EP2186173B1 - Spark plug electrode produced from improved electrode material - Google Patents

Spark plug electrode produced from improved electrode material Download PDF

Info

Publication number
EP2186173B1
EP2186173B1 EP08774932A EP08774932A EP2186173B1 EP 2186173 B1 EP2186173 B1 EP 2186173B1 EP 08774932 A EP08774932 A EP 08774932A EP 08774932 A EP08774932 A EP 08774932A EP 2186173 B1 EP2186173 B1 EP 2186173B1
Authority
EP
European Patent Office
Prior art keywords
spark plug
electrode
electrode material
spark
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08774932A
Other languages
German (de)
French (fr)
Other versions
EP2186173A1 (en
Inventor
Jochen Boehm
Jochen Rager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2186173A1 publication Critical patent/EP2186173A1/en
Application granted granted Critical
Publication of EP2186173B1 publication Critical patent/EP2186173B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes

Definitions

  • the invention relates to a spark plug electrode made of a nickel-base electrode material.
  • the spark plugs Due to the constant development of motor vehicle engines and their components for increasing the efficiency and engine power, the requirements for the materials of the engine components are becoming increasingly demanding.
  • the components that play a major role in the ignition of the fuel mixture, the spark plugs, and in particular the spark plug electrodes are exposed to high loads.
  • an ignition system controlled by the engine periodically generates a high voltage, which discharges in a flashover between the two electrodes of the spark plugs. The generated spark then ignites the compressed air-fuel mixture.
  • the spark plug is subject to a continuous load due to extremely high temperatures. So that the engine power in continuous operation does not decrease due to leaking, poorly ignited or hot-runned spark plugs, the materials for the production of spark plug electrodes for internal combustion engines, a permanent further development.
  • nickel alloys are usually used because nickel has both a high melting temperature, which is indispensable for the temperature resistance of the alloy, as well as a high resistance to corrosion.
  • materials made of pure precious metals or based on precious metals, such as platinum or platinum alloys with iridium in terms of wear resistance to spark erosive attacks increased resistance and thus very high life of the electrodes, however, make spark plug electrode materials made of platinum, in view of the enormous cost, for economic reasons no suitable alternative to commercially available nickel alloys.
  • the resistance of nickel alloys manifests itself in low erosion losses, ie the removal of material from the electrode, induced by the interaction of the arc with the electrode surface, and in a high oxidation and corrosion resistance.
  • the corrosion resistance can by metallic additives such as aluminum, manganese, chromium and be further increased. Addition of silicon to the nickel-base alloy further increases the high-temperature oxidation resistance.
  • a nickel-based alloy for use with spark plug electrodes for internal combustion engines which is composed essentially of nickel, silicon, manganese and aluminum, wherein the weight fraction of silicon is 0.1 to 1.5% by weight (wt Amount of manganese 0.1 to 0.65 wt .-% and the proportion of aluminum 3.1 to 5 wt .-% is.
  • Chromium may contain up to 2% by weight, or Y or a rare earth element of up to 0.5% by weight, as further constituents. According to the specifications of this document nickel alloys are obtained, which have due to their strength at elevated temperatures good oxidation and corrosion resistance and increased resistance to spark erosion.
  • the increased strength achieves an increased resistance to oxidation and corrosion, it causes a spalling of material on the surface of the electrode due to the extreme temperature load during sparkover between the middle and ground electrodes due to the reduced elasticity. Moreover, such a compact material is expensive and expensive to manufacture and more difficult to machine.
  • the spark plug electrode according to the invention with the features of the main claim is characterized by an extremely high temperature resistance compared to known electrode materials based on nickel alloys, a minimized spark erosive wear or electrode erosion and has a unique oxidation and corrosion resistance.
  • This provides a low cost electrode material for spark plug electrodes that allows for life previously only achieved for noble metal and precious metal alloy electrode materials.
  • This is inventively achieved in that the spark plug electrode is made of an electrode material containing nickel as the base material, and further contains 0.5 to 3 at.% (Atomic%) of silicon and at least 6 at.% Of aluminum.
  • the spark plug electrode according to the invention has an optimized with respect to the chemical and physical properties alloy.
  • the combination of nickel, silicon and aluminum in the specified amounts leads to the alloy being both simple and lossless to produce and, due to its homogeneity, having a permanently good application profile.
  • the extreme temperature resistance of the spark plug electrode according to the invention which manifests itself in an excellent spark erosion resistance and oxidation and corrosion resistance even in continuous operation of the spark plug.
  • spark plug electrode according to the invention has improved thermal conductivity compared with the known materials.
  • the spark erosive wear can be reduced even more clearly and an increase in the oxidation and corrosion resistance is made possible.
  • the sum of the advantages of the spark plug electrode according to the invention leads to particularly long replacement intervals of the spark plugs and to increased acceptance by the market due to the achievable long service life.
  • the invention relates to a spark plug electrode made of an electrode material containing nickel, 0.5 to 3 at.% Silicon and at least 6 at.% Aluminum.
  • an electrode material has advantages in terms of oxidation and corrosion resistance, as well as an excellent resistance to spark erosive wear.
  • spark erosive wear When igniting a spark between the center and the ground electrode of a spark plug, the material is worn by oxidation processes or by the melting or flaking of near-surface material areas on the two surfaces of the electrodes by the high temperatures in the arc. This is called spark erosive wear.
  • This delamination or blow-off of electrode material is counteracted in the prior art by admixtures of aluminum and silicon to the nickel-based alloy. It turns out that the maximum amount of silicon to be incorporated in a range of about 1.5 to 3 Wt .-% and the maximum amount of aluminum, which still allows just sufficient processing of the alloy material is 5 wt .-%.
  • the high content of aluminum as a whole means that its content is also increased at the surface of the electrode material.
  • the high content of aluminum atoms on the electrode surface uniformly distributed alumina areas that show excellent and compared to nickel oxide much greater resistance to spark erosion wear.
  • the nickel-based alloy Due to the high doping of the nickel-based alloy with aluminum, in the case of flaking of the aluminum oxide particles from the interior of the alloy, further aluminum can be replenished to the surface of the electrode material, which in turn forms a resistant oxide layer. Thus, the nickel base material is spared and subject to a significantly reduced degradation.
  • the silicon serves to improve high temperature corrosion and oxidation resistance.
  • Silicon is chemically nonmetallic and has a relatively high melting point. As a result, it stabilizes the alloy, especially at high temperatures. Due to its proximity to the semi-metals, it also shows semiconductor-like physical properties. These are essential for its good processibility in metallic alloys. In particular, this is important for the electrode material according to the invention, since thus also the relatively high proportion of up to about 3 at.% Silicon can be homogeneously incorporated into the alloy material. While it has hitherto been difficult to provide such high silicon contents in nickel-base alloys, this is achieved with the composition of the electrode material according to the invention, whereby the excellent temperature resistance is achieved.
  • the electrode material for spark plug electrodes according to the invention also has an improved thermal conductivity compared to conventional electrode materials. Without being bound by theory, it is believed that this is due to the extraordinary homogeneity of the composition of the electrode material. Due to the increased thermal conductivity, the maximum electrode temperature is lower, whereby the corrosive attack is less pronounced.
  • spark plugs can be produced, with which service lives are achieved in about the same range as those for noble metal material spark plugs. Whereas, however, the service life of conventional spark plugs is only about 60,000 km, the service lives of the spark plug electrodes according to the invention are a good half higher, ie more than 90,000 km. This creates a much better acceptance in the market and is beneficial for environmental as well as for business reasons.
  • spark erosion experiments were performed.
  • the electrode material was placed in a suitable holder between a light source and a receiving screen, and a shadow image was taken in the raw state. Subsequently, a spark was generated several times between the electrode surfaces. After reaching a predefined number of ignitions, another silhouette was finally taken. Both silhouettes became together compared. The spark erosive wear was recognizable by material removal. The quotient of the surface wear and the number of sparks thus provided a measure of the resistance of the tested electrode material to spark erosion.
  • the electrode material for the spark plug electrode contains about 0.5 to 2 at.% Silicon and about 6 to 30 at.% Aluminum in addition to the nickel base alloy. Just such a ratio has been shown to be particularly easy to process. Proportions of about 6 to 30 at.% Aluminum are sufficient for homogeneous aluminum distribution in the alloy material and promote the formation of finely divided dense but thin alumina areas on the surface of the electrode material, thereby providing excellent oxidation and corrosion resistance and minimized spark erosion wear Electrode is achieved.
  • the proportion of 0.5 to 2 at .-% silicon is particularly advantageous in terms of the homogeneous processability of the silicon on the one hand and also the excellent increase in the temperature resistance of the electrode material.
  • the proportion of aluminum is between about 7 and 10 at.%. It has been found that in a range above 10 at.% Aluminum in the alloy, the oxidation and corrosion resistance can no longer be increased to a proportional extent, as is the case, for example, below 15 at.%. For economical reasons, therefore, an electrode material according to the invention which contains aluminum in a range between approximately 7 and 10 at.% Is to be preferred. This amount is sufficient to provide on the surface of the nickel alloy a blanket thin layer of alumina for increasing the oxidation and corrosion resistance, as well as the spark erosion resistance, and further to refill aluminum from the interior of the electrode material to the surface of the electrode as needed. Below 7 at.% To at least 6 at.%, Sufficient alumina can still be formed, while still reduced amounts cause the wear of the electrode material to increase again since the aluminum oxide protective layer is not formed on the surface of the electrode.
  • the spark plug electrode may also contain in its alloy material reactive elements, individually or in any desired combination.
  • reactive elements elements of the periodic table of the elements are referred to, which can be found in particular under the subgroup elements of the fifth and sixth period as well as the lanthanides. These elements, referred to as reactive elements in the present invention, increase the already enhanced oxidation and corrosion resistance even further. It has been found that in particular the elements yttrium, hafnium, tantalum, cerium, lanthanum and zirconium are particularly suitable for this purpose.
  • the reactive elements can be alloyed both alone and in any combination of the nickel-based alloy.
  • the reactive elements are particularly preferably used if their amounts are within a range of less than 1 at.%. Higher quantities are not to be considered for reasons of cost, moreover, by increased amounts of reactive element also no further improvement of the oxidation and corrosion resistance is achieved.
  • a particularly preferred embodiment comprises a spark plug electrode made of an electrode material consisting essentially of nickel as the base material, 0.5 to 2 at.% Silicon, and 7 to 10 at.% Aluminum.
  • an electrode material according to these specifications an extremely balanced ratio of the individual components is present, so that the electrode material not only has maximum oxidation and corrosion resistance and erosion resistance, but also the thermal conductivity is optimized and further the material is simple and inexpensive to produce, without form deposits or inhomogeneities. This ensures a long-lasting very good performance of the electrode material and thus the spark plug electrodes.
  • a further preferred embodiment comprises a spark plug electrode made of an electrode material consisting essentially of nickel as a base material, 0.5 to 2 at.% Silicon and 7 to 10 at.% Aluminum and at least one reactive element, which is selected from the group consisting of yttrium and / or hafnium and / or cerium and / or zirconium and / or lanthanum and / or tantalum.
  • a spark plug electrode made of an electrode material consisting essentially of nickel as a base material, 0.5 to 2 at.% Silicon and 7 to 10 at.% Aluminum and at least one reactive element, which is selected from the group consisting of yttrium and / or hafnium and / or cerium and / or zirconium and / or lanthanum and / or tantalum.
  • the electrode material for spark plug electrodes according to the invention can be used for both Manufacture of the center, as well as the ground electrode as well as both electrodes simultaneously used.
  • spark plugs which comprise at least one spark plug electrode according to the invention and which thus have improved oxidation and corrosion resistance as well as spark erosion resistance and thermal conductivity.

Abstract

A spark plug electrode, which is produced from an electrode material containing nickel as base material, 0.5 to 3 atom % of silicon, and at least 6 atom % of aluminum.

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Zündkerzenelektrode, die aus einem Elektrodenmaterial auf Nickelbasis hergestellt wird.The invention relates to a spark plug electrode made of a nickel-base electrode material.

Aufgrund der steten Weiterentwicklung von Kraftfahrzeugmotoren und deren Komponenten zur Steigerung der Leistungsfähigkeit und Motorkraft, werden auch an die Materialien der Motorbauteile immer höhere Anforderungen gestellt. Insbesondere die Bauteile, die eine tragende Rolle bei der Zündung des Brennstoffgemisches spielen, die Zündkerzen, und insbesondere die Zündkerzenelektroden, sind hohen Belastungen ausgesetzt. Bei der Zündung wird von einer vom Motor gesteuerten Zündanlage periodisch eine Hochspannung erzeugt, die sich in einem Funkenüberschlag zwischen den beiden Elektroden der Zündkerzen entlädt. Der erzeugte Funke zündet dann das verdichtete Luft-Kraftstoffgemisch. Die Zündkerze unterliegt dabei einer Dauerbelastung durch extrem hohe Temperaturen. Damit die Motorleistung im Dauerbetrieb aufgrund von undichten, schlecht zündenden oder heißgelaufenen Zündkerzen nicht abnimmt, unterliegen die Materialien zur Herstellung von Zündkerzenelektroden für Brennkraftmaschinen, einer permanenten Weiterentwicklung.Due to the constant development of motor vehicle engines and their components for increasing the efficiency and engine power, the requirements for the materials of the engine components are becoming increasingly demanding. In particular, the components that play a major role in the ignition of the fuel mixture, the spark plugs, and in particular the spark plug electrodes are exposed to high loads. During ignition, an ignition system controlled by the engine periodically generates a high voltage, which discharges in a flashover between the two electrodes of the spark plugs. The generated spark then ignites the compressed air-fuel mixture. The spark plug is subject to a continuous load due to extremely high temperatures. So that the engine power in continuous operation does not decrease due to leaking, poorly ignited or hot-runned spark plugs, the materials for the production of spark plug electrodes for internal combustion engines, a permanent further development.

Als Basismaterial für Zündkerzenelektroden werden üblicherweise Nickellegierungen verwendet, da Nickel sowohl eine hohe Schmelztemperatur aufweist, die für die Temperaturbeständigkeit der Legierung unabdingbar ist, so wie eine hohe Beständigkeit gegenüber Korrosion zeigt. Zwar zeigen Werkstoffe aus reinen Edelmetallen oder auf Edelmetallbasis, wie Platin oder Platinlegierungen mit Iridium hinsichtlich der Verschleißbeständigkeit gegen funkenerosive Angriffe eine gesteigerte Beständigkeit und damit sehr hohe Lebenszeiten der Elektroden, jedoch stellen Zündkerzenelektrodenmaterialien aus Platin, im Hinblick auf die enormen Kosten, aus betriebswirtschaftlichen Gründen keine geeignete Alternative zu handelsüblichen Nickellegierungen dar.As base material for spark plug electrodes, nickel alloys are usually used because nickel has both a high melting temperature, which is indispensable for the temperature resistance of the alloy, as well as a high resistance to corrosion. Although materials made of pure precious metals or based on precious metals, such as platinum or platinum alloys with iridium in terms of wear resistance to spark erosive attacks increased resistance and thus very high life of the electrodes, however, make spark plug electrode materials made of platinum, in view of the enormous cost, for economic reasons no suitable alternative to commercially available nickel alloys.

Die Widerstandsfähigkeit von Nickellegierungen äußerst sich in geringen Erosionsverlusten, also dem Materialabtrag von der Elektrode, induziert durch die Wechselwirkung des Lichtbogens mit der Elektrodenoberfläche, und in einer hohen Oxidations- und Korrosionsbeständigkeit. Die Korrosionsbeständigkeit kann dabei durch metallische Zusätze wie Aluminium, Mangan, Chrom und dergleichen weiter erhöht werden. Ein Zusatz von Silicium zu der Nickelbasislegierung erhöht darüber hinaus die Hochtemperatur-Oxidationsbeständigkeit.The resistance of nickel alloys manifests itself in low erosion losses, ie the removal of material from the electrode, induced by the interaction of the arc with the electrode surface, and in a high oxidation and corrosion resistance. The corrosion resistance can by metallic additives such as aluminum, manganese, chromium and be further increased. Addition of silicon to the nickel-base alloy further increases the high-temperature oxidation resistance.

Aus DE 39 16 378 A1 ist eine Legierung auf Nickelbasis zur Verwendung für Zündkerzenelektroden für Brennkraftmaschinen bekannt, die sich im Wesentlichen aus Nickel, Silicium, Mangan und Aluminium zusammensetzt, wobei der Gewichtsanteil an Silicium 0,1 bis 1,5 Gewichts-% (Gew.-%), der Anteil an Mangan 0,1 bis 0,65 Gew.-% und der Anteil an Aluminium 3,1 bis 5 Gew.-% beträgt. Als weitere Bestandteile können Chrom bis 2 Gew.-%, bzw. Y oder ein Element der Seltenen Erden mit bis zu 0,5 Gew.-% enthalten sein. Entsprechend der Ausführungen dieser Druckschrift werden Nickellegierungen erhalten, die aufgrund ihrer Festigkeit bei erhöhten Temperaturen eine gute Oxidations- und Korrosionsbeständigkeit sowie eine erhöhte Beständigkeit gegenüber Funkenerosion aufweisen.Out DE 39 16 378 A1 For example, a nickel-based alloy for use with spark plug electrodes for internal combustion engines is known, which is composed essentially of nickel, silicon, manganese and aluminum, wherein the weight fraction of silicon is 0.1 to 1.5% by weight (wt Amount of manganese 0.1 to 0.65 wt .-% and the proportion of aluminum 3.1 to 5 wt .-% is. Chromium may contain up to 2% by weight, or Y or a rare earth element of up to 0.5% by weight, as further constituents. According to the specifications of this document nickel alloys are obtained, which have due to their strength at elevated temperatures good oxidation and corrosion resistance and increased resistance to spark erosion.

Durch die gesteigerte Festigkeit wird zwar eine erhöhte Oxidations- und Korrosionsbeständigkeit erzielt, jedoch wird damit, verursacht durch die extreme Temperaturbelastung beim Funkenüberschlag zwischen der Mittel- und der Masseelektrode aufgrund der reduzierten Elastizität ein Abplatzen von Material an der Oberfläche der Elektrode gefördert. Darüber hinaus ist ein derart kompaktes Material aufwändig und teuer in der Herstellung und schwieriger zu bearbeiten.Although the increased strength achieves an increased resistance to oxidation and corrosion, it causes a spalling of material on the surface of the electrode due to the extreme temperature load during sparkover between the middle and ground electrodes due to the reduced elasticity. Moreover, such a compact material is expensive and expensive to manufacture and more difficult to machine.

Vorteile der ErfindungAdvantages of the invention

Es sei den weiteren Ausführungen vorangestellt, dass sich alle nachstehenden Atom-% (At.-%)-Angaben, sofern nicht ausdrücklich anders gekennzeichnet, immer auf die Gesamtzusammensetzung des Elektrodenmaterials beziehen.It is preceded by the further statements that all the following atomic% (At .-%) - information, unless expressly indicated otherwise, always refer to the total composition of the electrode material.

Die erfindungsgemäße Zündkerzenelektrode mit den Merkmalen des Hauptanspruches zeichnet sich durch eine extrem hohe Temperaturbeständigkeit gegenüber bekannten Elektrodenmaterialien basierend auf Nickellegierungen, einen minimierten funkenerosiven Verschleiß bzw. Elektrodenabbrand aus und weist eine einzigartige Oxidations- und Korrosionsbeständigkeit auf. Dadurch wird ein kostengünstiges Elektrodenmaterial für Zündkerzenelektroden bereitgestellt, das Standzeiten erlaubt, die bislang nur für Elektrodenmaterialien aus Edelmetall- und Edelmetalllegierungen erzielt wurden. Dies wird erfindungsgemäß dadurch erreicht, dass die Zündkerzenelektrode, aus einem Elektrodenmaterial hergestellt ist, das Nickel als Basismaterial enthält, und darüber hinaus 0,5 bis 3 At.-% (Atom-%) Silicium und mindestens 6 At.-% Aluminium enthält.The spark plug electrode according to the invention with the features of the main claim is characterized by an extremely high temperature resistance compared to known electrode materials based on nickel alloys, a minimized spark erosive wear or electrode erosion and has a unique oxidation and corrosion resistance. This provides a low cost electrode material for spark plug electrodes that allows for life previously only achieved for noble metal and precious metal alloy electrode materials. This is inventively achieved in that the spark plug electrode is made of an electrode material containing nickel as the base material, and further contains 0.5 to 3 at.% (Atomic%) of silicon and at least 6 at.% Of aluminum.

Die Unteransprüche zeigen bevorzugte Weiterbildungen und Verbesserungen der Erfindung.The dependent claims show preferred developments and improvements of the invention.

Besonders vorteilhaft ist, dass die erfindungsgemäße Zündkerzenelektrode eine hinsichtlich der chemischen und physikalischen Eigenschaften optimierte Legierung aufweist. Die Kombination von Nickel, Silicium und Aluminium in den vorgegebenen Mengen führt dazu, dass die Legierung sowohl einfach und verlustfrei herzustellen ist, als auch, aufgrund ihrer Homogenität, ein dauerhaft gutes Anwendungsprofil aufweist.It is particularly advantageous that the spark plug electrode according to the invention has an optimized with respect to the chemical and physical properties alloy. The combination of nickel, silicon and aluminum in the specified amounts leads to the alloy being both simple and lossless to produce and, due to its homogeneity, having a permanently good application profile.

Besonders hervorzuheben ist die extreme Temperaturbeständigkeit der erfindungsgemäßen Zündkerzenelektrode, was sich in einer hervorragenden Funkenerosionsbeständigkeit und Oxidations- sowie Korrosionsbeständigkeit auch im Dauerbetrieb der Zündkerze äußert.Particularly noteworthy is the extreme temperature resistance of the spark plug electrode according to the invention, which manifests itself in an excellent spark erosion resistance and oxidation and corrosion resistance even in continuous operation of the spark plug.

Weiter hervorzuheben ist, dass die erfindungsgemäße Zündkerzenelektrode eine gegenüber den bekannten Materialien verbesserte Wänneleitfähigkeit aufweist.It should also be emphasized that the spark plug electrode according to the invention has improved thermal conductivity compared with the known materials.

Insbesondere vorteilhaft ist, dass durch wahlweise Kombination des erfindungsgemäßen Elektrodenmaterials mit weiteren reaktiven Elementen, der funkenerosive Verschleiß noch deutlicher reduziert werden kann und eine Steigerung der Oxidations- und Korrosionsbeständigkeit ermöglicht wird.It is particularly advantageous that by selectively combining the electrode material according to the invention with other reactive elements, the spark erosive wear can be reduced even more clearly and an increase in the oxidation and corrosion resistance is made possible.

Die Summe der Vorteile der erfindungsgemäßen Zündkerzenelektrode führt aufgrund der dadurch erreichbaren langen Standzeiten zu besonders großen Wechselintervallen der Zündkerzen und zu einer gesteigerten Akzeptanz durch den Markt.The sum of the advantages of the spark plug electrode according to the invention leads to particularly long replacement intervals of the spark plugs and to increased acceptance by the market due to the achievable long service life.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Erfindung betrifft eine Zündkerzenelektrode, die aus einem Elektrodenmaterial hergestellt ist, das Nickel, 0,5 bis 3 At.-% Silicium und mindestens 6 At.-% Aluminium enthält. Wie bereits ausgeführt weist ein derartiges Elektrodenmaterial Vorteile hinsichtlich der Oxidations- und Korrosionsbeständigkeit, sowie eine ausgezeichnete Beständigkeit gegenüber dem funkenerosivem Verschleiß auf. Bei der Zündung eines Funkens zwischen der Mittel- und der Masseelektrode einer Zündkerze wird an den beiden Oberflächen der Elektroden durch die hohen Temperaturen im Lichtbogen das Material durch Oxidationsprozesse bzw. durch das Aufschmelzen bzw. Abplatzen oberflächennaher Materialbereiche verschlissen. Man spricht hierbei von funkenerosivem Verschleiß. Diesem Abblättern oder Absprengen von Elektrodenmaterial wird im Stand der Technik durch Beimengungen von Aluminium und Silicium zu der Nickelbasislegierung entgegnet. Dabei zeigt sich, dass die maximale einzuarbeitende Menge an Silicium in einem Bereich von etwa 1,5 bis 3 Gew.-% liegt und der Maximalanteil an Aluminium, der noch eine gerade ausreichende Verarbeitung des Legierungsmaterials erlaubt, bei 5 Gew.-% liegt.The invention relates to a spark plug electrode made of an electrode material containing nickel, 0.5 to 3 at.% Silicon and at least 6 at.% Aluminum. As already stated, such an electrode material has advantages in terms of oxidation and corrosion resistance, as well as an excellent resistance to spark erosive wear. When igniting a spark between the center and the ground electrode of a spark plug, the material is worn by oxidation processes or by the melting or flaking of near-surface material areas on the two surfaces of the electrodes by the high temperatures in the arc. This is called spark erosive wear. This delamination or blow-off of electrode material is counteracted in the prior art by admixtures of aluminum and silicon to the nickel-based alloy. It turns out that the maximum amount of silicon to be incorporated in a range of about 1.5 to 3 Wt .-% and the maximum amount of aluminum, which still allows just sufficient processing of the alloy material is 5 wt .-%.

Überraschender Weise haben nun die Erfinder gefunden, dass gerade Anteile an über 6 At.-% Aluminium in einer Nickellegierung eine deutliche Reduzierung des funkenerosiven Verschleißes erzeugt. Ohne an die Theorie gebunden zu sein wird angenommen, dass der hochdotierte Anteil an Aluminium in der Nickelbasislegierung zur Bildung einer nahezu dichten, wenngleich auch dünnen Aluminiumoxid-Schicht an der Oberfläche des Elektrodenmaterials führt. Diese Aluminiumoxidschicht ist resistent gegenüber dem Abplatzen und Abschmelzen, das durch die hohen Temperaturen bei der Funkenentladung zwischen den Elektroden induziert wird. Dies ist nicht so zu verstehen, dass die Aluminiumoxidschicht sich von dem Nickellegierungsmaterial unter Bildung einer separaten Schicht abtrennt. Vielmehr ist es so, dass durch die erfindungsgemäße Zusammensetzung des Elektrodenmaterials die Verarbeitbarkeit so gut ist, dass eine homogene Verteilung der Metalle und Metalloxide vorherrscht. Der hohe Gehalt an Aluminium insgesamt führt dazu, dass dessen Anteil auch an der Oberfläche des Elektrodenmaterials erhöht ist. Dadurch bilden sich durch partielle Oxidation der Aluminiumatome an der Elektrodenoberfläche gleichmäßig verteilte Aluminiumoxidbereiche, die eine ausgezeichnete und gegenüber Nickeloxid wesentlich größere Widerstandsfähigkeit hinsichtlich des funkenerosiven Verschleißes zeigen.Surprisingly, the inventors have now found that just shares of more than 6 At .-% aluminum in a nickel alloy produces a significant reduction in spark erosive wear. Without being bound by theory, it is believed that the highly doped portion of aluminum in the nickel-based alloy results in the formation of a nearly dense, albeit thin, alumina layer on the surface of the electrode material. This alumina layer is resistant to the chipping and melting induced by the high spark discharge temperatures between the electrodes. This is not to be understood as meaning that the aluminum oxide layer separates from the nickel alloy material to form a separate layer. Rather, the processability is so good by the composition of the electrode material according to the invention that a homogeneous distribution of the metals and metal oxides prevails. The high content of aluminum as a whole means that its content is also increased at the surface of the electrode material. As a result, by partial oxidation of the aluminum atoms on the electrode surface uniformly distributed alumina areas that show excellent and compared to nickel oxide much greater resistance to spark erosion wear.

Durch die hohe Dotierung der Nickelbasislegierung mit Aluminium, kann, im Falle des Abblätterns der Aluminiumoxidteilchen aus dem Inneren der Legierung weiteres Aluminium an die Oberfläche des Elektrodenmaterials nachgeliefert werden, das dann wiederum eine beständige Oxidschicht ausbildet. Somit wird das Nickelbasismaterial geschont und unterliegt einem deutlich reduzierten Abbau.Due to the high doping of the nickel-based alloy with aluminum, in the case of flaking of the aluminum oxide particles from the interior of the alloy, further aluminum can be replenished to the surface of the electrode material, which in turn forms a resistant oxide layer. Thus, the nickel base material is spared and subject to a significantly reduced degradation.

Entgegen der herrschenden Meinung bezüglich der schlechten Verarbeitbarkeit von hoch aluminiumdotiertem Nickellegierungsmaterial, wurde überraschenderweise gefunden, dass gerade die Kombination aus hohen Anteilen an Aluminium und relativ hohen Anteilen an Silicium zu einer Nickelbasislegierung die einfache Verarbeitung hin zu einem homogenen Legierungsmaterial fördert. Der Anteil an Aluminium ist dabei im Einzelnen nicht beschränkt. Durchaus übliche Mengen liegen in einem Bereich um etwa 30 bis 40 At.-%. Geringere Mengen als 6 At.-% erhöhen hingegen wieder den Verschleiß durch Korrosion, Oxidation bzw. Funkenerosion. Dies ist vermutlich damit zu begründen, dass in jeden Fällen keine flächendeckende Aluminiumoxidschicht an der Oberfläche des Elektrodenmaterials ausgebildet werden kann, die die Nickellegierung schützend umgibt. Ferner wird dann auch nicht ausreichend Aluminium zur Nachförderung desselben aus dem Inneren und zur Neubildung von Aluminiumoxidbereichen an der Oberfläche der Elektrode verfügbar sein. Der funkenerosive Verschleiß ist damit gegenüber dem erfindungsgemäßen Zündkerzenelektrodenmaterial deutlich reduziert.Contrary to popular belief regarding poor processability of highly aluminum doped nickel alloy material, it has surprisingly been found that it is precisely the combination of high levels of aluminum and relatively high levels of silicon to a nickel base alloy that promotes ease of processing into a homogeneous alloy material. The proportion of aluminum is not limited in detail. Quite usual amounts are in a range of about 30 to 40 At .-%. On the other hand, lower amounts than 6 at.% Increase the wear due to corrosion, oxidation or spark erosion. This is presumably due to the fact that in each case no area-covering aluminum oxide layer can be formed on the surface of the electrode material, which protectsively surrounds the nickel alloy. Furthermore, then sufficient aluminum will not be available for subsequent delivery of the same from the interior and for the formation of new alumina areas on the surface of the electrode. Of the spark erosive wear is thus significantly reduced compared to the spark plug electrode material according to the invention.

Das Silicium dient seinerseits zur Verbesserung der Hochtemperaturkorrosions- und Oxidationsbeständigkeit. Silicium ist chemisch gesehen ein Nichtmetall und weist einen relativ hohen Schmelzpunkt auf. Dadurch stabilisiert es die Legierung gerade bei hohen Temperaturen. Durch seine Nähe zu den Halbmetallen zeigt es aber auch halbleiterähnliche physikalische Eigenschaften. Diese sind essentiell für seine guten Verarbeitbarkeit in metallischen Legierungen. Insbesondere ist dies wichtig für das erfindungsgemäße Elektrodenmaterial, da somit auch der relativ hohe Anteil von bis etwa 3 At.-% Silicium homogen in das Legierungsmaterial eingearbeitet werden kann. War es bislang nur schwer möglich derart hohe Siliciumgehalte in Nickelbasislegierungen bereitzustellen, so gelingt dies mit der erfindungsgemäßen Zusammensetzung des Elektrodenmaterials, wodurch die ausgezeichnete Temperaturbeständigkeit erzielt wird.The silicon, in turn, serves to improve high temperature corrosion and oxidation resistance. Silicon is chemically nonmetallic and has a relatively high melting point. As a result, it stabilizes the alloy, especially at high temperatures. Due to its proximity to the semi-metals, it also shows semiconductor-like physical properties. These are essential for its good processibility in metallic alloys. In particular, this is important for the electrode material according to the invention, since thus also the relatively high proportion of up to about 3 at.% Silicon can be homogeneously incorporated into the alloy material. While it has hitherto been difficult to provide such high silicon contents in nickel-base alloys, this is achieved with the composition of the electrode material according to the invention, whereby the excellent temperature resistance is achieved.

Das erfindungsgemäße Elektrodenmaterial für Zündkerzenelektroden weist auch eine gegenüber herkömmlichen Elektrodenmaterialien verbesserte Wärmeleitfähigkeit auf. Ohne an die Theorie gebunden zu sein wird vermutet, dass dies auf die außerordentliche Homogenität der Zusammensetzung des Elektrodenmaterials zurückzuführen ist. Durch die gesteigerte Wärmeleitfähigkeit ist die maximale Elektrodentemperatur geringer, wodurch der korrosive Angriff weniger stark ausgeprägt ist.The electrode material for spark plug electrodes according to the invention also has an improved thermal conductivity compared to conventional electrode materials. Without being bound by theory, it is believed that this is due to the extraordinary homogeneity of the composition of the electrode material. Due to the increased thermal conductivity, the maximum electrode temperature is lower, whereby the corrosive attack is less pronounced.

Mit dem erfindungsgemäßen Zündkerzenelektrodenmaterial können Zündkerzen hergestellt werden, mit denen Standzeiten in etwa dem selben Bereich wie diejenigen für Edelmetallmaterialzündkerzen erzielt werden. Während hingegen die Standzeiten der herkömmlichen Zündkerzen lediglich etwa bis 60.000 km betragen, liegen die Standzeiten der erfindungsgemäßen Zündkerzenelektroden um gut die Hälfte höher, also über 90.000 km. Dies erzeugt eine wesentlich bessere Akzeptanz auf dem Markt und ist sowohl aus umwelttechnischen wie auch aus betriebswirtschaftlichen Gründen von Vorteil.With the spark plug electrode material according to the invention spark plugs can be produced, with which service lives are achieved in about the same range as those for noble metal material spark plugs. Whereas, however, the service life of conventional spark plugs is only about 60,000 km, the service lives of the spark plug electrodes according to the invention are a good half higher, ie more than 90,000 km. This creates a much better acceptance in the market and is beneficial for environmental as well as for business reasons.

Um Vergleichsversuche zwischen herkönunliehem Elektrodenmaterial und dem erfindungsgemäßen Elektrodenmaterial hinsichtlich des funkenerosiven Verschleißes anstellen zu können, wurden Funkenerosionsexperimente durchgeführt. Dazu wurde das Elektrodenmaterial in einer geeigneten Halterung zwischen eine Lichtquelle und einen Aufnahmeschirm gebracht, und es wurde im Rohzustand ein Schattenbild aufgenommen. Anschließend wurde mehrfach ein Funken zwischen den Elektrodenoberflächen erzeugt. Nach Erreichen einer vordefinierten Anzahl von Zündungen wurde abschließend ein weiteres Schattenbild aufgenommen. Beide Schattenbilder wurden miteinander verglichen. Der funkenerosive Verschleiß war durch Materialabtrag erkennbar. Der Quotient aus dem flächenmäßigen Verschleiß und der Anzahl der Funken ergab damit ein Maß für die Beständigkeit des getesteten Elektrodenmaterials gegenüber einer Funkenerosion.In order to be able to make comparative experiments between herkönunliehem electrode material and the electrode material according to the invention in terms of spark erosive wear, spark erosion experiments were performed. For this purpose, the electrode material was placed in a suitable holder between a light source and a receiving screen, and a shadow image was taken in the raw state. Subsequently, a spark was generated several times between the electrode surfaces. After reaching a predefined number of ignitions, another silhouette was finally taken. Both silhouettes became together compared. The spark erosive wear was recognizable by material removal. The quotient of the surface wear and the number of sparks thus provided a measure of the resistance of the tested electrode material to spark erosion.

In einer bevorzugten Ausführungsform der Erfindung enthält das Elektrodenmaterial für die Zündkerzenelektrode neben der Nickelbasislegierung etwa 0,5 bis 2 At.-% Silicium und etwa 6 bis 30 At.-% Aluminium. Gerade ein derartiges Verhältnis hat sich als besonders gut verarbeitbar gezeigt. Anteile von etwa 6 bis 30 At.-% Aluminium sind ausreichend für eine homogene Aluminiumverteilung in dem Legierungsmaterial und fördern die Bildung von fein verteilten dichten aber dünnen Aluminiumoxidbereichen an der Oberfläche des Elektrodenmaterials, wodurch die hervorragende Oxidations- und Korrosionsbeständigkeit und der minimierte funkenerosive Verschleiß der Elektrode erzielt wird. Der Anteil von 0,5 bis 2 At.-% Silicium ist dabei besonders vorteilhaft hinsichtlich der homogenen Verarbeitbarkeit des Siliciums auf der einen Seite und ferner der doch ausgezeichneten Erhöhung der Temperaturbeständigkeit des Elektrodenmaterials.In a preferred embodiment of the invention, the electrode material for the spark plug electrode contains about 0.5 to 2 at.% Silicon and about 6 to 30 at.% Aluminum in addition to the nickel base alloy. Just such a ratio has been shown to be particularly easy to process. Proportions of about 6 to 30 at.% Aluminum are sufficient for homogeneous aluminum distribution in the alloy material and promote the formation of finely divided dense but thin alumina areas on the surface of the electrode material, thereby providing excellent oxidation and corrosion resistance and minimized spark erosion wear Electrode is achieved. The proportion of 0.5 to 2 at .-% silicon is particularly advantageous in terms of the homogeneous processability of the silicon on the one hand and also the excellent increase in the temperature resistance of the electrode material.

Weiter vorteilhaft ist es, wenn der Anteil an Aluminium zwischen etwa 7 und 10 At.-% liegt. Es hat sich gezeigt, dass in einem Bereich über 10 At.-% Aluminium in der Legierung, die Oxidations- und Korrosionsbeständigkeit nicht mehr in einem proportionalen Maße gesteigert werden kann, wie es zum Beispiel unterhalb 15 At.-% der Fall ist. Aus betriebswirtschaftlichen Gründen ist daher ein erfindungsgemäßes Elektrodenmaterial zu bevorzugen, das Aluminium in einem Bereich zwischen etwa 7 und 10 At.-% enthält. Diese Menge ist ausreichend um an der Oberfläche der Nickellegierung eine flächendeckende dünne Schicht Aluminiumoxid zur Erhöhung der Oxidations- und Korrosionsbeständigkeit, so wie der Funkenerosionsbeständigkeit bereitzustellen und ferner im Bedarfsfall Aluminium aus dem Inneren des Elektrodenmaterials an die Oberfläche der Elektrode nachzufördern. Unterhalb 7 At.-% bis minimal 6 At.-% kann noch eine ausreichende Aluminiumoxid gebildet werden, während noch weiter reduzierte Mengen den Verschleiß des Elektrodenmaterials wieder ansteigen lassen, da die Aluminiumoxidschutzschicht nicht flächendeckend an der Oberfläche der Elektrode ausgebildet ist.It is further advantageous if the proportion of aluminum is between about 7 and 10 at.%. It has been found that in a range above 10 at.% Aluminum in the alloy, the oxidation and corrosion resistance can no longer be increased to a proportional extent, as is the case, for example, below 15 at.%. For economical reasons, therefore, an electrode material according to the invention which contains aluminum in a range between approximately 7 and 10 at.% Is to be preferred. This amount is sufficient to provide on the surface of the nickel alloy a blanket thin layer of alumina for increasing the oxidation and corrosion resistance, as well as the spark erosion resistance, and further to refill aluminum from the interior of the electrode material to the surface of the electrode as needed. Below 7 at.% To at least 6 at.%, Sufficient alumina can still be formed, while still reduced amounts cause the wear of the electrode material to increase again since the aluminum oxide protective layer is not formed on the surface of the electrode.

In einer weiteren Ausführungsform kann die Zündkerzenelektrode in ihrem Legierungsmaterial auch reaktive Elemente, einzeln oder in beliebiger Kombination enthalten. Als reaktive Elemente werden Elemente aus dem Periodensystem der Elemente bezeichnet, die insbesondere unter den Nebengruppenelementen der fünften und sechsten Periode sowie der Lanthanoiden zu finden sind. Diese in der vorliegenden Erfindung als reaktive Elemente bezeichneten Elemente erhöhen die bereits gesteigerte Oxidations- und Korrosionsbeständigkeit noch um ein weiteres. Es wurde gefunden, dass insbesondere die Elemente Yttrium, Hafnium, Tantal, Cer, Lanthan und Zirkonium hierzu besonders geeignet sind. Die reaktiven Elemente können dabei sowohl alleine als auch in beliebigen Kombinationen der Nickelbasislegierung zulegiert werden. Besonders bevorzugt eingesetzt sind die reaktiven Elemente, wenn ihre Mengen in einem Bereich geringer als 1 At.-% liegen. Höhere Mengen sind schon aus Kostengründen nicht in Erwägung zu ziehen, darüber hinaus wird ferner durch gesteigerte Mengen an reaktivem Element auch keine weitere Verbesserung der Oxidations- und Korrosionsbeständigkeit erzielt.In a further embodiment, the spark plug electrode may also contain in its alloy material reactive elements, individually or in any desired combination. As reactive elements elements of the periodic table of the elements are referred to, which can be found in particular under the subgroup elements of the fifth and sixth period as well as the lanthanides. These elements, referred to as reactive elements in the present invention, increase the already enhanced oxidation and corrosion resistance even further. It has been found that in particular the elements yttrium, hafnium, tantalum, cerium, lanthanum and zirconium are particularly suitable for this purpose. The reactive elements can be alloyed both alone and in any combination of the nickel-based alloy. The reactive elements are particularly preferably used if their amounts are within a range of less than 1 at.%. Higher quantities are not to be considered for reasons of cost, moreover, by increased amounts of reactive element also no further improvement of the oxidation and corrosion resistance is achieved.

Eine außerordentlich gute Kombination von reaktiven Elementen, die zu einer besonders guten Beständigkeit des Legierungsmaterials gegenüber Funkenerosion, Oxidation und Korrosion führt, ist eine Kombination aus Yttrium und Hafnium. Es wird vermutet, dass dies auf die sehr gute Löslichkeit der beiden Elemente in der Nickelbasislegierung zurück zu führen ist. Ferner führt diese Kombination aufgrund der guten Löslichkeit auch nicht zur Abscheidung von Oxiden.An extremely good combination of reactive elements, which results in a particularly good resistance of the alloy material to spark erosion, oxidation and corrosion, is a combination of yttrium and hafnium. It is believed that this is due to the very good solubility of the two elements in the nickel-based alloy. Furthermore, this combination does not lead to the deposition of oxides because of the good solubility.

Eine besonders bevorzugte Ausführungsform umfasst eine Zündkerzenelektrode, die aus einem Elektrodenmaterial hergestellt wurde, das im Wesentlichen aus Nickel als Basismaterial, 0,5 bis 2 At.-% Silicium und 7 bis 10 At.-% Aluminium besteht. In einem Elektrodenmaterial gemäß dieser Vorgaben liegt ein außerordentlich ausgewogenes Verhältnis der Einzelbestandteile vor, so dass das Elektrodenmaterial nicht nur eine maximale Oxidations- und Korrosionsbeständigkeit sowie Erosionsbeständigkeit aufweist, sondern darüber hinaus die Wärmeleitfähigkeit optimiert ist und ferner das Material einfach und kostengünstig herstellbar ist, ohne dass sich Abscheidungen oder Inhomogenitäten bilden. Dadurch ist eine dauerhafte sehr gute Leistung des Elektrodenmaterials und damit der Zündkerzenelektroden gewährleistet.A particularly preferred embodiment comprises a spark plug electrode made of an electrode material consisting essentially of nickel as the base material, 0.5 to 2 at.% Silicon, and 7 to 10 at.% Aluminum. In an electrode material according to these specifications, an extremely balanced ratio of the individual components is present, so that the electrode material not only has maximum oxidation and corrosion resistance and erosion resistance, but also the thermal conductivity is optimized and further the material is simple and inexpensive to produce, without form deposits or inhomogeneities. This ensures a long-lasting very good performance of the electrode material and thus the spark plug electrodes.

Eine darüber hinaus bevorzugte Ausführungsform umfasst eine Zündkerzenelektrode, die aus einem Elektrodenmaterial hergestellt wurde, das im Wesentlichen aus Nickel als Basismaterial, 0,5 bis 2 At.-% Silicium und 7 bis 10 At.-% Aluminium und mindestens einem reaktiven Element besteht, das ausgewählt ist aus der Gruppe aus Yttrium und/oder Hafnium und/oder Cer und/oder Zirkonium und/oder Lanthan und/oder Tantal besteht. Eine derartige Kombination weist im Vergleich zu einem entsprechenden Elektrodenmaterial, das additiv keine reaktiven Elemente enthält, noch einmal eine deutliche Verbesserung hinsichtlich der Oxidations- und Korrosionsbeständigkeit auf. Das Elektrodenmaterial ist damit sowohl hinsichtlich des funkenerosiven Verschleißes, der Wärmeleitfähigkeit und zudem auch der Oxidations- und Korrosionsbeständigkeit hin optimiert, was zu einer außerordentlich hohen Standzeit des Elektrodenmaterials und damit der daraus hergestellten Elektrode führt.A further preferred embodiment comprises a spark plug electrode made of an electrode material consisting essentially of nickel as a base material, 0.5 to 2 at.% Silicon and 7 to 10 at.% Aluminum and at least one reactive element, which is selected from the group consisting of yttrium and / or hafnium and / or cerium and / or zirconium and / or lanthanum and / or tantalum. Such a combination, compared to a corresponding electrode material which contains additive no reactive elements, once again a significant improvement in the oxidation and corrosion resistance. The electrode material is thus optimized both in terms of spark erosive wear, thermal conductivity and also the oxidation and corrosion resistance out, resulting in an extremely high life of the electrode material and thus the electrode produced therefrom.

Das erfindungsgemäße Elektrodenmaterial für Zündkerzenelektroden kann sowohl für die Herstellung der Mittel-, wie auch für die Masseelektrode wie auch beider Elektroden gleichzeitig, verwendet werden.The electrode material for spark plug electrodes according to the invention can be used for both Manufacture of the center, as well as the ground electrode as well as both electrodes simultaneously used.

Erfindungsgemäß werden Zündkerzen bereitgestellt, die mindestens eine erfindungsgemäße Zündkerzenelektrode umfassen, und die somit eine verbesserte Oxidations- und Korrosionsbeständigkeit, sowie Funkenerosionsbeständigkeit und Wärmeleitfähigkeit aufweisen.According to the invention, spark plugs are provided which comprise at least one spark plug electrode according to the invention and which thus have improved oxidation and corrosion resistance as well as spark erosion resistance and thermal conductivity.

Claims (10)

  1. Spark plug electrode, produced from an electrode material containing
    a) nickel as base material,
    b) 0.5 to 3 at.% silicon, and
    c) at least 6 at.% aluminium.
  2. Spark plug electrode according to Claim 1, characterized in that the electrode material contains
    a) 0.5 to 2 at.% silicon, and
    b) 6 to 30 at.% aluminium.
  3. Spark plug electrode according to either of Claims 1 and 2, characterized in that the electrode material contains 7. to 10 at.% aluminium.
  4. Spark plug electrode according to one of the preceding claims, characterized in that the electrode material contains yttrium and/or hafnium and/or cerium and/or zirconium and/or lanthanum and/or tantalum as a further constituent.
  5. Spark plug electrode according to Claim 4, characterized in that the electrode material contains less than 2 at.%, preferably less than 1 at.%, yttrium and/or hafnium and/or cerium and/or zirconium and/or lanthanum and/or tantalum.
  6. Spark plug electrode, produced from an electrode material consisting essentially of
    a) nickel as base material,
    b) 0.5 to 2 at.% silicon, and
    c) 7 to 10 at.% aluminium.
  7. Spark plug electrode, produced from an electrode material consisting essentially of
    a) nickel as base material,
    b) 0.5 to 2 at.% silicon, and
    c) 7 to 10 at.% aluminium, and
    d) yttrium and/or hafnium and/or cerium and/or zirconium and/or lanthanum and/or tantalum.
  8. Spark plug electrode according to Claim 7, characterized in that less than 2 at.%, preferably less than 1 at.%, yttrium and/or hafnium and/or cerium and/or zirconium and/or lanthanum and/or tantalum is present.
  9. Spark plug electrode according to one of the preceding claims, characterized in that the spark plug electrode is a central and/or earth electrode.
  10. Spark plug, comprising a spark plug electrode according to one of the preceding claims.
EP08774932A 2007-08-29 2008-07-09 Spark plug electrode produced from improved electrode material Not-in-force EP2186173B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007040722A DE102007040722A1 (en) 2007-08-29 2007-08-29 Spark plug electrode made of improved electrode material
PCT/EP2008/058927 WO2009027139A1 (en) 2007-08-29 2008-07-09 Spark plug electrode produced from improved electrode material

Publications (2)

Publication Number Publication Date
EP2186173A1 EP2186173A1 (en) 2010-05-19
EP2186173B1 true EP2186173B1 (en) 2010-12-08

Family

ID=39776387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08774932A Not-in-force EP2186173B1 (en) 2007-08-29 2008-07-09 Spark plug electrode produced from improved electrode material

Country Status (6)

Country Link
US (1) US8502438B2 (en)
EP (1) EP2186173B1 (en)
JP (1) JP2010537055A (en)
AT (1) ATE491249T1 (en)
DE (2) DE102007040722A1 (en)
WO (1) WO2009027139A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121862B4 (en) * 2015-12-15 2017-12-28 Federal-Mogul Ignition Gmbh spark plug

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118039A (en) * 1986-11-05 1988-05-23 Toshiba Corp Electrode material for spark plug
GB2221222B (en) 1988-07-25 1993-01-06 Mitsubishi Metal Corp An ni base alloy for spark plug electrodes of internal combustion engines
JP3625262B2 (en) 1999-03-19 2005-03-02 日立金属株式会社 Spark plug electrode material with excellent high-temperature oxidation resistance and hot workability
JP4172011B2 (en) * 2001-12-21 2008-10-29 日立金属株式会社 Ni-based alloy with excellent oxidation resistance, high-temperature strength and hot workability
DE10222262A1 (en) * 2002-05-18 2003-11-27 Bosch Gmbh Robert Nickel alloy for an ignition device used in a vehicle contains chromium, aluminum and silicon
DE10224891A1 (en) * 2002-06-04 2003-12-18 Bosch Gmbh Robert Nickel alloy suitable for internal combustion engine spark plug electrodes, contains silicon and aluminum with yttrium, hafnium or zirconium
US7823556B2 (en) * 2006-06-19 2010-11-02 Federal-Mogul World Wide, Inc. Electrode for an ignition device

Also Published As

Publication number Publication date
EP2186173A1 (en) 2010-05-19
US8502438B2 (en) 2013-08-06
ATE491249T1 (en) 2010-12-15
US20100194258A1 (en) 2010-08-05
JP2010537055A (en) 2010-12-02
DE502008002009D1 (en) 2011-01-20
WO2009027139A1 (en) 2009-03-05
DE102007040722A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
DE112012002699B4 (en) Spark plug and method of manufacturing an electrode of a spark plug
DE112012000600B4 (en) A spark plug electrode for a spark plug, spark plug, and method of manufacturing a spark plug electrode
DE602006000350T2 (en) Spark plug for internal combustion engine
DE102010027463A1 (en) Spark plug and method for its production
DE102005010048A1 (en) Spark plug has a central electrode or a mass electrode with a noble metal chip
DE112012000411B4 (en) Ruthenium-based electrode alloy for a spark plug, spark plug electrode and spark plug
EP2514052B2 (en) Spark plug electrode produced from improved electrode material
DE102013216349B4 (en) Spark plug for an internal combustion engine
EP2186173B1 (en) Spark plug electrode produced from improved electrode material
EP0554792B1 (en) Silver-nickel composite material for electrical contacts and electrodes
EP1875570A1 (en) Electrode for a spark plug
DE112021001025T5 (en) Noble metal tip for spark plugs, electrode for spark plugs, and spark plug
DE10348778B3 (en) Sparking plug electrode has a primary material combined with 2-20 per cent secondary material in powder pure metal form
DE102014103053B4 (en) A method of making a spark plug electrode material, method of making a spark plug, and electrode segment for use in a spark plug
DE102013210453B4 (en) Spark plug electrode and spark plug
EP2697405B1 (en) Spark plug electrode material and spark plug
DE102008043225A1 (en) Sparking plug electrode material for use in sparking plug electrode, comprises silver and ceramic secondary phase, where ceramic secondary phase is oxide ceramic
DE102013210456B4 (en) Spark plug with forming nickel-rich protective layer
DE2645759A1 (en) IMPROVED IGNITION DEVICE, ELECTRODE AND ELECTRODE MATERIAL
DE102013210447B4 (en) Spark plug electrode with nickel-rhodium coating, and method for Herstellungsunq and spark plug with such a spark plug electrode
DE2042200A1 (en) Spark plug electrode alloys - esp nickel alloys to reduce attack by lead cpds
EP2697404B1 (en) Spark plug electrode material, spark plug and manufacturing process
WO2015188970A1 (en) Electrode material, spark plug electrode and spark plug
WO2015189005A1 (en) Spark plug electrode, method for the production thereof and spark plug
DE1209301B (en) The use of an iron alloy as a material for spark plug electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008002009

Country of ref document: DE

Date of ref document: 20110120

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110308

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110319

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

26N No opposition filed

Effective date: 20110909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002009

Country of ref document: DE

Effective date: 20110909

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130723

Year of fee payment: 6

Ref country code: FR

Payment date: 20130719

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130729

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 491249

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130709

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140709

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160927

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008002009

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201