EP2701464A2 - Vorrichtung und Verfahren zur Erzeugung von Licht eines vorgegebenen Spektrums mit mindestens vier verschiedenfarbigen Lichtquellen - Google Patents

Vorrichtung und Verfahren zur Erzeugung von Licht eines vorgegebenen Spektrums mit mindestens vier verschiedenfarbigen Lichtquellen Download PDF

Info

Publication number
EP2701464A2
EP2701464A2 EP13181122.6A EP13181122A EP2701464A2 EP 2701464 A2 EP2701464 A2 EP 2701464A2 EP 13181122 A EP13181122 A EP 13181122A EP 2701464 A2 EP2701464 A2 EP 2701464A2
Authority
EP
European Patent Office
Prior art keywords
light sources
sensor
unit
lighting device
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13181122.6A
Other languages
English (en)
French (fr)
Other versions
EP2701464B1 (de
EP2701464A3 (de
Inventor
Mario Cappitelli
Sönke KLOSTERMANN
Dietmar Dr. Vogt
Michael Dr. Olbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP2701464A2 publication Critical patent/EP2701464A2/de
Publication of EP2701464A3 publication Critical patent/EP2701464A3/de
Application granted granted Critical
Publication of EP2701464B1 publication Critical patent/EP2701464B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters

Definitions

  • the invention relates to a lighting device with a light unit, which comprises a plurality of light sources of different color spectra, with a sensor for determining the spectral power distribution (SPD) emitted by the light unit, a control unit which acts on a drive unit as a function of a predetermined and the spectral power distribution measured by the sensor , which individually controls the light sources of the lighting unit, so that the emitted light has the predetermined spectral power distribution.
  • Color spectrum in this context refers to the electro-magnetic waves of a range of defined bandwidth and intensity in the visually perceptible by man color space.
  • the invention further relates to a method for operating a lighting device with a light unit, which comprises at least four light sources of different color spectra, with a sensor for determining the emitted from the light unit spectral power distribution (SPD), a control unit, which depends on a given and the sensor measured spectral power distribution, a drive unit acted upon, which controls the light sources of the lighting unit individually, so that the emitted light has the predetermined spectral power distribution.
  • a light unit which comprises at least four light sources of different color spectra
  • SPD light unit spectral power distribution
  • control unit which depends on a given and the sensor measured spectral power distribution
  • a drive unit acted upon which controls the light sources of the lighting unit individually, so that the emitted light has the predetermined spectral power distribution.
  • LEDs With semiconductor-based lighting elements such as LEDs, the color spectrum and the brightness (intensity) change with increasing operating time, which can be distracting without compensation.
  • LEDs have a scattering of their technical properties in terms of brightness and color during manufacture. This is compensated by the manufacturer by so-called “binning", in which semiconductor elements are sorted according to a given scattering. The narrower the scattering selection, the more expensive the LEDs are.
  • a device is known from EP 1 461 982 B1 in which a desired light color of three LED light sources with red, green and blue color spectra is generated.
  • CIE Commission Internationale de l'éclairage
  • This measured value vector is used in a control unit operating as a P-controller compared with an XYZ setpoint, which acts as a function of the error, a drive unit which controls the light sources supplied to the electrical power accordingly.
  • the sensor must be tuned to the frequency spectrums of the LEDs, so that the control loop works sufficiently.
  • a lighting device with more than 3 light sources of different color spectrums - for example, a yellow or white LED as the fourth LED - no longer regulate because the result of this scheme is no longer unambiguous, since several luminous intensity settings of the four light sources the same color in XYZ color space can generate.
  • a detection of the color shift of a single light source can be determined only indirectly via the information of the temperature and the v (lambda) measurement.
  • Non-temperature-dependent color changes of the light source can hereby not be distinguished from a change in brightness.
  • Another disadvantage is that the described adjustments of the color and brightness values of the luminaire only work in an operating state in which the individual light sources are individually adjusted. This is equivalent to interrupting the operation.
  • the object of the invention is to provide a generic lighting device, which is characterized in that more than 3 lighting elements of different color spectrums and brightness values can be integrated and thereby largely any desired color spectrum can be used. It should be a structural simple three-channel sensor be used. It is also an object to provide a method for controlling a generic lighting device with more than three light sources of different color spectrums. The sensor should measure all the light sources simultaneously and determine a valid for the totality of the light sources used color and brightness measurement.
  • the first object is achieved in that the lighting unit comprises at least four light sources and the control unit is set up to use an optimization algorithm which maximizes as a main condition a calculated weighting criterion such as in particular color rendering index (CRI), which can be calculated from the individual control data of the light sources and as a termination criterion that the error between the predetermined and the measured spectral power distribution is smaller than a limit value.
  • a calculated weighting criterion such as in particular color rendering index (CRI)
  • a special circumstance here is that the resulting control values of the individual light source are unknown. Only the color and brightness impression of the totality of the light sources is considered. This can be done without interruption in the operation of the lamp. It also ensures that all intrinsic and extrinsic influences on the color and brightness change can be compensated. In particular, as a result of the use of at least four light sources an over-determination with respect to the color impression is generated, which can be used as a compensation source. Furthermore, an intended control reserve serves as a source for further compensation of color and brightness changes. Third, color reduction can be achieved by reducing the overall brightness of the luminaire by performing the optimization instead of in a brightness-rich XYZ color space in a luminance-less color space such as CIE xy.
  • any lighting element is detected, in particular any type of light-emitting diode including organic light emitting diodes (OLED). It is also possible to use light sources of different types together, in particular LEDs and light bulbs. While the main field of application of the invention is the range of visible light, it is expressly contemplated that the invention may be applied to the infrared or ultraviolet range. Thus, individual or all light sources may have frequency spectrums which are partly or wholly outside the range of visible light. Thus, in the infrared or in the UV range with a sensor channel number smaller than the number of manipulated variables using the optimization approach can be set to a defined target size.
  • the idea of the invention is not to make the adjustment of the light sources used via a conventional control loop but to apply an optimization method which has two or more optimization criteria.
  • a coefficient of the weighted sensor values in particular a color rendering index CRI (Color Rendering Index)
  • CRI Color Rendering Index
  • the deviation measured in the color spectrum in the defined color space of the sensor is to be minimized by the sensor. Since the present luminaire example should have a high CRI as a requirement, the CRI was also used as an optimization criterion here.
  • other criteria for optimization can also be implemented. Further possible optimization criteria can be selected taking into account the properties of individual light sources. For example, the protection of particularly vulnerable light sources by minimizing the requested performance.
  • the drive data is typically transmitted in accordance with the DMX protocol or a similar protocol.
  • the DMX protocol allows adjustment of the drive current for each light source with an accuracy of 8 bits (ie 256 different values).
  • other protocols such as those of higher accuracy, may be used instead of the DMX protocol.
  • a control reserve of, for example, an additional bit is provided in order to take due account of the decreasing brightness in the course of aging processes.
  • the CRI value R a is calculated in the usual way as with measured spectral values. This calculation is preferably carried out in the CIE system.
  • This calculated CRI value R a uses the optimization system according to the invention as the main criterion. Since many algorithms can only minimize, but the negated minimum is the maximum, the main condition or objective function can also be defined as follows: min ( - R a x
  • the invention specifies that a difference vector from the measured color vector (preferably in the XYZ system) and a predetermined (target) vector is minimized.
  • a predetermined (target) vector is minimized.
  • it is predetermined as a termination condition that the magnitude of the difference vector falls below a limit value ⁇ .
  • the constraint can therefore be defined as follows: XYZ ⁇ actual - XYZ ⁇ t bad et , ⁇ ⁇
  • the production and aging-related color and brightness changes of the lighting device according to the invention can be compensated in order to ensure a uniform illumination quality over their entire operating time.
  • the system according to the invention makes it possible to optimize the lighting for any number of light sources (LEDs).
  • the constant adjustment of color and brightness allows the selection of cost-effective light sources (ie a cost-effective "Binnings") while increasing the quality of illumination.
  • the optimization method may include further constraints, in particular high color saturation.
  • the lighting unit 4 light sources with different spectral emission, particularly preferably with a selection of the colors red, green, yellow, blue, white.
  • the selection of the light sources will be made depending on the application of the lighting device. Alternatively, five or more light sources in all mentioned colors or spectral values can be used.
  • control algorithm is standardized in CIE X, Y, Z color space feasible.
  • This has the advantage that with a simple three-channel sensor, which is provided with suitable standardized filters, the entire color space perceivable by humans can be detected.
  • other color spaces eg RGB, LUV, HSL, LMS, RG may be used, taking into account the respective restriction of the gamut.
  • the senor is a three-channel sensor which preferably provides data in RGB or XYZ format.
  • This sensor determines the luminous flux and the color location of all the light sources used in the luminaire.
  • the object underlying the invention is further achieved by a method for operating a lighting device with a light unit comprising at least four light sources of different color spectra, with a sensor for determining the emitted from the light unit spectral power distribution (SPD), a control unit, in dependence a predetermined and measured by the sensor spectral power distribution a drive unit is applied, which controls the light sources of the light unit individually, so that the emitted light has the predetermined spectral power distribution, the method is designed as an optimization algorithm that maximizes a calculated color rendering index (CRI) as the main condition, is calculated from the individual drive data of the light sources, and as a side condition the optimization is aborted if the error between the predetermined and the measured spectral power values ilung falls below a threshold.
  • CRI color rendering index
  • the so-called simplex method is used as the optimization method.
  • This is a proven optimization method for solving linear optimization problems.
  • other optimization methods can also be used.
  • CRI color rendering index
  • a function between the respective maximum of a spectrum and the radiation intensity is used, from which a multiplication factor is determined, with which the radiation spectrum of a light source at the current drive value of the light source is determined, from the radiation spectra of all light sources a total virtual radiation spectrum is added, and from this, the calculated color rendering index (CRI) of the total virtual radiation spectrum is determined.
  • CRI color rendering index
  • the device 10 comprises according to FIG. 1 a lighting unit 12 comprising four or more light sources 14 having different color spectrums.
  • a red LED 620 nm
  • a green LED 520 nm
  • a blue LED 460 nm
  • a yellow LED 590 nm
  • It can also be provided to increase the light intensity of multiple light sources of the same color spectrum, which are preferably driven together (in parallel or in series) but are considered in the context of this embodiment as a light source or LED. These light sources radiate essentially in the same, unspecified direction here.
  • a sensor 16 is arranged, which is preferably designed as an RGB or XYZ sensor and transmits corresponding data from the received radiation spectrum to an optimization unit 18.
  • the optimization unit 18 also receives as input signal a desired radiation value 20 as a spectral power distribution (SPD), here as a vector in the XYZ color space. Further, the optimization unit 18 obtains a calculated CRI value which should correspond to the current actual CRI value of the lighting unit 12 and is provided by a CRI value calculation unit 22.
  • SPD spectral power distribution
  • the optimization unit 18 carries out an optimization process on the basis of said data inputs, preferably according to the so-called simplex method, and calculates drive values (preferably in the DMX protocol) which are transferred in asynchronous serial operation to a drive unit 24 based on the driving values, the light sources 14 of the lighting unit 12 individually controls.
  • the main condition of the optimization method is to maximize the calculated CRI value R a provided by the CRI value calculation unit 22 . : Max R a
  • a difference vector is minimized from the color vector measured by the sensor 16 (preferably in the XYZ system) and a given (target) vector 20.
  • the optimization system In order for the optimization system to reach a solution in a timely manner, it is predetermined as a termination condition that the magnitude of the difference vector falls below a limit value ⁇ : XYZ ⁇ actual - XYZ ⁇ t bad et , ⁇ ⁇
  • FIG. 2 the operation of the CRI value calculation unit 22 will be explained in more detail.
  • a memory unit 26 a relationship between the maximum of the spectrum of a light source in relation to the relevant drive value (DMX value) is stored for each light source in a first memory area 28.
  • DMX stands for the independent variable, ie the associated DMX value of the light source.
  • the relationship between the DMX value and the maximum of the spectrum may also be formed as a look-up table to more accurately map the relationship.
  • the coefficients a, b, c and d are used in the course of the interpretation of entire luminaire unit for the respective luminaire type (light source) used, individually determined by means of spectral measurement or on the basis of the data sheets.
  • a polynomial function calculation unit 30 calculates a multiplier k (k ⁇ 1) from the DMX drive value 25 of the light source and the coefficients in the first storage area 28 according to the above formula.
  • the memory unit 26 contains for each light source a second memory area 32, in which the spectrum of the light source is stored at maximum illuminance as a look-up table.
  • a multiplier unit 34 multiplies the current individual spectrum of the light source 36a from the multiplier k determined in the polynomial function calculation unit 30 and the light spectrum of the respective light source stored in the second memory area 32 by the same individual spectra of the other light source 36b-36d in the addition unit 38 Total spectrum is added.
  • the total spectrum of all the light sources 14 thus calculated is converted in the CRI unit 40 according to a known algorithm into the color rendering index value CRI. This value will then be in FIG. 1 shown optimization unit 18 supplied.

Abstract

Die Erfindung betrifft eine Beleuchtungsvorrichtung (10) sowie ein Beleuchtungsverfahren mit einer Leuchteinheit (12), die mehrere Lichtquellen (14) unterschiedlicher Farbspektren umfasst, mit einem Sensor (16) zur Ermittlung der von der Leuchteinheit (12) emittierten spektralen Leistungsverteilung (SPD), einer Kontrolleinheit (18), die in Abhängigkeit einer vorgegebenen sowie der vom Sensor (16) gemessenen spektralen Leistungsverteilung eine Ansteuereinheit (24) beaufschlagt, weiche die Lichtquellen (14) der Leuchteinheit (12) individuell ansteuert, so dass das emittierte Licht die vorgegebene spektrale Leistungsverteilung aufweist, wobei die Leuchteinheit (12) mindestens vier Lichtquellen (14) umfasst und die Kontrolleinheit (18) zur Anwendung eines Optimierungsalgorithmus eingerichtet ist, der als Optimierungsziel einen Koeffizienten der gewichteten Sensorwerte maximiert, welcher aus den individuellen Ansteuerdaten der Lichtquellen berechenbar ist. Dabei ist Nebenbedingung, dass der Fehler zwischen der vorgegebenen und der genessenen spektralen Leistungsverteilung kleiner ist als ein Grenzwert.

Description

  • Die Erfindung betrifft eine Beleuchtungsvorrichtung mit einer Leuchteinheit, die mehrere Lichtquellen unterschiedlicher Farbspektren umfasst, mit einem Sensor zur Ermittlung der von der Leuchteinheit emittierten spektralen Leistungsverteilung (SPD), einer Kontrolleinheit, die in Abhängigkeit einer vorgegebenen sowie der vom Sensor gemessenen spektralen Leistungsverteilung eine Ansteuereinheit beaufschlagt, welche die Lichtquellen der Leuchteinheit individuell ansteuert, so dass das emittierte Licht die vorgegebene spektrale Leistungsverteilung aufweist. Farbspektrum bezeichnet in diesem Zusammenhang die elektro-magnetischen Wellen eines Bereichs definierter Bandbreite und Intensität im vom Menschen visuell wahrnehmbaren Farbraum.
  • Die Erfindung betrifft ferner ein Verfahren zum Betrieb einer Beleuchtungsvorrichtung mit einer Leuchteinheit, die mindestens vier Lichtquellen unterschiedlicher Farbspektren umfasst, mit einem Sensor zur Ermittlung der von der Leuchteinheit emittierten spektralen Leistungsverteilung (SPD), einer Kontrolleinheit, die in Abhängigkeit einer vorgegebenen sowie der vom Sensor gemessenen spektralen Leistungsverteilung eine Ansteuereinheit beaufschlagt, welche die Lichtquellen der Leuchteinheit individuell ansteuert, damit das emittierte Licht die vorgegebene spektrale Leistungsverteilung aufweist.
  • Bei halbleiterbasierten Beleuchtungselementen wie LEDs ändert sich mit zunehmender Betriebsdauer das Farbspektrum und die Helligkeit (Intensität), was ohne Ausgleich als störend empfunden werden kann. Auch weisen LEDs bei der Herstellung eine Streuung ihrer technischen Eigenschaften hinsichtlich Helligkeit und Farbe auf. Dies wird vom Hersteller durch sog. "Binning" kompensiert, in dem Halbleiterelemente nach einer vorgegebenen Streuung sortiert werden. Je enger die Streuungsselektion, desto teurer sind die LEDs.
  • Eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 ist aus der EP 1 461 982 B1 bekannt, bei dem eine gewünschte Lichtfarbe aus drei LED-Lichtquellen mit roten, grünen und blauen Farbspektren erzeugt wird. Dabei wird das von den drei LEDs emittierte Licht mittels eines Dreibereichsfilters detektiert, der gemessene RGB-Wert in den sog. CIEstandardisierten XYZ-Farbraum konvertiert (CIE = Commission internationale de l'éclairage). Dieser Messwert-Vektor wird in einer als P-Regler arbeitenden Kontrolleinheit mit einem XYZ-Sollwert verglichen, die abhängig vom Fehler eine Ansteuereinheit beaufschlagt, welche die den Lichtquellen zugeführten elektrischen Leistungen entsprechend steuert. Mittels einer solchen Vorrichtung lassen sich derartige Änderungen der Helligkeit und Farbe kompensieren.
  • Nachteilig dabei ist allerdings, dass zum einen der Sensor auf die Frequenzspektren der LEDs abgestimmt sein muss, damit der Regelkreis hinreichend funktioniert. Ferner lässt sich mit diesem System eine Beleuchtungsvorrichtung mit mehr als 3 Lichtquellen unterschiedlicher Farbspektren - beispielsweise einer gelben oder weißen LED als vierter LED - nicht mehr regeln, weil das Ergebnis dieser Regelung nicht mehr eindeutig ist, da mehrere Leuchtstärkeeinstellungen der vier Lichtquellen den gleichen Farbeindruck im XYZ-Farbraum erzeugen können.
  • In der DE 10 2007 044 556 wird ein Verfahren zur Bestimmung der Lichtstromanteile einzelner LED über einne v(Lambda) angepassten Sensor beschrieben. Die betriebsbedingten Farb- und Helligkeitsveränderungen der einzelnen LED wird über eine Messung des spektralen Anteiles mithilfe eines v(Lambda) angepassten Sensors und der Messung der Betriebstemperatur der LED (Board und Junktion Temperatur) bestimmt. Diese Messwerte werden einzeln für die jeweils angesteuerte LED bestimmt. Die Messwerte fließen dann als Eingangparameter der Bestimmung der einzelnen Emissionsspektren der LED zu, die dann in Hinblick auf Lichtstrom optimiert werden können, so das die gesamte Leuchte eine definierte Farb- und Helligkeit erreicht. Nachteilig ist hierbei, dass immer nur eine einzelne Lichtquelle von der von dem verwendeten Messverfahren betrachtet werden kann. Auch eine Erfassung der Farbverschiebung einer einzelnen Lichtquelle nur indirekt über die Information der Temperatur und der v(Lambda) Messung ermittelt werden. Nicht temperaturabhängige Farbveränderungen der Lichtquelle können hiermit nicht von einer Helligkeitsveränderung unterscheiden werden. Nachteilig ist auch, dass die beschrieben Justierungen der Farb- und Helligkeitswerte der Leuchte nur in einem Betriebszustand funktionieren, in dem die einzelnen Lichtquellen einzeln justiert werden. Dies kommt einer Unterbrechung des Betriebes gleich.
  • Aufgabe der Erfindung ist es, eine gattungsgemäße Beleuchtungsvorrichtung bereitzustellen, die sich dadurch auszeichnet, dass mehr als 3 Beleuchtungselemente unterschiedlicher Farbspektren und Helligkeitswerte integriert werden können und dabei weitestgehend jedes gewünschte Farbspektrum verwendet werden kann. Dabei soll ein baulich einfacher dreikanaliger Sensor verwendbar sein. Ferner ist eine Aufgabe, ein Verfahren zur Ansteuerung einer gattungsgemäßen Beleuchtungsvorrichtung mit mehr als drei Lichtquellen unterschiedlicher Farbspektren bereitzustellen. Der Sensor soll dabei alle Lichtquellen gleichzeitig vermessen und einen für die Gesamtheit der eingesetzten Lichtquellen gültigen Farb- und Helligkeitsmesswert ermitteln.
  • Die Lösung dieser Aufgaben ergibt sich aus den Merkmalen der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche. Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung, sowie der Erläuterung von Ausführungsbeispielen der Erfindung, die in den Figuren dargestellt sind.
  • Die erstgenannte Aufgabe wird dadurch gelöst, dass die Leuchteinheit mindestens vier Lichtquellen umfasst und die Kontrolleinheit zur Anwendung eines Optimierungsalgorith-mus eingerichtet ist, der als Hauptbedingung einem errechneten Gewichtungskriterium wie insbesondere Farbwiedergabeindex (CRI) maximiert, der aus den individuellen Ansteuerdaten der Lichtquellen berechenbar ist und als Abbruchkriterium aufweist, dass der Fehler zwischen der vorgegebenen und der gemessenen spektralen Leistungsverteilung kleiner ist als ein Grenzwert.
  • Ein besonderer Umstand ist hierbei, das die resultierenden Steuerwerte der einzelne Lichtquelle nicht bekannt sind. Es wird nur der Farb- und Helligkeitseindruck der Gesamtheit der Lichtquellen betrachtet. Dieses kann ohne Unterbrechung im Betrieb der Leuchte geschehen. Auch ist gewährleistet, dass alle intrinsischen und extrinsischen Einflüsse auf die Farb- und Helligkeitsveränderung kompensiert werden können. Insbesondere da durch die Verwendung von mindestens vier Lichtquellen eine Überbestimmtheit bezüglich des Farbeindruckes erzeugt wird, welche als Kompensationsquelle herangezogen werden kann. Des weiteren dient eine vorgesehene Regelreserve als Quelle für weitere Kompensation von Farb- und Helligkeitsveränderungen. Als drittes kann auch unter Reduzierung der Gesamthelligkeit der Leuchte eine Farbanpassung erfolgen, indem die Optimierung anstatt in einen helligkeitsbehafteten XYZ Farbraum in einem Helligkeitsunbehafteten Farbraum wie CIE xy durchgeführt wird.
  • Soweit im Zusammenhang dieser Anmeldung von Lichtquellen die Rede ist, sei jedes beliebige Beleuchtungselement erfasst, insbesondere jede Art von Leuchtdiode einschließlich organischer Leuchtdioden (OLED). Es können auch Lichtquellen unterschiedlicher Art zusammen verwendet werden, insbesondere LEDs und Glühbirnen. Wenngleich der Hauptanwendungsbereich der Erfindung der Bereich des sichtbaren Lichtes ist, so wird ausdrücklich die Anwendbarkeit der Erfindung auf den infraroten oder ultravioletten Bereich mit eingeschlossen. So können einzelne oder alle Lichtquellen Frequenzspektren aufweisen, die teilweise oder gänzlich außerhalb des Bereichs sichtbaren Lichtes liegen. So können auch im Infraroten bzw. im UV-Bereich mit einer Sensorkanalanzahl kleiner als der Anzahl der Stellgrößen mit Hilfe des Optimierungsansatzes auf definierte Zielgröße eingestellt werden.
  • Die Idee der Erfindung besteht darin, die Einstellung der verwendeten Lichtquellen nicht über einen herkömmlichen Regelkreis vorzunehmen sondern ein Optimierungsverfahren anzuwenden, das zwei oder mehrere Optimierungskriterien aufweist. Zum einen soll als Optimierungsziel ein Koeffizient der gewichteten Sensorwerte, insbesondere ein Farbwiedergabeindex CRI (Color Rendering Index), maximiert sein, der nicht aus gemessenen Lichtwerten errechnet wird sondern vielmehr aus den Ansteuerungsdaten für die einzelnen Lichtquellen. Als zweites Optimierungskriterium bzw. als Nebenbedingung ist die vom Sensor gemessene Abweichung im Farbspektrum im definierten Farbraum des Sensors zu minimieren. Da das vorliegende Leuchtenbeispiel als Anforderung ein hohen CRI aufweisen soll, wurde hier auch der CRI als Optimierungskriterium herangezogen. Je nach Anforderung an das Leuchtensystem können auch andere Kriterien zur Optimierung implementiert werden. Weitere mögliche Optimierungskriterien können unter Berücksichtigung der Eigenschaften einzelner Lichtquellen gewählt werden. Beispielsweise die Schonung besonders anfälliger Lichtquellen durch eine Minimierung der abgeforderten Leistung.
  • Die Ansteuerungsdaten werden typischerweise gemäß des DMX- Protokolls oder einem ähnlichen Protokoll übertragen. Das DMX- Protokoll ermöglicht eine Einstellung des Treiberstroms für jede Lichtquelle mit einer Genauigkeit von 8 Bit (also 256 verschiedenen Werten). Anstelle des DMX-Protokolls können natürlich auch andere Protokolle, beispielsweise solche höherer Genauigkeit zur Anwendung gelangen. Vorzugsweise wird dabei eine Steuerreserve von beispielsweise einem zusätzlichen Bit vorgesehen, um die im Zuge von Alterungsvorgängen nachlassende Helligkeit gebührend zu berücksichtigen.
  • Aus dem aktuellen DMX-Wert einer Lichtquelle wird aufgrund von für die Lichtquelle gespeicherten Daten ein zugehöriges Spektrum berechnet, das mit den berechneten Spektren der anderen Lichtquellen zu einem gemeinsamen berechneten, "vorhergesagten" oder "virtuellen" Gesamtspektrum zusammenaddiert wird. Aus diesem berechneten Gesamtspektrum wird auf übliche Weise wie bei gemessenen Spektralwerten der CRI-Wert Ra berechnet. Diese Berechnung erfolgt vorzugsweise im CIE-System. Diesen berechneten CRI-Wert Ra verwendet das erfindungsgemäße Optimierungssystem als Hauptkriterium. Da viele Algorithmen nur minimieren können, das negierte Minimum jedoch das Maximum ist, kann die Hauptbedingung bzw. Zielfunktion auch wie folgt definiert werden: min ( - R a x
    Figure imgb0001
  • Als Nebenbedingung wird erfindungsgemäß vorgegeben, dass ein Differenzenvektor aus dem gemessenen Farbvektor (vorzugsweise im XYZ-System) und einem vorgegebenen (Ziel-) Vektor minimiert ist. Damit das Optimierungssystem zeitnah zu einer Lösung gelangt wird als Abbruchbedingung vorgegeben, dass der Betrag des Differenzenvektors einen Grenzwert ε unterschreitet. Die Nebenbedingung kann also wie folgt definiert werden: XYZ actual - XYZ t arg et . ε
    Figure imgb0002
  • Auf diese Weise können die herstellungs- und alterungsbedingten Farb- und Helligkeitsveränderungen der erfindungsgemäßen Beleuchtungsvorrichtung kompensiert werden, um über deren gesamter Betriebszeit eine gleichmäßige Beleuchtungsqualität sicher zu stellen. Das erfindungsgemäße System ermöglicht dabei eine optimierte Einstellung der Beleuchtung für eine beliebige Anzahl an Lichtquellen (LEDs). Die ständige Anpassung von Farbe und Helligkeit erlaubt dabei die Auswahl kostengünstiger Lichtquellen (also eines kostengünstigen "Binnings") bei gleichzeitig erhöhter Beleuchtungsqualität. Es sei angemerkt, dass das Optimierungsverfahren weitere Nebenbedingungen, insbesondere eine hohe Farbsättigung, umfassen kann.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die Leuchteinheit 4 Lichtquellen mit unterschiedlicher spektraler Emission auf, besonders bevorzugt mit einer Auswahl aus den Farben rot, grün, gelb, blau, weiß. Die Auswahl der Lichtquellen wird abhängig von der Anwendung der Beleuchtungsvorrichtung getroffen werden. Alternativ können auch fünf oder mehr Lichtquellen in allen genannten Farben bzw. Spektralwerten zur Anwendung gelangen.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung ist der Regelalgorithmus im CIE-standardisieren X,Y,Z-Farbraum durchführbar. Dies hat den Vorteil, dass mit einem einfachen dreikanaligen Sensor, der mit geeigneten genormten Filtern versehen ist, der gesamte vom Menschen wahrnehmbare Farbraum detektiert werden kann. Es können alternativ auch andere Farbräume, z.B. RGB, LUV, HSL, LMS, RG verwendet werden, wobei die jeweilige Einschränkung des Gamuts zu berücksichtigen ist.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung ist der Sensor ein dreikanaliger Sensor, der Daten vorzugsweise im RGB- oder XYZ-Format bereitstellt. Mittels eines sehr einfachen und kostengünstigen Sensors lässt sich die erfindungsgemäße Optimierung durchführen. Dieser Sensor bestimmt den Lichtstrom und den Farbort der Gesamtheit aller in der Leuchte verwendeten Lichtquellen.
  • Die der Erfindung zugrunde liegende Aufgabe wird ferner gelöst durch ein Verfahren zum Betrieb einer Beleuchtungsvorrichtung mit einer Leuchteinheit, die mindestens vier Lichtquellen unterschiedlicher Farbspektren umfasst, mit einem Sensor zur Ermittlung der von der Leuchteinheit emittierten spektralen Leistungsverteilung (SPD), einer Kontrolleinheit, die in Abhängigkeit einer vorgegebenen sowie der vom Sensor gemessenen spektralen Leistungsverteilung eine Ansteuereinheit beaufschlagt, welche die Lichtquellen der Leuchteinheit individuell ansteuert, damit das emittierte Licht die vorgegebene spektrale Leistungsverteilung aufweist, wobei das Verfahren als Optimierungsalgorithmus ausgebildet ist, der als Hauptbedingung einen errechneten Farbwiedergabeindex (CRI) maximiert, der aus den individuellen Ansteuerdaten der Lichtquellen berechnet wird, und als Nebenbedingung die Optimierung abgebrochen wird, wenn der Fehler zwischen der vorgegebenen und der gemessenen spektralen Leistungsverteilung einen Grenzwert unterschreitet. Die Wirkungsweise und Vorteile des Verfahrens wurden bereits oben im Zusammenhang mit der Vorrichtung erläutert.
  • Gemäß einer vorteilhaften Weiterbildung wird als Optimierungsverfahren das sog. Simplex-Verfahren verwendet. Dieses ist ein bewährtes Optimierungsverfahren zur Lösung linearer Optimierungsprobleme. Alternativ können auch andere Optimierungsverfahren zur Anwendung gelangen.
  • Gemäß einer vorteilhaften Weiterbildung wird der Farbwiedergabeindex (CRI) aus gespeicherten Daten über die Spektren der einzelnen Lichtquellen sowie den Ansteuerdaten der Lichtquellen errechnet.
  • Vorzugsweise wird dabei eine Funktion zwischen dem jeweiligen Maximum eines Spektrums und der Strahlungsintensität verwendet, aus der ein Multiplikationsfaktor bestimmt wird, mit dem das Strahlungsspektrum einer Lichtquelle bei dem aktuellen Ansteuerwert der Lichtquelle bestimmt wird, aus den Strahlungsspektren aller Lichtquellen ein virtuelles Gesamtstrahlungsspektrum addiert wird, und aus diesem wird der errechnete Farbwiedergabeindex (CRI) des virtuellen Gesamtstrahlungsspektrums bestimmt.
  • Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der - unter Bezug auf die Zeichnung - zumindest ein Ausführungsbeispiel im Einzelnen beschrieben ist. Gleiche, ähnliche und/oder funktionsgleiche Teile sind mit gleichen Bezugszeichen versehen.
  • Es zeigen:
  • Figur 1:
    eine schematische Blockbilddarstellung der erfindungsgemäßen Vorrichtung;
    Figur 2:
    eine schematische Blockbilddarstellung der CRI-Wert-Berechnungseinheit.
  • Die erfindungsgemäße Vorrichtung 10 umfasst gemäß Figur 1 eine Leuchteinheit 12, die vier oder mehr Lichtquellen 14 umfasst, welche unterschiedliche Farbspektren aufweisen. Beispielsweise kann eine rote LED (620 nm), eine grüne LED (520 nm), eine blaue LED (460 nm) und eine gelbe LED (590 nm) vorgesehen sein. Es können ferner zur Erhöhung der Lichtstärke mehrere Lichtquellen des gleichen Farbspektrums vorgesehen werden, die vorzugsweise gemeinsam (parallel oder in Reihe) angesteuert werden aber im Rahmen dieser Ausführungsform als eine Lichtquelle bzw. LED angesehen werden. Diese Lichtquellen strahlen im Wesentlichen in die gleiche, hier nicht näher bezeichnete Richtung. Wesentlich ist, dass im Strahlungsfeld aller Lichtquellen ein Sensor 16 angeordnet ist, der vorzugsweise als RGB- oder XYZ-Sensor ausgeführt ist und vom empfangenen Strahlungsspektrum entsprechende Daten an eine Optimierungseinheit 18 übergibt. Die Optimierungseinheit 18 erhält ferner als Eingangsignal einen Strahlungssollwert 20 als spektrale Leistungsverteilung (SPD), hier als Vektor im XYZ-Farbraum. Ferner erhält die Optimierungseinheit 18 einen berechneten CRI-Wert, welcher dem gegenwärtigen tatsächlichen CRI-Wert der Leuchteinheit 12 entsprechen sollte und von einer CRI-Wert-Berechnungseinheit 22 bereitgestellt wird. Die Funktionsweise der CRI-Wert-Berechnungseinheit 22 wird in Figur 2 näher erläutert. Die Optimierungseinheit 18 führt auf der Grundlage der genannten Dateneingänge einen Optimierungsprozess durch, vorzugsweise nach dem sog. Simplex-Verfahren, und berechnet Ansteuerwerte (vorzugsweise im DMX-Protokoll), welche im asynchronen seriellen Betrieb an eine Ansteuereinheit 24 übergeben werden, die auf der Grundlage der Ansteuerwerte die Lichtquellen 14 der Leuchteinheit 12 individuell ansteuert.
  • Dabei ist die Hauptbedingung des Optimierungsverfahrens eine Maximierung des auf der Grundlage des von der CRI-Wert-Berechnungseinheit 22 bereitgestellten berechneten CRI-Wertes Ra. : max R a
    Figure imgb0003
  • Als Nebenbedingung wird ein Differenzenvektor aus dem von dem Sensor 16 gemessenen Farbvektor (vorzugsweise im XYZ-System) und einem vorgegebenen (Ziel-) Vektor 20 minimiert. Damit das Optimierungssystem zeitnah zu einer Lösung gelangt wird als Abbruchbedingung vorgegeben, dass der Betrag des Differenzenvektors einen Grenzwert ε unterschreitet: XYZ actual - XYZ t arg et . ε
    Figure imgb0004
  • In Figur 2 wird die Wirkungsweise der CRI-Wert-Berechnungseinheit 22 näher erläutert. Diese bezieht als Eingangssignal die aktuellen Ansteuerdaten 25 für die Lichtquellen, wovon in Figur 2 nur einer weiter dargestellt wird. Da die Datenübertragung seriell erfolgt, werden die Ansteuerdaten der anderen Lichtquellen zeitlich folgend geliefert und in der CRI-Wert-Berechnungseinheit 22 verarbeitet. In einer Speichereinheit 26 ist für jede Lichtquelle in einem ersten Speicherbereich 28 eine Beziehung zwischen dem Maximum des Spektrums einer Lichtquelle in Relation zu dem betreffenden Ansteuerungswert (DMX-Wert) gespeichert. In erster Näherung ist dies eine Gerade aber zur Erhöhung der Genauigkeit kann diese durch eine Polynomfunktion dritten Grades angenähert werden, zu der als maßgebliche Daten für die betreffende Lichtquelle die vier Koeffizienten a,b,c,d in k = a DMX 3 + b DMX 2 + c DMX + d
    Figure imgb0005

    gespeichert sind (DMX steht für die unabhängige Variable, also den zugehörigen DMX-Wert der Lichtquelle). Alternativ kann die Beziehung zwischen DMX-Wert und dem Maximum des Spektrums auch als Lookup-Tabelle ausgebildet sein, um die Beziehung noch genauer abzubilden. Die Koeffizienten a, b, c und d werden im Zuge der Auslegung der gesamten Leuchteneinheit für den jeweiligen verwendeten Leuchtentyp (Lichtquelle) individuell mit Hilfe von Spektralvermessung oder auf Basis der Datenblätter bestimmt.
  • Eine Polynomfunktionsberechnungseinheit 30 berechnet aus dem DMX-Ansteuerwert 25 der Lichtquelle und den im ersten Speicherbereich 28 befindlichen Koeffizienten nach obiger Formel einen Multiplikator k (k<1).
  • Die Speichereinheit 26 enthält für jede Lichtquelle einen zweiten Speicherbereich 32, in dem das Spektrum der Lichtquelle bei maximaler Beleuchtungsstärke als Lookup-Tabelle abgelegt ist. Eine Multiplikatoreinheit 34 multipliziert aus dem in der Polynomfunktionsberechnungseinheit 30 bestimmten Multiplikator k und der im zweiten Speicherbereich 32 abgelegten Lichtspektrum der betreffenden Lichtquelle das aktuelle Einzelspektrum der Lichtquelle 36a, das mit den auf gleiche Weise berechneten Einzelspektren der anderen Lichtquelle 36b - 36d in der Additionseinheit 38 einem Gesamtspektrum addiert wird. Das so berechnete Gesamtspektrum aller Lichtquellen 14 wird in der CRI-Einheit 40 nach bekanntem Algorithmus in den Farbwiedergabeindex-Wert CRI umgerechnet. Dieser Wert wird dann der in Figur 1 gezeigten Optimierungseinheit 18 zugeführt.
  • Bezugszeichenliste
  • 10
    Vorrichtung
    12
    Leuchteinheit
    14
    Lichtquellen
    16
    Sensor
    18
    Optimierungseinheit
    20
    Strahlungssollwert
    22
    CRI-Wert-Berechnungseinheit
    24
    Ansteuereinheit
    25
    DMX-Ansteuerdaten
    26
    Speichereinheit
    28
    erster Speicherbereich
    30
    Polynomfunktionsberechnungseinheit
    32
    zweiter Speicherbereich
    34
    Multiplikatoreinheit
    36a-d
    Einzelspektrum
    38
    Additionseinheit
    40
    CRI-Einheit

Claims (15)

  1. Beleuchtungsvorrichtung (10) mit einer Leuchteinheit (12), die mehrere Lichtquellen (14) unterschiedlicher Farbspektren umfasst, mit einem Sensor (16) zur Ermittlung der von der Leuchteinheit (14) emittierten spektralen Leistungsverteilung (SPD), einer Kontrolleinheit (18), die in Abhängigkeit einer vorgegebenen sowie der vom Sensor (16) gemessenen spektralen Leistungsverteilung eine Ansteuereinheit (24) beaufschlagt, welche die Lichtquellen (14) der Leuchteinheit individuell ansteuert, so dass das emittierte Licht die vorgegebene spektrale Leistungsverteilung aufweist, dadurch gekennzeichnet, dass die Leuchteinheit (12) mindestens vier Lichtquellen (14) umfasst und die Kontrolleinheit (18) zur Anwendung eines Optimierungsalgorithmus eingerichtet ist, der als Optimierungsziel einen Koeffizienten der gewichteten Sensorwerte maximiert, der aus den individuellen Ansteuerdaten der Lichtquellen berechenbar ist und unter Beachtung der Nebenbedingung, dass der Fehler zwischen der vorgegebenen und der gemessenen spektralen Leistungsverteilung kleiner ist als ein Grenzwert.
  2. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zumindest ein Teil der Lichtquellen (14) halbleiterbasierte Lichtquellen sind.
  3. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zumindest ein Teil der halbleiterbasierten Lichtquellen (14) Leuchtdioden sind.
  4. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Leuchteinheit (12) vier Lichtquellen (14) mit unterschiedlicher spektraler Emission aufweist.
  5. Beleuchtungsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Leuchteinheit (12) vier Lichtquellen (14) mit einer Auswahl aus den Farben rot, grün, gelb, blau, weiß aufweist.
  6. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Leuchteinheit (12) fünf Lichtquellen (14) aufweist.
  7. Beleuchtungsvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Regelalgorithmus im CIE-standardisieren X,Y,Z-Farbraum durchführbar ist.
  8. Beleuchtungsvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass diese eine Farbwiedergabeindex-Berechnungseinheit (22) umfasst, die auf der Grundlage von gespeicherten Daten zu den Spektren der Lichtquellen und den aktuellen jeweiligen Ansteuerwerten für die einzelnen Lichtquellen der Ansteuereinheit einen Farbwiedergabeindex berechnet.
  9. Beleuchtungsvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Sensor (16) ein dreikanaliger Sensor, vorzugsweise ein RGBoder ein XYZ-Sensor ist.
  10. Beleuchtungsvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Ansteuerdaten im DMX-System bereitgestellt sind.
  11. Verfahren zum Betrieb einer Beleuchtungsvorrichtung mit einer Leuchteinheit (12), die mindestens vier Lichtquellen (14) unterschiedlicher Farbspektren umfasst, mit einem Sensor (16) zur Ermittlung der von der Leuchteinheit emittierten spektralen Leistungsverteilung (SPD), einer Kontrolleinheit (18), die in Abhängigkeit einer vorgegebenen sowie der vom Sensor (16) gemessenen spektralen Leistungsverteilung eine Ansteuereinheit (24) beaufschlagt, welche die Lichtquellen (14) individuell ansteuert, damit das emittierte Licht die vorgegebene spektrale Leistungsverteilung aufweist, wobei das Verfahren als Optimierungsalgorithmus ausgebildet ist, der als Optimierungsziel einen berechneten Koeffizienten der gewichteten Sensorwerte, vorzugsweise einen Farbwiedergabeindex (CRI), maximiert, der aus den individuellen Ansteuerdaten der Lichtquellen berechnet wird, und als Nebenbedingung die Optimierung abgebrochen wird, wenn der Fehler zwischen der vorgegebenen und der gemessenen spektralen Leistungsverteilung einen Grenzwert unterschreitet.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass als Optimierungsverfahren das Simplex-Verfahren verwendet wird.
  13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Farbwiedergabeindex (CRI) aus gespeicherten Daten über die Spektren der einzelnen Lichtquellen (14) sowie den Ansteuerdaten der Lichtquellen (14) errechnet wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass eine Funktion zwischen dem jeweiligen Maximum eines Spektrums und der Strahlungsintensität verwendet wird, aus der ein Multiplikationsfaktor bestimmt wird, mit dem das Strahlungsspektrum einer LED bei dem aktuellen LED-Ansteuerwert bestimmt wird, aus den Strahlungsspektren aller Lichtquellen ein virtuelles Gesamtstrahlungsspektrum addiert wird, und aus diesem der errechnete Farbwiedergabeindex (CRI) des virtuellen Gesamtstrahlungsspektrums bestimmt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Funktion eine Polynomfunktion dritten Grades ist, deren Koeffizienten für jede LED gespeichert werden.
EP13181122.6A 2012-08-22 2013-08-21 Vorrichtung und Verfahren zur Erzeugung von Licht eines vorgegebenen Spektrums mit mindestens vier verschiedenfarbigen Lichtquellen Active EP2701464B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012107706.1A DE102012107706A1 (de) 2012-08-22 2012-08-22 Vorrichtung und Verfahren zur Erzeugung von Licht eines vorgegebenen Spektrums mit mindestens vier verschiedenfarbigen Lichtquellen

Publications (3)

Publication Number Publication Date
EP2701464A2 true EP2701464A2 (de) 2014-02-26
EP2701464A3 EP2701464A3 (de) 2015-07-08
EP2701464B1 EP2701464B1 (de) 2019-01-23

Family

ID=49035346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13181122.6A Active EP2701464B1 (de) 2012-08-22 2013-08-21 Vorrichtung und Verfahren zur Erzeugung von Licht eines vorgegebenen Spektrums mit mindestens vier verschiedenfarbigen Lichtquellen

Country Status (3)

Country Link
US (2) US9565723B2 (de)
EP (1) EP2701464B1 (de)
DE (1) DE102012107706A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235523A (zh) * 2017-01-26 2019-09-13 昕诺飞控股有限公司 用于区分黑色阴影的深黑照明设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
US10225909B2 (en) * 2013-09-13 2019-03-05 Konica Minolta Laboratory U.S.A., Inc. Determining an optimized spectral power distribution of a light source
US10477636B1 (en) 2014-10-28 2019-11-12 Ecosense Lighting Inc. Lighting systems having multiple light sources
US11306897B2 (en) 2015-02-09 2022-04-19 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
WO2016180235A1 (en) 2015-05-13 2016-11-17 Shenzhen University System and method for light optimization
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782094S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782093S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
CN110476481A (zh) * 2017-01-25 2019-11-19 Led动力技术公司 控制照明装置
CN113357569B (zh) * 2021-06-02 2022-02-08 旭宇光电(深圳)股份有限公司 多基色led发光系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044556A1 (de) 2007-09-07 2009-03-12 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Verfahren und Vorrichtung zur Einstellung der farb- oder fotometrischen Eigenschaften einer LED-Beleuchtungseinrichtung
EP1461982B1 (de) 2001-12-19 2009-09-16 Koninklijke Philips Electronics N.V. Farbregelung für led-leuchte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333011B2 (en) * 2004-07-06 2008-02-19 Honeywell International Inc. LED-based luminaire utilizing optical feedback color and intensity control scheme
CN101491160A (zh) * 2006-07-13 2009-07-22 Tir科技公司 光源和用于优化光源照明特性的方法
US7718942B2 (en) 2007-10-09 2010-05-18 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Illumination and color management system
GB2469794B (en) * 2009-04-24 2014-02-19 Photonstar Led Ltd High colour quality luminaire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1461982B1 (de) 2001-12-19 2009-09-16 Koninklijke Philips Electronics N.V. Farbregelung für led-leuchte
DE102007044556A1 (de) 2007-09-07 2009-03-12 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Verfahren und Vorrichtung zur Einstellung der farb- oder fotometrischen Eigenschaften einer LED-Beleuchtungseinrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235523A (zh) * 2017-01-26 2019-09-13 昕诺飞控股有限公司 用于区分黑色阴影的深黑照明设备
CN110235523B (zh) * 2017-01-26 2023-04-18 昕诺飞控股有限公司 用于区分黑色阴影的深黑照明设备

Also Published As

Publication number Publication date
US9980327B2 (en) 2018-05-22
US9565723B2 (en) 2017-02-07
EP2701464B1 (de) 2019-01-23
EP2701464A3 (de) 2015-07-08
US20170034890A1 (en) 2017-02-02
US20140055038A1 (en) 2014-02-27
DE102012107706A1 (de) 2014-02-27

Similar Documents

Publication Publication Date Title
EP2701464B1 (de) Vorrichtung und Verfahren zur Erzeugung von Licht eines vorgegebenen Spektrums mit mindestens vier verschiedenfarbigen Lichtquellen
EP1938667B1 (de) Lichtquelle, die mischfarbiges licht aussendet, und verfahren zur steuerung des farbortes einer solchen lichtquelle
EP2433472B1 (de) Verfahren zur einstellung eines farborts
EP2177078B1 (de) Vorrichtung und verfahren zur steuerung der lichtabgabe
EP2005799B1 (de) Farbtemperatur- und farbortsteuerung für eine leuchte
DE102005001685A1 (de) System und Verfahren zum Erzeugen weißen Lichts unter Verwendung von LEDs
DE102008029816A1 (de) Schaltung zur Dimmung einer Lampe und zugehöriges Verfahren
DE102017125405B4 (de) Verfahren und Vorrichtung zum Kalibrieren und Betreiben einer RGB-LED-Beleuchtung
DE102007059131A1 (de) Verfahren und Anordnung zur Einstellung eines Farborts sowie Leuchtsystem
DE112015004032T5 (de) Led-dentallichtquelle mit veränderlicher chromatizität und verfahren
DE202015103127U1 (de) LED-Modul mit veränderbarem Farbort und Beleuchtungsgerät mit einem solchen LED-Modul
EP2367401A2 (de) Vorrichtung mit einem Leuchtmittel und Verfahren zu dessen Steuerung
DE102007004834A1 (de) Lichtgerät und Verfahren zur Realisierung einer gewünschten Farbmischung
EP2361489B1 (de) Led-anordnung mit lichtsensor
DE202006012864U1 (de) LED-Leuchte
EP1985912A1 (de) Operationsleuchte
EP2375870B1 (de) Verfahren und System zur Lichtsteuerung
DE102015110003A1 (de) Verfahren zur Steuerung einer Leuchteinrichtung, Verfahren zur Ermittlung von Steuersignalinformationen für die Ansteuerung und Leuchteinrichtung
EP2364578B1 (de) Betriebsgerät und verfahren zum betreiben mindestens einer hg-niederdruckentladungslampe
DE102007055670B4 (de) Verfahren zum Umsteuern zwischen Mischlichtfarben
EP2260678B1 (de) Umsetzung von farbinformationen zur ansteuerung einer lichtquelle
DE112014002422T5 (de) Mehrfarblichtquellenvorichtung
DE102012211828A1 (de) LED-Beleuchtung für Fahrzeuge
EP3032918B1 (de) Verfahren zum Betreiben einer zum Emittieren von in seiner Helligkeit und/oder seinem Farbort einstellbarem Licht eingerichteten Anordnung
EP2473007B1 (de) LED-Modul zur passiven Lichtstromstabilisierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101AFI20150602BHEP

17P Request for examination filed

Effective date: 20151221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180313

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 37/02 20060101ALI20180815BHEP

Ipc: H05B 33/08 20060101AFI20180815BHEP

INTG Intention to grant announced

Effective date: 20180904

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1092472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012099

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012099

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013012099

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190821

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1092472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 11

Ref country code: DE

Payment date: 20230821

Year of fee payment: 11