.
  • the laxative channel 16 is disposed opposite to the second afferent channel 14.
  • In between is the mixing chamber 10.
  • Each feeding channel 12, 14 has at its entrance 12a, 14a each have a supply air flap 18, 20.
  • Each supply air flap 18, 20 is provided with several via a transmission with each other coupled flap blades 22 and 24 respectively.
  • the damper blades 22, 24 are coupled to each other so that they each occupy the same opening angle in a supply air flap 18, 20. You can, however, like this in Fig. 1 is shown, adjacent to each other in opposite directions, however, have a same opening angle.
  • Fig. 1 have the damper blades 22 of the inlet flap 18 and the damper blades 24 of the inlet flap 20 to an opening angle of 45 °. This results in a mixing of the supplied air from the first supply air duct 12 with the air from the second supply air duct 14 of 50:50 in the mixing chamber 10.
  • the mixing chamber 10 is followed by a not shown here fan, which in the mixing chamber 10 and in the supplying channels 12 and 14 generates a negative pressure and the supplied air via the discharging channel 16 dissipates.
  • each damper blade 22 and 24 driven and driven individually. This results in a variety of applications for optimizing the mixing, but also to save energy in the ventilation system and thus opportunities to increase the efficiency of the ventilation system.
  • Fig. 2 is a schematic view of a mixing chamber 10 with the two of the mixing chamber 10 air-supplying channels 12 and 14 and the air from the mixing chamber 10 laxative channel 16 is shown.
  • the first feeding channel 12 is closed by the damper blades 22.
  • the damper blades 24 are completely open. Everybody will do it Damper blade 22 of the inlet flap 18 and each damper blade 24 of the inlet flap 20 driven by a separate motor and individually controlled.
  • each damper blade can be moved individually and occupy its own opening angle, as is the case with the following Fig. 3 to 8 becomes clear.
  • Fig. 3 is a mixed case shown.
  • 90% of the air from the supply channel 14 and 10% of the air from the feeding channel 12 of the mixing chamber 10 is supplied. These are volume ratios.
  • the damper blades 24 of the inlet flap 20 are all open and aligned in the direction of the first supply air duct 12.
  • the damper blades 22 are also aligned here in the direction of the other supply air duct, namely the second supply air duct 14.
  • the air flows from the channel 12 and out of the channel 14 to each other, it comes to turbulence and thus to an optimized mixing in the mixing chamber 10. Stratifications in the subsequent laxative channel 16 are thereby avoided.
  • Fig. 4 is shown a further mixing case, in which case about 60% from the first supply air duct 12 and 40% from the second supply air duct 14 of the mixing chamber 10 is supplied to air.
  • the damper blades 22, the inlet flap 18 and the damper blades 24 of the inlet flap 20 are provided with different opening angles, but all on the other supply air duct or its input 12a, 14a aligned to the mixing chamber 10.
  • Fig. 5 the case is shown that the inlet flap 20 is closed, that is, the damper blades 24 of the inlet flap 20 are all closed. In contrast, the damper blades 22 of the inlet flap 18 are all open at the same opening angle. Thus, only air from the first supply air channel 12 of the mixing chamber 10 is supplied and forwarded from there via the air discharge channel 16 in the ventilation system.
  • Fig. 6 the case is shown that in the mixing chamber is not the mixing in the foreground, but the largest possible reduction of the flow resistance, so an energy saving.
  • the damper blades 22 of the inlet flap 18 and the damper blades 24 of the inlet flap 20 are directed away from the respective other feeding channel 12 and 14, namely in the direction of the air laxative channel 16.
  • the flow resistance is significantly reduced, it comes to a optimized energy saving in the ventilation system.
  • FIGS. 7 and 8 a further variant of a ventilation system with mixing chamber 10 is shown.
  • the two feeding channels 12 and 14 are arranged opposite to each other.
  • the Fig. 7 shows here the mixing case and the Fig. 8 the energy-saving case.
  • Fig. 7 are the damper blades 22 of the inlet flap 18 on one side and the damper blades 24 of the inlet flap 20 on the other side of the discharging channel 16 aligned. This results in an inflow from the first supply air duct 12 and from the second supply air duct 14 in such a way that the flows are conducted away from the discharging duct 16, then meet one another and turbulences and thus optimized mixing in the mixing chamber 10 occur. The flow is in each case directed away from the discharging channel 16 through the damper blades 22 and 24.
  • a plurality of damper blades 22, 24 can also be combined into damper units.
  • Such flap units are provided in particular at feeding channels 12, 14 with large channel cross-sections.
  • a plurality of damper blades 22, 24 may be coupled to one another by flap units.
  • the resulting subunits are now controlled individually and have their own drive.
  • the units can thus move their damper blades 22, 24 individually from the other units and have for this purpose the corresponding drives with gears and / or servo motors. Otherwise, the units are controlled accordingly as shown by the Fig. 2 to 8 for the damper blades 22, 24 has been shown.
  • the mixing case of the damper blades 22, 24 or the units of damper blades 22, 24 depends on different physical characteristics of the supplied air, such as temperature, pressure, density, humidity or different quality of air, such as oxygen content, CO 2 content, pollutant content the individual feeding channels 12, 14 from. If there are differences, then the system for optimized mixing and thus the damper blades 22, 24 to adjust and align accordingly, as described above. However, should the physical characteristics or the quality of the air in the feeding channels be the same or at least approximately equal, then the damper blades 22, 24 are in the sense of energy optimization of the ventilation system, ie in the sense of alignment of the damper blades 22, 24 with the lowest possible flow resistance to control.
  • sensors are introduced in the feeding channels 12, 14, which interact with a central processing unit.
  • the central processing unit it is decided by comparing the determined physical characteristics of the air or the quality of the air quality, as the damper blades are aligned, ie in what mixing ratio, the air from the one feeding channel 12, 14 with the air from the other air feeding channel 12, 14 is mixed, but also whether there is a case of mixing or energy.
  • the damper blades 22, 24 are fully or only partially opened depending on the required amount of air from a feeding channel 12, 14. As has been stated, it is also possible for a partial opening of the damper blades 22, 24 that the damper blades 22, 24 have different opening angles.
  • damper blades 22, 24 are controlled by the central processing unit prioritized in order to achieve an optimized mixing or an optimized energy saving.
  • the individual damper blades 22, 24 or damper units are actuated with regard to the sequence of the damper blades 22, 24 or damper units which are to be opened first and the last to be opened.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Lüftungsanlage mit einer Mischkammer gemäß der im Oberbegriff des Anspruches 1 angegebenen Art sowie ein Verfahren zum Betreiben einer Lüftungsanlage gemäß der im Oberbegriff des Anspruchs 10 angegebenen Art.
  • Eine Mischkammer einer Lüftungsanlage wird von mindestens zwei luftzuführenden Kanälen gespeist, welche beispielsweise Frischluft und/oder Umluft zuführen können. Der Mischkammer nachgeschaltet ist ein Ventilator, der in der Mischkammer einen Unterdruck erzeugt. Über einen von der Mischkammer luftabführenden Kanal wird die gemischte Luft dem Ventilator zugeführt, dort weiter gemischt und schlussendlich in der Lüftungsanlage bestimmungsgemäß zu dem zu belüftenden Raum oder den zu belüftenden Räumen weitergeleitet. Es ist dabei auch bekannt, der Mischkammer mehr als zwei Kanäle zuzuführen.
  • Jeder zuführende Kanal hat jeweils eine Zuluftklappe, die mehrere Klappenblätter aufweisen kann. Im Zusammenhang mit dieser Anmeldung ist die Zuluftklappe oder Klappe die ganze Einheit, welche zumindest ein Klappenblatt aufweist. Bei großen zuführenden Kanälen können auch mehrere Klappenblätter zu Klappeneinheiten zusammengefasst sein. Die Klappenblätter einer Klappeneinheit sind im Hinblick auf ihren Antrieb miteinander gekoppelt. Diese miteinander gekoppelten Klappenblätter bilden eine Einheit, die jeweils gleiche Öffnungsstellungen einnehmen. Mehrere Klappeneinheiten bilden dabei eine Zulufklappe. Zu unterscheiden hiervon ist die bauliche Zusammenfassung von Klappenblättern in einem Rahmen. Dies sind keine Klappeneinheiten im Sinne der Erfindung.
  • In der Regel sind mehrere Klappenblätter pro Zuluftklappe oder mehrere Klappeneinheiten je Zuluftklappe vorgesehen. Die Klappenblätter sind dabei so miteinander gekoppelt sind, dass die Klappenblätter jeweils eine gleiche Öffnungsstellung einnehmen. Die Stellung benachbarter Klappenblätter zueinander ist normalerweise gegenläufig, d. h. die Öffnungswinkel sind gleich, da sie über eine Welle und/oder über ein Getriebe miteinander gekoppelt sind, jedoch die Ausrichtung der Klappen und die Klapprichtung ist unterschiedlich.
    Die Öffnungsstellungen der Zuluftklappen der beiden der Mischkammer luftzuführenden Kanäle sind voneinander abhängig. Beispielsweise gibt es eine Öffnungsstellung in einem Luft zuführenden Kanal von 90%, im anderen Luft zuführenden Kanal von 10%. Möglich ist auch eine Öffnungsstellung in beiden Luft zuführenden Kanälen von 100%.
    Bei unterschiedlichen Öffnungsstellungen ist es das Ziel der Mischkammer die über die beiden Kanäle der Mischkammer zugeführte Luft miteinander zu vermischen. Es hat sich jedoch herausgestellt, dass trotz des durch einen der Mischkammer nachgeschalteten Ventilator erzeugten Unterdrucks in der Mischkammer es auch nach diesem Ventilator zu so genannten Schichtungen kommt, das heißt, dass es beispielsweise Temperaturunterschiede in der Luft im von der Mischkammer luftabführenden Kanal von bis zu 10° C und mehr geben kann. Dies tritt auch in Strömungsrichtung nach dem Ventilator auf, durch den die Luft der beiden Kanäle noch einmal gemischt wird. Gleiches gilt für die anderen physikalischen Kennwerte wie Feuchte, Druck, Dichte, aber auch für die Luftqualität, wie beispielsweise Sauerstoffgehalt, Schadstoffgehalt, CO2-Gehalt.
    Es ist bekannt, dieses Problem durch feste Einbauten in der Mischkammer oder in dem von der Mischkammer abführenden Kanal, in der Regel der sogenannte Zuluftkanal, zu lösen, beispielsweise durch Lochbleche, Ablenkbleche, Induktionseinrichtungen und ähnliches. Ein Problem dieser festen Einbauten ist jedoch, dass der sich daraus ergebende erhöhte Strömungswiderstand permanent ist, unabhängig davon, ob es zu einer Schichtung kommen kann. Diese Einbauten vermindern permanent den Wirkungsgrad der Lüftungsanlage. Eine Schichtung in dem abführenden Kanal wird aber nur dann eintreten, wenn der Mischkammer Luft mit unterschiedlichen physikalischen Kennwerten und/oder Luftqualitäten zugeführt wird, beispielsweise Luft mit unterschiedlichen Temperaturen.
  • Die US 2006/0183419 A1 offenbart eine Mischkammer mit einem ersten Einlass, einem zweiten Einlass und einem Auslass. Aus der EP 1 096 208 A2 ist ein Raumlüftungssystem mit zwei Frischluftversorgungsleitungen mit Frischluftaustrittsklappen bekannt. Die DE 1 454 652 offenbart eine Mischvorrichtung.
  • Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren zum Betreiben einer Lüftungsanlage mit einer Mischkammer gemäß der im Oberbegriff des Anspruches 1 oder Anspruches 10 angegebenen Art derart weiter zu bilden, dass unter Vermeidung der genannten Nachteile die Voraussetzungen für eine bessere Durchmischung, aber auch für einen höheren Wirkungsgrad der Lüftungsanlage geschaffen werden.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 in Verbindung mit seinen Oberbegriffsmerkmalen und durch die kennzeichnenden Merkmale des Anspruchs 10 in Verbindung mit seinen Oberbegriffsmerkmalen gelöst.
  • Der Erfindung liegt dabei die Erkenntnis zu Grunde, dass die Bewegungsenergie der der Mischkammer zugeführten Luft ausgenutzt wird, um eine bessere Durchmischung der Luft in der Mischkammer zu gewährleisten. Im Bedarfsfall lenken nunmehr die Klappenblätter oder die Klappeneinheiten die Zuluft des einen Kanals in Richtung des anderen Kanals. Hierdurch kommt es dann zu einem Aufeinandertreffen der Luftströme und zu einer verbesserten Durchmischung. Der Strömungswiderstand erhöht sich. Weist die Luft beispielsweise gleiche Temperaturen auf, es ist somit keine Durchmischung gewünscht, werden die Klappenblätter im Sinne einer Verringerung des Strömungswiederstandes ausgerichtet. Der Strömungswiderstand wird also befarfsabhängig so verändert, dass die Klappen im Sinne einer besseren Durchmischung oder einer Minimierung des Strömungswiederstandes verstellt werden. Dies gewährleistet eine individuelle Ansteuerung der Klappenblätter bzw. der Klappeneinheiten, wodurch sich der Wirkungsgrad der Lüftungsanlage auf einfache Weise erhöhen lässt.
  • Bei Lüftungsanlagen mit großen Kanalquerschnitten können aus konstruktiven Gründen auch Klappenblätter in einem Rahmen zusammengefasst sein, die dann ebenfalls eine bauliche Einheiten bilden. Solange die Klappenblätter jedoch in der Einheit nicht antriebsmäßig mitteinander gekoppelt sind, sind dies keine Klappeneinheiten im Sinne dieser Patentanmeldung. Die Klappenblätter in einer baulichen Einheit werden nach der Erfindung individuell angesteuert und angetrieben. Sind demgegenüber Klappeneinheiten vorgesehen, die jeweils miteinander gekoppelte Klappenblätter aufweisen, werden die Klappeneinheiten individuell angesteuert und angetrieben.
  • Insbesondere bei einer unterschiedlichen Zuluftverteilung zwischen zwei Luft zuführenden Kanälen ist es notwendig, dass die Zuluft mit dem geringeren Zuluftanteil in Richtung des anderen Zuluftkanals gelenkt wird, um die bessere Durchmischung zu gewährleisten.
  • Nach einem ersten Aspekt der Erfindung werden daher die Klappenblätter und/oder die Klappeneinheiten individuell angesteuert. Dafür weisen die Klappenblätter oder Klappeneinheiten jeweils einen eigenen Antrieb auf. Eine individuelle Öffnungsstellung der jeweiligen Klappenblätter oder der Klappeneinheiten mit den Klappenblättern wird damit ermöglicht. Hierdurch werden die Voraussetzungen geschaffen, um bedarfsabhängig die Ausrichtung der Klappenblätter zu verändern, und zwar unter dem Gesichtspunkt einer besseren Durchmischung, einer Optimierung des Strömungswiderstandes und/oder der Optimierung der Geräuschentwicklung.
  • Gemäß einer Ausführungsform des Verfahrens nach der Erfindung werden zur verbesserten Durchmischung die Klappenblätter oder die Einheiten von Klappenblättern der Klappeneinheiten so ausgerichtet, dass die aus einem Kanal zugeführte Luft in Richtung des anderen zuführenden Kanals gelenkt wird. Das Merkmal "In Richtung des anderen zuführenden Kanals" ist im Hinblick auf zueinander im Winkel angeordnete zuführende Kanäle eindeutig. Im Hinblick auf einander gegenüberliegende zuführende Kanäle ist unter diesem Merkmal zu verstehen, dass die Klappenblätter zum Zwecke einer besseren Durchmischung in Richtung von dem abführenden Kanal weg ausgerichtet sind. Die Luft wird somit zunächst von dem abführenden Kanal weg geleitet, bevor der Unterdruck die Luft in den abführenden Kanal zwingt.
  • Der Bedarf einer guten Durchmischung stellt sich vor allem bei unterschiedlichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei unterschiedlicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen. Insofern wird die Durchmischung durch Ausrichtung der Klappenblätter in diesen Fällen optimiert.
  • Gemäß einer weiteren Ausführungsform des Verfahrens nach der Erfindung werden zur Energieeinsparung die einzelnen Klappenblätter und/oder die Einheiten von Klappenblätter der Klappeneinheiten so ausgerichtet werden, dass die über die zuführenden Kanäle zugeführte Luft in Richtung des abführenden Kanals gelenkt wird.
  • Der Bedarf einer Energieeinsparung stellt sich vor allem bei annähernd gleichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei annähernd gleicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen. Eine Durchmischung ist dann nicht erforderlich, da die physikalischen Kennwerte und/oder die Qualität der Luft aus den zuführenden Kanäle gleich ist. Insofern kann ohne weiteres nunmehr die Energieeinsparung durch Ausrichtung der Klappenblätter optimiert werden.
  • Um die Klappenblätter entsprechend für eine Durchmischung und oder für eine Energieeinsparung zu steuern, werden vorzugsweise die physikalischen Kennwerte der Luft in den zuführenden Kanälen und/oder die Qualität der Luft in den zuführenden Kanälen über Sensoren ermittelt.
  • Gemäß einer weiteren Ausführungsform des Verfahrens nach der Erfindung wird in Abhängigkeit der benötigten Luftmenge eines zuführenden Kanals nur ein Teil der Klappenblätter und/oder der Klappeneinheiten mit ihren Klappenblättern, insbesondere mit unterschiedlichen Öffnungswinkeln, geöffnet. Hierdurch kann die Durchmischung auf der einen Seite aber auch die Energieeinsparung auf der anderen Seite optimiert werden.
  • Dieser Effekt kann gemäß einer Ausführungsform des Verfahrens nach der Erfindung noch weiter verbessert werden, wenn je nach Ausrichtung des Öffnungswinkel der Klappenblätter zur Lenkung der Luft - Energieeinsparung, Durchmischung - eine priorisierte Ansteuerung der einzelnen Klappenblätter oder Klappeneinheiten im Hinblick auf die Reihenfolge der zuerst zu öffnenden Klappenblätter bzw. Klappeneinheiten der den jeweiligen zuführenden Kanälen zugeordneten Klappen vorgenommen wird.
  • Es können auch mehr als zwei zuführende Kanäle vorgesehen sein, wobei dann die Klappenblätter oder Klappeneinheiten entsprechend gesteuert werden. Auch ist es möglich, dass mehrere abführende Kanäle vorgesehen sind.
  • Gemäß einem anderen Aspekt des Verfahrens zum Betreiben einer Lüftungsanlage mit einer Mischkammer wird in die über einen ersten zuführenden Kanal und über zumindest einen weiteren zuführenden Kanal Luft zugeführt. Aus der Mischkammer wird Luft über einen abführenden Kanal abgeführt. Die Luftzufuhr - Volumensteuerung - in die Mischkammer wird aus den zuführenden Kanälen jeweils über Klappen mit jeweils mindestens einem Klappenblatt gesteuert wird. Nach der Erfindung wird zur verbesserten Durchmischung jeweils das Klappenblatt so ausgerichtet, dass die in dem einen zuführenden Kanal zugeführte Luft in Richtung des anderen zuführenden Kanals gelenkt wird. Zur Energieeinsparung wird das Klappenblatt dann so ausgerichtet, dass die zugeführte Luft in Richtung des abführenden Kanals gelenkt wird. Je nach Bedarf - bessere Durchmischung oder Energieeinsparung - werden somit die Klappenblätter in unterschiedliche Öffnungsstellungen und Ausrichtungen geschwenkt.
  • Insbesondere wird bei unterschiedlichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei unterschiedlicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen die Durchmischung durch Ausrichtung der Klappenblätter optimiert.
  • Demgegenüber kann bei annähernd gleichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei annähernd gleicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen die Energieeinsparung durch Ausrichtung der Klappenblätter optimiert werden. Die Ausrichtung der Klappenblätter und der Bedarf bestimmen sich somit aufgrund gleicher oder unterschiedlicher physikalischer Kennwerte und/oder Luftqualitäten. Ergänzend oder alternativ kann die Ausrichtung der Klappenblätter auch in Abhängigkeit einer Optimierung der Geräuschentwicklung in der Mischkammer erfolgen.
  • Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in Verbindung mit den in den Zeichnungen dargestellten Ausführungsbeispielen.
  • In der Beschreibung, in den Ansprüchen und in der Zeichnung werden die in der unten aufgeführten Liste der Bezugszeichen verwendeten Begriffe und zugeordneten Bezugszeichen verwendet. In der Zeichnung bedeutet:
  • Fig. 1
    eine schematische Ansicht auf eine Mischkammer mit zwei der Mischkammer Luft zuführenden Kanälen und einem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach dem Stand der Technik.
    Fig. 2
    eine schematische Ansicht auf eine Mischkammer mit den zwei der Mischkammer Luft zuführenden Kanälen und dem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach der Erfindung für den Fall, dass keine Luft aus dem zweiten zuführenden Kanal der Mischkammer zugeführt wird;
    Fig. 3
    eine schematische Ansicht auf eine Mischkammer mit den zwei der Mischkammer Luft zuführenden Kanälen und dem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach der Erfindung für den Fall, dass aus dem zweiten Luft der Mischkammer zuführenden Kanal nur ein Teil der Mischkammer zugeführt wird und eine gute Durchmischung der Luft aus dem ersten und zweiten Kanal in der Mischkammer stattfinden soll;
    Fig. 4
    eine schematische Ansicht auf eine Mischkammer mit den zwei der Mischkammer Luft zuführenden Kanälen und dem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach der Erfindung für den Fall, dass aus dem ersten und zweiten Luft der Mischkammer zuführenden Kanal nur ein Teil der Mischkammer zugeführt wird und eine gute Durchmischung der Luft aus dem ersten und zweiten Kanal in der Mischkammer stattfinden soll;
    Fig. 5
    eine schematische Ansicht auf eine Mischkammer mit zwei einer Mischkammer Luft zuführenden Kanälen und einem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach der Erfindung für den Fall, dass keine Luft aus dem ersten zuführenden Kanal der Mischkammer zugeführt wird;
    Fig. 6
    eine schematische Ansicht auf eine Mischkammer mit den zwei der Mischkammer Luft zuführenden Kanälen und dem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach der Erfindung für den Fall, dass aus dem ersten und zweiten Luft der Mischkammer zuführenden Kanal nur ein Teil der Mischkammer zugeführt wird und ein geringer Strömungswiderstand für die der Mischkammer zuführende Luft und somit eine Energieeinsparung stattfinden soll;
    Fig. 7
    eine schematische Ansicht auf eine Mischkammer mit den zwei der Mischkammer Luft zuführenden Kanälen und dem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach der Erfindung für den Fall, dass aus dem ersten und zweiten Luft der Mischkammer zuführenden Kanal nur ein Teil der Mischkammer zugeführt wird und eine gute Durchmischung der Luft aus dem ersten und zweiten Kanal in der Mischkammer stattfinden soll, wobei die zuführenden Kanäle gegenüberliegend angeordnet sind.
    Fig. 8
    eine schematische Ansicht auf eine Mischkammer mit den zwei der Mischkammer Luft zuführenden Kanälen und dem von der Mischkammer Luft abführenden Kanal mit einer Steuerung der Klappenblätter nach der Erfindung für den Fall, dass aus dem ersten und zweiten Luft der Mischkammer zuführenden Kanal nur ein Teil der Mischkammer zugeführt wird und ein geringer Strömungswiderstand für die der Mischkammer zuführende Luft und somit eine Energieeinsparung stattfinden soll, wobei die zuführenden Kanäle gegenüberliegend angeordnet sind.
  • In Fig. 1 ist eine schematische Ansicht auf eine Mischkammer 10 einer Lüftungsanlage mit zwei der Mischkammer 10 Luft zuführenden Kanälen 12 und 14 und einem von der Mischkammer 10 Luft abführenden Kanal 16 nach dem Stand der Technik dargestellt. Der erste Luft zuführende Kanal 12 ist gegenüber dem zweiten Luft zuführenden Kanal 14 in einem rechten Winkel angeordnet. Der abführende Kanal 16 ist gegenüberliegend dem zweiten zuführenden Kanal 14 angeordnet. Dazwischen befindet sich die Mischkammer 10. Jeder zuführende Kanal 12, 14 weist an seinem Eingang 12a, 14a jeweils eine Zuluftklappe 18, 20 auf. Jede Zuluftklappe 18, 20 ist mit mehreren über ein Getriebe mit einander gekoppelter Klappenblätter 22 bzw. 24 versehen. Die Klappenblätter 22, 24 sind so miteinander gekoppelt, dass sie jeweils gleiche Öffnungswinkel in einer Zuluftklappe 18, 20 einnehmen. Sie können jedoch, wie dies in Fig. 1 dargestellt ist, benachbart zueinander gegenläufig ausgerichtet sein, jedoch einen gleichen Öffnungswinkel aufweisen.
  • Im vorliegenden Beispiel gemäß Fig. 1 weisen die Klappenblätter 22 der Zuluftklappe 18 als auch die Klappenblätter 24 der Zuluftklappe 20 einen Öffnungswinkel von 45 ° auf. Es ergibt sich eine Vermischung der zugeführten Luft aus dem ersten Zuluftkanal 12 mit der Luft aus dem zweiten Zuluftkanal 14 von 50:50 in der Mischkammer 10. Der Mischkammer 10 ist ein hier nicht dargestellter Ventilator nachgeschaltet, der in der Mischkammer 10 und auch in den zuführenden Kanälen 12 und 14 einen Unterdruck erzeugt und die zugeführte Luft über den abführenden Kanal 16 abführt.
  • Es können auch in den zuführenden Kanälen 12, 14 Ventilatoren eingebaut sein, die die zugeführte Luft in die Mischkammer 10 drückt und aus dieser wieder heraus in den abführenden Kanal 16.
  • Beispielsweise bei großen Temperaturunterschieden der zugeführten Luft im ersten Zuluftkanal 12 gegenüber dem zweiten Zuluftkanal 14 kann es zu sogenannten Schichtungen in dem Luft aus der Mischkammer abführenden Kanal 16 kommen, die auch nach Passieren des der Mischkammer 10 nachgeschalteten Ventilators noch erhalten bleiben. Derartige Schichtungen können Temperaturunterschiede von beispielsweise 10 °C und mehr aufweisen, was nicht erwünscht ist.
  • Nach der Erfindung wird daher jedes Klappenblatt 22 bzw. 24 individuell angetrieben und angesteuert. Hierdurch ergeben sich vielfältige Anwendungsmöglichkeiten zur Optimierung der Durchmischung, aber auch zur Energieeinsparung in der Lüftungsanlage und somit Möglichkeiten zur Erhöhung des Wirkungsgrades der Lüftungsanlage.
  • In Fig. 2 ist in einer schematischen Ansicht eine Mischkammer 10 mit den zwei der Mischkammer 10 Luft zuführenden Kanälen 12 und 14 und dem von der Mischkammer 10 Luft abführenden Kanal 16 dargestellt. Im vorliegenden Fall ist der erste zuführende Kanal 12 durch die Klappenblätter 22 geschlossen. Wohingegen die Klappenblätter 24 vollkommen geöffnet sind. Dabei wird jedes Klappenblatt 22 der Zuluftklappe 18 und jedes Klappenblatt 24 der Zuluftklappe 20 von einem eigenen Motor angetrieben und individuell angesteuert. Somit kann jedes Klappenblatt individuell bewegt und einen eigenen Öffnungswinkel einnehmen, wie es an Hand der folgenden Fig. 3 bis 8 deutlich wird.
  • In Fig. 3 ist ein Durchmischungsfall dargestellt. Hierbei wird beispielsweise 90% der Luft aus dem zuführenden Kanal 14 und 10% der Luft aus dem zuführenden Kanal 12 der Mischkammer 10 zugeführt. Es handelt sich hierbei um Volumenverhältnisse. Hierfür sind die Klappenblätter 24 der Zuluftklappe 20 alle geöffnet und in Richtung auf den ersten Zuluftkanal 12 ausgerichtet. Bei der Zuluftklappe 18 ist nur ein Teil der Klappenblätter 22 geöffnet, jedoch mit unterschiedlichem Öffnungswinkel. Jedoch sind die Klappenblätter 22 auch hier in Richtung auf den anderen Zuluftkanal, nämlich dem zweiten Zuluftkanal 14 ausgerichtet. Hierdurch werden die Luftströme aus dem Kanal 12 und aus dem Kanal 14 aufeinander geleitet, es kommt zu Verwirbelungen und somit zu einer optimierten Vermischung in der Mischkammer 10. Schichtungen im nachfolgenden abführenden Kanal 16 werden dadurch vermieden.
  • In Fig. 4 ist ein weiterer Durchmischungsfall gezeigt, wobei in diesem Fall ungefähr 60% aus dem ersten Zuluftkanal 12 und 40% aus dem zweiten Zuluftkanal 14 der Mischkammer 10 an Luft zugeführt wird. In diesem Fall sind die Klappenblätter 22, der Zuluftklappe 18 als auch die Klappenblätter 24 der Zuluftklappe 20 mit unterschiedlichen Öffnungswinkeln versehen, jedoch alle auf den jeweils anderen Zuluftkanal bzw. deren Eingang 12a, 14a zur Mischkammer 10 ausgerichtet.
  • In Fig. 5 ist der Fall dargestellt, dass die Zuluftklappe 20 geschlossen ist, das heißt, die Klappenblätter 24 der Zuluftklappe 20 sind alle geschlossen. Dem gegenüber sind die Klappenblätter 22 der Zuluftklappe 18 alle in einem gleichen Öffnungswinkel geöffnet. Es wird somit nur Luft aus dem ersten Zuluftkanal 12 der Mischkammer 10 zugeführt und von dort über den Luft abführenden Kanal 16 in der Lüftungsanlage weitergeleitet.
  • In Fig. 6 ist der Fall dargestellt, dass in der Mischkammer nicht die Durchmischung im Vordergrund steht, sondern eine möglichst große Reduzierung des Strömungswiederstandes, also eine Energieeinsparung. In diesem Fall sind die Klappenblätter 22 der Zuluftklappe 18 und die Klappenblätter 24 der Zuluftklappe 20 von dem jeweils anderen zuführenden Kanal 12 bzw. 14 weg gerichtet, nämlich in Richtung des Luft abführenden Kanals 16. Hierdurch wird der Strömungswiederstand erheblich verringert, es kommt zu einer optimierten Energieeinsparung in der Lüftungsanlage.
  • In Fig. 7 und 8 ist eine weitere Variante einer Lüftungsanlage mit Mischkammer 10 dargestellt. In diesem Fall sind die beiden zuführenden Kanäle 12 und 14 einander gegenüberliegend angeordnet. Die Fig. 7 zeigt hierbei den Durchmischungsfall und die Fig. 8 den Energiesparfall.
  • In Fig. 7 sind die Klappenblätter 22 der Zuluftklappe 18 auf der einen Seite und die Klappenblätter 24 der Zuluftklappe 20 auf der anderen Seite von dem abführenden Kanal 16 weg ausgerichtet. Hierdurch kommt es zu einem Zuströmen aus dem ersten Zuluftkanal 12 und aus dem zweiten Zuluftkanal 14 derart, dass die Strömungen von dem abführenden Kanal 16 weggeleitet werden, dann aufeinander treffen und es zu Verwirbelungen und somit zu einer optimierten Durchmischung in der Mischkammer 10 kommt. Die Strömung wird dabei jeweils von dem abführenden Kanal 16 durch die Klappenblätter 22 und 24 weggeleitet.
  • Anders ist die Situation in Fig. 8, hier sind die Klappenblätter 22 der Zuluftklappe 18 und die Klappenblätter 24 der Zuluftklappe 20 in Richtung auf den abführenden Kanal 16 ausgerichtet. Hierdurch wird der Strömungswiederstand vermindert und dadurch die Lüftungsanlage im Sinne einer Energieeinsparung optimiert.
  • Gemäß einer hier nicht dargestellten Ausführungsform der Erfindung können auch mehrere Klappenblätter 22, 24 zu Klappeneinheiten zusammengefasst werden. Derartige Klappeneinheiten sind insbesondere bei zuführenden Kanälen 12, 14 mit großen Kanalquerschnitten vorgesehen. Dabei können mehrere Klappenblätter 22, 24 von Klappeneinheiten untereinander miteinander gekoppelt sein. Die dadurch entstehenden Untereinheiten werden nunmehr individuell angesteuert und weisen einen eigenen Antrieb auf. Die Einheiten können somit ihre Klappenblätter 22, 24 jeweils individuell von den anderen Einheiten bewegen und weisen hierfür die entsprechenden Antriebe mit Getrieben und/oder Stellmotoren auf. Ansonsten werden die Einheiten entsprechend gesteuert wie dies anhand der Fig. 2 bis 8 für die Klappenblätter 22, 24 dargestellt wurde.
  • Bei zuführenden Kanälen 12, 14 mit einem kleinen Durchmesser und nur einem Klappenblatt 22, 24 ist diese so ausgebildet, dass für den Durchmischungsfall das Klappenblatt 22, 24 der einen Zuluftklappe 18, 20 des einen zuführenden Kanals 12, 14 in Richtung auf den anderen zuführenden Kanal 12, 14 ausgerichtet werden kann und für den Energiesparfall in Richtung auf den abführenden Kanal 16. Hierdurch kann die erfinderische Idee auch bei Lüftungsanlagen mit einem Klappenblatt 22, 24 ohne weiteres einfach umgesetzt werden.
  • Grundsätzlich hängt der Durchmischungsfall der Klappenblätter 22, 24 oder der Einheiten von Klappenblättern 22, 24 von unterschiedlichen physikalischen Kennwerten der zugeführten Luft, wie Temperatur, Druck, Dichte, Feuchte oder von unterschiedlicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt in den einzelnen zuführenden Kanälen 12, 14 ab. Gibt es hierbei Unterschiede, so ist die Anlage für eine optimierte Durchmischung und somit die Klappenblätter 22, 24 entsprechend einzustellen und auszurichten, wie dies oben beschrieben wurde. Sollten jedoch die physikalischen Kennwerte oder die Qualität der Luft in den zuführenden Kanälen gleich oder zumindest annähernd gleich sein, so sind die Klappenblätter 22, 24 im Sinne einer Energieoptimierung der Lüftungsanlage, also im Sinne einer Ausrichtung der Klappenblätter 22, 24 mit einem möglichst geringen Strömungswiederstand zu steuern.
  • Um die einzelnen Fälle jeweils zu erfassen, sind in den zuführenden Kanälen 12, 14 jeweils hier nicht dargestellte Sensoren eingebracht, die mit einer zentralen Recheneinheit zusammen wirken. In der zentralen Recheneinheit wird durch Vergleich der ermittelten physikalischen Kennwerte der Luft oder der Kennwerte für die Qualität der Luft entschieden, wie die Klappenblätter ausgerichtet werden, also in welchem Mischungsverhältnis die Luft aus dem einen zuführenden Kanal 12, 14 mit der Luft aus dem anderen Luft zuführenden Kanal 12, 14 gemischt wird, aber auch ob ein Durchmischungsfall oder Energiesparfall vorliegt.
  • Die Klappenblätter 22, 24 werden in Abhängigkeit der benötigten Luftmenge aus einem zuführenden Kanal 12, 14 vollständig oder nur zum Teil geöffnet. Wie ausgeführt wurde, ist es bei einer Teilöffnung der Klappenblätter 22, 24 auch möglich, dass die Klappenblätter 22, 24 unterschiedliche Öffnungswinkel aufweisen.
  • Des Weiteren werden die Klappenblätter 22, 24 durch die zentrale Recheneinheit priorisiert angesteuert, um eine optimierte Durchmischung oder eine optimierte Energieeinsparung zu erreichen. Dabei werden die einzelnen Klappenblätter 22, 24 oder Klappeneinheiten im Hinblick auf die Reihenfolge der zuerst zu öffneten und der zuletzt zu öffnenden Klappenblätter 22, 24 bzw. Klappeneinheiten angesteuert.
  • Unabhängig von der Luftqualität und den physikalischen Kennwerten ist es nunmehr auch möglich, die Klappenblätter 22, 24 oder die Klappeneinheiten im Sinne einer optimierten Geräuschentwicklung zu steuern. Eine derartige Steuerung ist zum einen vom Luftbedarf, von den physikalischen Kennwerten, von der Luftqualität, vom Mischbedarf und Energiesparbedarf, von auftretendem Strömungswiederstand durch die Stellung der Klappenblätter als auch von der Ausrichtung der Klappenblätter abhängig. Je nach Anwendungsfall ergeben sich im Sinne einer Geräuschoptimierung unterschiedliche Ausrichtungen und Klappenstellungen der jeweiligen Zuluftklappen.
  • Bezugszeichenliste
  • 10
    Mischkammer
    12
    erster Luft zuführender Kanal
    12a
    Eingang zur Mischkammer
    14
    zweiter Luft zuführender Kanal
    14a
    Eingang zur Mischkammer
    18
    Zuluftklappe des ersten zuführenden Kanals
    20
    Zuluftklappe des zweiten zuführenden Kanals
    22
    Klappenblatt der Zuluftklappe 18
    24
    Klappenblatt der Zuluftklappe 20

Claims (13)

  1. Verfahren zum Betreiben einer Lüftungsanlage mit einer Mischkammer (10), in die über einen ersten zuführenden Kanal (12) und über zumindest einen weiteren zuführenden Kanal (14) Luft zugeführt wird, aus der Mischkammer (10) Luft über einen abführenden Kanal (16) abgeführt wird, die Luftzufuhr - Volumensteuerung - in die Mischkammer (10) aus den zuführenden Kanälen (12, 14) jeweils über Klappen (18, 20) mit mehreren Klappenblättern (22, 24) und/oder mehreren Klappeneinheiten mit jeweils mehreren miteinander gekoppelten Klappenblättern (22, 24) gesteuert wird, dadurch gekennzeichnet, dass die Klappenblätter (22, 24) und/oder die Klappeneinheiten einer Klappe (18, 20) derart individuell angesteuert werden, dass eine individuelle Öffnungsstellung mit einem unterschiedlichem Öffnungswinkel der jeweiligen Klappenblätter (22, 24) oder der Klappeneinheiten mit den Klappenblättern (22, 24) ermöglicht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur verbesserten Durchmischung die Klappenblätter (22, 24) oder die Einheiten von Klappenblätter (22, 24) der Klappeneinheiten so ausgerichtet werden, dass die in dem einen zugeführten Kanal (12, 14) zugeführte Luft in Richtung des anderen zuführenden Kanals (14 bzw. 12) gelenkt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass bei unterschiedlichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei unterschiedlicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen (12, 14) die Durchmischung durch Ausrichtung der Klappenblätter (22, 24) optimiert wird.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Energieeinsparung die Klappenblätter (22, 24) und/oder die Einheiten von Klappenblätter (22, 24) der Klappeneinheiten so ausgerichtet werden, dass die zugeführte Luft in Richtung des abführenden Kanals (16) gelenkt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass bei annähernd gleichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei annähernd gleicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen (12, 14) die Energieeinsparung durch Ausrichtung der Klappenblätter (22, 24) optimiert wird.
  6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die physikalischen Kennwerte der Luft in den zuführenden Kanälen (12, 14) und/oder die Qualität der Luft in den zuführenden Kanälen (12, 14) über Sensoren ermittelt werden.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in Abhängigkeit der benötigten Luftmenge aus einem zuführenden Kanal (12, 14) nur ein Teil der Klappenblätter (22, 24) und/oder der Klappeneinheiten mit ihren Klappenblättern (22, 24) geöffnet wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass bei Teilöffnung der Klappenblätter (22, 24) diese unterschiedlichen Öffnungswinkel aufweisen.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass je nach Ausrichtung des Öffnungswinkel der Klappenblätter (22, 24) zur Lenkung der Luft-Energieeinsparung, Durchmischung - eine priorisierte Ansteuerung der einzelnen Klappenblätter (22, 24) oder Klappeneinheiten im Hinblick auf die Reihenfolge der zuerst zu öffnenden Klappenblätter (22, 24) bzw. Klappeneinheiten vorgenommen wird.
  10. Verfahren zum Betreiben einer Lüftungsanlage mit einer Mischkammer (10), in die über einen ersten zuführenden Kanal (12) und über zumindest einen weiteren zuführenden Kanal (14) Luft zugeführt wird, aus der Mischkammer (10) Luft über einen abführenden Kanal (16) abgeführt wird, die Luftzufuhr - Volumensteuerung - in die Mischkammer (10) aus den zuführenden Kanälen (12, 14) jeweils über Klappen mit jeweils einem Klappenblatt (22, 24) gesteuert wird, dadurch gekennzeichnet, dass zur verbesserten Durchmischung jeweils das Klappenblatt (22, 24) so ausgerichtet wird, dass die aus einem Kanal (12, 14) zugeführte Luft in Richtung des anderen zuführenden Kanals (14, bzw. 12) gelenkt wird, und dass zur Energieeinsparung das Klappenblatt (22, 24) so ausgerichtet wird, dass die aus den zuführenden Kanälen (12, 14) zugeführte Luft in Richtung des abführenden Kanals (16) gelenkt wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass bei unterschiedlichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei unterschiedlicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen (12, 14) die Durchmischung durch Ausrichtung der Klappenblätter (22, 24) optimiert wird.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass bei annähernd gleichen physikalischen Kennwerten der Luft, wie Temperatur, Druck, Dichte, Feuchte, und/oder bei annähernd gleicher Qualität der Luft, wie Sauerstoffgehalt, CO2-Gehalt, Schadstoffgehalt, in den einzelnen zuführenden Kanälen (12, 14) die Energieeinsparung durch Ausrichtung der Klappenblätter (22, 24) optimiert wird.
  13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Ausrichtung der Klappenblätter (22, 24) in Abhängigkeit einer Optimierung der Geräuschentwicklung in der Mischkammer (10) erfolgt.
EP11802331.6A 2011-02-04 2011-12-09 Verfahren zum betreiben einer lüftungsanlage mit einer mischkammer Not-in-force EP2702333B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011000525A DE102011000525A1 (de) 2011-02-04 2011-02-04 Verfahren zum Betreiben einer Lüftungsanlage mit einer Mischkammer
PCT/EP2011/072329 WO2012103979A1 (de) 2011-02-04 2011-12-09 Verfahren zum betreiben einer lüftungsanlage mit einer mischkammer

Publications (2)

Publication Number Publication Date
EP2702333A1 EP2702333A1 (de) 2014-03-05
EP2702333B1 true EP2702333B1 (de) 2019-02-20

Family

ID=45420597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11802331.6A Not-in-force EP2702333B1 (de) 2011-02-04 2011-12-09 Verfahren zum betreiben einer lüftungsanlage mit einer mischkammer

Country Status (7)

Country Link
US (1) US9759443B2 (de)
EP (1) EP2702333B1 (de)
CN (1) CN103492813B (de)
AU (1) AU2011358211B2 (de)
DE (1) DE102011000525A1 (de)
IL (1) IL227791A0 (de)
WO (1) WO2012103979A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573217B2 (en) * 2013-09-20 2017-02-21 Lincoln Global, Inc. Thermal control system for a hybrid welder
CN104676862B (zh) * 2015-01-20 2017-09-29 森德(中国)暖通设备有限公司 混风装置
JP6535555B2 (ja) * 2015-09-14 2019-06-26 三菱日立パワーシステムズ株式会社 ボイラ
US20180156490A1 (en) * 2016-12-07 2018-06-07 Johnson Controls Technology Company Dynamic sizing of damper sections and/or air economizer compartments
US11108101B2 (en) * 2018-08-08 2021-08-31 Bae Systems Controls Inc. Active internal air cooled vehicle battery pack

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1451652U (de) *
US2224312A (en) * 1935-01-17 1940-12-10 Preferred Utilities Company In Permanent outlet control device
US2074518A (en) * 1935-11-08 1937-03-23 Henry C Sandberg Air distribution apparatus
US2293065A (en) * 1939-06-26 1942-08-18 Maurice D Kiczales Air flow control damper
US2684690A (en) * 1949-10-01 1954-07-27 Paper Patents Co Flow control apparatus
CH284749A (de) * 1950-10-10 1952-08-15 Haeusler Walter Luftverteilungsvorrichtung, insbesondere für Lüftungs-, Luftheiz- und Luftkonditionierungsanlagen.
US3212424A (en) * 1963-05-14 1965-10-19 Trane Co Fluid control device
US3901275A (en) * 1974-02-01 1975-08-26 Aeronca Inc Compact control unit for air distributing systems
US4259987A (en) * 1979-12-27 1981-04-07 Honeywell Inc. Linear damper system
US4453321A (en) * 1981-12-07 1984-06-12 Industrial Air Products, Inc. Extrusion cooling apparatus
AU565295B2 (en) * 1983-10-13 1987-09-10 Matsushita Electric Industrial Co., Ltd. Fluid deflecting assembly
KR900004861B1 (ko) * 1985-05-20 1990-07-08 마쯔시다덴기산교 가부시기가이샤 흐름방향제어장치
DE8707488U1 (de) * 1987-05-25 1987-07-16 Heinrich Nickel Gmbh, 5240 Betzdorf, De
US5180333A (en) * 1991-10-28 1993-01-19 Norm Pacific Automation Corp. Ventilation device adjusted and controlled automatically with movement of human body
DE10053509A1 (de) * 1999-10-27 2001-05-03 Walther Technik Raumlüftungssystem für Gebäudesammellüftungsanlagen unter Einsatz von Rohrleitungssystemen und Verfahren zu seiner Anwendung
DE10251166A1 (de) * 2002-10-31 2004-05-13 Behr Gmbh & Co. Vorrichtung zur Regelung der Luftzufuhr, insbesondere zu einem Verdampfer mit Speicherfunktion eines Kraftfahrzeuges
US20060183419A1 (en) * 2005-02-17 2006-08-17 York International Corporation Air handling unit mixing method and system
LU91207B1 (fr) * 2005-11-11 2007-05-14 Uniflair Ind S P A Système de refroidissement pour une pièce contenant de l'équipement électronique de traitement de données
US10058012B2 (en) * 2010-12-17 2018-08-21 Tate Access Flooring Leasing, Inc. Multizone variable damper for use in an air passageway

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103492813B (zh) 2017-10-20
AU2011358211A1 (en) 2013-09-19
EP2702333A1 (de) 2014-03-05
IL227791A0 (en) 2013-09-30
US20140051345A1 (en) 2014-02-20
DE102011000525A1 (de) 2012-08-09
CN103492813A (zh) 2014-01-01
WO2012103979A1 (de) 2012-08-09
AU2011358211B2 (en) 2017-06-22
US9759443B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
EP2702333B1 (de) Verfahren zum betreiben einer lüftungsanlage mit einer mischkammer
EP1571402B1 (de) Raumlufttechnische Einrichtung zum Heizen, Kühlen und/oder Belüften eines Raumes sowie entsprechendes Verfahren
DE102017115012B3 (de) Belüftungskanal für eine Lüftungsvorrichtung eines Kraftfahrzeugs
DE2953168A1 (en) Air distribution system
DE102008021015A1 (de) Vorrichtung zur Mischung von gasförmigen Medien und zum Absperren eines Querschnitts
EP3120085B1 (de) Lüftungsvorrichtung
EP2194329B1 (de) Raumlufftechnisches Geräts sowie Verfahren zum Betreiben des raumlufttechnischen Geräts
DE102014209452A1 (de) Klimaanlage mit Bypassvorrichtung
DE60204223T2 (de) Lüftungsanordnung zum abführen von luft
EP2860467B1 (de) Luftauslass
DE102008016238A1 (de) Lüftdüse
DE2133728A1 (de) Vorrichtung zur gleichzeitigen beund entlueftung von raeumen und einrichtungen mit waermeaustausch zwischen frischluft und fortluft
EP2498016B1 (de) Lufttechnische Vorrichtung zum Belüften, Heizen und/oder Kühlen eines Raumes eines Gebäudes
DE102011050323B3 (de) Kühlvorrichtung zur Klimatisierung einer Datenverarbeitungsanlage
WO2018068879A1 (de) BELÜFTER GROßER RÄUME UND HALLEN
EP0607116B1 (de) Endstück für Raumklimaanlagen
EP1717070B1 (de) Lüftungsvorrichtung, insbesondere für ein Kraftfahrzeug
DE102005043502A1 (de) Ansaugmodul für eine Belüftungs-, Heizungs- oder Klimaanlage eines Fahrzeugs
AT503635B1 (de) Kammertrockner
AT407797B (de) Trocknungsanlage
DE60018906T2 (de) Luftverteilunsrampe
DE102006029776B4 (de) Luftmischvorrichtung für Lüftungs- oder Klimaanlagen in Gebäuden
DE102005022241A1 (de) Raumlufttechnische Anlage sowie entsprechendes Verfahren
DE202008016732U1 (de) Raumlufttechnisches Gerät
DE202005007589U1 (de) Raumlufttechnische Anlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015382

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1098707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190521

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015382

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011015382

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191209

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191209

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1098707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111209

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220