EP2697405B1 - Spark plug electrode material and spark plug - Google Patents

Spark plug electrode material and spark plug Download PDF

Info

Publication number
EP2697405B1
EP2697405B1 EP12707053.0A EP12707053A EP2697405B1 EP 2697405 B1 EP2697405 B1 EP 2697405B1 EP 12707053 A EP12707053 A EP 12707053A EP 2697405 B1 EP2697405 B1 EP 2697405B1
Authority
EP
European Patent Office
Prior art keywords
weight
electrode material
spark plug
silicon
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12707053.0A
Other languages
German (de)
French (fr)
Other versions
EP2697405A1 (en
Inventor
Simone Baus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2697405A1 publication Critical patent/EP2697405A1/en
Application granted granted Critical
Publication of EP2697405B1 publication Critical patent/EP2697405B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Definitions

  • the present invention relates to a spark plug electrode material, and a spark plug including an electrode formed of the spark plug electrode material and a method of manufacturing the spark plug electrode material.
  • Spark plugs are known in the prior art in various configurations. Spark plugs in spark ignition engines generate sparking between their electrodes to ignite the fuel-air mixture.
  • the spark plugs have ground electrodes and center electrodes, with spark plug designs having two to five electrodes being known.
  • the electrodes are introduced either onto the spark plug housing (ground electrode) or as center electrodes in a ceramic insulator.
  • the life of a spark plug is affected by the corrosion and erosion resistance of the electrode material.
  • Conventional electrode materials are based on nickel alloys containing aluminum. However, these have the problem that under operating conditions in the engine compartment, ie at high temperatures and oxidizing atmosphere, a large part of the nickel surface as well as a part of the nickel inside the electrode material oxidized by reactions with the surrounding oxygen.
  • a nickel oxide layer is formed, which also contains aluminum oxide and has both heat-insulating and electrical conductivity-inhibiting properties. As a result, it tends to corrode or spark erosion after only a short time. As a result, the electrode gap is increased, which ultimately leads to failure of the spark plug.
  • the formation of an oxide layer under normal conditions The use of the spark plug can at best be achieved by using pure noble metal or precious metal based electrode materials, such as platinum or platinum alloys with iridium, which have increased resistance to spark erosion attack.
  • platinum platinum
  • Spark plug electrodes made of an alloy based on nickel with 1.8-22% silicon and with a fraction of one percent magnesium, copper and manganese, are for example from US 2,955,598 known.
  • the spark plug electrode material according to the invention with the features of claim 1 has the advantage that it is based on a nickel-based alloy, which keeps the cost of the electrode material and thus that of the spark plug low. Furthermore, this spark plug electrode material consisting of nickel, silicon and copper and optionally yttrium and unavoidable metallic and non-metallic impurities such as iron, chromium, titanium, manganese, sulfur, sulfur compound, carbon, carbon compound and oxygen, has the advantage that under normal conditions Use, so at elevated temperature and presence of oxygen, at least on a portion of its surface within a very short time, usually after a few hours, forms a specifically structured, particularly homogeneous, relatively thin oxide layer of nickel oxide.
  • the structure of the oxide layer is characterized in that between the oxide grain boundaries of the forming nickel oxide layer, a boundary layer - a so-called grain boundary phase - forms, which has an advantageous effect on the spark erosive wear, thus reducing the removal of the electrode material by spark erosion and thus the Service life of the spark plug electrode is increased.
  • a boundary layer - a so-called grain boundary phase - forms, which has an advantageous effect on the spark erosive wear, thus reducing the removal of the electrode material by spark erosion and thus the Service life of the spark plug electrode is increased.
  • silicon nickel-based Starting electrode material (nickel-based alloy) includes the grain boundary phase of the nickel oxide grains when the electrode material is used as intended, silicon and / or silicon oxide.
  • the content of silicon is 0.7 to 1.3% by weight of the content of copper is 0.5 to 1.0% by weight and the content of nickel is 97.5 to 98.5% by weight % and 0.07 to 0.13 wt .-% yttrium and the proportion of metallic impurities in total less than 0.2 wt .-%, wherein the content of iron and / or chromium and / or titanium is less than 0.05 wt .-%, and the content of sulfur and / or sulfur compounds and / or carbon and / or carbon compounds is less than 0.01 wt .-%, and the content of oxygen is less than 0.003 wt .-% ,
  • the grain boundary phase of the nickel oxide grains is preferably formed from silicon and / or silicon oxide when the electrode material is used as intended.
  • the thermomechanical, electrical or thermally conductive properties of the oxide layer are advantageously influenced. Furthermore, in addition to the electrical conductivity of the forming oxide layer, and the oxidation resistance of the same, as well as their thermodynamic stability is improved, which in turn the spark erosive Wear of the electrode material is reduced.
  • This oxide layer has a high thermal conductivity of preferably 6 W / mK, in particular at least 8 W / mK or even 10 W / mK and more, and has a particularly high electrical conductivity.
  • the voltage and the applied temperature applied to the electrode material during its intended use can be uniformly distributed evenly over the entire electrode material, thereby limiting localized maximum temperatures and maximum stresses to a small area of the electrode surface, which clearly shows the corrosion and erosion of the electrode material reduced.
  • the invention thus goes a new way, as is optimized by targeted choice of the components of the electrode material, namely nickel, copper and silicon, forming during normal use oxide layer, and not as in the prior art, the emphasis is placed on the highest possible corrosion resistance ,
  • the spark plug electrode material according to the invention is preferably characterized in that the grain boundary phase of the nickel oxide grains also contains copper and / or copper oxide in addition to silicon and / or silicon oxide. However, the majority of copper and / or copper oxide deposits mainly in the nickel oxide grains.
  • a grain boundary phase of the nickel oxide grains which also comprises or contains copper and / or copper oxide in addition to silicon and / or silicon oxide, the thermomechanical, electrical or heat-conducting properties of the oxide layer are further advantageously influenced.
  • the spark plug electrode material according to the invention is characterized in that the content of silicon and / or silicon oxide in the nickel oxide layer 1 to 5 wt .-%, in particular 2 to 4 wt .-% and in particular 3 wt .-% based on the total weight of the nickel oxide layer.
  • the content of silicon and / or silicon oxide in the nickel oxide layer is understood to mean the proportion of silicon and / or silicon oxide present in the grain boundary phase. This proportion is easily measurable by, for example, energy dispersive X-ray spectroscopy (EDX) on a scanning electron microscope.
  • EDX energy dispersive X-ray spectroscopy
  • the content of silicon and / or silicon oxide is therefore preferably in a range from 2 to 4% by weight, based on the total weight of the nickel oxide layer.
  • the spark plug electrode material is characterized in that about 90% of the nickel oxide grains and in particular about 95% of the nickel oxide grains has a particle size of less than 15 microns.
  • the formation of nickel oxide grains with the smallest possible grain size is essential for the formation of a nickel oxide layer of nickel oxide grains, which has a homogeneous distribution of the silicon-containing grain boundary phase.
  • a sufficient stability of the electrode material according to the invention comprising a nickel oxide layer of nickel oxide grains with grain boundary phases is achieved if at least 90% and in particular 95% of the nickel oxide grains forming during normal use of the spark plug electrode material have a particle size of less than 15 ⁇ m.
  • a grain size of the nickel oxide grains of less than 15 ⁇ m can be produced, for example, by the action of a spark plasma on the electrode material according to the invention.
  • the content of silicon 0.9 to 1.1 wt .-%, in particular 1 wt .-% and the content of Copper 0.60 to 0.85 wt .-%, in particular 0.75 wt .-% based on the total weight of the electrode material is. Even with a small proportion of silicon of 0.7 wt .-%, the oxidation behavior of the electrode material and the electrical resistance of the electrode material forming on the oxide layer is positively influenced by the fact that when the spark plug electrode material is used as intended, a sufficient amount of silicon and / or Silicon oxide of about 1 to 5 wt .-% of the silicon used in the grain boundary phase of the nickel oxide grains is included.
  • the spark plug electrode material therefore particularly preferably has a content of silicon of from 0.9 to 1.1% by weight and in particular of 1% by weight and a content of copper of from 0.6 to 0.85% by weight, in particular of 0.75 wt .-%, on.
  • the attached elements silicon and copper by addition and accumulation of silicon and / or silicon or silicon and / or silicon oxide and copper and / or copper oxide at the grain boundary phases of the nickel oxide grains in the intended use of the spark plug electrode material forming nickel oxide layer to one particularly high electrical conductivity of the oxide layer.
  • the forming oxide layer is also thermodynamically and mechanically sufficiently stable, so that the spark erosive wear and corrosion of the spark plug electrode material according to the invention are effectively reduced.
  • the spark plug electrode material according to the invention is characterized in that the layer thickness of the grain boundary phase is smaller than 0.3 .mu.m, in particular smaller than 0.2 .mu.m and in particular smaller than 0.1 .mu.m.
  • the layer thickness of the grain boundary phases is preferably at least as great that individual silicon atoms and / or silicon oxide particles can attach to it. In particular, therefore, the layer thickness of the grain boundary phases is greater than 0.1 nm and less than 0.2 microns and in particular less than 0.1 microns.
  • the spark plug electrode material according to the invention is characterized in that it contains in addition to nickel, copper and silicon 0.09 to 0.11 wt .-% and in particular 0.10 wt .-% yttrium. Addition of such small amounts of yttrium prevents abnormal grain growth during proper use of a spark plug having the spark plug electrode material of the present invention.
  • the yttrium content can be kept deliberately low, for example, by a low oxygen content of the alloy. From a proportion of yttrium of more than 0.13 wt .-%, the oxidation behavior and thus the electrical resistance of the forming oxide layer is adversely affected because form yttrium-containing precipitates in the electrode material.
  • the spark plug electrode material is characterized by a proportion of metallic impurities, which is less than 0.1 wt .-% in total.
  • Metallic impurities include elements and compounds such as iron, titanium, chromium, manganese and the like. Such impurities reduce the effect of increasing the electrical conductivity as achieved by adding silicon and copper in the specified range to the nickel base material. In addition, these impurities reduce the thermal conductivity of the alloy.
  • the nickel oxide grains do not contain silicon and / or silicon oxide. If silicon or silicon oxide is incorporated in the nickel oxide grains, it competes there with the copper particles (copper ions) or with them Copper oxide, whereby the electrical conductivity of the electrode material according to the invention can not be increased efficiently.
  • the electrode material is substantially free of aluminum and / or aluminum compounds and / or intermetallic phases.
  • Aluminum and its compounds reduce the electrical conductivity of the electrode material and the forming oxide layer and thus promote the spark erosive wear of the electrode material.
  • the oxidation behavior and in particular the electrical resistance of the oxide layer forming and thus the erosion behavior of the spark plug electrode material is significantly improved, thus measurably improved.
  • the formability of the material is significantly improved.
  • a similar effect is also the absence of intermetallic phases, because intermetallic phases exist as precipitates in the nickel matrix and lead to thermomechanical stresses and a reduction of the thermal conductivity, whereby the spark erosive wear and corrosion of the electrode material are increased.
  • the content of iron and / or chromium and / or titanium is less than 0.01% by weight and / or the content of sulfur and / or sulfur compounds and / or carbon and / or carbon compounds is less than 0.005 Wt .-% and in particular less than 0.001 wt .-% is.
  • the elements iron and / or chromium and / or titanium adversely affect the electrical conductivity of the electrode material.
  • the content of sulfur and / or sulfur compounds and / or carbon and / or carbon compounds is less than 0.005 wt .-% and in particular less than 0.001 wt .-%, since these elements and compounds have a negative effect on the oxidation behavior of the alloy In particular, they can lead to increased corrosion of the electrode material.
  • the content of oxygen in the spark plug electrode material is less than 0.002% by weight, since oxygen is the oxidation of not only the nickel material, but also promotes any impurities, which in turn contributes to increased wear of the electrode material.
  • the spark plug electrode material consists essentially of, therefore, apart from technical, unavoidable impurities, from 1 wt .-% silicon, 0.75 wt .-% copper and 0.1 wt .-% yttrium, said remaining material consists of nickel and makes up about 98.15 wt .-%.
  • an electrode material forms a stable, thin and uniform nickel oxide layer with fine grain boundary phases to which silicon and / or silicon oxide or silicon and / or silicon oxide and copper and / or copper oxide are attached.
  • This electrode material has a high thermal conductivity of more than 10 W / mK and a low electrical resistance, ie a high electrical conductivity.
  • the spark plug electrode material thus has a reduced spark erosive wear and a significantly reduced tendency to corrosion and is thus ideally suited for long-term use at high temperatures.
  • the spark plug electrode material consists essentially of 0.7 to 1.3 wt .-%, in particular 1 wt .-% silicon, 0.5 to 1.0 wt .-%, apart from technically related, unavoidable impurities, in particular 0.75% by weight of copper, 0.07 to 0.13% by weight, in particular 0.1% by weight of yttrium, and contains less than 0.003% by weight, in particular less than 0.002% by weight, of oxygen , 0.001% by weight of sulfur and 0.003% by weight of carbon, with the remainder being nickel, the total amount of metallic impurities being less than 0.1% by weight. Due to its composition, this electrode material has minimal spark erosive wear and a minimal tendency to corrode.
  • the present invention relates to a method for producing the spark plug electrode material according to the invention, the method comprising the steps of producing a nickel-based alloy and adding other elements such as silicon, copper and optionally yttrium.
  • Spark plug electrode material is formed on at least a part of the surface of the spark plug electrode material, an oxide layer having an optimized structure.
  • an optimized structure is understood to mean that the oxide layer is characterized by a uniform and stable composite and, moreover, is relatively thin and even at the surface in comparison to oxide layers which form on conventional electrodes. Furthermore, grain boundary phases containing silicon and / or silicon oxide are formed between the nickel oxide grains. This allows the formation of an electrode material having a low electrical resistance of the oxide layer on the electrode surface, resulting in improved electrical conductivity of this oxide layer. In addition, the thermal conductivity of the electrode material is increased.
  • the inventive method thus provides a spark plug electrode made of cost-effective electrode material, which is characterized by an extremely high temperature resistance and a significantly reduced spark erosive wear and electrode erosion and has excellent resistance to oxidation and corrosion.
  • the spark plug electrode produced according to the invention is therefore stable and resistant to wear even at high temperatures under the extreme conditions prevailing in the combustion chamber of an engine.
  • the present invention relates to an electrode made of the above-described spark plug electrode material, which electrode can be used, for example, as a center electrode and / or as a ground electrode of a spark plug, and both as a single-material electrode or as a two-electrode electrode with the electrode material of the present invention as a cladding material and a copper core.
  • the invention relates to the use of nickel, silicon and copper for producing an alloy for a spark plug electrode material, which is characterized by a very good electrical conductivity and high thermal conductivity, and thus by a long service life.
  • FIG. 1 shows a schematic sectional view of the spark plug electrode material according to the invention 1.
  • a nickel oxide layer 10 comprising nickel oxide grains 2 with grain boundaries 3, wherein between the nickel oxide grains 2 is a grain boundary phase 4, wherein the grain boundary phases are exaggerated in size in this schematic sectional view.
  • the nickel oxide grains 2 contain copper particles (copper ions) 8 and copper oxide particles 9 embedded in the nickel oxide grid (not shown) of the nickel oxide layer 10.
  • the grain boundary phase 4 comprises silicon particles 6 and silicon oxide particles 7.
  • a nickel oxide layer 10 formed in this way is characterized by high thermodynamic stability, high thermal conductivity and excellent electrical conductivity.
  • FIG. 2 is a schematic representation of a section of the nickel oxide layer 10 of the spark plug electrode material 1 according to the invention, wherein the spark plug electrode material prior to formation of the oxide layer consisting essentially of 1 wt .-% silicon, 0.75 wt .-% copper and 98.25 wt .-% nickel , Between the nickel oxide grains 2 with their grain boundaries 3 are Grain boundary phases 4 formed, the silicon 6 is included. By way of example, two cracks 8 are shown, which can form in the nickel oxide layer 10.
  • FIG. 3 is an enlarged view of the edged portion of the spark plug electrode material according to the invention FIG. 2 , Here, the silicon 6 or silicon oxide 7 enriched in the grain boundary phases 4 can be seen particularly well.
  • FIG. 4 shows a spark plug 20 according to the invention, with a center electrode 21 and a ground electrode 22, wherein both the center electrode 21 and the ground electrode 22 is formed from the spark plug electrode material according to the invention and wherein the ground electrode 22 is formed as a single-material electrode and the center electrode 21 as a two-electrode.
  • a spark plug electrode material for producing a spark plug electrode or a spark plug which is characterized by the formation of an oxide layer particularly under normal use, low spark erosion wear, and excellent corrosion resistance with minimized manufacturing costs and sufficient thermodynamic and mechanical stability.

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft ein Zündkerzenelektrodenmaterial, sowie eine Zündkerze umfassend eine Elektrode, die aus dem Zündkerzenelektrodenmaterial gebildet ist und ein Verfahren zur Herstellung des Zündkerzenelektrodenmaterials.The present invention relates to a spark plug electrode material, and a spark plug including an electrode formed of the spark plug electrode material and a method of manufacturing the spark plug electrode material.

Zündkerzen sind im Stand der Technik in unterschiedlichen Ausgestaltungen bekannt. Zündkerzen erzeugen in Otto-Motoren zwischen ihren Elektroden Zündfunken für die Zündung des Kraftstoff-Luft-Gemisches. Die Zündkerzen weisen hierbei Masseelektroden und Mittelelektroden auf, wobei Zündkerzenbauformen mit zwei bis fünf Elektroden bekannt sind. Die Elektroden werden hierbei entweder auf das Zündkerzengehäuse (Masseelektrode) oder als Mittelelektroden in einem Keramikisolator eingebracht. Die Lebensdauer einer Zündkerze wird durch die Korrosions- und Erosionsbeständigkeit des Elektrodenmaterials beeinflusst. Herkömmliche Elektrodenmaterialien basieren auf Nickellegierungen mit Aluminiumanteilen. Diese haben jedoch das Problem, dass unter Betriebsbedingungen im Motorraum, also bei hohen Temperaturen und oxidierender Atmosphäre, ein Großteil der Nickeloberfläche sowie auch ein Teil des Nickels im Inneren des Elektrodenmaterials durch Reaktionen mit dem umgebenden Sauerstoff oxidiert. Dadurch wird eine Nickeloxidschicht gebildet, die auch Aluminiumoxid enthält und sowohl wärmeisolierende wie auch die elektrische Leitfähigkeit unterbindende Eigenschaften aufweist. Dadurch neigt sie bereits nach geringer Zeit zu Korrosionen bzw. zu funkenerosiver Erosion. Hierdurch wird der Elektrodenabstand vergrößert, was letztendlich zum Versagen der Zündkerze führt. Die Bildung einer Oxidschicht bei bestimmungsgemäßem Gebrauch der Zündkerze lässt sich allenfalls durch Verwendung von Elektrodenwerkstoffen aus reinem Edelmetall oder auf Edelmetallbasis, wie z.B. Platin oder Platinlegierungen mit Iridium erreichen, die eine gesteigerte Beständigkeit hinsichtlich eines Verschleißes gegen funkenerosive Angriffe aufweisen. Derartige Elektrodenmaterialien, insbesondere Platin, führen jedoch zu enormen Kosten, welche bei derartigen Massebauteilen wie Zündkerzen, problematisch sind.Spark plugs are known in the prior art in various configurations. Spark plugs in spark ignition engines generate sparking between their electrodes to ignite the fuel-air mixture. In this case, the spark plugs have ground electrodes and center electrodes, with spark plug designs having two to five electrodes being known. In this case, the electrodes are introduced either onto the spark plug housing (ground electrode) or as center electrodes in a ceramic insulator. The life of a spark plug is affected by the corrosion and erosion resistance of the electrode material. Conventional electrode materials are based on nickel alloys containing aluminum. However, these have the problem that under operating conditions in the engine compartment, ie at high temperatures and oxidizing atmosphere, a large part of the nickel surface as well as a part of the nickel inside the electrode material oxidized by reactions with the surrounding oxygen. As a result, a nickel oxide layer is formed, which also contains aluminum oxide and has both heat-insulating and electrical conductivity-inhibiting properties. As a result, it tends to corrode or spark erosion after only a short time. As a result, the electrode gap is increased, which ultimately leads to failure of the spark plug. The formation of an oxide layer under normal conditions The use of the spark plug can at best be achieved by using pure noble metal or precious metal based electrode materials, such as platinum or platinum alloys with iridium, which have increased resistance to spark erosion attack. However, such electrode materials, in particular platinum, lead to enormous costs, which are problematic in such mass components as spark plugs.

Zündkerzenelektroden, die aus einer Legierung auf Nickel Basis mit 1,8-22 % Silizium und mit einem Bruchteil von einem Prozent Magnesium, Kupfer und Mangan, sind beispielsweise aus der US 2,958598 bekannt.Spark plug electrodes made of an alloy based on nickel with 1.8-22% silicon and with a fraction of one percent magnesium, copper and manganese, are for example from US 2,955,598 known.

Aus der FR 858 196 sind weitere Legierungen bekannt, die Nickel, Kupfer und Silizium enthalten.From the FR 858 196 For example, other alloys containing nickel, copper and silicon are known.

Offenbarung der ErfindungDisclosure of the invention

Das erfindungsgemäße Zündkerzenelektrodenmaterial mit den Merkmalen des Anspruchs 1 weist demgegenüber den Vorteil auf, dass es auf einer Nickelbasislegierung basiert, was die Kosten des Elektrodenmaterials und damit die der Zündkerze geringhält. Ferner weist dieses Zündkerzenelektrodenmaterial, bestehend aus Nickel, Silizium und Kupfer sowie optional Yttrium und unvermeidbare metallische und nicht-metallische Verunreinigungen wie Eisen, Chrom, Titan, Mangan, Schwefel, Schwefelverbindung, Kohlenstoff, Kohlenstoffverbindung und Sauerstoff, den Vorteil auf, dass sich bei bestimmungsgemäßem Gebrauch, also bei erhöhter Temperatur und Anwesenheit von Sauerstoff, mindestens auf einem Teil seiner Oberfläche innerhalb kürzester Zeit, meist schon nach wenigen Stunden, eine spezifisch strukturierte, besonders homogene, relativ dünne Oxidschicht aus Nickeloxidkörnern ausbildet. Die Struktur der Oxidschicht zeichnet sich dadurch aus, dass sich zwischen den Oxidkorngrenzen der sich bildenden Nickeloxidschicht, eine Grenzschicht - eine so genannte Korngrenzenphase - ausbildet, die sich vorteilhaft auf den funkenerosiven Verschleiß auswirkt, wodurch also der Abtrag des Elektrodenmaterials durch Funkenerosion reduziert und damit die Standzeit der Zündkerzenelektrode vergrößert wird. Durch den gezielten Zusatz von Silizium zu dem Nickel-basierten Ausgangselektrodenmaterial (Nickel-Basislegierung) umfasst die Korngrenzenphase der Nickeloxidkörner bei bestimmungsgemäßem Gebrauch des Elektrodenmaterials Silizium und/oder Siliziumoxid. Vor dem bestimmungsgemäßen Gebrauch des Zündkerzenelektrodenmaterials beträgt der Gehalt an Silizium 0,7 bis 1,3 Gew.-% der Gehalt an Kupfer 0,5 bis 1,0 Gew.-% und der Gehalt an Nickel 97,5 bis 98,5 Gew.-% sowie 0,07 bis 0,13 Gew.-% Yttrium enthält und der Anteil an metallischen Verunreinigungen in Summe weniger als 0,2 Gew.-%, wobei der Gehalt an Eisen und/oder Chrom und/oder Titan kleiner als 0,05 Gew.-% ist, und der Gehalt an Schwefel und/oder Schwefelverbindungen und/oder Kohlenstoff und/oder Kohlenstoffverbindungen kleiner als 0,01 Gew.-% ist, und der Gehalt an Sauerstoff kleiner als 0,003 Gew.-% ist. Vorzugsweise ist die Korngrenzenphase der Nickeloxidkörner bei bestimmungsgemäßem Gebrauch des Elektrodenmaterials aus Silizium und/oder Siliziumoxid gebildet. Durch diese Ausbildung der Korngrenzenphase, umfassend Silizium und/oder Siliziumoxid, werden die thermomechanischen, die elektrischen bzw. die wärmeleitenden Eigenschaften der Oxidschicht vorteilhaft beeinflusst. Ferner wird dadurch neben der elektrischen Leitfähigkeit der sich bildenden Oxidschicht, auch die Oxidationsbeständigkeit derselben, sowie auch deren thermodynamische Stabilität verbessert, wodurch wiederum der funkenerosive
Verschleiß des Elektrodenmaterials reduziert wird. So wird während des Betriebs des erfindungsgemäßen Zündkerzenelektrodenmaterials an mindestens einem Teil der Oberfläche des Elektrodenmaterials eine Oxidschicht von insbesondere Nickeloxidkörnern mit einer Korngrenzenphase gebildet, die Silizium und/oder Siliziumoxid umfasst, bzw. die aus Silizium und/oder Siliziumoxid besteht Diese Oxidschicht weist eine hohe Wärmeleitfähigkeit von vorzugsweise 6 W/mK, insbesondere mindestens 8 W/mK oder sogar 10 W/mK und mehr, sowie eine besonders hohe elektrische Leitfähigkeit aufweist. Dadurch kann die an dem Elektrodenmaterial bei dessen bestimmungsgemäßem Gebrauch anliegende Spannung und einwirkende Temperatur schnell gleichmäßig auf das gesamte Elektrodenmaterial verteilt werden, wodurch auf einen kleinen Bereich der Elektrodenoberfläche begrenzte, also lokale Temperaturmaxima und Spannungsmaxima, verhindert werden, was die Korrosion und Erosion des Elektrodenmaterials deutlich reduziert. Die Erfindung geht somit einen neuen Weg, da durch gezielte Wahl der Komponenten des Elektrodenmaterials, nämlich Nickel, Kupfer und Silizium, eine sich beim bestimmungsgemäßen Gebrauch bildende Oxidschicht optimiert wird, und nicht wie im Stand der Technik das Hauptaugenmerk auf eine möglichst hohe Korrosionsbeständigkeit gelegt wird.
The spark plug electrode material according to the invention with the features of claim 1 has the advantage that it is based on a nickel-based alloy, which keeps the cost of the electrode material and thus that of the spark plug low. Furthermore, this spark plug electrode material consisting of nickel, silicon and copper and optionally yttrium and unavoidable metallic and non-metallic impurities such as iron, chromium, titanium, manganese, sulfur, sulfur compound, carbon, carbon compound and oxygen, has the advantage that under normal conditions Use, so at elevated temperature and presence of oxygen, at least on a portion of its surface within a very short time, usually after a few hours, forms a specifically structured, particularly homogeneous, relatively thin oxide layer of nickel oxide. The structure of the oxide layer is characterized in that between the oxide grain boundaries of the forming nickel oxide layer, a boundary layer - a so-called grain boundary phase - forms, which has an advantageous effect on the spark erosive wear, thus reducing the removal of the electrode material by spark erosion and thus the Service life of the spark plug electrode is increased. Through the targeted addition of silicon to the nickel-based Starting electrode material (nickel-based alloy) includes the grain boundary phase of the nickel oxide grains when the electrode material is used as intended, silicon and / or silicon oxide. Before the intended use of the spark plug electrode material, the content of silicon is 0.7 to 1.3% by weight of the content of copper is 0.5 to 1.0% by weight and the content of nickel is 97.5 to 98.5% by weight % and 0.07 to 0.13 wt .-% yttrium and the proportion of metallic impurities in total less than 0.2 wt .-%, wherein the content of iron and / or chromium and / or titanium is less than 0.05 wt .-%, and the content of sulfur and / or sulfur compounds and / or carbon and / or carbon compounds is less than 0.01 wt .-%, and the content of oxygen is less than 0.003 wt .-% , The grain boundary phase of the nickel oxide grains is preferably formed from silicon and / or silicon oxide when the electrode material is used as intended. As a result of this design of the grain boundary phase, comprising silicon and / or silicon oxide, the thermomechanical, electrical or thermally conductive properties of the oxide layer are advantageously influenced. Furthermore, in addition to the electrical conductivity of the forming oxide layer, and the oxidation resistance of the same, as well as their thermodynamic stability is improved, which in turn the spark erosive
Wear of the electrode material is reduced. Thus, during operation of the spark plug electrode material according to the invention, at least part of the surface of the electrode material is formed with an oxide layer of, in particular, nickel oxide grains having a grain boundary phase which comprises silicon and / or silicon oxide or which consists of silicon and / or silicon oxide. This oxide layer has a high thermal conductivity of preferably 6 W / mK, in particular at least 8 W / mK or even 10 W / mK and more, and has a particularly high electrical conductivity. As a result, the voltage and the applied temperature applied to the electrode material during its intended use can be uniformly distributed evenly over the entire electrode material, thereby limiting localized maximum temperatures and maximum stresses to a small area of the electrode surface, which clearly shows the corrosion and erosion of the electrode material reduced. The invention thus goes a new way, as is optimized by targeted choice of the components of the electrode material, namely nickel, copper and silicon, forming during normal use oxide layer, and not as in the prior art, the emphasis is placed on the highest possible corrosion resistance ,

Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.The dependent claims show preferred developments of the invention.

Mengenangaben der einzelnen Elemente und Verbindungen beziehen sich im Folgenden, soweit nicht anders angegeben, jeweils auf das Gesamtgewicht des Zündkerzenelektrodenmaterials.
Bevorzugt ist das erfindungsgemäße Zündkerzenelektrodenmaterial dadurch gekennzeichnet, dass die Korngrenzenphase der Nickeloxidkörner neben Silizium und/oder Siliziumoxid auch Kupfer und/oder Kupferoxid enthält. Der Hauptanteil an Kupfer und/oder Kupferoxid lagert sich jedoch hauptsächlich in den Nickeloxidkörnern ab. Durch eine Korngrenzenphase der Nickeloxidkörner, die neben Silizium und/oder Siliziumoxid auch Kupfer und/oder Kupferoxid umfasst, bzw. enthält, werden die thermomechanischen, die elektrischen bzw. die wärmeleitenden Eigenschaften der Oxidschicht weiter vorteilhaft beeinflusst.
Quantities of the individual elements and compounds refer in the following, unless otherwise stated, each on the total weight of the spark plug electrode material.
The spark plug electrode material according to the invention is preferably characterized in that the grain boundary phase of the nickel oxide grains also contains copper and / or copper oxide in addition to silicon and / or silicon oxide. However, the majority of copper and / or copper oxide deposits mainly in the nickel oxide grains. By means of a grain boundary phase of the nickel oxide grains, which also comprises or contains copper and / or copper oxide in addition to silicon and / or silicon oxide, the thermomechanical, electrical or heat-conducting properties of the oxide layer are further advantageously influenced.

Vorzugsweise zeichnet sich das erfindungsgemäße Zündkerzenelektrodenmaterial dadurch aus, dass der Gehalt an Silizium und/oder Siliziumoxid in der Nickeloxidschicht 1 bis 5 Gew.-%, insbesondere 2 bis 4 Gew.-% und insbesondere 3 Gew.-% bezogen auf das Gesamtgewicht der Nickeloxidschicht beträgt. Unter dem Gehalt an Silizium und/oder Siliziumoxid in der Nickeloxidschicht wird dabei der Anteil an Silizium und/oder Siliziumoxid verstanden, der in der Korngrenzenphase vorhanden ist. Dieser Anteil ist leicht durch beispielsweise Energiedispersive Röntgenspektroskopie (EDX) am Rasterelektronenmikroskop messbar. Bereits ab einem geringen Anteil von etwa 1 Gew.-% Silizium und/oder Siliziumoxid an den Korngrenzenphasen der Nickeloxidkörner ist ein deutlicher Anstieg der elektrischen Leitfähigkeit der Oxidschicht messbar, der bis zu einem Gehalt an Silizium und/oder Siliziumoxid von etwa 5 Gew.-% an den Korngrenzenphasen zunimmt. Bei noch höheren Anteilen allerdings tritt ein gegenläufiger Effekt auf. Vorzugsweise liegt der Gehalt an Silizium und/oder Siliziumoxid daher in einem Bereich von 2 bis 4 Gew.-% bezogen auf das Gesamtgewicht der Nickeloxidschicht.Preferably, the spark plug electrode material according to the invention is characterized in that the content of silicon and / or silicon oxide in the nickel oxide layer 1 to 5 wt .-%, in particular 2 to 4 wt .-% and in particular 3 wt .-% based on the total weight of the nickel oxide layer. The content of silicon and / or silicon oxide in the nickel oxide layer is understood to mean the proportion of silicon and / or silicon oxide present in the grain boundary phase. This proportion is easily measurable by, for example, energy dispersive X-ray spectroscopy (EDX) on a scanning electron microscope. Already from a small proportion of about 1 wt .-% silicon and / or silicon oxide at the grain boundary phases of the nickel oxide grains, a significant increase in the electrical conductivity of the oxide layer is measurable, up to a content of silicon and / or silicon oxide of about 5 wt. % at the grain boundary phases increases. At even higher proportions, however, an opposite effect occurs. The content of silicon and / or silicon oxide is therefore preferably in a range from 2 to 4% by weight, based on the total weight of the nickel oxide layer.

Weiter vorzugsweise ist das Zündkerzenelektrodenmaterial dadurch gekennzeichnet, dass etwa 90 % der Nickeloxidkörner und insbesondere etwa 95 % der Nickeloxidkörner eine Korngröße von kleiner als 15 µm aufweist. Die Bildung von Nickeloxidkörnern mit einer möglichst kleinen Korngröße ist essentiell für die Bildung einer Nickeloxidschicht aus Nickeloxid-körnern, die eine homogene Verteilung der Silizium-haltigen Korngrenzenphase aufweist. Je kleiner die Korngröße der Nickeloxidkörner, desto stabiler ist außerdem die sich bildende Oxidschicht. Dies ist darauf zurückzuführen, dass kleine Körner ein dichteres Gebilde von Nickeloxidkörnern bilden, wodurch die Formung von größeren Hohlräumen, und damit von so genannten Sollbruchstellen, vermieden wird. Eine ausreichende Stabilität des erfindungsgemäßen Elektrodenmaterials umfassend eine Nickeloxidschicht aus Nickeloxidkörnern mit Korngrenzenphasen, wird erzielt, wenn mindestens 90 % und insbesondere 95 % der sich bei bestimmungsgemäßem Gebrauch des Zündkerzenelektrodenmaterials bildenden Nickeloxidkörner eine Korngröße von weniger als 15 µm aufweist. Eine Korngröße der Nickeloxidkörner von weniger als 15 µm kann beispielsweise durch Einwirkung eines Funkenplasmas auf das erfindungsgemäße Elektrodenmaterial erzeugt werden.Further preferably, the spark plug electrode material is characterized in that about 90% of the nickel oxide grains and in particular about 95% of the nickel oxide grains has a particle size of less than 15 microns. The formation of nickel oxide grains with the smallest possible grain size is essential for the formation of a nickel oxide layer of nickel oxide grains, which has a homogeneous distribution of the silicon-containing grain boundary phase. The smaller the grain size of the nickel oxide grains, the more stable is the oxide layer that forms. This is due to the fact that small grains form a denser structure of nickel oxide grains, whereby the formation of larger cavities, and thus of so-called predetermined breaking points, is avoided. A sufficient stability of the electrode material according to the invention comprising a nickel oxide layer of nickel oxide grains with grain boundary phases is achieved if at least 90% and in particular 95% of the nickel oxide grains forming during normal use of the spark plug electrode material have a particle size of less than 15 μm. A grain size of the nickel oxide grains of less than 15 μm can be produced, for example, by the action of a spark plasma on the electrode material according to the invention.

Insbesondere bevorzugt ist es, wenn vor dem bestimmungsgemäßen Gebrauch des Zündkerzenelektrodenmaterials der Gehalt an Silizium 0,9 bis 1,1 Gew.-%, insbesondere 1 Gew.-% und der Gehalt an
Kupfer 0,60 bis 0,85 Gew.-%, insbesondere 0,75 Gew.-% bezogen auf das Gesamtgewicht des Elektrodenmaterials, beträgt. Schon bei einem geringen Anteil an Silizium von 0,7 Gew.-% wird das Oxidationsverhalten des Elektrodenmaterials und der elektrische Widerstand der sich auf dem Elektrodenmaterial bildenden Oxidschicht dadurch positiv beeinflusst, dass sich bei bestimmungsgemäßem Gebrauch des Zündkerzenelektrodenmaterials eine ausreichende Menge an Silizium und/oder Siliziumoxid von etwa 1 bis 5 Gew.-% des eingesetzten Siliziums in der Korngrenzenphase der Nickeloxidkörner enthalten ist. Ab einem Gesamtanteil an Silizium von mehr als 1,3 Gew.-% tritt jedoch ein gegenläufiger Effekt auf. Durch Zugabe von Kupfer mit einem Anteil von 0,5 bis 1,0 Gew.-% bezogen auf das Gesamtgewicht des Elektrodenmaterials wird der elektrische Widerstand des Elektrodenmaterials weiter verringert, da die Kupferionen hauptsächlich in das Nickeloxidgitter eingelagert werden, wodurch die elektrische Leitfähigkeit der sich bildenden Oxidschicht erhöht wird. Dieser Effekt ist bereits bei einem geringen Kupferanteil von 0,5 Gew.-% messbar. Der Anteil an Kupfer sollte jedoch 1 Gew.-% nicht übersteigen, da ansonsten eine ausreichende mechanische Festigkeit des Zündkerzenelektrodenmaterials nicht mehr ausreichend gewährleistet werden kann. Besonders bevorzugt weist das Zündkerzenelektrodenmaterial daher einen Gehalt an Silizium von 0,9 bis 1,1 Gew.-% und insbesondere von 1 Gew.-% und einen Gehalt an Kupfer von 0,6 bis 0,85 Gew.-%, insbesondere von 0,75 Gew.-%, auf. In diesen Anteilen führen die beigefügten Elemente Silizium und Kupfer durch Anlagerung und Anreicherung von Silizium und/oder Siliziumoxid bzw. von Silizium und/oder Siliziumoxid und Kupfer und/oder Kupferoxid an den Korngrenzenphasen der Nickeloxidkörner der sich bei bestimmungsgemäßem Gebrauch des Zündkerzenelektrodenmaterials bildenden Nickeloxidschicht zu einer besonders hohen elektrischen Leitfähigkeit der Oxidschicht. Die sich bildende Oxidschicht ist ferner thermodynamisch und mechanisch ausreichend stabil, so dass auch der funkenerosive Verschleiß und die Korrosion des erfindungsgemäßen Zündkerzenelektrodenmaterials wirksam reduziert werden.
It is particularly preferred if, before the intended use of the spark plug electrode material, the content of silicon 0.9 to 1.1 wt .-%, in particular 1 wt .-% and the content of
Copper 0.60 to 0.85 wt .-%, in particular 0.75 wt .-% based on the total weight of the electrode material is. Even with a small proportion of silicon of 0.7 wt .-%, the oxidation behavior of the electrode material and the electrical resistance of the electrode material forming on the oxide layer is positively influenced by the fact that when the spark plug electrode material is used as intended, a sufficient amount of silicon and / or Silicon oxide of about 1 to 5 wt .-% of the silicon used in the grain boundary phase of the nickel oxide grains is included. However, from a total content of silicon of more than 1.3 wt .-%, an opposite effect occurs. By adding copper in a proportion of 0.5 to 1.0% by weight based on the total weight of the electrode material, the electric resistance of the electrode material is further reduced because the copper ions are mainly intercalated into the nickel oxide grid, whereby the electrical conductivity of the electrode forming oxide layer is increased. This effect can be measured even at a low copper content of 0.5% by weight. The proportion of copper, however, should not exceed 1% by weight, since otherwise adequate mechanical strength of the spark plug electrode material can no longer be sufficiently ensured. The spark plug electrode material therefore particularly preferably has a content of silicon of from 0.9 to 1.1% by weight and in particular of 1% by weight and a content of copper of from 0.6 to 0.85% by weight, in particular of 0.75 wt .-%, on. In these proportions, the attached elements silicon and copper by addition and accumulation of silicon and / or silicon or silicon and / or silicon oxide and copper and / or copper oxide at the grain boundary phases of the nickel oxide grains in the intended use of the spark plug electrode material forming nickel oxide layer to one particularly high electrical conductivity of the oxide layer. The forming oxide layer is also thermodynamically and mechanically sufficiently stable, so that the spark erosive wear and corrosion of the spark plug electrode material according to the invention are effectively reduced.

Weiter vorzugsweise zeichnet sich das erfindungsgemäße Zündkerzenelektrodenmaterials dadurch aus, dass die Schichtdicke der Korngrenzenphase kleiner als 0,3 µm, insbesondere kleiner als 0,2 µm und insbesondere kleiner als 0,1 µm ist. Je dünner die Korngrenzenphase ausgebildet ist, desto kleiner sind die Hohlräume zwischen den Nickeloxidkörnern und desto geschlossener und in sich stabiler ist die Oxidschichtoberfläche, so dass sie gegenüber funkenerosiven Angriffen besser geschützt ist, da sie somit wenn, dann nur einen geringen Anteil an Sollbruchstellen aufweist. Vorzugsweise ist die Schichtdicke der Korngrenzenphasen aber auch mindestens so groß, dass sich einzelne Siliziumatome und/oder Siliziumoxidteilchen daran anlagern können. Insbesondere ist daher die Schichtdicke der Korngrenzenphasen größer als 0,1 nm und aber kleiner als 0,2 µm und insbesondere kleiner als 0,1 µm.Further preferably, the spark plug electrode material according to the invention is characterized in that the layer thickness of the grain boundary phase is smaller than 0.3 .mu.m, in particular smaller than 0.2 .mu.m and in particular smaller than 0.1 .mu.m. The thinner the grain boundary phase is formed, the smaller are the Voids between the nickel oxide grains and the more closed and inherently stable is the oxide layer surface, so that it is better protected against spark erosion attacks, since it then, if only a small proportion of predetermined breaking points. However, the layer thickness of the grain boundary phases is preferably at least as great that individual silicon atoms and / or silicon oxide particles can attach to it. In particular, therefore, the layer thickness of the grain boundary phases is greater than 0.1 nm and less than 0.2 microns and in particular less than 0.1 microns.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung zeichnet sich das erfindungsgemäße Zündkerzenelektrodenmaterial dadurch aus, dass es neben Nickel, Kupfer und Silizium 0,09 bis 0,11 Gew.-% und insbesondere 0,10 Gew.-% Yttrium enthält. Die Zugabe solch geringer Mengen an Yttrium verhindert ein abnormales Kornwachstum während des bestimmungsgemäßen Gebrauchs einer Zündkerze, die das erfindungsgemäße Zündkerzenelektrodenmaterial aufweist. Der Yttriumgehalt kann beispielsweise durch einen niedrigen Sauerstoffgehalt der Legierung gezielt niedrig gehalten werden. Ab einem Anteil von Yttrium von mehr als 0,13 Gew.-% wird das Oxidationsverhalten und damit auch der elektrische Widerstand der sich bildenden Oxidschicht negativ beeinflusst, da sich Yttrium-haltige Ausscheidungen im Elektrodenmaterial ausbilden.According to a further preferred embodiment of the invention, the spark plug electrode material according to the invention is characterized in that it contains in addition to nickel, copper and silicon 0.09 to 0.11 wt .-% and in particular 0.10 wt .-% yttrium. Addition of such small amounts of yttrium prevents abnormal grain growth during proper use of a spark plug having the spark plug electrode material of the present invention. The yttrium content can be kept deliberately low, for example, by a low oxygen content of the alloy. From a proportion of yttrium of more than 0.13 wt .-%, the oxidation behavior and thus the electrical resistance of the forming oxide layer is adversely affected because form yttrium-containing precipitates in the electrode material.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung zeichnet sich das Zündkerzenelektrodenmaterial durch einen Anteil an metallischen Verunreinigungen aus, der in Summe weniger als 0,1 Gew.-% beträgt. Metallische Verunreinigungen umfassen dabei Elemente und Verbindungen wie beispielsweise Eisen, Titan, Chrom, Mangan und dergleichen. Solche Verunreinigungen vermindern den Effekt der Erhöhung der elektrischen Leitfähigkeit, wie er durch Beimengung von Silizium und Kupfer im angegebenen Bereich zu dem Nickelbasismaterial, erzielt wird. Zudem wird durch diese Verunreinigungen die Wärmeleitfähigkeit der Legierung vermindert.According to a further preferred embodiment of the invention, the spark plug electrode material is characterized by a proportion of metallic impurities, which is less than 0.1 wt .-% in total. Metallic impurities include elements and compounds such as iron, titanium, chromium, manganese and the like. Such impurities reduce the effect of increasing the electrical conductivity as achieved by adding silicon and copper in the specified range to the nickel base material. In addition, these impurities reduce the thermal conductivity of the alloy.

Insbesondere bevorzugt ist es, wenn die Nickeloxidkörner kein Silizium und/oder Siliziumoxid enthalten. Ist Silizium bzw. Siliziumoxid in den Nickeloxidkörnern eingelagert, so konkurriert es dort mit den Kupferteilchen (Kupferionen) bzw. mit Kupferoxid, wodurch die elektrische Leitfähigkeit des erfindungsgemäßen Elektrodenmaterials nicht effizient erhöht werden kann.It is particularly preferred if the nickel oxide grains do not contain silicon and / or silicon oxide. If silicon or silicon oxide is incorporated in the nickel oxide grains, it competes there with the copper particles (copper ions) or with them Copper oxide, whereby the electrical conductivity of the electrode material according to the invention can not be increased efficiently.

Besonders bevorzugt ist das Elektrodenmaterial im Wesentlichen frei von Aluminium und/oder Aluminiumverbindungen und/oder intermetallischen Phasen. Aluminium und dessen Verbindungen erniedrigen die elektrische Leitfähigkeit des Elektrodenmaterials und der sich ausbildenden Oxidschicht und fördern somit den funkenerosiven Verschleiß des Elektrodenmaterials. Durch den Verzicht auf Aluminium wird das Oxidationsverhalten und insbesondere der elektrische Widerstand der sich ausbildenden Oxidschicht und damit das Erosionsverhalten des Zündkerzenelektrodenmaterials deutlich verbessert, also messbar verbessert. Zudem wird die Umformbarkeit des Materials deutlich verbessert. Einen ähnlichen Effekt hat auch der Verzicht auf intermetallische Phasen, denn intermetallische Phasen liegen als Ausscheidungen in der Nickelmatrix vor und führen zu thermomechanischen Spannungen und einer Verminderung der Wärmeleitfähigkeit, wodurch der funkenerosive Verschleiß und die Korrosion des Elektrodenmaterials erhöht werden.Particularly preferably, the electrode material is substantially free of aluminum and / or aluminum compounds and / or intermetallic phases. Aluminum and its compounds reduce the electrical conductivity of the electrode material and the forming oxide layer and thus promote the spark erosive wear of the electrode material. By dispensing with aluminum, the oxidation behavior and in particular the electrical resistance of the oxide layer forming and thus the erosion behavior of the spark plug electrode material is significantly improved, thus measurably improved. In addition, the formability of the material is significantly improved. A similar effect is also the absence of intermetallic phases, because intermetallic phases exist as precipitates in the nickel matrix and lead to thermomechanical stresses and a reduction of the thermal conductivity, whereby the spark erosive wear and corrosion of the electrode material are increased.

Besonders bevorzugt ist es, wenn der Gehalt an Eisen und/oder Chrom und/oder Titan kleiner als 0,01 Gew.-% beträgt und/oder der Gehalt an Schwefel und/oder Schwefelverbindungen und/oder Kohlenstoff und/oder Kohlenstoffverbindungen kleiner als 0,005 Gew.-% und insbesondere kleiner als 0,001 Gew.-% ist. Gerade die Elemente Eisen und/oder Chrom und/oder Titan beeinflussen die elektrische Leitfähigkeit des Elektrodenmaterials nachteilig. Weiter bevorzugt ist der Gehalt an Schwefel und/oder Schwefelverbindungen und/oder Kohlenstoff und/oder Kohlenstoffverbindungen kleiner als 0,005 Gew.-% und insbesondere kleiner als 0,001 Gew.-%, da auch diese Elemente und Verbindungen sich negativ auf das Oxidationsverhalten der Legierung auswirken, insbesondere können sie zu einer verstärkten Korrosion des Elektrodenmaterials führen.It is particularly preferred if the content of iron and / or chromium and / or titanium is less than 0.01% by weight and / or the content of sulfur and / or sulfur compounds and / or carbon and / or carbon compounds is less than 0.005 Wt .-% and in particular less than 0.001 wt .-% is. Especially the elements iron and / or chromium and / or titanium adversely affect the electrical conductivity of the electrode material. More preferably, the content of sulfur and / or sulfur compounds and / or carbon and / or carbon compounds is less than 0.005 wt .-% and in particular less than 0.001 wt .-%, since these elements and compounds have a negative effect on the oxidation behavior of the alloy In particular, they can lead to increased corrosion of the electrode material.

Besonders bevorzugt ist es, wenn der Gehalt an Sauerstoff im Zündkerzenelektrodenmaterial kleiner als 0,002 Gew.-%, da Sauerstoff die Oxidation nicht nur des Nickelmaterials,
sondern auch etwaiger Verunreinigungen fördert, was wiederum zu einem erhöhten Verschleiß des Elektrodenmaterials beiträgt.
It is particularly preferred if the content of oxygen in the spark plug electrode material is less than 0.002% by weight, since oxygen is the oxidation of not only the nickel material,
but also promotes any impurities, which in turn contributes to increased wear of the electrode material.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung besteht das Zündkerzenelektrodenmaterial im Wesentlichen, also abgesehen von technisch bedingten, unvermeidbaren Verunreinigungen, aus 1 Gew.-% Silizium, 0,75 Gew.-% Kupfer und 0,1 Gew.-% Yttrium, wobei das restliche Material aus Nickel besteht und ca. 98,15 Gew.-% ausmacht. Ein solches Elektrodenmaterial bildet bei bestimmungsgemäßem Gebrauch eine stabile, dünne und gleichförmige Nickeloxidschicht mit feinen Korngrenzenphasen, an die Silizium und/oder Siliziumoxid bzw. Silizium und/oder Siliziumoxid und Kupfer und/oder Kupferoxid angelagert ist. Dieses Elektrodenmaterial hat eine hohe Wärmeleitfähigkeit von mehr als 10 W/mK und einen geringen elektrischen Widerstand, also eine hohe elektrische Leitfähigkeit. Das Zündkerzenelektrodenmaterial weist somit einen reduzierten funkenerosiven Verschleiß und eine deutlich verminderte Korrosionsneigung auf und ist somit für den Dauergebrauch bei hohen Temperaturen bestens geeignet.According to a further preferred embodiment of the invention, the spark plug electrode material consists essentially of, therefore, apart from technical, unavoidable impurities, from 1 wt .-% silicon, 0.75 wt .-% copper and 0.1 wt .-% yttrium, said remaining material consists of nickel and makes up about 98.15 wt .-%. When used properly, such an electrode material forms a stable, thin and uniform nickel oxide layer with fine grain boundary phases to which silicon and / or silicon oxide or silicon and / or silicon oxide and copper and / or copper oxide are attached. This electrode material has a high thermal conductivity of more than 10 W / mK and a low electrical resistance, ie a high electrical conductivity. The spark plug electrode material thus has a reduced spark erosive wear and a significantly reduced tendency to corrosion and is thus ideally suited for long-term use at high temperatures.

Weiter vorzugsweise besteht das Zündkerzenelektrodenmaterial im Wesentlichen, also abgesehen von technisch bedingten, unvermeidbaren Verunreinigungen, aus 0,7 bis 1,3 Gew.-%, insbesondere 1 Gew.-% Silizium, 0,5 bis 1,0 Gew.-%, insbesondere 0,75 Gew.-% Kupfer, 0,07 bis 0,13 Gew.-%, insbesondere 0,1 Gew.-% Yttrium und enthält weniger als 0,003 Gew.-%, insbesondere weniger als 0,002 Gew.-% Sauerstoff, 0,001 Gew.-% Schwefel und 0,003 Gew.-% Kohlenstoff, wobei das restliche Material Nickel ist, wobei der Anteil an metallischen Verunreinigungen in Summe weniger als 0,1 Gew.-% beträgt. Dieses Elektrodenmaterial weist aufgrund seiner Zusammensetzung einen minimalen funkenerosiven Verschleiß und eine minimale Korrosionsneigung auf.Further preferably, the spark plug electrode material consists essentially of 0.7 to 1.3 wt .-%, in particular 1 wt .-% silicon, 0.5 to 1.0 wt .-%, apart from technically related, unavoidable impurities, in particular 0.75% by weight of copper, 0.07 to 0.13% by weight, in particular 0.1% by weight of yttrium, and contains less than 0.003% by weight, in particular less than 0.002% by weight, of oxygen , 0.001% by weight of sulfur and 0.003% by weight of carbon, with the remainder being nickel, the total amount of metallic impurities being less than 0.1% by weight. Due to its composition, this electrode material has minimal spark erosive wear and a minimal tendency to corrode.

Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung des erfindungsgemäßen Zündkerzenelektrodenmaterials, wobei das Verfahren die Schritte des Herstellens einer Nickelbasislegierung und Beimengens weiterer Elemente, wie Silizium, Kupfer und ggf. Yttrium, umfasst.Furthermore, the present invention relates to a method for producing the spark plug electrode material according to the invention, the method comprising the steps of producing a nickel-based alloy and adding other elements such as silicon, copper and optionally yttrium.

Durch den bestimmungsgemäßen Gebrauch des so hergestellten erfindungsgemäßen Zündkerzenelektrodenmaterials wird an mindestens einem Teil der Oberfläche des Zündkerzenelektrodenmaterials eine Oxidschicht gebildet die eine optimierte Struktur aufweist. Unter einer optimierten Struktur wird dabei verstanden, dass sich die Oxidschicht durch einen gleichmäßigen und stabilen Verbund auszeichnet und zudem relativ dünn und an der Oberfläche ebenmäßig ist im Vergleich zu sich auf herkömmlichen Elektroden bildenden Oxidschichten. Ferner sind zwischen den Nickeloxidkörnern Korngrenzenphasen gebildet, die Silizium und/oder Siliziumoxid enthalten. Dies ermöglicht die Bildung eines Elektrodenmaterials mit einem geringen elektrischen Widerstand der Oxidschicht an der Elektrodenoberfläche was eine verbesserte elektrische Leitfähigkeit dieser Oxidschicht zur Folge hat. Zudem ist auch die Wärmeleitfähigkeit des Elektrodenmaterials erhöht. Durch das erfindungsgemäße Verfahren wird somit eine Zündkerzenelektrode aus kostengünstigem Elektrodenmaterial bereitgestellt, die sich durch eine extrem hohe Temperaturbeständigkeit und einen deutlich reduzierten funkenerosiven Verschleiß und Elektrodenabbrand auszeichnet und eine hervorragende Oxidations- und Korrosionsbeständigkeit aufweist. Die erfindungsgemäß hergestellte Zündkerzenelektrode ist somit auch bei hohen Temperaturen unter den extremen Bedingungen, wie sie im Brennraum eines Motors herrschen, stabil und verschleißresistent.By the intended use of the invention thus prepared Spark plug electrode material is formed on at least a part of the surface of the spark plug electrode material, an oxide layer having an optimized structure. In this context, an optimized structure is understood to mean that the oxide layer is characterized by a uniform and stable composite and, moreover, is relatively thin and even at the surface in comparison to oxide layers which form on conventional electrodes. Furthermore, grain boundary phases containing silicon and / or silicon oxide are formed between the nickel oxide grains. This allows the formation of an electrode material having a low electrical resistance of the oxide layer on the electrode surface, resulting in improved electrical conductivity of this oxide layer. In addition, the thermal conductivity of the electrode material is increased. The inventive method thus provides a spark plug electrode made of cost-effective electrode material, which is characterized by an extremely high temperature resistance and a significantly reduced spark erosive wear and electrode erosion and has excellent resistance to oxidation and corrosion. The spark plug electrode produced according to the invention is therefore stable and resistant to wear even at high temperatures under the extreme conditions prevailing in the combustion chamber of an engine.

Ferner betrifft die vorliegende Erfindung eine Elektrode aus dem vorstehend beschriebenen Zündkerzenelektrodenmaterial, wobei die Elektrode beispielsweise als Mittelelektrode und/oder als Masseelektrode einer Zündkerze, und sowohl als Einstoffelektrode oder aber als Zweistoffelektrode mit dem erfindungsgemäßen Elektrodenmaterial als Mantelmaterial und einem Kupferkern, verwendet werden kann.Further, the present invention relates to an electrode made of the above-described spark plug electrode material, which electrode can be used, for example, as a center electrode and / or as a ground electrode of a spark plug, and both as a single-material electrode or as a two-electrode electrode with the electrode material of the present invention as a cladding material and a copper core.

Weiterhin betrifft die Erfindung die Verwendung von Nickel, Silizium und Kupfer zur Herstellung einer Legierung für ein Zündkerzenelektrodenmaterial, das sich durch eine sehr gute elektrische Leitfähigkeit und auch hohe Wärmeleitfähigkeit, und damit durch eine hohe Standzeit, auszeichnet.Furthermore, the invention relates to the use of nickel, silicon and copper for producing an alloy for a spark plug electrode material, which is characterized by a very good electrical conductivity and high thermal conductivity, and thus by a long service life.

Kurze Beschreibung der ZeichnungShort description of the drawing

Nachfolgend wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung ist:

Figur 1
Schematische Schnittansicht des erfindungsgemäßen Zündkerzenelektrodenmaterials,
Figur 2
eine weitere schematische Darstellung eines Ausschnitts der Oxidschicht des erfindungsgemäßen Zündkerzenelektrodenmaterials,
Figur 3
eine Darstellung des umrandeten Abschnitts aus Figur 2 mit vergrößerter Ansicht des Ausschnittes aus der Oxidschicht des erfindungsgemäßen Zündkerzenelektrodenmaterials, und
Figur 4
eine Zündkerze umfassend das erfindungsgemäßen Zündkerzenelektrodenmaterial.
Hereinafter, an embodiment of the invention will be described in detail with reference to the accompanying drawings. In the drawing is:
FIG. 1
Schematic sectional view of the spark plug electrode material according to the invention,
FIG. 2
a further schematic representation of a section of the oxide layer of the spark plug electrode material according to the invention,
FIG. 3
a representation of the outlined section FIG. 2 with enlarged view of the section of the oxide layer of the spark plug electrode material according to the invention, and
FIG. 4
a spark plug comprising the spark plug electrode material according to the invention.

Ausführungsform der ErfindungEmbodiment of the invention

Figur 1 zeigt eine schematische Schnittansicht des erfindungsgemäßen Zündkerzenelektrodenmaterials 1. Auf der Oberfläche der Nickellegierung 11 ist durch den bestimmungsgemäßen Gebrauch des Elektrodenmaterials 1 eine Nickeloxidschicht 10 gebildet, die Nickeloxidkörner 2 mit Korngrenzen 3 umfasst, wobei sich zwischen den Nickeloxidkörnern 2 eine Korngrenzenphase 4 befindet, wobei die Korngrenzenphasen in dieser schematischen Schnittansicht übertrieben groß dargestellt sind. Die Nickeloxidkörner 2 enthalten Kupferpartikel (Kupferionen) 8 und Kupferoxidpartikel 9, die in das Nickeloxidgitter (nicht gezeigt) der Nickeloxidschicht 10 eingelagert sind. Die Korngrenzenphase 4 umfasst Siliziumpartikel 6 und Siliziumoxidpartikel 7. Eine solch ausgebildete Nickeloxidschicht 10 zeichnet sich durch eine hohe thermodynamische Stabilität, eine hohe Wärmeleitfähigkeit und ausgezeichnete elektrische Leitfähigkeit aus. FIG. 1 shows a schematic sectional view of the spark plug electrode material according to the invention 1. On the surface of the nickel alloy 11 is formed by the intended use of the electrode material 1, a nickel oxide layer 10 comprising nickel oxide grains 2 with grain boundaries 3, wherein between the nickel oxide grains 2 is a grain boundary phase 4, wherein the grain boundary phases are exaggerated in size in this schematic sectional view. The nickel oxide grains 2 contain copper particles (copper ions) 8 and copper oxide particles 9 embedded in the nickel oxide grid (not shown) of the nickel oxide layer 10. The grain boundary phase 4 comprises silicon particles 6 and silicon oxide particles 7. A nickel oxide layer 10 formed in this way is characterized by high thermodynamic stability, high thermal conductivity and excellent electrical conductivity.

Figur 2 ist eine schematische Darstellung eines Ausschnittes aus der Nickeloxidschicht 10 des erfindungsgemäßen Zündkerzenelektrodenmaterials 1, wobei das Zündkerzenelektrodenmaterial vor Bildung der Oxidschicht im Wesentlichen aus 1 Gew.-% Silizium, 0,75 Gew.-% Kupfer und 98,25 Gew.-% Nickel bestand. Zwischen den Nickeloxidkörnern 2 mit ihren Korngrenzen 3 sind Korngrenzenphasen 4 gebildet, die Silizium 6 enthalten ist. Beispielhaft sind auch zwei Risse 8 gezeigt, welche sich in der Nickeloxidschicht 10 bilden können. FIG. 2 is a schematic representation of a section of the nickel oxide layer 10 of the spark plug electrode material 1 according to the invention, wherein the spark plug electrode material prior to formation of the oxide layer consisting essentially of 1 wt .-% silicon, 0.75 wt .-% copper and 98.25 wt .-% nickel , Between the nickel oxide grains 2 with their grain boundaries 3 are Grain boundary phases 4 formed, the silicon 6 is included. By way of example, two cracks 8 are shown, which can form in the nickel oxide layer 10.

Figur 3 ist eine vergrößerte Ansicht des umrandeten Abschnitts des erfindungsgemäßen Zündkerzenelektrodenmaterials aus Figur 2. Hier ist das in den Korngrenzenphasen 4 angereicherte Silizium 6 bzw. Siliziumoxid 7 besonders gut zu sehen. FIG. 3 is an enlarged view of the edged portion of the spark plug electrode material according to the invention FIG. 2 , Here, the silicon 6 or silicon oxide 7 enriched in the grain boundary phases 4 can be seen particularly well.

Figur 4 zeigt eine Zündkerze 20 im Sinne der Erfindung, mit einer Mittelelektrode 21 und einer Masseelektrode 22, wobei sowohl die Mittelelektrode 21 als auch die Masseelektrode 22 aus dem erfindungsgemäßen Zündkerzenelektrodenmaterial gebildet ist und wobei die Masseelektrode 22 als Einstoffelektrode und die Mittelelektrode 21 als Zweistoffelektrode ausgebildet ist. FIG. 4 shows a spark plug 20 according to the invention, with a center electrode 21 and a ground electrode 22, wherein both the center electrode 21 and the ground electrode 22 is formed from the spark plug electrode material according to the invention and wherein the ground electrode 22 is formed as a single-material electrode and the center electrode 21 as a two-electrode.

Erfindungsgemäß wird somit ein Zündkerzenelektrodenmaterial zur Herstellung einer Zündkerzenelektrode oder allgemein einer Zündkerze, bereitgestellt, das sich aufgrund der Bildung einer Oxidschicht insbesondere bei bestimmungsgemäßem Gebrauch, durch einen geringen funkenerosiven Verschleiß und eine hervorragende Korrosionsbeständigkeit bei minimierten Herstellkosten und ausreichender thermodynamischer wie mechanischer Stabilität, auszeichnet.Thus, according to the present invention, there is provided a spark plug electrode material for producing a spark plug electrode or a spark plug which is characterized by the formation of an oxide layer particularly under normal use, low spark erosion wear, and excellent corrosion resistance with minimized manufacturing costs and sufficient thermodynamic and mechanical stability.

Claims (16)

  1. Spark plug electrode material consisting of nickel, silicon and copper and optionally yttrium and unavoidable metallic and nonmetallic impurities such as iron, chromium, titanium, manganese, sulfur, sulfur compound, carbon, carbon compound and oxygen, characterized in that the electrode material, when used as intended, forms a nickel oxide layer composed of nickel oxide grains in at least part of its surface area, where the grain boundary phase of the nickel oxide grains comprises silicon and/or silicon oxide, where, prior to use of the spark plug electrode material as intended, the silicon content is 0.7% to 1.3% by weight, the copper content is 0.5% to 1.0% by weight and the nickel content is 97.5% to 98.5% by weight, and optionally 0.07% to 0.13% by weight of yttrium, and the proportion of metallic impurities is less than 0.2% by weight in total, where the iron and/or chromium and/or titanium content is less than 0.05% by weight, and the content of sulfur and/or sulfur compounds and/or carbon and/or carbon compounds is less than 0.01% by weight, and the oxygen content is less than 0.003% by weight.
  2. Spark plug electrode material according to Claim 1, characterized in that the grain boundary phase of the nickel oxide grains further comprises copper and/or copper oxide.
  3. Spark plug electrode material according to Claim 1 or 2, characterized in that the silicon and/or silicon oxide content in the nickel oxide layer is 1% to 5% by weight, especially 2% to 4% by weight and especially 3% by weight, based on the total weight of the oxide layer.
  4. Spark plug electrode material according to any of the preceding claims, characterized in that about 90% of the nickel oxide grains and especially about 95% of the nickel oxide grains have a grain size of less than 15 µm.
  5. Spark plug electrode material according to any of the preceding claims, characterized in that, prior to the use of the spark plug electrode material as intended, the silicon content is 0.9% to 1.1% by weight, especially 1% by weight, and the copper content is 0.6% to 0.85% by weight, especially 0.75% by weight.
  6. Spark plug electrode material according to any of the preceding claims, characterized in that the layer thickness of the grain boundary phases is less than 0.3 µm, especially less than 0.2 µm and especially less than 0.1 µm.
  7. Spark plug electrode material according to any of the preceding claims, characterized in that the electrode material further contains 0.09% to 0.11% by weight and especially 0.10% by weight of yttrium.
  8. Spark plug electrode material according to any of the preceding claims, characterized in that the proportion of metallic impurities is less than 0.1% by weight in total.
  9. Spark plug electrode material according to any of the preceding claims, characterized in that the nickel oxide grains do not contain any silicon and/or silicon oxide.
  10. Spark plug electrode material according to any of the preceding claims, characterized in that the electrode material, apart from unavoidable impurities for technical reasons, is free of aluminium and/or aluminium compounds and/or intermetallic phases.
  11. Spark plug electrode material according to any of the preceding claims, characterized in that the iron and/or chromium and/or titanium content is less than 0.01% by weight and/or the content of sulfur and/or sulfur compounds and/or carbon and/or carbon compounds is less than 0.005% by weight and especially less than 0.001% by weight.
  12. Spark plug electrode material according to any of the preceding claims, characterized in that the oxygen content is less than 0.002% by weight.
  13. Spark plug electrode material according to any of the preceding claims, consisting, apart from unavoidable impurities for technical reasons, of:
    a) 98.15% by weight of nickel,
    b) 1% by weight of silicon,
    c) 0.75% by weight of copper and
    d) 0.1% by weight of yttrium.
  14. Process for producing a spark plug electrode material according to any of Claims 1 to 13, comprising the steps of:
    - producing a nickel-base alloy
    - adding further elements.
  15. Spark plug comprising an electrode made from a spark plug electrode material according to any of Claims 1 to 13.
  16. Spark plug according to Claim 15, characterized in that the electrode is a centre electrode and/or an earth electrode, and this can be used either with or without a copper core in the centre electrode and/or earth electrode.
EP12707053.0A 2011-04-15 2012-02-15 Spark plug electrode material and spark plug Active EP2697405B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011007532A DE102011007532A1 (en) 2011-04-15 2011-04-15 A spark plug electrode material and spark plug, and a method of manufacturing the spark plug electrode material
PCT/EP2012/052563 WO2012139791A1 (en) 2011-04-15 2012-02-15 Spark plug electrode material and spark plug

Publications (2)

Publication Number Publication Date
EP2697405A1 EP2697405A1 (en) 2014-02-19
EP2697405B1 true EP2697405B1 (en) 2019-07-31

Family

ID=45808776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12707053.0A Active EP2697405B1 (en) 2011-04-15 2012-02-15 Spark plug electrode material and spark plug

Country Status (9)

Country Link
US (1) US9166380B2 (en)
EP (1) EP2697405B1 (en)
JP (1) JP5732589B2 (en)
KR (1) KR20140018921A (en)
CN (1) CN103492595B (en)
BR (1) BR112013026476A2 (en)
DE (1) DE102011007532A1 (en)
RU (1) RU2640699C1 (en)
WO (1) WO2012139791A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007496A1 (en) * 2011-04-15 2012-10-18 Robert Bosch Gmbh A spark plug electrode material and spark plug, and a method of manufacturing the spark plug electrode material and an electrode for the spark plug
US9634327B2 (en) 2013-03-30 2017-04-25 Tohoku University Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode, and battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR858196A (en) * 1939-07-24 1940-11-19 Mixture composed of several metals and other materials melted together applicable to automatic electrical machines and other magnetic devices, magnetos, candles, t. s. f., accumulators, etc.
US2958598A (en) * 1957-01-18 1960-11-01 Int Nickel Co Sparking plug electrodes
DE102010024488A1 (en) * 2010-06-21 2011-12-22 Thyssenkrupp Vdm Gmbh Nickel-based alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370686A (en) 1991-06-19 1992-12-24 Furukawa Special Metal Coated Co Ltd Electrode material for spark plug
RU2040092C1 (en) * 1993-06-07 1995-07-20 Вячеслав Борисович Мельников Ignition plug
JP2007214136A (en) 2000-09-18 2007-08-23 Ngk Spark Plug Co Ltd Spark plug
JP4964896B2 (en) 2005-11-18 2012-07-04 フェデラル−モーグル コーポレイション Spark plug with multilayer ignition tip
DE102006035111B4 (en) * 2006-07-29 2010-01-14 Thyssenkrupp Vdm Gmbh Nickel-based alloy
US20080308057A1 (en) * 2007-06-18 2008-12-18 Lykowski James D Electrode for an Ignition Device
DE102009046005A1 (en) * 2009-10-26 2011-04-28 Robert Bosch Gmbh Spark plug electrode made of improved electrode material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR858196A (en) * 1939-07-24 1940-11-19 Mixture composed of several metals and other materials melted together applicable to automatic electrical machines and other magnetic devices, magnetos, candles, t. s. f., accumulators, etc.
US2958598A (en) * 1957-01-18 1960-11-01 Int Nickel Co Sparking plug electrodes
DE102010024488A1 (en) * 2010-06-21 2011-12-22 Thyssenkrupp Vdm Gmbh Nickel-based alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPIEKERMANN P: "LEGIERUNGEN - EIN BESONDERES PATENTRECHTLICHES PROBLEM? - LEGIERUNGSPRUEFUNG IM EUROPAEISCHEN PATENTAMT -", MITTEILUNGEN DER DEUTSCHEN PATENTANWAELTE, HEYMANN, KOLN, DE, 1 January 1993 (1993-01-01), pages 178 - 190, XP000961882, ISSN: 0026-6884 *

Also Published As

Publication number Publication date
CN103492595A (en) 2014-01-01
RU2640699C1 (en) 2018-01-11
US9166380B2 (en) 2015-10-20
EP2697405A1 (en) 2014-02-19
US20140125214A1 (en) 2014-05-08
DE102011007532A1 (en) 2012-10-18
JP5732589B2 (en) 2015-06-10
KR20140018921A (en) 2014-02-13
CN103492595B (en) 2017-02-15
BR112013026476A2 (en) 2016-12-20
WO2012139791A1 (en) 2012-10-18
JP2014516385A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
DE112012002699B4 (en) Spark plug and method of manufacturing an electrode of a spark plug
DE112012000600B4 (en) A spark plug electrode for a spark plug, spark plug, and method of manufacturing a spark plug electrode
DE602006000350T2 (en) Spark plug for internal combustion engine
DE10308559B4 (en) spark plug
DE60109698T2 (en) spark plug
DE112012000947B4 (en) Method for producing an electrode material for a spark plug
DE102010027463A1 (en) Spark plug and method for its production
DE112012004420B4 (en) A method of manufacturing an electrode of a spark plug and spark plug manufacturing method
EP2697405B1 (en) Spark plug electrode material and spark plug
DE102005009522A1 (en) spark plug
EP2514052B1 (en) Spark plug electrode produced from improved electrode material
DE102014101607A1 (en) Electrode core material for spark plugs
DE102014103053B4 (en) A method of making a spark plug electrode material, method of making a spark plug, and electrode segment for use in a spark plug
DE102013106564B4 (en) A method of producing an electrode material for a spark plug and ruthenium-based material for use in a spark plug
EP2697404B1 (en) Spark plug electrode material, spark plug and manufacturing process
DE102017205520A1 (en) Spark plug electrode, spark plug, and method of making a spark plug electrode
DE102013210453B4 (en) Spark plug electrode and spark plug
EP2186173B1 (en) Spark plug electrode produced from improved electrode material
DE102013210447B4 (en) Spark plug electrode with nickel-rhodium coating, and method for Herstellungsunq and spark plug with such a spark plug electrode
DE102013210456B4 (en) Spark plug with forming nickel-rich protective layer
DE102011007525A1 (en) Spark plug used for starting gas turbine of combustion engine, has cladding region that surrounds core region having electrode material along radial direction of central electrode and includes electrode material
DE102012110750A1 (en) Ignition electrode used in spark plug of internal combustion engine, has spark surface made of single crystal, while the electrode main portion is made of a single crystal of noble metal or noble metal-based alloy or nickel-based alloy
WO2015189005A1 (en) Spark plug electrode, method for the production thereof and spark plug
DE10222263A1 (en) Nickel alloy used in the manufacture of spark plugs contains particles embedded in an alloy matrix and having a composition deviating from the matrix
DE102013109612A1 (en) spark plug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160309

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015087

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1160956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015087

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200215

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200215

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1160956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210217

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210420

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012015087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901