EP2699848B1 - Combustion chamber housing and gas turbine equipped therewith - Google Patents

Combustion chamber housing and gas turbine equipped therewith Download PDF

Info

Publication number
EP2699848B1
EP2699848B1 EP12717246.8A EP12717246A EP2699848B1 EP 2699848 B1 EP2699848 B1 EP 2699848B1 EP 12717246 A EP12717246 A EP 12717246A EP 2699848 B1 EP2699848 B1 EP 2699848B1
Authority
EP
European Patent Office
Prior art keywords
flow guiding
combustion chamber
guiding ribs
chamber housing
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12717246.8A
Other languages
German (de)
French (fr)
Other versions
EP2699848A1 (en
Inventor
Emil Aschenbruck
Reiner Brinkmann
Stefan Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of EP2699848A1 publication Critical patent/EP2699848A1/en
Application granted granted Critical
Publication of EP2699848B1 publication Critical patent/EP2699848B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/02Baffles or deflectors for air or combustion products; Flame shields in air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/44Combustion chambers comprising a single tubular flame tube within a tubular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes

Definitions

  • the invention relates to a combustion chamber housing according to the preamble of claim 1 and a gas turbine equipped with such a combustion chamber housing.
  • a combustion chamber housing according to the preamble of claim 1 is for example made DE 10 2004 016 462 A1 known.
  • a combustion chamber housing and a gas turbine of the type mentioned above are also made, for example DE 10 2006 042 124 A1 known.
  • the combustion chamber housing described there is part of a combustion chamber of the gas turbine and has a flame tube and a sheathing tube or impact grille which surrounds the flame tube and which has in its wall a plurality of passage openings, via the outside of the sheath tube aufströmende compressed air radially into between the sheath tube and the flame tube formed space can penetrate.
  • Combustion chambers are designed as individual modules or as annularly arranged individual burners or as annular combustion chambers. Except for the annular combustion chambers, these types always have an internal, cylindrical flame tube.
  • the combustion air is first sucked in atmospherically and then compressed in a compressor of a gas generator.
  • the compressor may be radial or axial.
  • the combustion air is then greatly deflected in order to achieve an inflow into the combustion zone.
  • the combustion air is first of the combustion chamber radially in between the casing tube and flame tube supplied space formed and then deflected so that an axial inflow of the burner take place.
  • the invention has for its object to provide a combustor housing according to the preamble of claim 1 and a gas turbine equipped therewith, in which a more uniform distribution of the incoming air is ensured around the flame tube, with improved behavior with respect to different thermal expansion of the components involved.
  • a combustion chamber housing in particular for a gas turbine, which has a preferably circular-cylindrical flame tube and a preferably circular-cylindrical sheathing tube or impact grille which receives and surrounds the flame tube and which has a plurality of passage openings in its wall via which outside on the sheath tube upflowing compressed air (cooling and combustion air) can penetrate radially into a preferably circular cylindrical space formed between the sheath tube and the flame tube.
  • Combustor housing is characterized by a plurality of circumferentially spaced in the space between the two tubes (flame tube and Ummantefungsrohr) arranged guide ribs, each extending radially between Ummantetungsrohr and flame tube and parallel to and along a longitudinal direction of the sheath tube and flame tube, so that the gap through the guide ribs are subdivided into a plurality of longitudinal channels preferably extending in each case over substantially the entire length of the sheathing tube and provided with through-openings, preferably having a cross-section in each case in the shape of an annular sector.
  • the transverse to the flow direction of the air flowing in the operating case guide ribs cause the flow around the flame tube is interrupted or prevented. This allows the air flow to distribute more evenly and the cooling of the flame tube is less disturbed.
  • the cooling and combustion air is channel-shaped after the deflection from radial to axial flow, so that the inflow to a subsequent combustion zone can be made homogeneous.
  • a particularly homogeneous fuel-air mixture can be formed in a combustion chamber of a gas turbine formed with the combustion chamber housing according to the invention, whereby the flame remains stable in the center of the combustion chamber during the combustion process.
  • An imbalance or fluctuation of the flame would cause a local temperature increase of the surrounding components and thus a possible overuse, which is prevented by the guide ribs.
  • each guide rib is attached to the sheath tube.
  • each guide rib preferably extends radially so that a gap is formed between the guide rib and the flame tube.
  • the gap is advantageous to avoid possible distortion or stress due to different material and thermal expansion properties.
  • Cross-flows occurring through the gaps can be neglected, as the flow always rests radially outward on the side (inner circumference of the sheathing tube) to which the flow-guiding ribs are also attached.
  • the guide ribs are each preferably strip-shaped, their respective width extending radially and their respective length extending axially or in the longitudinal direction of the casing tube and the flame tube.
  • the thickness dimension of the respective guide ribs is preferably about 3 mm.
  • the guide rib and the passage openings formed in the wall of the jacket tube are preferably arranged such that the guide ribs do not close any of the passage openings. This advantageously ensures optimum or unhindered radial inflow of the air into the intermediate space.
  • the number of guide ribs provided in the intermediate space is exactly eight, wherein all the guide ribs are identical to one another.
  • the guide ribs are arranged at different circumferential angular distances from one another in the intermediate space.
  • Angular spacing preferably varies in a range of about 28 degrees to about 126 degrees.
  • the guide ribs comprise a first group of guide ribs and a second group of guide ribs, wherein the first group of guide ribs are arranged in a predetermined first arrangement pattern with respect to their mutual circumferential angular separation, and wherein the second group of guide ribs are mutually circumferential Angular distance are arranged in a second arrangement pattern, which represents a reflection of the first arrangement pattern on an axis of symmetry of the flame tube.
  • the symmetry axis preferably extends in cross section through the center of the flame tube.
  • a gas turbine having a combustion chamber housing according to one, several or all of the previously described preferred embodiments of the invention is provided in any conceivable combination.
  • FIGS. 1 to 4 a gas turbine 1 (not fully shown) with a combustion chamber housing 10 according to an embodiment of the invention described.
  • the combustion chamber housing 10 of the gas turbine 1 has a circular cylindrical flame tube 20 and a circular cylindrical sheath or baffle 30, which receives and surrounds the flame tube 20 and which has in its wall a plurality of evenly distributed around the handling through openings 31, on the outer circumference the jacket tube 30 flowing through a compressor (not shown) of the gas turbine 1 compressed air (cooling and combustion air) can penetrate radially into a circular cylindrical space 40 formed between the sheath tube 30 and the flame tube 20.
  • a plurality (exactly eight here) of circumferentially of the two tubes (flame tube 20 and sheath tube 30) distributed identical guide ribs 50 are provided, each radially between the sheath tube 30 and flame tube 20 and parallel to and along a longitudinal direction LR of Jacket tube 30 and flame tube 20 extend so that the gap 40 through the guide ribs 50 in a plurality of substantially over the entire provided with through holes 31 length the sheathing tube 30 extending longitudinal channels 41 is divided with each nikringsektorförmigem cross-section.
  • the guide ribs 50 reliably prevent the air flowing radially in the operating case via the passage openings 31 in the intermediate space 40 from obtaining a circumferential or rotating flow component around the flame tube 20. As a result, the air flow can be distributed more uniformly around the flame tube 20 and the cooling of the flame tube 20 is improved. In addition, the air after the deflection (by hitting the flame tube 20) is channeled from radial to axial flow in the longitudinal channels 41, so that the inflow to a subsequent combustion zone (not shown) can be made homogeneous.
  • the guide ribs 50 are attached (e.g., welded) to the inner circumference of the sheath tube 30, with each guide rib 50 extending radially such that a gap S is formed between the guide rib 50 and the flame tube 20.
  • the gap S has just such a radial width, that during operation of the gas turbine 1 different heat-related material expansions of flame tube 20.
  • Sheath tube 30 and baffles 50 can be compensated without pressurizing the guide ribs 50 on the flame tube 20.
  • the guide ribs 50 are each in the form of a sheet-metal strip, with their respective width extending radially and their respective length axially or in the longitudinal direction LR of the sheath tube 30 and the flame tube 20.
  • the thickness of the respective guide ribs 50 is about 3 mm.
  • the guide ribs 50 and the through holes 31 formed in the wall of the jacket tube 30 are arranged so that the guide ribs 50 do not close any of the through holes 31.
  • the guide ribs 50 are arranged at different circumferentially angular intervals from one another in the intermediate space 40.
  • the guide ribs 50 in this case have a first group of guide ribs 50 (which in FIG Fig.2 on the left of a symmetry axis Y of the flame tube 20) and a second group of guide ribs 50 (shown in Figs Fig.2 right of the axis of symmetry Y are arranged) on.
  • the first group of guide ribs 50 are arranged in a predetermined first arrangement pattern with respect to their mutual circumferential angular distance
  • the second group of guide ribs 50 being arranged in a second arrangement pattern with respect to their mutual circumferential angular distance, which is a reflection of the first arrangement pattern at the symmetry axis Y represents.
  • each group of baffles 50 a combination of angular spacings between the baffles 50 of 28.2 degrees, 32.4 degrees and 25.2 degrees, the two groups of baffles 50 having an angular separation of 61.2 degrees (in Fig.2 below) or 126 degrees (in Fig.2 above).
  • the first and second arrangement patterns could also be completely different be.
  • the specific realization of the first and second arrangement pattern or of the respective angular spacing of the guide ribs 50 may depend on the respective, for example, dimensional and / or formal configuration of the gas turbine 1 and thus be adaptable in accordance with the specific flow conditions occurring there.
  • FIG. 2 a comparison of the air flow and pressure distributions in the combustion chamber housing 10 is shown in two cross-sectional views, wherein the combustion chamber housing according to the in Figure 4 upper illustration without guide fins 50 and the combustion chamber housing according to the in Figure 4 bottom view according to the invention with guide ribs 50 is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft ein Brennkammergehäuse gemäß dem Oberbegriff des Anspruchs 1 sowie eine mit einem solchen Brennkammergehäuse ausgerüstete Gasturbine.The invention relates to a combustion chamber housing according to the preamble of claim 1 and a gas turbine equipped with such a combustion chamber housing.

Ein Brennkammergehäuse gemäß dem Oberbegriff des Anspruchs 1 ist z.B. aus DE 10 2004 016 462 A1 bekannt.A combustion chamber housing according to the preamble of claim 1 is for example made DE 10 2004 016 462 A1 known.

Ein Brennkammergehäuse und eine Gasturbine der eingangsgenannten Art sind außerdem z.B. aus DE 10 2006 042 124 A1 bekannt. Das dort beschriebene Brennkammergehäuse ist Bestandteil einer Brennkammer der Gasturbine und weist ein Flammrohr und ein Ummantelungsrohr bzw. Prallgitter auf, welches das Flammrohr umgibt und welches in seiner Wandung eine Mehrzahl von Durchgangsöffnungen hat, über die außen auf das Ummantelungsrohr aufströmende komprimierte Luft radial in einen zwischen dem Ummantelungsrohr und dem Flammrohr gebildeten Zwischenraum eindringen kann.A combustion chamber housing and a gas turbine of the type mentioned above are also made, for example DE 10 2006 042 124 A1 known. The combustion chamber housing described there is part of a combustion chamber of the gas turbine and has a flame tube and a sheathing tube or impact grille which surrounds the flame tube and which has in its wall a plurality of passage openings, via the outside of the sheath tube aufströmende compressed air radially into between the sheath tube and the flame tube formed space can penetrate.

Brennkammern werden als Einzelmodule oder als ringförmig angeordnete Einzelbrenner oder als Ringbrennkammern ausgeführt. Bis auf die Ringbrennkammern haben diese Typen immer ein innen liegendes, zylindrisch aufgebautes Flammrohr.Combustion chambers are designed as individual modules or as annularly arranged individual burners or as annular combustion chambers. Except for the annular combustion chambers, these types always have an internal, cylindrical flame tube.

In einer wie oben genannten Gasturbine wird die Verbrennungsluft zunächst atmosphärisch angesaugt und dann in einem Kompressor eines Gasgenerators verdichtet. Der Kompressor kann radial oder axial ausgeführt sein. In der strömungsabwärts darauf folgenden Brennkammer wird die Verbrennungsluft dann stark umgelenkt, um eine Zuströmung in die Verbrennungszone zu erreichen. Mit anderen Worten wird die Verbrennungsluft zunächst der Brennkammer radial in den zwischen Ummantelungsrohr und Flammrohr gebildeten Zwischenraum zugeführt und anschließend umgelenkt, so dass eine axiale Zuströmung des Brenners stattfinden.In a gas turbine as mentioned above, the combustion air is first sucked in atmospherically and then compressed in a compressor of a gas generator. The compressor may be radial or axial. In the downstream following combustion chamber, the combustion air is then greatly deflected in order to achieve an inflow into the combustion zone. In other words, the combustion air is first of the combustion chamber radially in between the casing tube and flame tube supplied space formed and then deflected so that an axial inflow of the burner take place.

In dem Zwischenraum kommt es zu einer umfänglichen bzw. rotierenden Umströmung des meist kreiszylindrischen Flammrohrs, wodurch bezüglich der Druckverteilung bzw. Strömungsverteilung der Verbrennungsluft Staupunkte und Nachlaufdellen entstehen. Wenn bei einer solchen inhomogenen Massenstromverteilung die Strömung nun wie beschrieben zusätzlich stark umgelenkt wird, bleibt diese Inhomogenität verhalten. Dadurch werden stromabwärts liegende Bauteile ungleichmäßig gekühlt und es kommt in der Verbrennungszone zu Instabilitäten, weil der Luftanteil schwankt.In the interspace, there is a circumferential or rotating flow around the usually circular cylindrical flame tube, resulting in the pressure distribution or flow distribution of the combustion air stagnation points and trailing dents. If, in such an inhomogeneous mass flow distribution, the flow is now additionally strongly deflected as described, this inhomogeneity remains restrained. As a result, downstream components are cooled unevenly and it comes in the combustion zone to instabilities, because the air content fluctuates.

Der Erfindung liegt die Aufgabe zugrunde, ein Brennkammergehäuse gemäß dem Oberbegriff des Anspruchs 1 und eine damit ausgerüstete Gasturbine, bei denen eine gleichmäßigere Verteilung der einströmenden Luft um das Flammrohr gewährleistet ist, bereitzustellen, mit einem verbesserten verhalten hinsichtlich unterschiedlicher Wärmeausdehnung der beteiligten Komponenten.The invention has for its object to provide a combustor housing according to the preamble of claim 1 and a gas turbine equipped therewith, in which a more uniform distribution of the incoming air is ensured around the flame tube, with improved behavior with respect to different thermal expansion of the components involved.

Dies wird mit einem Brennkammergehäuse gemäß Anspruch 1 bzw. mit einer Gasturbine gemäß Anspruch 10 erreicht. Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.This is achieved with a combustion chamber housing according to claim 1 or with a gas turbine according to claim 10. Further developments of the invention are defined in the dependent claims.

Gemäß einem ersten Aspekt der Erfindung wird ein Brennkammergehäuse insbesondere für eine Gasturbine, bereitgestellt, welches ein bevorzugt kreiszylindrisches Flammrohr und ein bevorzugt kreiszylindrisches Ummantelungsrohr bzw. Prallgitter aufweist, welches das Flammrohr aufnimmt und umgibt und welches in seiner Wandung eine Mehrzahl von Durchgangsöffnungen hat, über die außen auf das Ummantelungsrohr aufströmende komprimierte Luft (Kühl- und Verbrennungsluft) radial in einen zwischen dem Ummantelungsrohr und dem Flammrohr gebildeten bevorzugt kreiszylinderförmigen Zwischenraum eindringen kann. Das erfindungsgemäße Brennkammergehäuse zeichnet sich aus durch eine Mehrzahl von in dem Zwischenraum umfänglich der beiden Rohre (Flammrohr und Ummantefungsrohr) verteilt angeordneten Leitrippen, die sich jeweils radial zwischen Ummantetungsrohr und Flammrohr sowie parallel zu und entlang einer Längsrichtung von Ummantelungsrohr und Flammrohr erstrecken, so dass der Zwischenraum durch die Leitrippen in mehrere sich bevorzugt im Wesentlichen über die gesamte mit Durchgangsöffnungen versehene Länge des Ummantelungsrohrs erstreckende Längskanale mit bevorzugt jeweils kreisringsektorförmigem Querschnitt unterteilt ist.According to a first aspect of the invention, a combustion chamber housing is provided, in particular for a gas turbine, which has a preferably circular-cylindrical flame tube and a preferably circular-cylindrical sheathing tube or impact grille which receives and surrounds the flame tube and which has a plurality of passage openings in its wall via which outside on the sheath tube upflowing compressed air (cooling and combustion air) can penetrate radially into a preferably circular cylindrical space formed between the sheath tube and the flame tube. The invention Combustor housing is characterized by a plurality of circumferentially spaced in the space between the two tubes (flame tube and Ummantefungsrohr) arranged guide ribs, each extending radially between Ummantetungsrohr and flame tube and parallel to and along a longitudinal direction of the sheath tube and flame tube, so that the gap through the guide ribs are subdivided into a plurality of longitudinal channels preferably extending in each case over substantially the entire length of the sheathing tube and provided with through-openings, preferably having a cross-section in each case in the shape of an annular sector.

Die quer zur Umströmungsrichtung der im Betriebsfall einströmenden Luft stehenden Leitrippen bewirken, dass die Umströmung des Flammrohrs unterbrochen bzw verhindert wird. Dadurch kann sich die Luftströmung gleichmäßiger verteilen und die Kühlung des Flammrohr wird weniger gestört. Zusätzlich wird die Kühl- und Verbrennungsluft nach der Umlenkung von radialer auf axiale Strömung kanalförmig geführt, so dass die Zuströmung zu einer nachfolgenden Verbrennungszone homogen erfolgen kann.The transverse to the flow direction of the air flowing in the operating case guide ribs cause the flow around the flame tube is interrupted or prevented. This allows the air flow to distribute more evenly and the cooling of the flame tube is less disturbed. In addition, the cooling and combustion air is channel-shaped after the deflection from radial to axial flow, so that the inflow to a subsequent combustion zone can be made homogeneous.

Durch die optimierte Zuströmung der Luft kann in einer mit dem erfindungsgemäßen Brennkammergehäuse ausgebildeten Brennkammer einer Gasturbine ein besonders homogenes Brennstoff-Luft-Gemisch gebildet werden, wodurch die Flamme beim Verbrennungsprozess stabil im Zentrum der Brennkammer bleibt. Eine Schieflage bzw. Fluktuation der Flamme würde einen lokalen Temperaturanstieg der umliegenden Bauteile bewirken und damit eine eventuelle Überbeanspruchung, was durch die Leitrippen verhindert wird.As a result of the optimized inflow of the air, a particularly homogeneous fuel-air mixture can be formed in a combustion chamber of a gas turbine formed with the combustion chamber housing according to the invention, whereby the flame remains stable in the center of the combustion chamber during the combustion process. An imbalance or fluctuation of the flame would cause a local temperature increase of the surrounding components and thus a possible overuse, which is prevented by the guide ribs.

Im Ergebnis werden mit der Verwendung des erfindungsgemäß ausgestalteten Brennkammergehäuses in einer Brennkammer einer Gasturbine Ungleichmäßigkeiten der Luftzufuhr minimiert, so dass ein Betrieb der Brennkammer mit maximaler Auslegungstemperatur uneingeschränkt erfolgen kann.As a result, with the use of the inventively designed combustion chamber housing in a combustion chamber of a gas turbine unevenness of the air supply is minimized, so that operation of the combustion chamber with maximum design temperature can be carried out without restriction.

Gemäß der Erfindung sind die Leitrippen am Ummantelungsrohr angebracht. Außerdem erstreckt sich bevorzugt jede Leitrippen radial so, dass zwischen Leitrippe und Flammrohr ein Spalt gebildet ist.According to the invention, the guide ribs are attached to the sheath tube. In addition, each guide rib preferably extends radially so that a gap is formed between the guide rib and the flame tube.

Der Spalt ist vorteilhaft, um aufgrund unterschiedlicher Material- und Wärmeausdehnungseigenschaften mögliche Verzüge oder Spannungen zu vermeiden. Durch die Spalte hindurch auftretende Querströmungen können vernachlässigt werden, das sich die Strömung immer radial nach außen auf die Seite (Innenumfang des Ummantelungsrohrs) anlegt, an der auch die Strömungsleitrippen angebracht sind.The gap is advantageous to avoid possible distortion or stress due to different material and thermal expansion properties. Cross-flows occurring through the gaps can be neglected, as the flow always rests radially outward on the side (inner circumference of the sheathing tube) to which the flow-guiding ribs are also attached.

Bevorzugt sind gemäß der Erfindung die Leitrippen jeweils streifenförmig ausgebildet, wobei sich deren jeweilige Breite radial und deren jeweilige Länge axial bzw. in Längsrichtung von Ummantelungsrohr und Flammrohr erstrecken. Die Dickenabmessung der jeweiligen Leitrippen beträgt bevorzugt etwa 3 mm.According to the invention, the guide ribs are each preferably strip-shaped, their respective width extending radially and their respective length extending axially or in the longitudinal direction of the casing tube and the flame tube. The thickness dimension of the respective guide ribs is preferably about 3 mm.

Bevorzugt sind gemäß der Erfindung die Leitrippe und die in der Wandung des Ummantelungsrohrs ausgebildeten Durchgangsöffnungen so angeordnet, dass die Leitrippen keine der Durchgangsöffnungen verschließen. Damit wird vorteilhaft eine optimale bzw. unbehinderte radiale Zuströmung der Luft in den Zwischenraum gewährleistet.According to the invention, the guide rib and the passage openings formed in the wall of the jacket tube are preferably arranged such that the guide ribs do not close any of the passage openings. This advantageously ensures optimum or unhindered radial inflow of the air into the intermediate space.

Gemäß einer bevorzugten Ausgestaltung der Erfindung beträgt die in dem Zwischenraum vorgesehene Anzahl von Leitrippen genau acht, wobei alle Leitrippen zueinander identisch ausgebildet sind.According to a preferred embodiment of the invention, the number of guide ribs provided in the intermediate space is exactly eight, wherein all the guide ribs are identical to one another.

Bevorzugt sind gemäß der Erfindung die Leitrippen mit unterschiedlichem umfänglichen Winkelabstand voneinander in dem Zwischenraum angeordnet. Der Winkelabstand variiert bevorzugt in einem Bereich von etwa 28 Grad bis etwa 126 Grad.Preferably, according to the invention, the guide ribs are arranged at different circumferential angular distances from one another in the intermediate space. Of the Angular spacing preferably varies in a range of about 28 degrees to about 126 degrees.

Bevorzugt weisen gemäß der Erfindung die Leitrippen eine erste Gruppe von Leitrippen und eine zweite Gruppe von Leitrippen auf, wobei die erste Gruppe von Leitrippen bezüglich ihres gegenseitigen umfänglichen Winkelabstands in einem vorbestimmten ersten Anordnungsmuster angeordnet sind, und wobei die zweite Gruppe von Leitrippe bezüglich ihres gegenseitigen umfänglichen Winkelabstandes in einem zweiten Anordnungsmuster angeordnet sind, welches eine Spiegelung des ersten Anordnungsmusters an einer Symmetrieachse des Flammrohrs darstellt. Die Symmetrieachse erstreckt sich bevorzugt im Querschnitt gesehen durch den Mittelpunkt des Flammrohrs.Preferably, according to the invention, the guide ribs comprise a first group of guide ribs and a second group of guide ribs, wherein the first group of guide ribs are arranged in a predetermined first arrangement pattern with respect to their mutual circumferential angular separation, and wherein the second group of guide ribs are mutually circumferential Angular distance are arranged in a second arrangement pattern, which represents a reflection of the first arrangement pattern on an axis of symmetry of the flame tube. The symmetry axis preferably extends in cross section through the center of the flame tube.

Gemäß einem zweiten Aspekt der Erfindung wird eine Gasturbine mit einem Brennkammergehäuse gemäß einer, mehreren oder allen zuvor beschriebenen bevorzugten Ausgestaltungen der Erfindung in jeder denkbaren Kombination bereitgestellt.According to a second aspect of the invention, a gas turbine having a combustion chamber housing according to one, several or all of the previously described preferred embodiments of the invention is provided in any conceivable combination.

Die Erfindung erstreckt sich ausdrücklich auch auf solche Ausführungsformen, welche nicht durch Merkmalskombinationen aus expliziten Rückbezügen der Ansprüche gegeben sind, womit die offenbarten Merkmale der Erfindung - soweit dies technisch sinnvoll ist - beliebig miteinander kombiniert sein können.The invention expressly extends to such embodiments, which are not given by combinations of features of explicit back references of the claims, whereby the disclosed features of the invention - as far as is technically feasible - can be combined with each other.

Im Folgenden wird die Erfindung anhand einer bevorzugten Ausführungsform und unter Bezugnahme auf die beigefügten Figuren detaillierter beschrieben.

Fig.1
zeigt eine perspektivische teilweise gebrochene Ansicht eines Brennkammergehäuses einer Brennkammer einer Gasturbine gemäß einer Ausführungsform der Erfindung.
Fig.2
zeigt eine Stirnansicht des Brennkammergehäuses von Fig.1, jedoch ohne Flammrohr.
Fig.3
zeigt eine Schnittansicht des Brennkammergehäuses von Fig.1, gesehen entlang einer Linie A-A in Fig.2.
Fig.4
zeigt in zwei Querschnittsansichten einen Vergleich der Luftströmungs- und Druckverteilungen in dem Brennkammergehäuse von Fig.1 mit und ohne Leitrippen.
In the following the invention will be described in more detail by means of a preferred embodiment and with reference to the attached figures.
Fig.1
shows a perspective partially broken view of a combustion chamber housing a combustion chamber of a gas turbine according to an embodiment of the invention.
Fig.2
shows an end view of the combustion chamber of Fig.1 , but without flame tube.
Figure 3
shows a sectional view of the combustion chamber of Fig.1 , seen along a line AA in Fig.2 ,
Figure 4
shows in two cross-sectional views a comparison of the air flow and pressure distributions in the combustion chamber of Fig.1 with and without guide ribs.

Nun wird unter Bezugnahme auf die Figuren 1 bis 4 eine Gasturbine 1 (nicht vollständig dargestellt) mit einem Brennkammergehäuse 10 gemäß einer Ausführungsform der Erfindung beschrieben.Now, referring to the FIGS. 1 to 4 a gas turbine 1 (not fully shown) with a combustion chamber housing 10 according to an embodiment of the invention described.

Das Brennkammergehäuse 10 der Gasturbine 1 weist ein kreiszylindrisches Flammrohr 20 und ein kreiszylindrisches Ummantelungsrohr bzw. Prallgitter 30 auf, welches das Flammrohr 20 aufnimmt und umgibt und welches in seiner Wandung eine Mehrzahl von gleichmäßig um den Umgang herum verteilten Durchgangsöffnungen 31 hat, über die außenumfänglich auf das Ummantelungsrohr 30 ausströmende durch einen Kompressor (nicht gezeigt) der Gasturbine 1 komprimierte Luft (Kühl- und Verbrennungsluft) radial in einen zwischen dem Ummantelungsrohr 30 und dem Flammrohr 20 gebildeten kreiszylinderförmigen Zwischenraum 40 eindringen kann.The combustion chamber housing 10 of the gas turbine 1 has a circular cylindrical flame tube 20 and a circular cylindrical sheath or baffle 30, which receives and surrounds the flame tube 20 and which has in its wall a plurality of evenly distributed around the handling through openings 31, on the outer circumference the jacket tube 30 flowing through a compressor (not shown) of the gas turbine 1 compressed air (cooling and combustion air) can penetrate radially into a circular cylindrical space 40 formed between the sheath tube 30 and the flame tube 20.

In dem Zwischenraum 40 sind eine Mehrzahl (hier genau acht) von umfänglich der beiden Rohre (Flammrohr 20 und Ummantelungsrohr 30) verteilt angeordneten identischen Leitrippen 50 vorgesehen, die sich jeweils radial zwischen Ummantelungsrohr 30 und Flammrohr 20 sowie parallel zu und entlang einer Längsrichtung LR von Ummantelungsrohr 30 und Flammrohr 20 erstrecken, so dass der Zwischenraum 40 durch die Leitrippen 50 in mehrere sich im Wesentlichen über die gesamte mit Durchgangsöffnungen 31 versehene Länge des Ummantelungsrohrs 30 erstreckende Längskanäle 41 mit jeweils kreisringsektorförmigem Querschnitt unterteilt ist.In the intermediate space 40, a plurality (exactly eight here) of circumferentially of the two tubes (flame tube 20 and sheath tube 30) distributed identical guide ribs 50 are provided, each radially between the sheath tube 30 and flame tube 20 and parallel to and along a longitudinal direction LR of Jacket tube 30 and flame tube 20 extend so that the gap 40 through the guide ribs 50 in a plurality of substantially over the entire provided with through holes 31 length the sheathing tube 30 extending longitudinal channels 41 is divided with each kreisringsektorförmigem cross-section.

Die Leitrippen 50 verhindern zuverlässig, dass die im Betriebsfall über die Durchgangsöffnungen 31 radial einströmende Luft im Zwischenraum 40 eine umfängliche bzw. um das Flammrohr 20 rotierende Strömungskomponente erhält. Dadurch kann sich die Luftströmung gleichmäßiger um das Flammrohr 20 verteilen und die Kühlung des Flammrohres 20 wird verbessert. Zusätzlich wird die Luft nach der Umlenkung (durch das Auftreffen auf das Flammrohr 20) von radialer auf axiale Strömung kanalisiert in den Längskanälen 41 geführt, so dass die Zuströmung zu einer nachfolgenden Verbrennungszone (nicht gezeigt) homogen erfolgen kann.The guide ribs 50 reliably prevent the air flowing radially in the operating case via the passage openings 31 in the intermediate space 40 from obtaining a circumferential or rotating flow component around the flame tube 20. As a result, the air flow can be distributed more uniformly around the flame tube 20 and the cooling of the flame tube 20 is improved. In addition, the air after the deflection (by hitting the flame tube 20) is channeled from radial to axial flow in the longitudinal channels 41, so that the inflow to a subsequent combustion zone (not shown) can be made homogeneous.

Die Leitrippen 50 sind am Innenumfang des Ummantelungsrohr 30 angebracht (z.B. angeschweißt), wobei sich jede Leitrippe 50 radial so erstreckt, dass zwischen Leitrippe 50 und Flammrohr 20 ein Spalt S gebildet ist. Der Spalt S hat gerade eine solche radiale Weite, dass im Betrieb der Gasturbine 1 unterschiedliche wärmebedingte Materialausdehnungen von Flammrohr 20. Ummantelungsrohr 30 und Leitrippen 50 ohne unter Druck Aufsetzen der Leitrippen 50 auf dem Flammrohr 20 kompensiert werden können.The guide ribs 50 are attached (e.g., welded) to the inner circumference of the sheath tube 30, with each guide rib 50 extending radially such that a gap S is formed between the guide rib 50 and the flame tube 20. The gap S has just such a radial width, that during operation of the gas turbine 1 different heat-related material expansions of flame tube 20. Sheath tube 30 and baffles 50 can be compensated without pressurizing the guide ribs 50 on the flame tube 20.

Die Leitrippen 50 sind jeweils in Form eines Blechstreifens ausgebildet, wobei sich deren jeweilige Breite radial und deren jeweilige Länge axial bzw. in Längsrichtung LR von Ummantelungsrohr 30 und Flammrohr 20 erstrecken. Die Dickenabmessung der jeweiligen Leitrippen 50 beträgt dabei etwa 3 mm.The guide ribs 50 are each in the form of a sheet-metal strip, with their respective width extending radially and their respective length axially or in the longitudinal direction LR of the sheath tube 30 and the flame tube 20. The thickness of the respective guide ribs 50 is about 3 mm.

Wie insbesondere aus Fig.3 (linke Hälfte der Figur) ersichtlich, sind die Leitrippen 50 und die in der Wandung des Ummantelungsrohrs 30 ausgebildeten Durchgangsöffnungen 31 so angeordnet, dass die Leitrippen 50 keine der Durchgangsöffnungen 31 verschließen.As in particular from Figure 3 (Left half of the figure), the guide ribs 50 and the through holes 31 formed in the wall of the jacket tube 30 are arranged so that the guide ribs 50 do not close any of the through holes 31.

Wie insbesondere aus den Figuren 1 und 2 ersichtlich, sind die Leitrippen 50 mit unterschiedlichem umfänglichen Winkelabstand voneinander in dem Zwischenraum 40 angeordnet.As in particular from the FIGS. 1 and 2 As can be seen, the guide ribs 50 are arranged at different circumferentially angular intervals from one another in the intermediate space 40.

Die Leitrippen 50 weisen dabei eine erste Gruppe von Leitrippen 50 (die in Fig.2 links einer Symmetrieachse Y des Flammrohrs 20 angeordnet sind) und eine zweite Gruppe von Leitrippen 50 (die in Fig.2 rechts der Symmetrieachse Y angeordnet sind) auf. Gemäß der gezeigten Ausführungsform der Erfindung sind die erste Gruppe von Leitrippen 50 bezüglich ihres gegenseitigen umfänglichen Winkelabstands in einem vorbestimmten ersten Anordnungsmuster angeordnet, wobei die zweite Gruppe von Leitrippen 50 bezüglich ihres gegenseitigen umfänglichen Winkelabstands in einem zweiten Anordnungsmuster angeordnet sind, welches eine Spiegelung des ersten Anordnungsmusters an der Symmetrieachse Y darstellt.The guide ribs 50 in this case have a first group of guide ribs 50 (which in FIG Fig.2 on the left of a symmetry axis Y of the flame tube 20) and a second group of guide ribs 50 (shown in Figs Fig.2 right of the axis of symmetry Y are arranged) on. According to the shown embodiment of the invention, the first group of guide ribs 50 are arranged in a predetermined first arrangement pattern with respect to their mutual circumferential angular distance, the second group of guide ribs 50 being arranged in a second arrangement pattern with respect to their mutual circumferential angular distance, which is a reflection of the first arrangement pattern at the symmetry axis Y represents.

Gemäß der in Fig.2 gezeigten Ausgestaltung der Erfindung ist das vorbestimmte erste Anordnungsmuster der ersten Gruppe von Leitrippen 50 definiert durch die Winkelmaße: a=27 Grad, b=1,8 Grad, c=34,2 Grad und d=59,4 Grad. Das zweite Anordnungsmuster der zweiten Gruppe von Leitrippen 50 ist definiert durch die Winkelmaße: a'=27 Grad, b'=1,8 Grad, c'=34,2 Grad und d'=59,4 Grad.According to the in Fig.2 1, the predetermined first arrangement pattern of the first group of guide ribs 50 is defined by the angular dimensions: a = 27 degrees, b = 1.8 degrees, c = 34.2 degrees and d = 59.4 degrees. The second array pattern of the second group of guide ribs 50 is defined by the angular dimensions: a '= 27 degrees, b' = 1.8 degrees, c '= 34.2 degrees, and d' = 59.4 degrees.

Mit anderen Worten ergibt sich gemäß Fig.2 in jeder Gruppe von Leitrippen 50 eine Kombination von Winkelabständen zwischen den Leitrippen 50 von 28,2 Grad, 32,4 Grad und 25,2 Grad, wobei die beiden Gruppen von Leitrippen 50 einen Winkelabstand von 61,2 Grad (in Fig.2 unten) bzw. 126 Grad (in Fig.2 oben) haben.In other words, according to Fig.2 in each group of baffles 50, a combination of angular spacings between the baffles 50 of 28.2 degrees, 32.4 degrees and 25.2 degrees, the two groups of baffles 50 having an angular separation of 61.2 degrees (in Fig.2 below) or 126 degrees (in Fig.2 above).

Gemäß nicht dargestellten anderen Ausführungsformen der Erfindung könnten das erste und das zweite Anordnungsmuster auch vollkommen unterschiedlich sein. Die spezielle Realisierung des ersten und zweiten Anordnungsmusters bzw. des jeweiligen Winkelabstands der Leitrippen 50 kann von der jeweiligen z.B. dimensionalen und/oder förmlichen Ausgestaltung der Gasturbine 1 abhängen und damit gemäß den dort auftretenden speziellen Strömungsverhältnissen anpassbar sein.According to other embodiments of the invention, not shown, the first and second arrangement patterns could also be completely different be. The specific realization of the first and second arrangement pattern or of the respective angular spacing of the guide ribs 50 may depend on the respective, for example, dimensional and / or formal configuration of the gas turbine 1 and thus be adaptable in accordance with the specific flow conditions occurring there.

In Fig.4 ist in zwei Querschnittsansichten ein Vergleich der Luftströmungs- und Druckverteilungen in dem Brennkammergehäuse 10 gezeigt, wobei das Brennkammergehäuse gemäß der in Fig.4 oberen Darstellung ohne Leitrippen 50 und das Brennkammergehäuse gemäß der in Fig.4 unteren Darstellung gemäß der Erfindung mit Leitrippen 50 ausgeführt ist.In Figure 4 In FIG. 2, a comparison of the air flow and pressure distributions in the combustion chamber housing 10 is shown in two cross-sectional views, wherein the combustion chamber housing according to the in Figure 4 upper illustration without guide fins 50 and the combustion chamber housing according to the in Figure 4 bottom view according to the invention with guide ribs 50 is executed.

Wie aus der oberen Darstellung von Fig.4 ersichtlich, stellen sich ohne Leitrippen 50 im Betrieb der Gasturbine 1 aufgrund der umfangsmäßigen Umströmung des Flammrohrs 20 in dem Zwischenraum 40 inhomogene Luftströmungs- und Druckverhältnisse ein.As seen from the upper illustration of Figure 4 can be seen without guide ribs 50 in the operation of the gas turbine 1 due to the circumferential flow around the flame tube 20 in the gap 40 inhomogeneous Luftströmungs- and pressure conditions.

Wie aus der unteren Darstellung von Fig.4 ersichtlich, stellen sich mit den quer zur Umströmungsrichtung der einströmenden Luft stehenden Leitrippen 50 im Betrieb der Gasturbine 1 aufgrund des damit erzielten Unterbindens der umfangsmäßigen Umströmung des Flammrohr 20 in dem Zwischenraum 40 im Wesentlichen homogene Luftströmungs- und Druckverhältnisse ein, womit eine gleichmäßige Verteilung der einströmenden Luft um das Flammrohr 20 erreicht und die Kühlung des Flammrohres 20 verbessert Wird. Zusätzlich wird die Luft nach der Umlenkung von radialer auf axiale Strömung kanalförmig geführt, so dass die Zuströmung zur nachfolgenden Verbrennungszone homogen erfolgt.As from the lower part of Figure 4 can be seen standing with the transverse to the direction of flow of the incoming air guide baffles 50 during operation of the gas turbine 1 due to the thus obtained Unterbindens the circumferential flow around the flame tube 20 in the space 40 substantially homogeneous Luftströmungs- and pressure conditions, whereby a uniform distribution of the incoming Air is achieved around the flame tube 20 and the cooling of the flame tube 20 is improved. In addition, the air is channel-shaped after the deflection from radial to axial flow, so that the inflow to the subsequent combustion zone is homogeneous.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Gasturbinegas turbine
1010
Brennkammergehäusecombustion chamber housing
2020
Flammrohrflame tube
3030
Ummantelungsrohrsheathing tube
3131
DurchgangsöffnungenThrough openings
4040
Zwischenraumgap
4141
Längskanallongitudinal channel
5050
Leitrippeguiding rib
SS
Spaltgap
LRLR
Längsrichtunglongitudinal direction
YY
Symmetrieachseaxis of symmetry
a, b, c, da, b, c, d
Winkelmaßsquare
a', b', c', d'a ', b', c ', d'
Winkelmaßsquare

Claims (8)

  1. A combustion chamber housing (10) of a gas turbine (1) with:
    a flame tube (20), and a jacket tube (30), which surrounds the flame tube (20) and which in its wall has a plurality of passage openings (31), via which air flowing onto the jacket tube (30) on the outside can radially enter an intermediate space (40) formed between the jacket tube (30) and the flame tube (20), a plurality of flow guiding ribs (50) arranged circumferentially distributed in the intermediary space (40) of the two tubes, which in each case extend radially between jacket tube (30) and flame tube (20) and parallel to a longitudinal direction (LR) of jacket tube (30) and flame tube (20) in such a manner and which are welded to the jacket tube (30), so that the intermediate space (40) through the flow guiding ribs (50) is subdivided into multiple longitudinal channels (41), characterized in that between the flow guiding ribs (50) and the flame tube (20) a gap (S) is formed.
  2. The combustion chamber housing (10) according to Claim 1, wherein the flow guiding ribs (50) are each formed strip-shaped.
  3. The combustion chamber housing (10) according to Claim 2, wherein the flow guiding ribs (50) have a thickness dimension of 3 mm.
  4. The combustion chamber housing (10) according to any one of the Claims 1 to 3, wherein the flow guiding ribs (50) and the passage openings (31) which are formed in the wall of the jacket tube (30) are arranged so that the flow guiding ribs (50) do not close off any of the passage openings (31).
  5. The combustion chamber housing (10) according to any one of the Claims 1 to 4, wherein the plurality of flow guiding ribs (50) is formed by exactly eight identical flow guiding ribs (50).
  6. The combustion chamber housing (10) according to any one of the Claims 1 to 5, wherein the flow guiding ribs (50) are arranged in the intermediate space (40) with different circumferential angle spacing from one another.
  7. The combustion chamber housing (10) according to any one of the Claims 1 to 6, wherein the flow guiding ribs (50) comprise a first group of flow guiding ribs (50) and a second group of flow guiding ribs (50), wherein the first group of flow guiding ribs (50) with respect to its mutual circumferential angular distance are arranged at a predetermined first arrangement pattern, and wherein the second group of flow guiding ribs (50) with respect to their mutual circumferential angular distance are arranged in a second arrangement pattern, which represents a mirror image of the first arrangement pattern on an axis of symmetry (Y) of the flame tube (20).
  8. A gas turbine (1) with a combustion chamber housing (10) according to any one of the Claims 1 to 7.
EP12717246.8A 2011-04-18 2012-04-16 Combustion chamber housing and gas turbine equipped therewith Active EP2699848B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011007562A DE102011007562A1 (en) 2011-04-18 2011-04-18 Combustor housing and thus equipped gas turbine
PCT/EP2012/056878 WO2012143318A1 (en) 2011-04-18 2012-04-16 Combustion chamber housing and gas turbine equipped therewith

Publications (2)

Publication Number Publication Date
EP2699848A1 EP2699848A1 (en) 2014-02-26
EP2699848B1 true EP2699848B1 (en) 2015-06-10

Family

ID=46017823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12717246.8A Active EP2699848B1 (en) 2011-04-18 2012-04-16 Combustion chamber housing and gas turbine equipped therewith

Country Status (7)

Country Link
US (1) US20140144138A1 (en)
EP (1) EP2699848B1 (en)
JP (1) JP5678232B2 (en)
CA (1) CA2833464A1 (en)
DE (1) DE102011007562A1 (en)
RU (1) RU2544400C1 (en)
WO (1) WO2012143318A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016462A1 (en) * 2004-03-31 2005-11-24 Alstom Technology Ltd Coolable wall structure for especially gas turbine has cooling medium passing through passages formed in core and parallel to one another and parallel to inner and outer shells

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE709065C (en) * 1935-07-17 1941-08-07 Rene Alexandre Arthur Couzinet Feeding device for gas turbines
DE1004212B (en) 1953-11-07 1957-03-14 Westfalenhuette Ag Process for the heat treatment of reinforcing steel
US3915619A (en) * 1972-03-27 1975-10-28 Phillips Petroleum Co Gas turbine combustors and method of operation
GB1550368A (en) * 1975-07-16 1979-08-15 Rolls Royce Laminated materials
US4414816A (en) * 1980-04-02 1983-11-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Combustor liner construction
GB2087065B (en) * 1980-11-08 1984-11-07 Rolls Royce Wall structure for a combustion chamber
JPS62118958U (en) * 1986-01-16 1987-07-28
US5337568A (en) * 1993-04-05 1994-08-16 General Electric Company Micro-grooved heat transfer wall
DE4443864A1 (en) * 1994-12-09 1996-06-13 Abb Management Ag Cooled wall part
US5724816A (en) * 1996-04-10 1998-03-10 General Electric Company Combustor for a gas turbine with cooling structure
RU2138661C1 (en) * 1996-05-22 1999-09-27 Акционерное общество "Авиадвигатель" Gas turbine engine operating on cryogenic fuel
JPH1082527A (en) * 1996-09-05 1998-03-31 Toshiba Corp Gas turbine combustor
JP2002162036A (en) * 2000-11-22 2002-06-07 Mitsubishi Heavy Ind Ltd Combustor
CN1246638C (en) * 2001-04-27 2006-03-22 西门子公司 Combustion chamber in particulary of gas turbine
EP1288574A1 (en) * 2001-09-03 2003-03-05 Siemens Aktiengesellschaft Combustion chamber arrangement
RU36724U1 (en) * 2003-08-14 2004-03-20 Государственное предприятие Запорожское машиностроительное конструкторское бюро "Прогресс" им. акад. А.Г. Ивченко FRONT DEVICE OF COMBUSTION CHAMBER OF A GAS TURBINE ENGINE
RU2280814C1 (en) * 2004-12-27 2006-07-27 Акционерное общество открытого типа Авиамоторный научно-технический комплекс "Союз" Ring combustion chamber for gas-turbine engine
DE102006042124B4 (en) 2006-09-07 2010-04-22 Man Turbo Ag Gas turbine combustor
DE102007018061A1 (en) * 2007-04-17 2008-10-23 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustion chamber wall
DE102009035550A1 (en) * 2009-07-31 2011-02-03 Man Diesel & Turbo Se Gas turbine combustor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016462A1 (en) * 2004-03-31 2005-11-24 Alstom Technology Ltd Coolable wall structure for especially gas turbine has cooling medium passing through passages formed in core and parallel to one another and parallel to inner and outer shells

Also Published As

Publication number Publication date
EP2699848A1 (en) 2014-02-26
DE102011007562A1 (en) 2012-10-18
CA2833464A1 (en) 2012-10-26
WO2012143318A1 (en) 2012-10-26
RU2544400C1 (en) 2015-03-20
JP2014511991A (en) 2014-05-19
US20140144138A1 (en) 2014-05-29
JP5678232B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
DE102005025823B4 (en) Method and device for cooling a combustion chamber lining and a transition part of a gas turbine
CH702825B1 (en) Turbine combustor insert assembly.
EP2340397B1 (en) Burner insert for a gas turbine combustion chamber and gas turbine
EP2527743B1 (en) Segment component comprising high temperature cast material for an annular combustion chamber, annular combustion chamber for an aircraft engine, aircraft engine and method for producing an annular combustion chamber
EP2927594B1 (en) Combustion chamber of a gas turbine
DE102008055596A1 (en) Integrated inlet flow conditioner of a fuel nozzle
DE102008022669A1 (en) Fuel nozzle and method for its production
DE102008037385A1 (en) Gas-turbine engine, has outer surface with multiple transverse turbulators and supports in order to arrange sheet cover at distance from turbulators for definition of air flow channel
EP3132202B1 (en) Bypass heat shield element
CH707842A2 (en) A method and apparatus for improving the heat transfer in the turbine sections of gas turbines.
EP2808611B1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
EP3306196A1 (en) Combustion chamber assembly of a gas turbine and aviation gas turbine
EP3117148B1 (en) Burner arrangement with resonator
CH707754A2 (en) Flow sleeve for the thermal control of a double turbine housing and associated method.
EP3143335B1 (en) Burner for a combustion engine and combustion engine
EP2409086B1 (en) Burner assembly for a gas turbine
WO2021148213A1 (en) Resonator ring for combustion chamber systems
EP2699848B1 (en) Combustion chamber housing and gas turbine equipped therewith
EP2459934B1 (en) Gas turbine combustion chamber
DE102013108599A1 (en) The combustor liner cooling assembly
DE102022210198A1 (en) Transition piece, combustor and gas turbine engine
DE102007002231A1 (en) Method and apparatus for assembling gas turbine engines
DE102019116808A1 (en) COOLING CHANNELS OVERLAP
DE102017118166A1 (en) Burner head, burner system and use of the burner system
EP1869289B1 (en) Guide vane support

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012003419

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23R0003040000

Ipc: F23M0009020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/44 20060101ALI20150105BHEP

Ipc: F23M 9/02 20060101AFI20150105BHEP

Ipc: F23R 3/42 20060101ALI20150105BHEP

Ipc: F23R 3/06 20060101ALI20150105BHEP

Ipc: F23R 3/00 20060101ALI20150105BHEP

INTG Intention to grant announced

Effective date: 20150210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 731077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003419

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150910

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150910

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151012

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150610

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003419

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

26N No opposition filed

Effective date: 20160311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160416

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120416

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 731077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012003419

Country of ref document: DE

Owner name: MAN ENERGY SOLUTIONS SE, DE

Free format text: FORMER OWNER: MAN DIESEL & TURBO SE, 86153 AUGSBURG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 12