EP2700962B1 - Measurement of a resistance of a switch contact of an electrical circuit breaker - Google Patents

Measurement of a resistance of a switch contact of an electrical circuit breaker Download PDF

Info

Publication number
EP2700962B1
EP2700962B1 EP12006040.5A EP12006040A EP2700962B1 EP 2700962 B1 EP2700962 B1 EP 2700962B1 EP 12006040 A EP12006040 A EP 12006040A EP 2700962 B1 EP2700962 B1 EP 2700962B1
Authority
EP
European Patent Office
Prior art keywords
circuit breaker
resistance
switching contact
switch
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12006040.5A
Other languages
German (de)
French (fr)
Other versions
EP2700962A1 (en
Inventor
Ulrich Klapper
Wernich De Villiers
Reinhard Kaufmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omicron Electronics GmbH
Original Assignee
Omicron Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omicron Electronics GmbH filed Critical Omicron Electronics GmbH
Priority to ES12006040T priority Critical patent/ES2703100T3/en
Priority to EP13196147.6A priority patent/EP2708907B1/en
Priority to EP12006040.5A priority patent/EP2700962B1/en
Priority to PL12006040T priority patent/PL2700962T3/en
Priority to ES13196147T priority patent/ES2748595T3/en
Priority to US13/970,674 priority patent/US20140055142A1/en
Priority to CA2824263A priority patent/CA2824263C/en
Priority to CA2907346A priority patent/CA2907346C/en
Priority to BR102013021508-2A priority patent/BR102013021508B1/en
Priority to AU2013219201A priority patent/AU2013219201B2/en
Priority to KR1020130100369A priority patent/KR101488201B1/en
Priority to CN201510713968.3A priority patent/CN105182082B/en
Priority to CN201310376037.XA priority patent/CN103630747B/en
Publication of EP2700962A1 publication Critical patent/EP2700962A1/en
Priority to US14/804,983 priority patent/US9547044B2/en
Application granted granted Critical
Publication of EP2700962B1 publication Critical patent/EP2700962B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/20Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
    • G01R27/205Measuring contact resistance of connections, e.g. of earth connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • G01R31/3274Details related to measuring, e.g. sensing, displaying or computing; Measuring of variables related to the contact pieces, e.g. wear, position or resistance

Definitions

  • the present invention relates to a method and a device for measuring a resistance of a switching contact of an electrical circuit breaker, and to a method and a device for measuring resistances of switching contacts of an electrical circuit breaker arranged in a series circuit.
  • the present invention relates to a measurement of contact resistances of the closed switch contact or the closed switch contacts of the electrical circuit breaker.
  • Circuit breakers also referred to as high voltage switches, circuit breakers or circuit breakers, are used in power engineering to make or break electrical connection under load.
  • the rated voltages of the circuit breakers can range from a few volts to a few hundred kilovolts.
  • the switched load currents can amount to tens of kiloamps in the event of a short circuit.
  • the contact resistance of a switching contact or a plurality of series-connected switching contacts of the electrical circuit breaker is therefore checked, for example in the context of revisions.
  • Circuit-breakers for medium-voltage systems usually have only one switching contact, which can be opened or closed.
  • Circuit-breakers in high-voltage and extra-high voltage installations can comprise a plurality of switching contacts, so-called breaker units, in a series connection.
  • capacitors with a size in the range of a few picofarads are generally arranged parallel to the individual interrupter units in order to distribute the voltage evenly across the individual interrupter units.
  • Multiple breaker units in one phase of a circuit breaker are generally opened or closed simultaneously.
  • the resistance measurement at the closed switching contact which is also referred to as a micro-ohm measurement, a Standard method for assessing the quality or wear of the circuit breaker.
  • the micro-ohm measurement is usually carried out, for example, by impressing a high direct current of 100 amps across the closed switch contact.
  • the current is fed in via current terminals, which are clamped on both sides of the circuit breaker to the conductors leading away from the circuit breaker. With other terminals, the voltage is also tapped on both sides of the circuit breaker.
  • the voltage terminals are usually mounted closer to the switching contact of the circuit breaker and thus carried out a so-called four-wire measurement. This can be prevented that the voltage drop is measured along with the current terminals, whereby the measurement result would be falsified. From impressed current and measured voltage, the resistance of the closed switch contact, including the resistance of the supply lines from the voltage terminals to the switching contact can be determined.
  • Kelvin clamps instead of separate current and voltage terminals, so-called Kelvin clamps can be used.
  • Kelvin clamps two jaws of each terminal are electrically isolated from each other and one of the two jaws feeds the current and the other of the two jaws picks up the voltage.
  • the advantage of these Kelvin clamps is that only one clamp is to be clamped on each side of the circuit breaker.
  • a current source and a voltmeter can be used, so that voltage measurements on the various switch contacts can be performed one after the other. It is also possible to use a plurality of voltmeters, with the current being impressed with a common current source via a plurality of contacts and with the plurality of voltmeters being able to determine several voltage values at the same time.
  • the circuit breaker Since in power engineering plants, for example in a substation, dangerously high voltages can occur in many places, it is necessary to earth the circuit breaker during this micro-ohm measurement. For example, the circuit breaker on both sides of the rest of the power grid can be separated and grounded on one side. The micro-ohm measurement can then be carried out precisely when the switch contact or closed switch contacts are closed. Frequently, further measurements are to be performed on the circuit breaker, in which the switching contact must be open at least temporarily, for example, a measurement of the time that the switch needs to open. In such measurements, a two-sided grounding of the switch is recommended in order to avoid a hazard to persons performing the measurement. For the micro-ohm measurement, therefore, one of the two groundings will be removed for the duration of the measurement, but this is very cumbersome, or the micro-ohm measurement will be faulty if grounded at both ends by the parallel earth loop.
  • the circuit breaker In order to perform a micro-ohm measurement on a circuit breaker efficiently, the circuit breaker can be grounded on both sides and with a DC current clamp or a shunt, the proportion of current flowing from the power source through the grounding sets, be determined and used to correct the measured resistance. Although this method is very accurate, it has the disadvantage that additional measurements using the current clamp or shunt are required.
  • the object of the present invention is therefore to enable an efficient resistance measurement or micro-ohm measurement for one or more switching contacts of an electrical circuit breaker, wherein a risk to personnel carrying out the resistance measurement should be largely avoided.
  • This object is according to the present invention by a method for measuring a resistance of a switch contact of an electric circuit breaker according to claim 1, a device for measuring a resistance of a switch contact of an electrical circuit breaker according to claim 6 and a test environment for measuring a resistance of a switch contact of an electrical circuit breaker after Claim 8 solved.
  • the dependent claims define preferred and advantageous embodiments of the invention.
  • a method of measuring a resistance of a switching contact of an electric circuit breaker In the method, a first resistance across the circuit breaker is determined while the circuit breaker is grounded on both sides and the switch contact is closed. Furthermore, a second resistance across the circuit breaker is determined while the circuit breaker is grounded on both sides and the switch contact is open. In response to the first resistance value and the second resistance value, the resistance of the closed switch contact is determined. Earthing on both sides can be achieved, for example, by two grounding sets from ground to the corresponding conductors. Alternatively, the grounding may be performed by means of a grounding set that is connected to ground only once and has several terminals that can be earthed.
  • the first resistance value when the switch contact is closed corresponds to a resistor of the parallel circuit consisting of a closed switch and ground.
  • the second resistance value corresponds to the grounding resistance.
  • R 1 is the first resistance value and R 2 is the second resistance value. Since the wiring does not have to be changed between the two measurements, the measurement can be carried out very accurately.
  • the first and second resistance values are each determined by impressing a DC current into the double-ended circuit breaker and measuring a voltage across the circuit breaker.
  • conventional micro-ohm measuring devices can be used for determining the first and second resistance values.
  • the circuit breaker may include a three-phase switch. Each phase is assigned at least one switching contact. Three-phase switches can include one common or three separate drives. In some three-phase switches and individual phases can be switched individually, for example, in cases where an error occurs only at one phase and thus only the shutdown of a phase is necessary.
  • the method described above can be applied individually for each phase and is therefore also suitable for multi-phase circuit breakers. The method can also be performed simultaneously on two or more phases, whereby a check of a multi-phase switch can be performed efficiently.
  • the power switch may comprise a maximum high or medium voltage switch.
  • the process is independent of the circuit-breaker voltage to be switched, it can be used for medium-voltage switches with a rated voltage of, for example, 1 kV - 45 kV, a high-voltage switch with a nominal voltage of 45 kV - 150 kV or a maximum voltage switch with a rated voltage of more than 150 kV become.
  • an apparatus for measuring a resistance of a switching contact of an electric circuit breaker comprises a drive unit for driving the electrical circuit breaker to selectively open or close the switching contact of the circuit breaker.
  • the device further comprises a Resistance measuring device, which can be coupled to the drive unit and the circuit breaker.
  • the resistance measuring device is capable of determining a first resistance across the circuit breaker while the circuit breaker is grounded on both sides and the circuit breaker switching contact is closed.
  • the resistance measuring device is further able to determine a second resistance across the circuit breaker while the circuit breaker is grounded on both sides and the switching contact is open. In dependence on the first resistance value and the second resistance value, the resistance measuring device determines the resistance of the closed switching contact.
  • the resistance measuring device when the resistance measuring device is coupled to the drive unit for opening and closing the switching contact of the circuit breaker, the resistance measurement can be carried out fully automatically. For example, after connecting the resistance measuring device to the electrical circuit breaker and grounding the circuit breaker on both sides, the switching contact of the circuit breaker is automatically closed, then the first resistance value is measured and then, after the switching contact has been opened automatically, the second resistance value is measured. Finally, the resistance measuring device can determine and output the resistance of the switching contact according to the equation described above.
  • the device may also be designed to carry out the method described above or one of its embodiments, and therefore also comprises the advantages described above.
  • a test environment for measuring a resistance of a switching contact of an electric circuit breaker.
  • the test environment includes the circuit breaker, first and second grounding sets, and a resistance measuring device.
  • the first grounding set is coupleable to a first side of the circuit breaker to ground the first side of the circuit breaker.
  • the second grounding set can be coupled to a second side of the circuit breaker to ground this second side.
  • the resistance measuring device can be coupled to the two sides of the circuit breaker in such a way that a resistance value can be determined by means of the resistance measuring device can be determined across the circuit breaker, while the circuit breaker is grounded on both sides and the switching contact is closed, and a second resistance across the circuit breaker is determined while the circuit breaker is grounded on both sides and the switching contact is opened.
  • the resistance of the closed switching contact can furthermore be determined as a function of the first resistance value and the second resistance value.
  • Fig. 1 shows a test environment 10 with a power switch 11, which selectively connects or disconnects a first high voltage line 12 to a second high voltage line 13.
  • the test environment 10 further includes a first grounding assembly 14 coupled to a first side of the power switch 11 and a second grounding assembly 15 coupled to a second side of the power switch 11.
  • the test environment 10 further comprises a Mikroohmmessvorraum 17, which is coupled via four connections 24-27 with the two sides of the circuit breaker 11.
  • the circuit breaker 11 comprises an electrical switching contact 16, which can be selectively opened or closed by means of a control drive 19 and a mechanical coupling 18, to establish or interrupt a connection between the lines 12 and 13.
  • the control drive 19 can be controlled, for example via a control line 28 to open the switch contact 16 or close.
  • the control drive 19 can be manually controlled or actuated by an operator to selectively open or close the switching contact 16.
  • the device 17 comprises a resistance measuring device which comprises, for example, a current source 23 and a voltmeter 22.
  • the current source 23 impresses a current I through the power switch 11 and the two-sided grounding 14, 15 via the connections 24, 25 and the voltmeter 22 detects a voltage drop V across the connections 26, 27 across the power switch 11.
  • the device 17 further comprises a Processing unit 20, which calculates a resistance across the power switch 11 in dependence on the current I impressed by the current source 23 and the voltage V measured by the voltage meter 22 voltage.
  • the processing unit 20 is further coupled to a drive unit 21 of the device 17, which activates the control drive 19 of the power switch 11 via the connection 28.
  • the processing unit 20 is able to selectively open or close the switch contact 16. The operation of the device 17 will be described below.
  • the circuit breaker 11 is earthed by means of the grounding sets 14 and 15 on both sides.
  • the resistance measuring device 22, 23 is, as in Fig. 1 represented connected to the power switch 11, that a resistor across the power switch 11 is measurable. Then two resistance values are determined one after the other.
  • a resistance value R 1 is determined when the switching contact 16 is closed and a resistance value R 2 is determined when the switching contact 16 is open.
  • the resistor R 1 corresponds to a parallel circuit of the resistor of the switching contact 16 and the ground loop on the ground sets 14, 15, and the resistor R 2 corresponds only to the resistance of the ground loop on the ground sets 14, 15 using the equation described above may be made of these resistances of the resistance of the closed switch contact 16 are calculated. This is done by the processing unit 20.
  • the processing unit 20 can also selectively open or close the switch contact 16 via the control unit 21 and therefore perform the two resistance measurements in turn once with the switch contact 16 open and once with the switch contact 16 closed, and then calculate the resistance of the closed switch contact 16 therefrom.
  • An order in which the two resistance measurements are performed is arbitrary.
  • the processing unit 20 can instruct a user via a corresponding display to open or close the switching contact 16 manually or via a corresponding actuating device if an automatic control via the drive unit 21 and the connection 28 is not provided. Since the circuit breaker 11 is grounded on both sides during the entire measurement, it can be ensured that no dangerously high voltages are applied to the circuit breaker 11.
  • Fig. 2 shows a further test environment 50 with a power switch 51, which comprises two switch contacts 56 and 57.
  • the switching contacts 56 and 57 are arranged in a series circuit.
  • the power switch 51 may comprise further switching contacts, which are arranged together with the switching contacts 56 and 57 in a series circuit.
  • the switching contacts 56 and 57 and the optional further switching contacts are generally open or closed at the same time by means of an actuator, not shown.
  • the power switch 51 is connected to power lines 52 and 53 coupled, which can be selectively connected or disconnected via the switch contacts 56, 57.
  • the test environment 50 further includes two grounding sets 54 and 55 connecting the high voltage lines 52 and 53, respectively, to ground. Furthermore, in the test environment 50, a device 58 for measuring the resistance of the switching contacts 56 and 57 is shown.
  • the device 58 comprises a first resistance measuring unit, which comprises a voltmeter 60 and a current source 61, and a second resistance measuring unit, which comprises a voltmeter 66 and a current source 67.
  • the first resistance measuring device 60, 61 is connected via connections 62-65 to the first switching contact 56 in such a way that a current I 1 of the current source 61 can be impressed via the switching contact 65 when the switching contact 56 is closed.
  • the voltmeter is connected via the connections 64 and 65 to the switching contact 56 such that a voltage drop U 1 across the switching contact 56 can be measured.
  • the second resistance measuring device 66, 67 is comparable to the first resistance measuring device 60, 61 coupled to the switching contact 57 via connections 68-71 for impressing a current I 2 through the closed switching contact 57 and measuring a voltage drop U 2 on the switching contact 57.
  • a processing unit 59 is connected to the resistance measuring devices 60, 61 and 66, 67, respectively. The operation of the device 58 will be described below.
  • the high voltage lines 52, 53 which are connected to both ends of the circuit breaker 51, are connected to ground via the grounding fittings 54, 55.
  • the device 58 is connected to the switching contacts 56 and 57 as described above.
  • the switch contacts 56 and 57 are closed.
  • From the current source 61 a current I 1 is impressed on the high-voltage line 52nd
  • the current I 1 therefore flows in part as current I S1 from left to right through the closed switching contact 56 and to another part as current I E1 via the grounding set 54 to earth.
  • the current source 67 impresses a current I 2 on the high voltage line 53.
  • the current I 2 flows partly as current I S2 from right to left through the closed switching contact 57 and to a further part as current I E2 through the grounding set 55 to earth.
  • the current I S1 through the switching contact 56 corresponds to the current I 1 so that the contact resistance of the switch contact 56 U 1 can be determined solely as a function of the current I 1 and the temperature measured by the voltage meter 60 voltage.
  • the contact resistance of the closed switch contact 57 can be determined solely on the basis of the current I 2 , which in this case corresponds to the current I S2 , and the voltage U 2 measured by the voltmeter 66.
  • the processing unit 59 may determine and output the corresponding resistance values based on information from the resistance measuring devices 60, 61 and 66, 67.
  • the control device 59 can adjust the currents I 1 and I 2 such that the voltage drops U 1 and U 2 are substantially equal in magnitude. This ensures that even in this non-symmetrical case, the voltage U E across the ground loop is substantially zero and thus the contact resistance of the individual switching contacts 56 and 57 based on the current I 1 or I 2 and the voltage drops U 1 and U 2 can be determined.
  • FIG. 5 shows another test environment 50, which essentially corresponds to the test environment 50 of FIG Fig. 2 corresponds and moreover comprises two additional switches 72 and 73, which are arranged parallel to the switching contacts 56 and 57, respectively.
  • the resistance of the earth loop can then be used to correct resistance values, which are determined when the switch contacts 56, 57 are closed.
  • the switches 72, 73 also in the Fig. 3 shown arrangement in connection with Fig. 1 described method are performed.
  • the switch 73 can be closed and the switch 72 can be opened.
  • a micro-ohm measurement of the switch contact 56 may then be made using the resistance measuring device 60, 61 as previously described with reference to FIG Fig. 1 be described described described.
  • a resistance measurement device 66, 67 can be used to make a micro-ohm measurement on the switch contact 57 as previously described with reference to FIG Fig. 1 be described described.
  • FIG. 2 shows a test environment 50, which essentially corresponds to the test environment 50 of FIG Fig. 2 equivalent.
  • the test environment 50 includes the Fig. 4 a third grounding assembly 74 that couples a point between the switch contact 56 and the switch contact 57 to ground.
  • a micro-ohm measurement of the switching contact 56 as with reference to Fig. 1 previously described.
  • a micro-ohm measurement of the switching contact 57 as previously with reference to Fig. 1 be described described.
  • the two Mikroohm horren to the switch contacts 56 and 57 can be performed simultaneously.
  • this additional grounding 74 it can further be ensured that no high voltage is applied between the switching contacts 56 and 57.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Messung eines Widerstands eines Schaltkontakts eines elektrischen Leistungsschalters sowie ein Verfahren und eine Vorrichtung zur Messung von Widerständen von in einer Reihenschaltung angeordneten Schaltkontakten eines elektrischen Leistungsschalters. Die vorliegende Erfindung betrifft insbesondere eine Messung von Übergangswiderständen des geschlossenen Schaltkontakts oder der geschlossenen Schaltkontakte des elektrischen Leistungsschalters.The present invention relates to a method and a device for measuring a resistance of a switching contact of an electrical circuit breaker, and to a method and a device for measuring resistances of switching contacts of an electrical circuit breaker arranged in a series circuit. In particular, the present invention relates to a measurement of contact resistances of the closed switch contact or the closed switch contacts of the electrical circuit breaker.

Leistungsschalter, welche auch als Hochspannungsschalter, Lastschalter oder Circuit Breaker bezeichnet werden, werden in der Energietechnik verwendet, um elektrische Verbindung unter Last herzustellen oder zu trennen. Die Nennspannungen der Leistungsschalter können im Bereich von wenigen Volt bis zu einigen hundert Kilovolt liegen. Die geschalteten Lastströme können bei einem Kurzschluss mehrere zehn Kiloampere betragen. Für einen zuverlässigen Betrieb des Leistungsschalters wird daher beispielsweise im Rahmen von Revisionen der Übergangswiderstand eines Schaltkontakts oder mehrerer in Reihe angeordneter Schaltkontakte des elektrischen Leistungsschalters überprüft.Circuit breakers, also referred to as high voltage switches, circuit breakers or circuit breakers, are used in power engineering to make or break electrical connection under load. The rated voltages of the circuit breakers can range from a few volts to a few hundred kilovolts. The switched load currents can amount to tens of kiloamps in the event of a short circuit. For reliable operation of the circuit breaker, the contact resistance of a switching contact or a plurality of series-connected switching contacts of the electrical circuit breaker is therefore checked, for example in the context of revisions.

Leistungsschalter für Mittelspannungsanlagen haben meist nur einen Schaltkontakt, welcher geöffnet oder geschlossen werden kann. Leistungsschalter in Hoch- und Höchstspannungsanlagen können mehrere Schaltkontakte, sogenannte Unterbrechereinheiten, in einer Reihenschaltung umfassen. Bei der Reihen- oder Serienschaltung mehrerer Unterbrechereinheiten werden im Allgemeinen noch Kondensatoren mit einer Größe im Bereich von einigen Pikofarad parallel zu den einzelnen Unterbrechereinheiten angeordnet, um die Spannung gleichmäßig über die einzelnen Unterbrechereinheiten zu verteilen. Mehrere Unterbrechereinheiten in einer Phase eines Leistungsschalters werden im Allgemeinen gleichzeitig geöffnet oder geschlossen.Circuit-breakers for medium-voltage systems usually have only one switching contact, which can be opened or closed. Circuit-breakers in high-voltage and extra-high voltage installations can comprise a plurality of switching contacts, so-called breaker units, in a series connection. In the series or series connection of multiple interrupter units, capacitors with a size in the range of a few picofarads are generally arranged parallel to the individual interrupter units in order to distribute the voltage evenly across the individual interrupter units. Multiple breaker units in one phase of a circuit breaker are generally opened or closed simultaneously.

Bei Leistungsschaltern ist die Widerstandsmessung am geschlossenen Schaltkontakt, welche auch als Mikroohmmessung bezeichnet wird, ein Standardverfahren zur Beurteilung einer Qualität oder eines Verschleißzustandes des Leistungsschalters.For circuit breakers, the resistance measurement at the closed switching contact, which is also referred to as a micro-ohm measurement, a Standard method for assessing the quality or wear of the circuit breaker.

In diesem Zusammenhang offenbart die Veröffentlichung von " NILS WÄCKLEN et al: "High voltage circuit breaker testing with dual grounding", ENERGIZE, Nr. May 2008, 1. Mai 2008 (2008-05-01), Seiten 52-55, XP055054228 " ein Verfahren zum Testen eines Hochspannungsschalters mit einer doppelten Erdung. Bei dem Verfahren wird ein Leistungsschalter-Timing-Test durchgeführt, wobei beide Seiten während des Tests durchgehend geerdet sind. Bei dem Testverfahren wird ein Kontaktwiderstand gemessen, indem der Strom durch die Erde gemessen wird und die Berechnung entsprechend kompensiert wird. Der Erdschleifenstrom wird mit einer Stromzange gemessen, welche eine ausreichende Genauigkeit bereitstellt.In this context, the publication of " NILS WÄCKLEN et al: "High voltage circuit breaker testing with dual grounding", ENERGIZE, No. May 2008, May 1, 2008 (2008-05-01), pages 52-55, XP055054228 The method performs a circuit breaker timing test with both sides being grounded throughout the test In the test method, a contact resistance is measured by measuring the current through the earth The earth loop current is measured with current clamps which provide sufficient accuracy.

Die Mikroohmmessung wird üblicherweise durchgeführt, indem beispielsweise ein hoher Gleichstrom von 100 Ampere über den geschlossenen Schaltkontakt eingeprägt wird. Der Strom wird dazu über Stromklemmen eingespeist, welche an beiden Seiten des Leistungsschalters an die Leiter, welche vom Leistungsschalter wegführen, angeklemmt werden. Mit weiteren Klemmen wird die Spannung ebenfalls an beiden Seiten des Leistungsschalters abgegriffen. Die Spannungsklemmen werden üblicherweise näher am Schaltkontakt des Leistungsschalters angebracht und somit eine sogenannte Vierdrahtmessung durchgeführt. Dadurch kann verhindert werden, dass der Spannungsabfall an den Stromklemmen mitgemessen wird, wodurch das Messergebnis verfälscht werden würde. Aus eingeprägtem Strom und gemessener Spannung kann der Widerstand des geschlossenen Schaltkontakts inklusive des Widerstandes der Zuleitungen von den Spannungsklemmen bis zum Schaltkontakt bestimmt werden. Alternativ können statt getrennter Strom- und Spannungsklemmen sogenannte Kelvinklemmen zum Einsatz kommen. Bei Kelvinklemmen sind zwei Backen einer jeweiligen Klemme voneinander elektrisch isoliert und über eine der zwei Backen wird der Strom eingespeist und über die andere der zwei Backen wird die Spannung abgegriffen. Der Vorteil dieser Kelvinklemmen ist, dass nur eine Klemme an jeder Seite des Leistungsschalters anzuklemmen ist.The micro-ohm measurement is usually carried out, for example, by impressing a high direct current of 100 amps across the closed switch contact. The current is fed in via current terminals, which are clamped on both sides of the circuit breaker to the conductors leading away from the circuit breaker. With other terminals, the voltage is also tapped on both sides of the circuit breaker. The voltage terminals are usually mounted closer to the switching contact of the circuit breaker and thus carried out a so-called four-wire measurement. This can be prevented that the voltage drop is measured along with the current terminals, whereby the measurement result would be falsified. From impressed current and measured voltage, the resistance of the closed switch contact, including the resistance of the supply lines from the voltage terminals to the switching contact can be determined. Alternatively, instead of separate current and voltage terminals, so-called Kelvin clamps can be used. In Kelvin clamps, two jaws of each terminal are electrically isolated from each other and one of the two jaws feeds the current and the other of the two jaws picks up the voltage. The advantage of these Kelvin clamps is that only one clamp is to be clamped on each side of the circuit breaker.

Zur Mikroohmmessung können, wie zuvor beschrieben wurde, eine Stromquelle und ein Spannungsmesser verwendet werden, sodass Spannungsmessungen an den verschiedenen Schaltkontakten nacheinander durchgeführt werden können. Es können auch mehrere Spannungsmesser verwendet werden, wobei mit einer gemeinsamen Stromquelle über mehrere Kontakte der Strom eingeprägt wird und mit den mehreren Spannungsmessern mehrere Spannungswerte gleichzeitig ermittelt werden können.For micro-ohm measurement, as described above, a current source and a voltmeter can be used, so that voltage measurements on the various switch contacts can be performed one after the other. It is also possible to use a plurality of voltmeters, with the current being impressed with a common current source via a plurality of contacts and with the plurality of voltmeters being able to determine several voltage values at the same time.

Da in energietechnischen Anlagen, beispielsweise in einem Umspannwerk, an vielen Stellen gefährlich hohe Spannungen auftreten können, ist es notwendig den Leistungsschalter während dieser Mikroohmmessung zu erden. Beispielsweise kann der Leistungsschalter an beiden Seiten vom übrigen Energienetz getrennt werden und an einer Seite geerdet werden. Die Mikroohmmessung kann dann bei geschlossenem Schaltkontakt oder geschlossenen Schaltkontakten präzise durchgeführt werden. Häufig sind weitere Messungen an dem Leistungsschalter durchzuführen, bei denen der Schaltkontakt zumindest zeitweise geöffnet sein muss, beispielsweise eine Messung der Zeit, die der Schalter zum Öffnen benötigt. Bei derartigen Messungen ist eine beidseitige Erdung des Schalters empfehlenswert, um eine Gefährdung von Personen, welche die Messung durchführen, zu vermeiden. Für die Mikroohmmessung wird daher eine der beiden Erdungen für die Dauer der Messung entfernt werden, was jedoch sehr umständlich ist, oder die Mikroohmmessung wird bei beidseitiger Erdung durch die parallele Erdschleife fehlerhaft.Since in power engineering plants, for example in a substation, dangerously high voltages can occur in many places, it is necessary to earth the circuit breaker during this micro-ohm measurement. For example, the circuit breaker on both sides of the rest of the power grid can be separated and grounded on one side. The micro-ohm measurement can then be carried out precisely when the switch contact or closed switch contacts are closed. Frequently, further measurements are to be performed on the circuit breaker, in which the switching contact must be open at least temporarily, for example, a measurement of the time that the switch needs to open. In such measurements, a two-sided grounding of the switch is recommended in order to avoid a hazard to persons performing the measurement. For the micro-ohm measurement, therefore, one of the two groundings will be removed for the duration of the measurement, but this is very cumbersome, or the micro-ohm measurement will be faulty if grounded at both ends by the parallel earth loop.

Um eine Mikroohmmessung an einem Leistungsschalter effizient durchführen zu können, kann der Leistungsschalter beidseitig geerdet werden und mit einer gleichstromfähigen Stromzange oder einem Shunt der Anteil des Stroms, welcher von der Stromquelle durch die Erdungsgarnituren fließt, ermittelt werden und zur Korrektur des gemessenen Widerstands herangezogen werden. Dieses Verfahren ist zwar sehr genau, hat jedoch den Nachteil, dass zusätzliche Messungen mittels der Stromzange oder dem Shunt erforderlich sind.In order to perform a micro-ohm measurement on a circuit breaker efficiently, the circuit breaker can be grounded on both sides and with a DC current clamp or a shunt, the proportion of current flowing from the power source through the grounding sets, be determined and used to correct the measured resistance. Although this method is very accurate, it has the disadvantage that additional measurements using the current clamp or shunt are required.

Aufgabe der vorliegenden Erfindung ist es daher, eine effiziente Widerstandsmessung oder Mikroohmmessung für einen oder mehrere Schaltkontakte eines elektrischen Leistungsschalters zu ermöglichen, wobei eine Gefährdung von Personal, welches die Widerstandsmessung durchführt, weitestgehend vermieden werden sollte.The object of the present invention is therefore to enable an efficient resistance measurement or micro-ohm measurement for one or more switching contacts of an electrical circuit breaker, wherein a risk to personnel carrying out the resistance measurement should be largely avoided.

Diese Aufgabe wird gemäß der vorliegenden Erfindung durch ein Verfahren zur Messung eines Widerstands eines Schaltkontakts eines elektrischen Leistungsschalters nach Anspruch 1, eine Vorrichtung zur Messung eines Widerstands eines Schaltkontakts eines elektrischen Leistungsschalters nach Anspruch 6 und eine Testumgebung zur Messung eines Widerstands eines Schaltkontakts eines elektrischen Leistungsschalters nach Anspruch 8 gelöst. Die abhängigen Ansprüche definieren bevorzugte und vorteilhafte Ausführungsformen der Erfindung.This object is according to the present invention by a method for measuring a resistance of a switch contact of an electric circuit breaker according to claim 1, a device for measuring a resistance of a switch contact of an electrical circuit breaker according to claim 6 and a test environment for measuring a resistance of a switch contact of an electrical circuit breaker after Claim 8 solved. The dependent claims define preferred and advantageous embodiments of the invention.

Gemäß der vorliegenden Erfindung wird ein Verfahren zur Messung eines Widerstands eines Schaltkontakts eines elektrischen Leistungsschalters bereitgestellt. Bei dem Verfahren wird ein erster Widerstandswert über dem Leistungsschalter bestimmt, während der Leistungsschalter beidseitig geerdet ist und der Schaltkontakt geschlossen ist. Weiterhin wird ein zweiter Widerstandswert über dem Leistungsschalter bestimmt, während der Leistungsschalter beidseitig geerdet ist und der Schaltkontakt geöffnet ist. In Abhängigkeit von dem ersten Widerstandswert und dem zweiten Widerstandswert wird der Widerstand des geschlossenen Schaltkontakts bestimmt. Die Erdung an beiden Seiten kann beispielsweise durch zwei Erdungsgarnituren von Erde zu den entsprechenden Leitern erreicht werden. Alternativ kann die Erdung mittels einer Erdungsgarnitur, die nur einmal an Erde angeschlossen ist und mehrere Anschlüsse hat, mit denen geerdet werden kann, durchgeführt werden. Der erste Widerstandswert bei geschlossenem Schaltkontakt entspricht einem Widerstand der Parallelschaltung aus geschlossenem Schalter und Erdung. Der zweite Widerstandswert entspricht dem Erdungswiderstand. Der Widerstand des geschlossenen Schaltkontakts RSchalter kann beispielsweise durch die folgende Gleichung bestimmt werden: R schalter = R 2 R 1 R 2 R 1

Figure imgb0001
According to the present invention, there is provided a method of measuring a resistance of a switching contact of an electric circuit breaker. In the method, a first resistance across the circuit breaker is determined while the circuit breaker is grounded on both sides and the switch contact is closed. Furthermore, a second resistance across the circuit breaker is determined while the circuit breaker is grounded on both sides and the switch contact is open. In response to the first resistance value and the second resistance value, the resistance of the closed switch contact is determined. Earthing on both sides can be achieved, for example, by two grounding sets from ground to the corresponding conductors. Alternatively, the grounding may be performed by means of a grounding set that is connected to ground only once and has several terminals that can be earthed. The first resistance value when the switch contact is closed corresponds to a resistor of the parallel circuit consisting of a closed switch and ground. The second resistance value corresponds to the grounding resistance. The resistance of the closed switch contact R switch can be determined, for example, by the following equation: R switch = R 2 R 1 R 2 - R 1
Figure imgb0001

Wobei R1 der erste Widerstandswert und R2 der zweite Widerstandswert ist. Da zwischen den beiden Messungen die Verdrahtung nicht Verändert werden muss, kann die Messung sehr genau durchgeführt werden.Where R 1 is the first resistance value and R 2 is the second resistance value. Since the wiring does not have to be changed between the two measurements, the measurement can be carried out very accurately.

Gemäß einer Ausführungsform werden der erste und zweite Widerstandswert jeweils bestimmt, indem ein Gleichstrom in den beidseitig geerdeten Leistungsschalter eingeprägt wird und eine Spannung über dem Leistungsschalter gemessen wird. Somit können übliche Mikroohmmessvorrichtungen zum Bestimmen des ersten und zweiten Widerstandswerts verwendet werden.In one embodiment, the first and second resistance values are each determined by impressing a DC current into the double-ended circuit breaker and measuring a voltage across the circuit breaker. Thus, conventional micro-ohm measuring devices can be used for determining the first and second resistance values.

Der Leistungsschalter kann einen Dreiphasenschalter umfassen. Jeder Phase ist mindestens ein Schaltkontakt zugeordnet. Dreiphasige Schalter können einen gemeinsamen oder drei getrennte Antriebe umfassen. Bei einigen dreiphasigen Schaltern können auch einzelne Phasen individuell geschaltet werden, beispielsweise in Fällen, bei denen ein Fehler nur an einer Phase auftritt und somit auch nur die Abschaltung einer Phase notwendig ist. Das zuvor beschriebene Verfahren kann für jede Phase einzeln angewendet werden und ist daher auch für mehrphasige Leistungsschalter geeignet. Das Verfahren kann auch gleichzeitig an zwei oder mehr Phasen durchgeführt werden, wodurch eine Überprüfung eines mehrphasigen Schalters effizient durchgeführt werden kann. Gemäß einer weiteren Ausführungsform kann der Leistungsschalter einen Höchst- Hoch- oder Mittelspannungsschalter umfassen. Da das Verfahren unabhängig von der zu schaltenden Spannung des Leistungsschalters ist, kann es für Mittelspannungsschalter mit einer Nennspannung von beispielsweise 1 kV - 45 kV, einem Hochspannungsschalter mit einer Nennspannung von 45 kV - 150 kV oder einem Höchstspannungsschalter mit einer Nennspannung von über 150 kV angewendet werden.The circuit breaker may include a three-phase switch. Each phase is assigned at least one switching contact. Three-phase switches can include one common or three separate drives. In some three-phase switches and individual phases can be switched individually, for example, in cases where an error occurs only at one phase and thus only the shutdown of a phase is necessary. The method described above can be applied individually for each phase and is therefore also suitable for multi-phase circuit breakers. The method can also be performed simultaneously on two or more phases, whereby a check of a multi-phase switch can be performed efficiently. According to a further embodiment, the power switch may comprise a maximum high or medium voltage switch. Since the process is independent of the circuit-breaker voltage to be switched, it can be used for medium-voltage switches with a rated voltage of, for example, 1 kV - 45 kV, a high-voltage switch with a nominal voltage of 45 kV - 150 kV or a maximum voltage switch with a rated voltage of more than 150 kV become.

Gemäß der vorliegenden Erfindung wird weiterhin eine Vorrichtung zur Messung eines Widerstands eines Schaltkontakts eines elektrischen Leistungsschalters bereitgestellt. Die Vorrichtung umfasst eine Ansteuereinheit zum Ansteuern des elektrischen Leistungsschalters, um den Schaltkontakt des Leistungsschalters wahlweise zu öffnen oder zu schließen. Die Vorrichtung umfasst weiterhin eine Widerstandsmesseinrichtung, welche mit der Ansteuereinheit und dem Leistungsschalter koppelbar ist. Die Widerstandsmesseinrichtung ist in der Lage, einen ersten Widerstandswert über dem Leistungsschalter zu bestimmen, während der Leistungsschalter beidseitig geerdet ist und der Schaltkontakt des Leistungsschalters geschlossen ist. Die Widerstandsmesseinrichtung ist ferner in der Lage, einen zweiten Widerstandswert über dem Leistungsschalter zu bestimmen, während der Leistungsschalter beidseitig geerdet ist und der Schaltkontakt geöffnet ist. In Abhängigkeit von dem ersten Widerstandswert und dem zweiten Widerstandswert bestimmt die Widerstandsmesseinrichtung den Widerstand des geschlossenen Schaltkontakts. Insbesondere wenn die Widerstandsmesseinrichtung mit der Ansteuereinheit zum Öffnen und Schließen des Schaltkontakts des Leistungsschalters gekoppelt ist, kann die Widerstandsmessung vollautomatisch durchgeführt werden. Beispielsweise kann nach Anschließen der Widerstandsmesseinrichtung an den elektrischen Leistungsschalter und beidseitiges Erden des Leistungsschalters zunächst automatisch der Schaltkontakt des Leistungsschalters geschlossen werden, dann der erste Widerstandswert gemessen werden und anschließend, nachdem der Schaltkontakt automatisch geöffnet wurde, der zweite Widerstandswert gemessen werden. Abschließend kann die Widerstandsmesseinrichtung gemäß der zuvor beschriebenen Gleichung den Widerstand des Schaltkontakts bestimmen und ausgeben.According to the present invention, there is further provided an apparatus for measuring a resistance of a switching contact of an electric circuit breaker. The device comprises a drive unit for driving the electrical circuit breaker to selectively open or close the switching contact of the circuit breaker. The device further comprises a Resistance measuring device, which can be coupled to the drive unit and the circuit breaker. The resistance measuring device is capable of determining a first resistance across the circuit breaker while the circuit breaker is grounded on both sides and the circuit breaker switching contact is closed. The resistance measuring device is further able to determine a second resistance across the circuit breaker while the circuit breaker is grounded on both sides and the switching contact is open. In dependence on the first resistance value and the second resistance value, the resistance measuring device determines the resistance of the closed switching contact. In particular, when the resistance measuring device is coupled to the drive unit for opening and closing the switching contact of the circuit breaker, the resistance measurement can be carried out fully automatically. For example, after connecting the resistance measuring device to the electrical circuit breaker and grounding the circuit breaker on both sides, the switching contact of the circuit breaker is automatically closed, then the first resistance value is measured and then, after the switching contact has been opened automatically, the second resistance value is measured. Finally, the resistance measuring device can determine and output the resistance of the switching contact according to the equation described above.

Die Vorrichtung kann ferner zur Durchführung des zuvor beschriebenen Verfahrens oder einer seiner Ausführungsformen ausgestaltet sein und umfasst daher auch die zuvor beschriebenen Vorteile.The device may also be designed to carry out the method described above or one of its embodiments, and therefore also comprises the advantages described above.

Gemäß der vorliegenden Erfindung wird weiterhin eine Testumgebung zur Messung eines Widerstands eines Schaltkontakts eines elektrischen Leistungsschalters bereitgestellt. Die Testumgebung umfasst den Leistungsschalter, eine erste und eine zweite Erdungsgarnitur und eine Widerstandsmesseinrichtung. Die erste Erdungsgarnitur ist mit einer ersten Seite des Leistungsschalters koppelbar, um die erste Seite des Leistungsschalters zu erden. Die zweite Erdungsgarnitur ist mit einer zweiten Seite des Leistungsschalters koppelbar, um diese zweite Seite zu erden. Die Widerstandsmesseinrichtung ist mit den beiden Seiten des Leistungsschalters derart koppelbar, dass mithilfe der Widerstandsmesseinrichtung ein erster Widerstandswert über dem Leistungsschalter bestimmbar ist, während der Leistungsschalter beidseitig geerdet und der Schaltkontakt geschlossen ist, und ein zweiter Widerstandswert über dem Leistungsschalter bestimmbar ist, während der Leistungsschalter beidseitig geerdet ist und der Schaltkontakt geöffnet ist. Mithilfe der Widerstandsmesseinrichtung ist ferner der Widerstand des geschlossenen Schaltkontakts in Abhängigkeit von dem ersten Widerstandswert und dem zweiten Widerstandswert bestimmbar.According to the present invention, there is further provided a test environment for measuring a resistance of a switching contact of an electric circuit breaker. The test environment includes the circuit breaker, first and second grounding sets, and a resistance measuring device. The first grounding set is coupleable to a first side of the circuit breaker to ground the first side of the circuit breaker. The second grounding set can be coupled to a second side of the circuit breaker to ground this second side. The resistance measuring device can be coupled to the two sides of the circuit breaker in such a way that a resistance value can be determined by means of the resistance measuring device can be determined across the circuit breaker, while the circuit breaker is grounded on both sides and the switching contact is closed, and a second resistance across the circuit breaker is determined while the circuit breaker is grounded on both sides and the switching contact is opened. With the aid of the resistance measuring device, the resistance of the closed switching contact can furthermore be determined as a function of the first resistance value and the second resistance value.

Die vorliegende Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung anhand bevorzugter Ausführungsformen erläutert werden.

  • Fig. 1 zeigt eine Testumgebung mit einem beidseitig geerdeten elektrischen Leistungsschalter und einer Vorrichtung zur Messung eines Widerstands eines Schaltkontakts des Leistungsschalters gemäß einer Ausführungsform der vorliegenden Erfindung.
  • Fig. 2-4 zeigen Testanordnungen mit Vorrichtungen zur Messung von Widerständen von Schaltkontakten von elektrischen Leistungsschaltern, welche jedoch keine Ausführungsformen der vorliegenden Erfindung darstellen.
The present invention will be explained below with reference to the accompanying drawings with reference to preferred embodiments.
  • Fig. 1 shows a test environment with a double-ended electrical circuit breaker and a device for measuring a resistance of a switching contact of the circuit breaker according to an embodiment of the present invention.
  • Fig. 2-4 show test arrangements with devices for measuring resistances of switching contacts of electrical circuit breakers, which, however, do not represent embodiments of the present invention.

Fig. 1 zeigt eine Testumgebung 10 mit einem Leistungsschalter 11, welcher eine erste Hochspannungsleitung 12 wahlweise mit einer zweiten Hochspannungsleitung 13 verbindet oder davon trennt. Die Testumgebung 10 umfasst weiterhin eine erste Erdungsgarnitur 14, welche mit einer ersten Seite des Leistungsschalters 11 gekoppelt ist, und eine zweite Erdungsgarnitur 15, welche mit einer zweiten Seite des Leistungsschalters 11 gekoppelt ist. Durch das beidseitige Erden des Leistungsschalters kann sichergestellt werden, dass keine gefährlich hohen Spannungen an dem Leistungsschalter 11 anliegen. Die Testumgebung 10 umfasst weiterhin eine Mikroohmmessvorrichtung 17, welche über vier Verbindungen 24-27 mit den beiden Seiten des Leistungsschalters 11 gekoppelt ist. Der Leistungsschalter 11 umfasst einen elektrischen Schaltkontakt 16, welcher mittels eines Steuerantriebs 19 und einer mechanischen Kopplung 18 wahlweise geöffnet oder geschlossen werden kann, um eine Verbindung zwischen den Leitungen 12 und 13 herzustellen oder zu unterbrechen. Der Steuerantrieb 19 kann beispielsweise über eine Steuerleitung 28 angesteuert werden, um den Schaltkontakt 16 zu öffnen oder zu schließen. Darüber hinaus kann der Steuerantrieb 19 von einer Bedienperson manuell angesteuert oder betätigt werden, um den Schaltkontakt 16 wahlweise zu öffnen oder zu schließen. Fig. 1 shows a test environment 10 with a power switch 11, which selectively connects or disconnects a first high voltage line 12 to a second high voltage line 13. The test environment 10 further includes a first grounding assembly 14 coupled to a first side of the power switch 11 and a second grounding assembly 15 coupled to a second side of the power switch 11. By the two-sided grounding of the circuit breaker can ensure that no dangerously high voltages applied to the circuit breaker 11. The test environment 10 further comprises a Mikroohmmessvorrichtung 17, which is coupled via four connections 24-27 with the two sides of the circuit breaker 11. The circuit breaker 11 comprises an electrical switching contact 16, which can be selectively opened or closed by means of a control drive 19 and a mechanical coupling 18, to establish or interrupt a connection between the lines 12 and 13. The control drive 19 can be controlled, for example via a control line 28 to open the switch contact 16 or close. In addition, the control drive 19 can be manually controlled or actuated by an operator to selectively open or close the switching contact 16.

Die Vorrichtung 17 umfasst eine Widerstandsmesseinrichtung, welche beispielsweise eine Stromquelle 23 und einen Spannungsmesser 22 umfasst. Die Stromquelle 23 prägt über die Verbindungen 24, 25 einen Strom I durch den Leistungsschalter 11 und die beidseitige Erdung 14, 15 ein und der Spannungsmesser 22 erfasst über die Verbindungen 26, 27 einen Spannungsabfall V über dem Leistungsschalter 11. Die Vorrichtung 17 umfasst weiterhin eine Verarbeitungseinheit 20, welche in Abhängigkeit von dem von der Stromquelle 23 eingeprägten Strom I und der von dem Spannungsmesser 22 gemessenen Spannung V einen Widerstand über dem Leistungsschalter 11 berechnet. Die Verarbeitungseinheit 20 ist ferner mit einer Ansteuereinheit 21 der Vorrichtung 17 gekoppelt, welche über die Verbindung 28 den Steuerantrieb 19 des Leistungsschalters 11 ansteuert. Somit ist die Verarbeitungseinheit 20 in der Lage, den Schaltkontakt 16 wahlweise zu öffnen oder zu schließen. Die Arbeitsweise der Vorrichtung 17 wird nachfolgend beschrieben werden.The device 17 comprises a resistance measuring device which comprises, for example, a current source 23 and a voltmeter 22. The current source 23 impresses a current I through the power switch 11 and the two-sided grounding 14, 15 via the connections 24, 25 and the voltmeter 22 detects a voltage drop V across the connections 26, 27 across the power switch 11. The device 17 further comprises a Processing unit 20, which calculates a resistance across the power switch 11 in dependence on the current I impressed by the current source 23 and the voltage V measured by the voltage meter 22 voltage. The processing unit 20 is further coupled to a drive unit 21 of the device 17, which activates the control drive 19 of the power switch 11 via the connection 28. Thus, the processing unit 20 is able to selectively open or close the switch contact 16. The operation of the device 17 will be described below.

Der Leistungsschalter 11 wird mithilfe der Erdungsgarnituren 14 und 15 beidseitig geerdet. Die Widerstandsmesseinrichtung 22, 23 wird, wie in Fig. 1 dargestellt, derart an den Leistungsschalter 11 angeschlossen, dass ein Widerstand über dem Leistungsschalter 11 messbar ist. Dann werden zwei Widerstandswerte nacheinander ermittelt. Ein Widerstandswert R1 wird bei geschlossenem Schaltkontakt 16 ermittelt und ein Widerstandswert R2 wird bei geöffnetem Schaltkontakt 16 ermittelt. Der Widerstand R1 entspricht somit einer Parallelschaltung aus dem Widerstand des Schaltkontakts 16 und der Erdungsschleife über die Erdungsgarnituren 14, 15, und der Widerstand R2 entspricht nur dem Widerstand der Erdungsschleife über die Erdungsgarnituren 14, 15. Mithilfe der weiter oben beschriebenen Gleichung kann aus diesen beiden Widerstandswerten der Widerstand des geschlossenen Schaltkontakts 16 berechnet werden. Dies wird von der Verarbeitungseinheit 20 durchgeführt. Die Verarbeitungseinheit 20 kann ferner über die Steuereinheit 21 den Schaltkontakt 16 wahlweise öffnen oder schließen und daher die beiden Widerstandsmessungen der Reihe nach einmal bei geöffnetem und einmal bei geschlossenem Schaltkontakt 16 durchführen und anschließend den Widerstand des geschlossenen Schaltkontakts 16 daraus berechnen. Eine Reihenfolge, in welcher die beiden Widerstandsmessungen durchgeführt werden, ist beliebig. Alternativ kann die Verarbeitungseinheit 20 über eine entsprechende Anzeige einen Benutzer anweisen, den Schaltkontakt 16 manuell oder über eine entsprechende Betätigungsvorrichtung zu öffnen oder zu schließen, wenn eine automatische Ansteuerung über die Ansteuereinheit 21 und die Verbindung 28 nicht vorgesehen ist. Da während der gesamten Messung der Leistungsschalter 11 beidseitig geerdet ist, kann sichergestellt werden, dass keine gefährlich hohen Spannungen an dem Leistungsschalter 11 anliegen.The circuit breaker 11 is earthed by means of the grounding sets 14 and 15 on both sides. The resistance measuring device 22, 23 is, as in Fig. 1 represented connected to the power switch 11, that a resistor across the power switch 11 is measurable. Then two resistance values are determined one after the other. A resistance value R 1 is determined when the switching contact 16 is closed and a resistance value R 2 is determined when the switching contact 16 is open. The resistor R 1 corresponds to a parallel circuit of the resistor of the switching contact 16 and the ground loop on the ground sets 14, 15, and the resistor R 2 corresponds only to the resistance of the ground loop on the ground sets 14, 15 using the equation described above may be made of these resistances of the resistance of the closed switch contact 16 are calculated. This is done by the processing unit 20. The processing unit 20 can also selectively open or close the switch contact 16 via the control unit 21 and therefore perform the two resistance measurements in turn once with the switch contact 16 open and once with the switch contact 16 closed, and then calculate the resistance of the closed switch contact 16 therefrom. An order in which the two resistance measurements are performed is arbitrary. Alternatively, the processing unit 20 can instruct a user via a corresponding display to open or close the switching contact 16 manually or via a corresponding actuating device if an automatic control via the drive unit 21 and the connection 28 is not provided. Since the circuit breaker 11 is grounded on both sides during the entire measurement, it can be ensured that no dangerously high voltages are applied to the circuit breaker 11.

Fig. 2 zeigt eine weitere Testumgebung 50 mit einem Leistungsschalter 51, welcher zwei Schaltkontakte 56 und 57 umfasst. Die Schaltkontakte 56 und 57 sind in einer Reihenschaltung angeordnet. Der Leistungsschalter 51 kann weitere Schaltkontakte umfassen, welche zusammen mit den Schaltkontakten 56 und 57 in einer Reihenschaltung angeordnet sind. Die Schaltkontakte 56 und 57 und die gegebenenfalls vorhandenen weiteren Schaltkontakte werden im Allgemeinen gleichzeitig mittels eines nicht gezeigten Stellantriebs wahlweise geöffnet oder geschlossen. Der Leistungsschalter 51 ist mit Hochspannungsleitungen 52 und 53 gekoppelt, welche über die Schaltkontakte 56, 57 wahlweise verbunden oder getrennt werden können. Die Testumgebung 50 umfasst ferner zwei Erdungsgarnituren 54 und 55, welche die Hochspannungsleitungen 52 bzw. 53 mit Erde verbinden. Weiterhin ist in der Testumgebung 50 eine Vorrichtung 58 zur Messung des Widerstandes der Schaltkontakte 56 und 57 gezeigt. Die Vorrichtung 58 umfasst eine erste Widerstandsmesseinheit, welche einen Spannungsmesser 60 und eine Stromquelle 61 umfasst, sowie eine zweite Widerstandsmesseinheit, welche einen Spannungsmesser 66 und eine Stromquelle 67 umfasst. Die erste Widerstandsmesseinrichtung 60, 61 ist über Verbindungen 62-65 mit dem ersten Schaltkontakt 56 derart verbunden, dass ein Strom I1 der Stromquelle 61 über den Schaltkontakt 65 eingeprägt werden kann, wenn der Schaltkontakt 56 geschlossen ist. Der Spannungsmesser ist über die Verbindungen 64 und 65 derart mit dem Schaltkontakt 56 verbunden, dass ein Spannungsabfall U1 über dem Schaltkontakt 56 gemessen werden kann. Die zweite Widerstandsmesseinrichtung 66, 67 ist vergleichbar zu der ersten Widerstandsmesseinrichtung 60, 61 mit dem Schaltkontakt 57 über Verbindungen 68-71 zum Einprägen eines Stroms I2 durch den geschlossenen Schaltkontakt 57 und Messen eines Spannungsabfalls U2 über dem Schaltkontakt 57 gekoppelt. Eine Verarbeitungseinheit 59 ist mit den Widerstandsmesseinrichtungen 60, 61 bzw. 66, 67 verbunden. Die Arbeitsweise der Vorrichtung 58 wird nachfolgend beschrieben werden. Fig. 2 shows a further test environment 50 with a power switch 51, which comprises two switch contacts 56 and 57. The switching contacts 56 and 57 are arranged in a series circuit. The power switch 51 may comprise further switching contacts, which are arranged together with the switching contacts 56 and 57 in a series circuit. The switching contacts 56 and 57 and the optional further switching contacts are generally open or closed at the same time by means of an actuator, not shown. The power switch 51 is connected to power lines 52 and 53 coupled, which can be selectively connected or disconnected via the switch contacts 56, 57. The test environment 50 further includes two grounding sets 54 and 55 connecting the high voltage lines 52 and 53, respectively, to ground. Furthermore, in the test environment 50, a device 58 for measuring the resistance of the switching contacts 56 and 57 is shown. The device 58 comprises a first resistance measuring unit, which comprises a voltmeter 60 and a current source 61, and a second resistance measuring unit, which comprises a voltmeter 66 and a current source 67. The first resistance measuring device 60, 61 is connected via connections 62-65 to the first switching contact 56 in such a way that a current I 1 of the current source 61 can be impressed via the switching contact 65 when the switching contact 56 is closed. The voltmeter is connected via the connections 64 and 65 to the switching contact 56 such that a voltage drop U 1 across the switching contact 56 can be measured. The second resistance measuring device 66, 67 is comparable to the first resistance measuring device 60, 61 coupled to the switching contact 57 via connections 68-71 for impressing a current I 2 through the closed switching contact 57 and measuring a voltage drop U 2 on the switching contact 57. A processing unit 59 is connected to the resistance measuring devices 60, 61 and 66, 67, respectively. The operation of the device 58 will be described below.

Die Hochspannungsleitungen 52, 53, welche an beiden Enden des Leistungsschalters 51 angeschlossen sind, werden über die Erdungsgarnituren 54, 55 mit Erde verbunden. Die Vorrichtung 58 wird wie zuvor beschrieben an die Schaltkontakte 56 und 57 angeschlossen. Die Schaltkontakte 56 und 57 werden geschlossen. Von der Stromquelle 61 wird ein Strom I1 auf die Hochspannungsleitung 52 eingeprägt. Der Strom I1 fließt daher zum Teil als Strom IS1 von links nach rechts durch den geschlossenen Schaltkontakt 56 und zu einem anderen Teil als Strom IE1 über die Erdungsgarnitur 54 nach Erde ab. Die Stromquelle 67 prägt einen Strom I2 auf die Hochspannungsleitung 53 ein. Der Strom I2 fließt zum Teil als Strom IS2 von rechts nach links durch den geschlossenen Schaltkontakt 57 und zu einem weiteren Teil als Strom IE2 durch die Erdungsgarnitur 55 nach Erde ab. Aufgrund des Übergangswiderstands des Schaltkontakts 56 tritt über dem Schaltkontakt 56 ein Spannungsabfall U1 auf. Ebenso tritt aufgrund des Übergangswiderstands des Schaltkontakts 57 ein Spannungsabfall U2 über dem Schaltkontakt 57 auf. Da die Ströme IS1 und IS2 entgegengesetzt gerichtet eingespeist werden, sind die Spannungsabfälle U1 und U2 ebenfalls entgegengesetzt gerichtet. Wenn die Übergangswiderstände der Schaltkontakte 56 und 57 im Wesentlichen gleich sind und darüber hinaus die Ströme I1 und I2 im Wesentlichen gleich sind, sind die Spannungsabfälle U1 und U2 ebenfalls betragsmäßig gleich. Dadurch ist der Spannungsabfall UE über der Erdungsschleife gleich null, sodass auch die Ströme IE1 und IE2 jeweils null sind. In diesem Fall entspricht der Strom IS1 durch den Schaltkontakt 56 dem Strom I1, sodass der Übergangswiderstand des Schaltkontakts 56 einzig in Abhängigkeit von dem Strom I1 und der von dem Spannungsmesser 60 gemessenen Spannung U1 bestimmt werden kann. Ebenso kann der Übergangswiderstand des geschlossenen Schaltkontakts 57 einzig anhand des Stroms I2, welcher in diesem Fall dem Strom IS2 entspricht, und der von dem Spannungsmesser 66 gemessenen Spannung U2 bestimmt werden. Da die Schaltkontakte 56 und 57 im Allgemeinen baugleich sind und einer gleichen Beanspruchung unterliegen, weisen sie im Allgemeinen einen gleichen Übergangswiderstand im geschlossenen Zustand auf, sodass die zuvor beschriebenen Bedingungen erfüllt werden und für diesen sogenannten symmetrischen Fall eine einfache und genaue Bestimmung der Übergangswiderstände möglich ist. Die Verarbeitungseinheit 59 kann die entsprechenden Widerstandswerte anhand von Informationen der Widerstandsmesseinrichtungen 60, 61 und 66, 67 bestimmen und ausgeben. Für den Fall, dass die Übergangswiderstände der Schaltkontakte 56 und 57 unterschiedlich groß sind, kann die Steuervorrichtung 59 die Ströme I1 und I2 derart einstellen, dass die Spannungsabfälle U1 und U2 betragsmäßig im Wesentlichen gleich sind. Dadurch wird erreicht, dass auch in diesem nicht symmetrischen Fall die Spannung UE über der Erdungsschleife im Wesentlichen null beträgt und somit der Übergangswiderstand der einzelnen Schaltkontakte 56 und 57 anhand des Stroms I1 bzw. I2 und der Spannungsabfälle U1 bzw. U2 bestimmt werden können.The high voltage lines 52, 53, which are connected to both ends of the circuit breaker 51, are connected to ground via the grounding fittings 54, 55. The device 58 is connected to the switching contacts 56 and 57 as described above. The switch contacts 56 and 57 are closed. From the current source 61 a current I 1 is impressed on the high-voltage line 52nd The current I 1 therefore flows in part as current I S1 from left to right through the closed switching contact 56 and to another part as current I E1 via the grounding set 54 to earth. The current source 67 impresses a current I 2 on the high voltage line 53. The current I 2 flows partly as current I S2 from right to left through the closed switching contact 57 and to a further part as current I E2 through the grounding set 55 to earth. Due to the contact resistance of the switching contact 56, a voltage drop U 1 occurs across the switching contact 56. Likewise, due to the Transition resistance of the switching contact 57, a voltage drop U 2 on the switching contact 57 on. Since the currents I S1 and I S2 are fed in opposite directions, the voltage drops U 1 and U 2 are also oppositely directed. If the contact resistances of the switching contacts 56 and 57 are substantially equal and moreover the currents I 1 and I 2 are substantially equal, the voltage drops U 1 and U 2 are also equal in magnitude. As a result, the voltage drop U E across the ground loop is zero, so that the currents I E1 and I E2 are also zero. In this case, the current I S1 through the switching contact 56 corresponds to the current I 1 so that the contact resistance of the switch contact 56 U 1 can be determined solely as a function of the current I 1 and the temperature measured by the voltage meter 60 voltage. Likewise, the contact resistance of the closed switch contact 57 can be determined solely on the basis of the current I 2 , which in this case corresponds to the current I S2 , and the voltage U 2 measured by the voltmeter 66. Since the switch contacts 56 and 57 are generally identical in construction and subject to the same load, they generally have the same contact resistance in the closed state, so that the conditions described above are met and for this so-called symmetrical case, a simple and accurate determination of the contact resistances is possible , The processing unit 59 may determine and output the corresponding resistance values based on information from the resistance measuring devices 60, 61 and 66, 67. In the event that the contact resistances of the switching contacts 56 and 57 are of different sizes, the control device 59 can adjust the currents I 1 and I 2 such that the voltage drops U 1 and U 2 are substantially equal in magnitude. This ensures that even in this non-symmetrical case, the voltage U E across the ground loop is substantially zero and thus the contact resistance of the individual switching contacts 56 and 57 based on the current I 1 or I 2 and the voltage drops U 1 and U 2 can be determined.

Fig. 3 zeigt eine weitere Testumgebung 50, welche im Wesentlichen der Testumgebung 50 der Fig. 2 entspricht und darüber hinaus zwei zusätzliche Schalter 72 und 73 umfasst, welche parallel zu den Schaltkontakten 56 bzw. 57 angeordnet sind. Dadurch wird ermöglicht, dass auch bei geöffneten Schaltkontakten 56 bzw. 57 ein Strom durch die Erdungsschleife, welche über die Erdungsgarnituren 54 und 55 realisiert wird, getrieben werden kann, um den Widerstand der Erdschleife ermitteln zu können. Der Widerstand der Erdschleife kann dann zur Korrektur von Widerstandswerten verwendet werden, welche bei geschlossenen Schaltkontakten 56, 57 ermittelt werden. Anders ausgedrückt kann mithilfe der Schalter 72, 73 auch bei der in Fig. 3 gezeigten Anordnung das im Zusammenhang mit Fig. 1 beschriebene Verfahren durchgeführt werden. Beispielsweise kann der Schalter 73 geschlossen und der Schalter 72 geöffnet werden. Eine Mikroohmmessung des Schaltkontakts 56 kann dann mithilfe der Widerstandsmesseinrichtung 60, 61 wie zuvor unter Bezugnahme auf Fig. 1 beschrieben durchgeführt werden. Bei geschlossenem Schalter 72 und geöffnetem Schalter 73 kann mithilfe der Widerstandsmesseinrichtung 66, 67 eine Mikroohmmessung an dem Schaltkontakt 57 wie zuvor unter Bezugnahme auf Fig. 1 beschrieben durchgeführt werden. Fig. 3 FIG. 5 shows another test environment 50, which essentially corresponds to the test environment 50 of FIG Fig. 2 corresponds and moreover comprises two additional switches 72 and 73, which are arranged parallel to the switching contacts 56 and 57, respectively. This makes it possible that even with open switch contacts 56 and 57, respectively a current through the ground loop, which is implemented via the grounding sets 54 and 55, can be driven in order to determine the resistance of the earth loop can. The resistance of the earth loop can then be used to correct resistance values, which are determined when the switch contacts 56, 57 are closed. In other words, with the help of the switches 72, 73 also in the Fig. 3 shown arrangement in connection with Fig. 1 described method are performed. For example, the switch 73 can be closed and the switch 72 can be opened. A micro-ohm measurement of the switch contact 56 may then be made using the resistance measuring device 60, 61 as previously described with reference to FIG Fig. 1 be described described. With the switch 72 closed and the switch 73 open, a resistance measurement device 66, 67 can be used to make a micro-ohm measurement on the switch contact 57 as previously described with reference to FIG Fig. 1 be described described.

Fig. 4 zeigt eine Testumgebung 50, welche im Wesentlichen der Testumgebung 50 der Fig. 2 entspricht. Zusätzlich umfasst die Testumgebung 50 der Fig. 4 eine dritte Erdungsgarnitur 74, welche einen Punkt zwischen dem Schaltkontakt 56 und dem Schaltkontakt 57 mit Erde koppelt. Bei dieser Anordnung kann mithilfe der Widerstandsmesseinrichtung 60, 61 eine Mikroohmmessung des Schaltkontakts 56 wie unter Bezugnahme auf Fig. 1 zuvor beschrieben wurde durchgeführt werden. Ebenso kann mithilfe der Widerstandsmesseinrichtung 66, 67 eine Mikroohmmessung des Schaltkontakts 57 wie zuvor unter Bezugnahme auf Fig. 1 beschrieben durchgeführt werden. Die beiden Mikroohmmessungen an den Schaltkontakten 56 und 57 können gleichzeitig durchgeführt werden. Durch diese zusätzliche Erdung 74 kann ferner sichergestellt werden, dass auch zwischen den Schaltkontakten 56 und 57 keine Hochspannung anliegt. Fig. 4 FIG. 2 shows a test environment 50, which essentially corresponds to the test environment 50 of FIG Fig. 2 equivalent. In addition, the test environment 50 includes the Fig. 4 a third grounding assembly 74 that couples a point between the switch contact 56 and the switch contact 57 to ground. In this arrangement, by means of the resistance measuring device 60, 61, a micro-ohm measurement of the switching contact 56 as with reference to Fig. 1 previously described. Likewise, by means of the resistance measuring device 66, 67, a micro-ohm measurement of the switching contact 57 as previously with reference to Fig. 1 be described described. The two Mikroohmmessungen to the switch contacts 56 and 57 can be performed simultaneously. By virtue of this additional grounding 74, it can further be ensured that no high voltage is applied between the switching contacts 56 and 57.

Claims (8)

  1. A method for the measurement of a resistance of a switching contact of an electrical circuit breaker, comprising:
    - determining a first resistance value across the circuit breaker (11) while the circuit breaker (11) is grounded at both sides and the switching contact (16) is closed, characterized in that the method further comprises:
    - determining a second resistance value across the circuit breaker (11) while the circuit breaker (11) is grounded at both sides and the switching contact (16) is open, and
    - determining the resistance of the closed switching contact (16) on the basis of the first resistance value and the second resistance value.
  2. The method according to claim 1, wherein the determining of the first and second resistance values respectively comprises:
    - impressing a direct current in the circuit breaker (11) which is grounded at both sides, and
    - measuring a voltage across the circuit breaker (11).
  3. The method according to claim 1 or claim 2, wherein the circuit breaker (11) comprises a three-phase switch, each phase being assigned to a switching contact.
  4. The method according to any one of the preceding claims, wherein the method is simultaneously carried out for a plurality of switching contacts of the circuit breaker.
  5. The method according to any one of the preceding claims, wherein the circuit breaker (11) comprises an ultra-high voltage switch, a high voltage switch, or a medium voltage switch.
  6. An apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker, comprising:
    - a resistance measurement device (20, 22, 23) which is configured to determine a first resistance value across the circuit breaker (11) while the circuit breaker (11) is grounded at both sides and the switching contact (16) is closed,
    characterized in that the apparatus further comprises:
    - a control unit (21) for controlling the electrical circuit breaker (11) to selectively open or close the switching contact (16) of the circuit breaker (11),
    wherein the resistance measurement device (20, 22, 23) is configured to be coupled to the control unit (21) and is configured to determine a second resistance value across the circuit breaker (11) while the circuit breaker (11) is grounded at both sides and the switching contact (16) is open, and to determine the resistance of the closed switching contact (16) on the basis of the first resistance value and the second resistance value.
  7. The apparatus according to claim 6, wherein the apparatus (17) is configured to carry out the method according to any one of claims 1-5.
  8. A test environment for the measurement of a resistance of a switching contact of an electrical circuit breaker, comprising:
    - the circuit breaker (11),
    - the apparatus according to claim 6 or claim 7,
    - a first grounding device (14) which is configured to be coupled with the circuit breaker (11) for grounding a first side of the circuit breaker (11),
    - a second grounding device (15) which is configured to be coupled with the circuit breaker (11) for grounding a second side of the circuit breaker (11).
EP12006040.5A 2012-08-24 2012-08-24 Measurement of a resistance of a switch contact of an electrical circuit breaker Active EP2700962B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES12006040T ES2703100T3 (en) 2012-08-24 2012-08-24 Measuring a resistance of a switching contact of a circuit breaker
EP13196147.6A EP2708907B1 (en) 2012-08-24 2012-08-24 Method and apparatus for measuring resistances of switch contacts in an electrical power circuit breaker
EP12006040.5A EP2700962B1 (en) 2012-08-24 2012-08-24 Measurement of a resistance of a switch contact of an electrical circuit breaker
PL12006040T PL2700962T3 (en) 2012-08-24 2012-08-24 Measurement of a resistance of a switch contact of an electrical circuit breaker
ES13196147T ES2748595T3 (en) 2012-08-24 2012-08-24 Method and device for measuring the resistance of the switching contacts of a circuit breaker
US13/970,674 US20140055142A1 (en) 2012-08-24 2013-08-20 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
CA2907346A CA2907346C (en) 2012-08-24 2013-08-21 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
CA2824263A CA2824263C (en) 2012-08-24 2013-08-21 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
BR102013021508-2A BR102013021508B1 (en) 2012-08-24 2013-08-22 processes, devices and test environment for measuring a resistance of a switching contact
AU2013219201A AU2013219201B2 (en) 2012-08-24 2013-08-22 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
KR1020130100369A KR101488201B1 (en) 2012-08-24 2013-08-23 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
CN201510713968.3A CN105182082B (en) 2012-08-24 2013-08-26 Method and apparatus for the resistance of the switch contact being arranged in series of measuring circuit breaker
CN201310376037.XA CN103630747B (en) 2012-08-24 2013-08-26 The method and apparatus of resistance for the switch contact of measuring circuit chopper
US14/804,983 US9547044B2 (en) 2012-08-24 2015-07-21 Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12006040.5A EP2700962B1 (en) 2012-08-24 2012-08-24 Measurement of a resistance of a switch contact of an electrical circuit breaker

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP13196147.6A Division-Into EP2708907B1 (en) 2012-08-24 2012-08-24 Method and apparatus for measuring resistances of switch contacts in an electrical power circuit breaker
EP13196147.6A Division EP2708907B1 (en) 2012-08-24 2012-08-24 Method and apparatus for measuring resistances of switch contacts in an electrical power circuit breaker

Publications (2)

Publication Number Publication Date
EP2700962A1 EP2700962A1 (en) 2014-02-26
EP2700962B1 true EP2700962B1 (en) 2018-11-07

Family

ID=47115111

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13196147.6A Active EP2708907B1 (en) 2012-08-24 2012-08-24 Method and apparatus for measuring resistances of switch contacts in an electrical power circuit breaker
EP12006040.5A Active EP2700962B1 (en) 2012-08-24 2012-08-24 Measurement of a resistance of a switch contact of an electrical circuit breaker

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13196147.6A Active EP2708907B1 (en) 2012-08-24 2012-08-24 Method and apparatus for measuring resistances of switch contacts in an electrical power circuit breaker

Country Status (9)

Country Link
US (2) US20140055142A1 (en)
EP (2) EP2708907B1 (en)
KR (1) KR101488201B1 (en)
CN (2) CN103630747B (en)
AU (1) AU2013219201B2 (en)
BR (1) BR102013021508B1 (en)
CA (2) CA2824263C (en)
ES (2) ES2703100T3 (en)
PL (1) PL2700962T3 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551752B2 (en) * 2014-01-16 2017-01-24 Vanguard Instruments Company, Inc. Dual ground breaker testing system
CN103969576A (en) * 2014-04-24 2014-08-06 国家电网公司 Dynamic characteristic analyzer for dual-grounding circuit breaker
CN104101832B (en) * 2014-06-18 2017-02-08 国家电网公司 High voltage circuit breaker movement characteristic test method
AT516121B1 (en) 2014-07-29 2016-09-15 Omicron Electronics Gmbh Checking a multi-pole electrical circuit breaker
FR3026192B1 (en) * 2014-09-23 2018-01-26 Schneider Electric Industries Sas METHOD FOR TESTING THE ENTIRE PROTECTIVE CHAIN IN A MEDIUM VOLTAGE ELECTRICAL PROTECTION EQUIPMENT, AND APPARATUS FOR IMPLEMENTING SUCH A METHOD
CN104459529B (en) * 2014-12-21 2017-06-16 国家电网公司 The double loop method of testing of transformer station's mechanical characteristic of high-voltage circuit breaker experiment
CN105203947A (en) * 2015-08-27 2015-12-30 国网安徽省电力公司阜阳供电公司 Performance characteristic testing method of high-voltage circuit breaker
CN105467218A (en) * 2015-11-05 2016-04-06 温州大学 Contact resistance testing method of circuit breaker used for short-circuit protection
JP6641919B2 (en) * 2015-11-20 2020-02-05 マックス株式会社 tool
DE102016105544A1 (en) * 2016-03-24 2017-09-28 Epcos Ag Apparatus for measuring a state of an electrical switch, electrical switch and method for measuring a state of an electrical switch
US10613125B2 (en) * 2016-05-26 2020-04-07 Siemens Industry, Inc. Connection joints from 3-phase to single-phase on modular metering main bus
SE1650931A1 (en) * 2016-06-29 2017-12-30 Megger Sweden Ab System for analyzing high voltage circuit breakers
SE1650932A1 (en) * 2016-06-29 2017-12-30 Megger Sweden Ab Method and system for analyzing high voltage circuit breakers
IT201700061980A1 (en) * 2017-06-07 2018-12-07 I S A Altanova Group S R L METHOD FOR THE CHARACTERIZATION OF SWITCHES FOR MEDIUM AND HIGH VOLTAGE.
CN107248496B (en) * 2017-06-07 2019-11-15 西安电子科技大学 The modification method of ohmic contact regions square resistance
CN109581209B (en) * 2017-09-29 2024-06-14 施耐德电气工业公司 State detection of two terminal outputs of controller switch
CN107782660B (en) * 2017-10-24 2020-08-14 广东电网有限责任公司电力科学研究院 Test method for evaluating environment durability of disconnecting link contact material
CN109471021B (en) * 2018-01-05 2020-06-05 国家电网公司 Device and method for detecting opening and closing performance of high-voltage circuit breaker
CN109471022B (en) * 2018-01-05 2020-07-14 国家电网公司 Power equipment test detection system and test detection method thereof
EP3881086A4 (en) * 2018-11-13 2022-07-20 Illinois Institute of Technology Hybrid circuit breaker using a transient commutation current injector circuit
KR102356375B1 (en) * 2020-04-08 2022-01-27 (주)에너시스 Movable Test Equipment with Multi Zig for Circuit Breakers
CN111707934A (en) * 2020-05-14 2020-09-25 华为技术有限公司 Switch detector, use method of switch detector and vehicle
US11994545B2 (en) 2021-05-11 2024-05-28 National Instruments Corporation DC resistance measurement contact checking via alternating current high frequency injection
CN114019245A (en) * 2021-11-03 2022-02-08 华能国际电力股份有限公司德州电厂 Resistance measuring method suitable for circuit breaker or disconnecting switch under high electric field intensity

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886409A (en) * 1973-05-09 1975-05-27 Amax Inc Means for monitoring the safety of a remote electrical ground connection
US4178543A (en) * 1978-02-23 1979-12-11 Teradyne, Inc. Analyzing electrical circuit boards
JPS59114471A (en) * 1982-12-21 1984-07-02 Fuji Electric Corp Res & Dev Ltd Synthetic testing method of ac circuit breaker
CA1221416A (en) * 1985-06-25 1987-05-05 Hydro-Quebec Very weak electric resistance measuring ohmmeter
DE3715014A1 (en) * 1987-05-06 1988-11-17 Michael Fossler Electrical device providing testing of a usable contact gap
JPH0611550A (en) * 1992-06-25 1994-01-21 Mitsubishi Electric Corp Tester for circuit breaker
JP3191428B2 (en) * 1992-09-02 2001-07-23 株式会社明電舎 Three-phase synthesis test method and circuit for ungrounded circuit breaker
KR100355716B1 (en) * 2001-01-15 2002-10-12 주식회사 대양기전 Test method of low resistor for in-circuit tester
US7068040B2 (en) * 2002-08-15 2006-06-27 Stitt Thomas C Ground circuit impedance measurement apparatus and method
US6963203B2 (en) * 2003-03-31 2005-11-08 General Electric Company Methods and apparatus for analyzing high voltage circuit breakers
US6965238B2 (en) * 2003-03-31 2005-11-15 General Electric Company Methods and apparatus for analyzing high voltage circuit breakers
EP1618637A1 (en) * 2003-04-22 2006-01-25 Bansik APS Electronic circuit breaker
JP2006011550A (en) 2004-06-22 2006-01-12 Sony Corp Information transmission system by cooperative filtering, information processing apparatus to be used for the same, and program to be used in information processing
KR100581152B1 (en) 2004-09-15 2006-05-17 태산엘시디 주식회사 Manufacturing method of stamper for catapulting light guide plate
DE102006022686B4 (en) * 2006-05-16 2018-03-15 Sma Solar Technology Ag Measuring arrangement for determining the insulation resistance of an electrical device or a system
US8497692B2 (en) * 2008-04-21 2013-07-30 Megger Sweden Ab Resistance measurement in high power apparatus environments
JP5166204B2 (en) * 2008-10-24 2013-03-21 株式会社東芝 Gas insulated circuit breaker system and gas insulated circuit breaker monitoring method
CN102033195B (en) * 2009-09-27 2013-01-23 湖北省电力公司电力科学研究院 Device and method for measuring dynamic resistance of high-voltage circuit breaker
US9069019B2 (en) * 2011-06-20 2015-06-30 Chargepoint, Inc. Apparatus and method for measuring ground impedance of a circuit
JP5983171B2 (en) * 2012-08-10 2016-08-31 株式会社Gsユアサ Switch failure diagnosis device, power storage device

Also Published As

Publication number Publication date
BR102013021508A2 (en) 2015-06-16
CN105182082A (en) 2015-12-23
KR101488201B1 (en) 2015-01-30
KR20140026300A (en) 2014-03-05
CN105182082B (en) 2018-01-19
PL2700962T3 (en) 2019-03-29
US9547044B2 (en) 2017-01-17
CN103630747B (en) 2016-07-13
EP2708907A1 (en) 2014-03-19
BR102013021508B1 (en) 2021-05-18
AU2013219201A1 (en) 2014-03-13
CA2907346C (en) 2018-05-15
CA2824263C (en) 2017-07-11
CA2824263A1 (en) 2014-02-24
EP2708907B1 (en) 2019-08-07
ES2748595T3 (en) 2020-03-17
AU2013219201B2 (en) 2015-02-12
US20150323604A1 (en) 2015-11-12
US20140055142A1 (en) 2014-02-27
CA2907346A1 (en) 2014-02-24
CN103630747A (en) 2014-03-12
EP2700962A1 (en) 2014-02-26
ES2703100T3 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
EP2700962B1 (en) Measurement of a resistance of a switch contact of an electrical circuit breaker
EP3198698B1 (en) Differential protection method and differential protection device for performing a differential protection method
EP1857825B1 (en) Measuring apparatus
EP3598151B1 (en) Method and device for determining the distribution of a total isolation resistance and the distribution of a total power line capacity in an unearthed power system
EP1793235A1 (en) Monitoring System for High-Voltage Switch Gears
DE19713748A1 (en) Method and device for testing differential protection relays / systems
EP3524985A1 (en) Apparatus and method for insulation monitoring with detection of defective outer conductor in an unearthed 3-phase power supply system
DE102014220017A1 (en) Battery system with a trained for supplying a high-voltage network with electrical energy battery and a measuring device for measuring at least one insulation resistance of the battery
EP3308179B1 (en) Switch apparatus, test apparatus and method for operating a switch apparatus for a measuring device for a transformer
DE3028787C2 (en) Arrangement for locating an earth fault
EP0665625B1 (en) Method for obtaining an impedance value and for processing in a distance protection device
EP2869072A1 (en) Device and method for detecting electric energy from single or multiple phase consumers
AT516121B1 (en) Checking a multi-pole electrical circuit breaker
DE102013202868A1 (en) Error- or load flow detecting device for low- or high voltage system, has voltage-measuring device with reference voltage measuring device, whose measuring point is located in different field or on busbar
DE102012011275A1 (en) Meter testing device for testing electric meter, has secondary power source and switching unit connected to primary power source with free-wheeling power line or with testing port and secondary power source having free-wheeling power line
EP0609261B1 (en) Device for testing an electrical drive unit
DE4418124C2 (en) Device for detecting insulation deterioration on power supply lines
WO2012045103A1 (en) Detector unit for detecting a neutral conductor interruption in a symmetrical multiphase power supply system
EP3143417A1 (en) Method and system for testing a switching installation for power transmission installations
WO2003073577A1 (en) Testing arrangement for a power circuit breaker provided with an electronic trip element
DE102007019750A1 (en) Circuit breaker and test device for a circuit breaker, in particular for a low-voltage circuit breaker
DE897734C (en) Device for maintaining the normal conductivity of contact points in a circuit between which the voltage drop should not exceed a certain value
EP1363378B9 (en) Method and apparatus for short circuit detection and for overvoltage protection for a dual-voltage electric system
EP3913382B1 (en) Method and device for determining the location of a three-pole assymetrical fault on a line of a three-phase electrical energy supply network
DE102012202642A1 (en) Electric switch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180614

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1062724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER UND PARTNER AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013753

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2703100

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190307

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013753

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190824

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220823

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230818

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230731

Year of fee payment: 12

Ref country code: IT

Payment date: 20230809

Year of fee payment: 12

Ref country code: GB

Payment date: 20230817

Year of fee payment: 12

Ref country code: ES

Payment date: 20230907

Year of fee payment: 12

Ref country code: CH

Payment date: 20230902

Year of fee payment: 12

Ref country code: AT

Payment date: 20230811

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230811

Year of fee payment: 12

Ref country code: FR

Payment date: 20230810

Year of fee payment: 12

Ref country code: DE

Payment date: 20230816

Year of fee payment: 12