EP2693447A1 - Procédé pour fabriquer un cable électrique comprenant un revêtement hydrophobe - Google Patents

Procédé pour fabriquer un cable électrique comprenant un revêtement hydrophobe Download PDF

Info

Publication number
EP2693447A1
EP2693447A1 EP13174520.0A EP13174520A EP2693447A1 EP 2693447 A1 EP2693447 A1 EP 2693447A1 EP 13174520 A EP13174520 A EP 13174520A EP 2693447 A1 EP2693447 A1 EP 2693447A1
Authority
EP
European Patent Office
Prior art keywords
electrically conductive
hydrophobic
hydrophobic coating
hydroxide layer
conductive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13174520.0A
Other languages
German (de)
English (en)
Other versions
EP2693447B1 (fr
Inventor
Rodrigue Sumera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA filed Critical Nexans SA
Publication of EP2693447A1 publication Critical patent/EP2693447A1/fr
Application granted granted Critical
Publication of EP2693447B1 publication Critical patent/EP2693447B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2813Protection against damage caused by electrical, chemical or water tree deterioration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/002Auxiliary arrangements
    • H01B5/004Auxiliary arrangements for protection against corona

Definitions

  • the present invention relates to a method for manufacturing an electric cable comprising a hydrophobic coating, and an electric cable obtained by said method.
  • the invention relates to an electric cable capable of reducing the corona effect.
  • Overhead lines are traditionally made up of one or more bare electrical conductors, stretched over an appropriate set of towers. These lines are conventionally intended for the transport of electrical energy under an alternating high voltage (225 to 800 kV). Each electrical conductor has a diameter of a few centimeters and can be composed of several assembled metal son. Along the bare electric conductor, there is always an effect called corona effect. The corona effect indeed occurs on all electrical conductors and overhead lines, subjected to high voltage.
  • the air ionizes and forms around the electrical conductor a luminous crown.
  • the electrical conductor In the operational configuration of the electrical conductor, one of the consequences of the corona effect is the production of noise when the driver is wet. Therefore, the electrical conductor can become a source of significant discomfort and inconvenience for those who are or remain in the vicinity of this type of driver. Indeed, under these conditions, the conductivity of the air increases, and because of this, it produces a more intense and more effective ionization.
  • the corona effect also causes energy losses and can cause health risks related to electromagnetic radiation, acoustic noise and power losses.
  • one solution is to make the surface of the electrical conductor hydrophobic.
  • the hydrophobicity of the surface makes it possible to prevent water retention at the level of the electrical conductor in order to reduce for example the formation of frost or the deposition of asperities on the outer surface of the electrical conductor, and thus to limit the phenomenon of effect crowned.
  • WO 2006/072648 proposes to surround an aluminum electrical conductor with a hydrophobic plastic coating such as a polymer wax, obtained by atomization.
  • the object of the present invention is to overcome the drawbacks of the techniques of the prior art by proposing in particular a method of manufacturing an electrical cable comprising a hydrophobic coating to guarantee a significantly diminished corona effect while being easy to put implemented and having good stability over time.
  • a hydrophobic coating can be easily formed around the surface of at least one electrically elongated conductor, while having a very good long-term chemical stability not requiring in particular surface reprocessing.
  • the corona effect of the electric cable thus formed advantageously decreases significantly.
  • hydrophobic means a coating or a layer whose surface has a contact angle (or drop angle) strictly greater than 90 °, and preferably at least 110 °.
  • the measurement of the contact angle accounts for the ability of a liquid to spread over a surface by wettability.
  • the method consists in measuring the angle of the tangent of the profile of a drop deposited on the coating or the layer, with the surface of the coating or of the layer.
  • This contact angle is typically measured using a goniometer at 25 ° C using distilled water.
  • the porous alumina hydroxide layer surrounding the elongated electrically conductive member is preferably a layer that is in direct physical contact with the elongate electrically conductive member.
  • the electrical cable thus formed does not preferably comprise a layer interposed between the porous alumina hydroxide layer and the electrically conductive element.
  • step i is an anodizing step, especially when the elongated electrically conductive element is an aluminum or aluminum alloy element.
  • Anodizing is a surface treatment (of conversion type) which makes it possible to form, by anodic oxidation, from the electrically conductive element, the alumina hydroxide layer. Thus, the anodizing will consume a portion of the electrically conductive element to form said alumina hydroxide layer.
  • the alumina hydroxide layer is formed from the surface of the electrically conductive element towards the core of said electrically conductive element, unlike an electrolytic deposition.
  • Anodizing is conventionally based on the principle of electrolysis of water. It consists of immersing the electrically conductive element in an anodizing bath, said electrically conductive element being placed at the positive pole of a DC generator.
  • the anodizing bath is more particularly an acid bath, preferably a phosphoric acid bath or a sulfuric acid bath. These are respectively phosphoric anodizing or sulfuric anodizing.
  • the current density applied for the anodization may be at most 10 A / dm 2 , preferably may be 0, 5 to 6 A / dm 2 , and particularly preferably may range from 1 to 4 A / dm 2 .
  • Said pores may be ordered or unordered pores.
  • step ii is a step in which the elongated electrically conductive member coated with said porous alumina hydroxide layer may be immersed in a solution of said hydrophobic material.
  • the hydrophobic material may be chosen from fluorinated polymers, such as, for example, a polytetrafluoroethylene (PTFE), esters and fatty acids, or a mixture thereof.
  • fluorinated polymers such as, for example, a polytetrafluoroethylene (PTFE), esters and fatty acids, or a mixture thereof.
  • the pores of the porous alumina hydroxide layer are preferably not completely filled with the hydrophobic material.
  • the hydrophobic material does not completely cover the alumina hydroxide layer. porous. Indeed, it is not necessary to fill the pores completely for several reasons.
  • the first reason is the saving of hydrophobic material that can be achieved.
  • the second reason is with regard to the dissolution step iii which can lead to dissolving, in addition to the porous alumina layer, the hydrophobic material.
  • the third reason is that, even if the drop angle is well above 90 °, thus proving the hydrophobic character of the coating, the drop is said to be "sticky” because it tends to adhere to the surface of the hydrophobic coating.
  • the person skilled in the art will be able to play on various parameters, such as the particle size or the size of the powder of the hydrophobic material, the concentration of the hydrophobic material in the solution, the temperature of the solution, the impregnation time, in order to fulfill the least partially said pores, and in particular so as not to fill them completely.
  • the hydrophobic material When the hydrophobic material completely fills the pores, it means in particular that said pores are filled homogeneously with a more than 90% filling of the pore volume by the hydrophobic material, and preferably 100% of the pore volume by the hydrophobic material.
  • the hydrophobic coating formed is in particular an alumina hydroxide layer comprising on its surface protuberances (i.e. protuberances) of said hydrophobic material.
  • the alumina hydroxide is dissolved partially, but not completely, in order to keep enough alumina hydroxide in order to ensure good adhesion of the hydrophobic material to the alumina hydroxide.
  • electrically conductive element thanks to the layer of alumina hydroxide.
  • the dissolution of the alumina hydroxide is also sufficient to obtain the hydrophobic properties of the hydrophobic coating, so as to obtain a coating with a contact angle strictly greater than 90 ° (measured using a goniometer, at 25 ° C, with distilled water). More particularly, the dissolution of the alumina hydroxide in step iii is sufficient to allow the hydrophobic material to form protuberances flush with the surface of the hydrophobic coating.
  • step iii is a step in which the porous alumina hydroxide layer is dissolved in an acidic solution.
  • Those skilled in the art may vary the acid concentration of said solution and the temperature of said solution to affect the dissolution kinetics of the porous layer.
  • acid solution of a solution comprising chromic acid and phosphoric acid.
  • the hydrophobic coating of the electric cable of the invention is the most outside the electrical cable. This coating is therefore in direct contact with the external environment of the electric cable.
  • the electrical cable formed in step iii preferably has no element surrounding the hydrophobic coating.
  • It may preferably be metal, especially based on aluminum, namely either only aluminum or aluminum alloy such as for example aluminum alloy and zirconium.
  • Aluminum or aluminum alloy has the advantage of having a significantly optimized electrical conductivity / specific weight pair, particularly with respect to copper.
  • the electrically conductive element of the invention may conventionally be an assembly of wires (or strands) of metal whose cross section may be of round shape or not, or a combination of both. When they are not round, the cross section of these son may be for example of trapezoidal shape or "Z" shape.
  • the different types of form are defined in IEC 62219.
  • the electrically conductive element may be positioned preferentially in the center of the electric cable or coaxially with the longitudinal axis of the electric cable.
  • the elongated electrically conductive element has not undergone treatment intended to structurally modify the state of its outer surface, in particular to increase the surface roughness, prior to step i.
  • a treatment intended to structurally modify the state of its external surface a physical etching such as the application by press of a pattern, directly on the outer surface of said conductive electrical element, or an etching chemical such as oxidative etching.
  • step a and step b can be performed concomitantly.
  • the method of the invention may comprise said three steps a, b and c, step c being performed after steps a and b.
  • the purpose of the degreasing step is to eliminate the various bodies and particles contained in the greases that may be present on the surface of the elongated electrically conductive element.
  • the degreasing step a may be carried out by at least partially immersing the electrically conductive element in a solution comprising at least one surfactant as a degreasing agent.
  • the pickling step serves to remove oxides that may be present on the surface of the elongate electrically conductive member.
  • a chemical etching consisting in removing the oxides by dissolution, or even bursting of the oxide layer, without attacking the material of the underlying electrically conductive element.
  • the stripping step b may be carried out by at least partially immersing the electrically conductive element in a solution comprising a base as a stripping agent.
  • step a and step b are performed concomitantly, a single solution comprising a degreasing agent and a etchant may be used to both etch and degrease the electrically conductive element.
  • the neutralization step makes it possible to condition the electrically conductive element, before the deposition of step i is carried out.
  • step c of neutralization consists in conditioning the electrically conductive element by plunging it at least partially into a solution identical to the anodizing bath provided in step i in order to put the surface of the electrically conductive element at the same pH as the anodizing bath of step i.
  • the neutralization step c can be carried out by at least partially immersing the electrically conductive element in a solution comprising an acid as neutralizing agent.
  • Another object of the invention is an electric cable obtained from the method as described above.
  • the electrical cable of the invention comprises at least one elongated electrically conductive element, surrounded by a hydrophobic coating, characterized in that the hydrophobic coating is an alumina hydroxide layer comprising on its surface protuberances (ie protrusions) of said hydrophobic material.
  • the hydrophobic material does not completely cover the alumina hydroxide layer.
  • the electric cable according to the invention may have an apparent diameter (i.e. outer diameter) ranging from 10 to 100 mm.
  • the electrical cable of the invention may be more particularly a high-voltage electrical transmission cable, in particular of high-voltage overhead line (OHL) type of at least 225 kV and up to 800 kV. This type of cable is usually stretched between two pylons.
  • OTL overhead line
  • the electrical cable of the invention may comprise an elongated central element of the electrically conductive element type and / or reinforcement element, this elongated central element being surrounded by a first elongated element of the elongated electrically conductive element type surrounded by the hydrophobic coating according to the present invention.
  • the electrical cable may comprise a second element of the elongated electrically conductive element, positioned between the central element and the first element: the first element then surrounds the second element.
  • the element or elements surrounding the elongated central element may be positioned coaxially around said elongate central element.
  • the figure 1 illustrates the schematic representation of the succession of steps i, ii and iii, of the method of the invention.
  • an aluminum wire with a diameter of 3 mm will be anodized (step i) by forming an alumina hydroxide layer all around said wire, by phosphoric anodization (8-30% by weight). phosphoric acid in distilled water) at room temperature (ie 25 ° C), under the application of a current density of between 1 and 4 A / dm 2 .
  • the aluminum wire obtained is thus covered with a layer of porous alumina hydroxide. This coated aluminum wire is shown in cross-section on the figure 2 .
  • the hydrophobic material (step ii) will be implanted in the pores of the porous alumina hydroxide layer by dipping the aluminum wire coated with said porous alumina hydroxide layer in a solution of PTFE ( 1-5% by weight of PTFE in distilled water) at room temperature (ie 25 ° C) for 15 minutes.
  • PTFE 1-5% by weight of PTFE in distilled water
  • porous alumina hydroxide layer will be partially dissolved (ie not completely) by immersing the wire obtained in the previous step (see step ii) in an acidic solution comprising acid.
  • phosphoric acid (3-6% by weight of phosphoric acid in distilled water) and chromic acid (1-2% by weight of chromic acid in distilled water) at a temperature of between 30 and 60 ° C, the dissolution rate being 0.5 ⁇ m / min at 30 ° C, to form a hydrophobic coating.
  • the surface of the hydrophobic coating obtained has contact angles of the order of 130-140 °, measured with distilled water using a goniometer, at 25 ° C.
  • step i it is preferable first of all to strip and degrease said aluminum conductive wire (step not shown), by immersing it in a solution of soda and surfactants such as, for example the GARDOCLEAN referenced solution marketed by CHEMETALL (30-50 g / L sodium hydroxide) at 40-60 ° C for 30 seconds. Then, the conductive wire is immersed in a solution of sulfuric acid (20% by weight of sulfuric acid in distilled water) for the neutralization step (step not shown), at ambient temperature (ie 25 ° C. ) for 10 seconds.
  • soda and surfactants such as, for example the GARDOCLEAN referenced solution marketed by CHEMETALL (30-50 g / L sodium hydroxide) at 40-60 ° C for 30 seconds.
  • the conductive wire is immersed in a solution of sulfuric acid (20% by weight of sulfuric acid in distilled water) for the neutralization step (step not shown), at ambient temperature (ie 25 ° C. ) for 10 seconds.
  • the figure 3 has a cross section of an electric cable 10a obtained according to the method of the invention, wherein the elongated electrically conductive element 1 is covered with said hydrophobic coating 4.
  • This hydrophobic coating 4 comprises a layer of alumina hydroxide 2 and protuberances of hydrophobic material 3 flush with the surface of said layer of alumina hydroxide 2.
  • the figure 4 represents for its part another electric cable 10b of OHL type, obtained according to the method of the invention.
  • This OHL cable comprises a first elongated electrically conductive element 1 covered by said hydrophobic coating 4.
  • This hydrophobic coating 4 comprises a layer of alumina hydroxide 2 and protrusions of hydrophobic material 3 flush with the surface of said hydroxide layer. alumina 2.
  • the electrical cable 10b comprises an electrically conductive and / or reinforcing elongated central element 5, surrounded by a second elongate electrically conductive element 6, the first element 1 surrounding the second element 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un câble électrique comprenant au moins un élément électriquement conducteur allongé (1) entouré par un revêtement hydrophobe (4), caractérisé en ce que le procédé comprend les étapes suivantes : i. former une couche d'hydroxyde d'alumine poreux (2) comprenant des pores, autour dudit élément électriquement conducteur allongé, ii. remplir au moins en partie les pores de la couche d'hydroxyde d'alumine poreux (2), par un matériau hydrophobe (3), et iii. dissoudre partiellement la couche d'hydroxyde d'alumine poreux, de manière à former ledit revêtement hydrophobe (4).

Description

  • La présente invention se rapporte à un procédé pour fabriquer un câble électrique comprenant un revêtement hydrophobe, ainsi qu'un câble électrique obtenu par ledit procédé.
  • Elle s'applique typiquement, mais non exclusivement, aux câbles de transmission électrique à haute tension ou câbles aériens de transport d'énergie, bien connus sous l'anglicisme OHL "OverHead Lines".
  • Plus particulièrement, l'invention concerne un câble électrique apte à réduire l'effet couronne.
  • Les lignes aériennes sont traditionnellement constituées par un ou plusieurs conducteurs électriques nus, tendus sur un ensemble approprié de pylônes. Ces lignes sont classiquement destinées au transport de l'énergie électrique sous une haute tension alternative (225 à 800 kV). Chaque conducteur électrique a donc un diamètre de quelques centimètres et peut être composé de plusieurs fils métalliques assemblés. Le long du conducteur électrique nu, il se manifeste toujours un effet appelé effet couronne. L'effet de couronne se produit en effet sur tous les conducteurs électriques et lignes aériennes, soumis à une haute tension. Dés que le champ électrique à la surface du conducteur électrique, notamment dépendant des rayons de courbures locaux, devient localement suffisamment grand (i.e. supérieur au champ d'ionisation de l'air humide, de l'ordre de 10kV/cm ; voire supérieur au champ d'ionisation de l'air sec, de l'ordre de 30 kV/cm), l'air s'ionise et forme autour du conducteur électrique une couronne lumineuse.
  • En configuration opérationnelle du conducteur électrique, l'une des conséquences de l'effet couronne est la production de bruit lorsque le conducteur est mouillé. De ce fait, le conducteur électrique peut devenir une source de gêne notable et de désagréments importants pour ceux qui se trouvent ou demeurent au voisinage de ce type de conducteur. En effet, dans ces conditions, la conductibilité de l'air augmente, et de ce fait, il se produit une ionisation plus intense et plus efficace. L'effet couronne cause également des déperditions d'énergie et peut provoquer des risques sanitaires liés aux rayonnements électromagnétiques, au bruit acoustique et aux pertes de puissance.
  • Afin de palier à ce problème, une solution consiste à rendre la surface du conducteur électrique hydrophobe. L'hydrophobie de surface permet d'éviter une rétention d'eau au niveau du conducteur électrique afin de diminuer par exemple la formation de givre ou le dépôt d'aspérités sur la surface extérieure du conducteur électrique, et ainsi limiter le phénomène d'effet couronne.
  • Pour ce faire, le document WO 2006/072648 propose d'entourer un conducteur électrique en aluminium avec un revêtement hydrophobe en matière plastique tel qu'une cire polymère, obtenu par atomisation.
  • Toutefois, l'inconvénient de ce type de revêtement hydrophobe est qu'il nécessite un retraitement périodique de surface pour garantir son efficacité.
  • Le but de la présente invention est de pallier les inconvénients des techniques de l'art antérieur en proposant notamment un procédé de fabrication d'un câble électrique comprenant un revêtement hydrophobe permettant de garantir un effet couronne diminué de façon significative tout en étant facile à mettre en oeuvre et présentant une bonne stabilité dans le temps.
  • La présente invention a pour objet un procédé de fabrication d'un câble électrique comprenant au moins un élément électriquement conducteur allongé, entouré par un revêtement hydrophobe, caractérisé en ce que le procédé comprend les étapes suivantes :
    1. i.former une couche d'hydroxyde d'alumine (i.e. hydroxyde d'oxyde d'aluminium) poreux comprenant des pores, autour dudit élément électriquement conducteur allongé,
    2. ii.remplir au moins en partie les pores de la couche d'hydroxyde d'alumine poreux, par un matériau hydrophobe, et
    3. iii.dissoudre partiellement la couche d'hydroxyde d'alumine poreux, de manière à former ledit revêtement hydrophobe.
  • Grâce au procédé de l'invention, un revêtement hydrophobe peut être facilement formé autour de la surface d'au moins un élément électriquement conducteur allongé, tout en présentant une très bonne stabilité chimique à long terme ne nécessitant notamment pas de retraitement de surface. L'effet couronne du câble électrique ainsi formé diminue avantageusement de façon significative.
  • Dans la présente invention, on entend par « hydrophobe » un revêtement ou une couche dont la surface présente un angle de contact (ou angle de goutte) strictement supérieur à 90°, et de préférence d'au moins 110°.
  • La mesure de l'angle de contact rend compte de l'aptitude d'un liquide à s'étaler sur une surface par mouillabilité. La méthode consiste à mesurer l'angle de la tangente du profil d'une goutte déposée sur le revêtement ou la couche, avec la surface du revêtement ou de la couche.
  • Cet angle de contact est typiquement mesuré à l'aide d'un goniomètre, à 25°C, en utilisant de l'eau distillée.
  • Etape i
  • La couche d'hydroxyde d'alumine poreux entourant l'élément électriquement conducteur allongé est de préférence une couche qui est directement en contact physique avec l'élément électriquement conducteur allongé. En d'autres termes, le câble électrique ainsi formé ne comprend de préférence pas de couche intercalée entre la couche d'hydroxyde d'alumine poreux et l'élément électriquement conducteur.
  • Dans un mode de réalisation particulièrement avantageux, l'étape i est une étape d'anodisation, notamment lorsque l'élément électriquement conducteur allongé est un élément en aluminium ou en alliage d'aluminium.
  • L'anodisation est un traitement de surface (de type conversion) qui permet de former par oxydation anodique, à partir de l'élément électriquement conducteur, la couche d'hydroxyde d'alumine. Ainsi, l'anodisation va consommer une partie de l'élément électriquement conducteur pour former ladite couche d'hydroxyde d'alumine.
  • Lors de l'anodisation, la couche d'hydroxyde d'alumine se forme à partir de la surface de l'élément électriquement conducteur vers le coeur dudit élément électriquement conducteur, contrairement à un dépôt électrolytique.
  • L'anodisation est classiquement basée sur le principe de l'électrolyse de l'eau. Elle consiste à immerger l'élément électriquement conducteur dans un bain d'anodisation, ledit élément électriquement conducteur étant placé au pôle positif d'un générateur de courant continu.
  • Le bain d'anodisation est plus particulièrement un bain acide, de préférence un bain d'acide phosphorique ou un bain d'acide sulfurique. On parle alors respectivement d'anodisation phosphorique ou d'anodisation sulfurique.
  • Dans l'étape i, lorsque la couche d'hydroxyde d'alumine poreux est formée avantageusement par anodisation, la densité de courant appliquée pour l'anodisation peut être d'au plus 10 A/dm2, de préférence peut aller de 0,5 à 6 A/dm2, et de façon particulièrement préférée peut aller de 1 à 4 A/dm2.
  • Cette densité de courant permet de garantir qu'une quantité suffisante de pores a été formée lors de l'étape i. Lesdits pores peuvent être des pores ordonnés ou non.
  • Etape ii
  • Dans un mode de réalisation particulier, l'étape ii est une étape dans laquelle l'élément électriquement conducteur allongé recouvert de ladite couche d'hydroxyde d'alumine poreux peut être immergée dans une solution dudit matériau hydrophobe.
  • A titre d'exemple, le matériau hydrophobe peut être choisi parmi les polymères fluorés, tels que par exemple un polytétrafluoroéthylène (PTFE), les esters et les acides gras, ou un de leurs mélanges.
  • Dans un mode de réalisation particulièrement avantageux, les pores de la couche d'hydroxyde d'alumine poreux ne sont de préférence pas remplis en totalité par le matériau hydrophobe. En d'autres termes, le matériau hydrophobe ne recouvre pas en totalité la couche d'hydroxyde d'alumine poreux. En effet, il n'est pas nécessaire de remplir les pores en totalité pour plusieurs raisons.
  • La première raison est au niveau de l'économie de matériau hydrophobe pouvant être réalisée.
  • La deuxième raison est au regard de l'étape iii de dissolution qui peut amener à dissoudre, outre la couche d'alumine poreux, le matériau hydrophobe.
  • La troisième raison est que, même si l'angle de goutte est bien supérieur à 90°, prouvant ainsi le caractère hydrophobe du revêtement, la goutte est dite « collante » car elle a tendance à adhérer à la surface du revêtement hydrophobe.
  • L'homme du métier pourra jouer sur différents paramètres, tels que la granulométrie ou la taille de la poudre du matériau hydrophobe, la concentration du matériau hydrophobe dans la solution, la température de la solution, le temps d'imprégnation, afin de remplir au moins partiellement lesdits pores, et notamment afin de ne pas les remplir complètement.
  • Il sera facile de vérifier le caractère hydrophobe du revêtement hydrophobe, et plus particulièrement de la surface (extérieure) du revêtement hydrophobe, en mesurant l'angle de goutte, à savoir :
    • si il n'y a pas de matériau hydrophobe dans les pores, l'angle de contact sera alors inférieur à 90° : le revêtement ne sera alors pas considérer comme hydrophobe;
    • si le matériau hydrophobe rempli partiellement les pores, sans les remplir en totalité, l'angle de contact sera alors supérieur à 90° et la goutte aura tendance à glisser à la surface du revêtement hydrophobe: le revêtement obtenu sera donc bien hydrophobe ;
    • si le matériau hydrophobe rempli totalement les pores, l'angle de goutte sera alors supérieur à 90°, mais la goutte sera dite « collante » car elle aura tendance à adhérer à la surface du revêtement hydrophobe, ce qui n'est pas le mode de réalisation préféré de la présente invention.
  • Lorsque le matériau hydrophobe rempli totalement les pores, cela signifie notamment que lesdits pores sont remplis de façon homogène avec un remplissage de plus de 90% du volume des pores par le matériau hydrophobe, et de préférence de 100% du volume des pores par le matériau hydrophobe.
  • Etape iii
  • Dans l'étape iii, le revêtement hydrophobe formé est notamment une couche d'hydroxyde d'alumine comprenant à sa surface des protubérances (i.e. excroissances) dudit matériau hydrophobe.
  • Ainsi, lors de la dissolution de l'hydroxyde d'alumine, l'hydroxyde d'alumine est dissout partiellement, mais pas en totalité, afin de garder suffisamment d'hydroxyde d'alumine pour pouvoir garantir une bonne adhérence du matériau hydrophobe sur l'élément électriquement conducteur, grâce à la couche d'hydroxyde d'alumine.
  • La dissolution de l'hydroxyde d'alumine est en outre suffisante pour permettre d'obtenir les propriétés hydrophobes du revêtement hydrophobe, de sorte à obtenir un revêtement avec un angle de contact strictement supérieur à 90° (mesuré à l'aide d'un goniomètre, à 25°C, avec de l'eau distillée). Plus particulièrement, la dissolution de l'hydroxyde d'alumine dans l'étape iii est suffisante pour permettre au matériau hydrophobe de former des protubérances affleurant à la surface du revêtement hydrophobe.
  • Dans un mode de réalisation préféré, l'étape iii est une étape dans laquelle la couche d'hydroxyde d'alumine poreux est dissoute dans une solution acide. L'homme du métier pourra faire varier la concentration en acide de ladite solution ainsi que la température de ladite solution pour jouer sur la cinétique de dissolution de la couche poreuse.
  • A titre d'exemple, on peut citer comme solution acide, une solution comprenant de l'acide chromique et de l'acide phosphorique.
  • L'homme du métier pourra déterminer facilement le temps d'immersion et la température de la solution adéquats, afin de dissoudre la quantité nécessaire de la couche d'hydroxyde d'alumine pour obtenir l'hydrophobie de la surface du revêtement hydrophobe.
  • Dans un mode de réalisation particulièrement avantageux, le revêtement hydrophobe du câble électrique de l'invention est la couche la plus à l'extérieure du câble électrique. Ce revêtement est donc en contact direct avec l'environnement extérieur du câble électrique. En d'autres termes, le câble électrique formé à l'étape iii ne comporte de préférence pas d'élément entourant le revêtement hydrophobe.
  • Concernant l'élément électriquement conducteur allongé de l'invention, il est destiné au transport d'énergie (i.e. transmission électrique à haute tension).
  • Il peut être de préférence métallique, notamment à base d'aluminium, à savoir soit uniquement en aluminium, soit en alliage d'aluminium tel que par exemple en alliage d'aluminium et de zirconium.
  • L'aluminium ou l'alliage d'aluminium a l'avantage de présenter un couple conductivité électrique/poids spécifique optimisé de façon significative, notamment par rapport au cuivre.
  • L'élément électriquement conducteur de l'invention peut être classiquement un assemblage de fils (ou brins) métalliques dont la section transversale peut être de forme ronde ou non, ou une combinaison des deux. Lorsqu'ils ne sont pas de forme ronde, la section transversale de ces fils peut être par exemple de forme trapézoïdale ou de forme en « Z ». Les différents types de forme sont définis dans la norme IEC 62219.
  • L'élément électriquement conducteur peut être positionné préférentiellement au centre du câble électrique ou coaxialement à l'axe longitudinal du câble électrique.
  • Dans un mode de réalisation particulier, l'élément électriquement conducteur allongé n'a pas subi de traitement destiné à modifier structurellement l'état de sa surface extérieure, pour en augmenter notamment la rugosité de surface, préalablement à l'étape i.
  • A titre d'exemple, on peut citer comme traitement destiné à modifier structurellement l'état de sa surface extérieure une gravure physique telle que l'application par presse d'un motif, directement sur la surface extérieure dudit élément électrique conducteur, ou une gravure chimique telle qu'une gravure oxydante.
  • Le procédé de l'invention peut comprendre en outre au moins l'une des étapes suivantes, préalables à l'étape i :
    1. a. dégraisser l'élément électriquement conducteur, et/ou
    2. b. décaper l'élément électriquement conducteur.
  • De préférence, l'étape a et l'étape b peuvent être réalisées de façon concomitante.
  • Par ailleurs, le procédé de l'invention peut comprendre en outre l'étape suivante, préalable à l'étape i :
    • c. neutraliser l'élément électriquement conducteur.
  • Dans un mode de réalisation particulièrement préféré, le procédé de l'invention peut comprendre lesdites trois étapes a, b et c, l'étape c étant réalisée après les étapes a et b.
  • L'étape a
  • L'étape de dégraissage a pour objet d'éliminer les différents corps et particules contenus dans les graisses susceptibles d'être présentes sur la surface de l'élément électriquement conducteur allongé.
  • Elle peut être effectuée par voie chimique ou aidée par voie électrolytique.
  • A titre d'exemple, l'étape a de dégraissage peut être réalisée en plongeant au moins partiellement l'élément électriquement conducteur dans une solution comprenant au moins un tensio-actif en tant qu'agent dégraissant.
  • L'étape b
  • L'étape de décapage sert à éliminer les oxydes susceptibles d'être présents sur la surface de l'élément électriquement conducteur allongé. Il existe plusieurs méthodes de décapage : chimique, électrolytique ou mécanique.
  • De préférence, on pourra utiliser un décapage chimique consistant à éliminer les oxydes par dissolution, voir par éclatement de la couche d'oxyde, sans attaquer le matériau de l'élément électriquement conducteur sous-jacent.
  • A titre d'exemple, l'étape b de décapage peut être réalisée en plongeant au moins partiellement l'élément électriquement conducteur dans une solution comprenant une base en tant qu'agent décapant.
  • Lorsque l'étape a et l'étape b sont réalisée concomitamment, une unique solution comprenant un agent dégraissant et un agent décapant peut être utilisée pour à la fois décaper et dégraisser l'élément électriquement conducteur.
  • L'étape c
  • L'étape de neutralisation permet de conditionner l'élément électriquement conducteur, avant que le dépôt de l'étape i ne soit effectué.
  • Plus particulièrement, lorsque l'étape i est une étape d'anodisation, l'étape c de neutralisation consiste à conditionner l'élément électriquement conducteur en le plongeant au moins partiellement dans une solution identique au bain d'anodisation prévu à l'étape i, afin de mettre la surface de l'élément électriquement conducteur au même pH que le bain d'anodisation de l'étape i.
  • Cette solution permet en outre d'une part d'éliminer certaines traces d'oxydes pouvant nuire à l'anodisation, et d'autre part d'éliminer les éventuels résidus de l'agent de décapant. La neutralisation permet de mettre la surface de l'aluminium au même pH que le bain anodique.
  • A titre d'exemple, l'étape c de neutralisation peut être réalisée en plongeant au moins partiellement l'élément électriquement conducteur dans une solution comprenant un acide en tant qu'agent neutralisant.
  • Un autre objet de l'invention est un câble électrique obtenu à partir du procédé tel que décrit ci-avant.
  • Plus particulièrement, le câble électrique de l'invention comprend au moins un élément électriquement conducteur allongé, entouré par un revêtement hydrophobe, caractérisé en ce que le revêtement hydrophobe est une couche d'hydroxyde d'alumine comprenant à sa surface des protubérances (i.e. excroissances) dudit matériau hydrophobe. En d'autres termes, le matériau hydrophobe ne recouvre pas en totalité la couche d'hydroxyde d'alumine.
  • Le câble électrique selon l'invention peut présenter un diamètre apparent (i.e. diamètre extérieur) pouvant aller de 10 à 100 mm.
  • Le câble électrique de l'invention peut être plus particulièrement un câble de transmission électrique à haute tension, notamment de type ligne aérienne (OHL) à haute tension alternative d'au moins 225kV et pouvant aller jusqu'à 800 kV. Ce type de câble est généralement tendu entre deux pylônes.
  • A titre d'exemple, le câble électrique de l'invention peut comprendre un élément central allongé du type élément électriquement conducteur et/ou élément de renforcement, cet élément central allongé étant entouré par un premier élément allongé du type élément électriquement conducteur allongé entouré par le revêtement hydrophobe selon la présente invention. En outre, le câble électrique peut comprendre un second élément du type élément électriquement conducteur allongé, positionné entre l'élément central et le premier élément : le premier élément entoure alors le second élément. Le ou les éléments entourant l'élément central allongé peuvent être positionnés coaxialement autour dudit élément central allongé.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière des exemples qui vont suivre en référence aux figures annotées, lesdits exemples et figures étant donnés à titre illustratif et nullement limitatif.
    • La figure 1 représente de façon schématique la succession des étapes du procédé de fabrication selon l'invention.
    • La figure 2 représente une imagerie FEG (Field Emission Gun) d'une coupe transversale d'un fil en aluminium traité par anodisation phosphorique.
    • La figure 3 représente de façon schématique un câble électrique, en coupe transversale, obtenu selon le procédé de l'invention.
    • La figure 4 représente de façon schématique un autre câble électrique, en coupe transversale, obtenu selon le procédé de l'invention.
  • Pour des raisons de clarté, les mêmes éléments ont été désignés par des références identiques. De même, seuls les éléments essentiels pour la compréhension de l'invention ont été représentés de manière schématique, et ceci sans respect de l'échelle.
  • La figure 1 illustre la représentation schématique de la succession des étapes i, ii et iii, du procédé de l'invention.
  • A titre d'exemple, on va anodiser (étape i) un fil d'aluminium, de diamètre 3 mm, en formant une couche d'hydroxyde d'alumine tout autour dudit fil, par anodisation phosphorique (8-30% en poids d'acide phosphorique dans de l'eau distillée) à température ambiante (i.e. 25°C), sous l'application d'une densité de courant comprise entre 1 et 4 A/dm2. Le fil d'aluminium obtenu est ainsi recouvert d'une couche d'hydroxyde d'alumine poreux. Ce fil d'aluminium recouvert est illustré en coupe transversale sur la figure 2.
  • Puis, on va implanter le matériau hydrophobe (étape ii) dans les pores de la couche d'hydroxyde d'alumine poreux en plongeant le fil d'aluminium recouvert de ladite couche d'hydroxyde d'alumine poreux, dans une solution de PTFE (1-5% en poids de PTFE dans de l'eau distillée) à température ambiante (i.e. 25°C), pendant 15 minutes.
  • Enfin, on va dissoudre (étape iii) partiellement (i.e. non en totalité) la couche d'hydroxyde d'alumine poreux en plongeant le fil obtenu à l'étape précédente (cf. étape ii) dans une solution acide comprenant de l'acide phosphorique (3-6% en poids d'acide phosphorique dans de l'eau distillée) et de l'acide chromique (1-2% en poids d'acide chromique dans de l'eau distillé) à une température comprise entre 30 et 60°C, la vitesse de dissolution étant de 0,5 µm/min à 30°C, afin de former un revêtement hydrophobe.
  • La surface du revêtement hydrophobe obtenu présente des angles de contact de l'ordre de 130-140°, mesurés avec de l'eau distillée à l'aide d'un goniomètre, à 25°C.
  • Préalablement à l'étape i, il est préférable tout d'abord de décaper et de dégraisser ledit fil conducteur en aluminium (étape non représentée), en le plongeant dans une solution de soude et de tensio-actifs telle que par exemple la solution référencée GARDOCLEAN commercialisé par la société CHEMETALL (30-50 g/L de soude) à 40-60°C, pendant 30 secondes. Puis, le fil conducteur est plongé dans une solution d'acide sulfurique (20% en poids d'acide sulfurique dans de l'eau distillée) pour l'étape de neutralisation (étape non représentée), à température ambiante (i.e. 25°C) pendant 10 secondes.
  • Afin de visualiser schématiquement le revêtement hydrophobe formé selon le procédé décrit ci-avant, la figure 3 présente une coupe transversale d'un câble électrique 10a obtenu selon le procédé de l'invention, dans lequel l'élément 1 électriquement conducteur allongé est recouvert dudit revêtement hydrophobe 4. Ce revêtement hydrophobe 4 comprend une couche d'hydroxyde d'alumine 2 et des protubérances de matériau hydrophobe 3 affleurant à la surface de ladite couche d'hydroxyde d'alumine 2.
  • La figure 4 représente quant à elle un autre câble électrique 10b de type OHL, obtenu selon le procédé de l'invention.
  • Ce câble OHL comprend un premier élément 1 électriquement conducteur allongé recouvert par ledit revêtement hydrophobe 4. Ce revêtement hydrophobe 4 comprend une couche d'hydroxyde d'alumine 2 et des protubérances de matériau hydrophobe 3 affleurant à la surface de ladite couche d'hydroxyde d'alumine 2.
  • En outre, le câble électrique 10b comprend un élément central 5 allongé électriquement conducteur et/ou de renforcement, entouré par un second élément 6 électriquement conducteur allongé, le premier élément 1 entourant le second élément 6.

Claims (13)

  1. Procédé de fabrication d'un câble électrique comprenant au moins un élément électriquement conducteur (1) allongé, entouré par un revêtement hydrophobe (4), caractérisé en ce que le procédé comprend les étapes suivantes :
    i. former une couche d'hydroxyde d'alumine poreux (2) comprenant des pores, autour dudit élément électriquement conducteur allongé, l'élément électriquement conducteur étant un élément en aluminium ou en alliage d'aluminium,
    ii. remplir au moins en partie les pores de la couche d'hydroxyde d'alumine poreux (2), par un matériau hydrophobe (3), et
    iii. dissoudre partiellement la couche d'hydroxyde d'alumine poreux, de manière à former ledit revêtement hydrophobe (4).
  2. Procédé selon la revendication 1, caractérisé en ce que l'étape i est une étape d'anodisation.
  3. Procédé selon la revendication 2, caractérisé en ce que la densité de courant appliquée pour l'anodisation est d'au plus 10 A/dm2.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce que l'étape i est une étape d'anodisation phosphorique ou sulfurique.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape ii est une étape dans laquelle l'élément électriquement conducteur recouvert de ladite couche d'hydroxyde d'alumine poreux est immergée dans une solution dudit matériau hydrophobe.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que matériau hydrophobe (3) de l'étape ii est choisi parmi les polymères fluorés, les esters et les acides gras, ou un de leurs mélanges.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape iii est une étape dans laquelle la couche d'hydroxyde d'alumine poreux est dissoute dans une solution acide.
  8. Procédé selon la revendication 7, caractérisé en ce que la solution acide comprend de l'acide chromique et de l'acide phosphorique.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement hydrophobe (4) est la couche la plus à l'extérieure du câble électrique.
  10. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que l'élément électriquement conducteur (1) n'a pas subi de traitement destiné à modifier structurellement l'état de sa surface extérieure, préalablement à l'étape i.
  11. Câble électrique obtenu à partir du procédé tel que défini aux
    revendications 1 à 10, comprenant au moins un élément électriquement conducteur (1) allongé, entouré par un revêtement hydrophobe (4), caractérisé en ce que le revêtement hydrophobe est une couche d'hydroxyde d'alumine comprenant à sa surface des protubérances dudit matériau hydrophobe (3).
  12. Câble électrique selon la revendication 11, caractérisé en ce qu'il est un
    câble de transmission électrique à haute tension.
  13. Câble électrique selon la revendication 12, caractérisé en ce qu'il
    comprend un élément central allongé du type élément électriquement conducteur et/ou élément de renforcement, cet élément central allongé étant entouré par un premier élément du type élément électriquement conducteur allongé entouré par ledit revêtement hydrophobe.
EP20130174520 2012-08-02 2013-07-01 Procédé pour fabriquer un cable électrique comprenant un revêtement hydrophobe Active EP2693447B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1257527A FR2994328A1 (fr) 2012-08-02 2012-08-02 Procede pour fabriquer un cable electrique comprenant un revetement hydrophobe

Publications (2)

Publication Number Publication Date
EP2693447A1 true EP2693447A1 (fr) 2014-02-05
EP2693447B1 EP2693447B1 (fr) 2014-07-23

Family

ID=47137864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20130174520 Active EP2693447B1 (fr) 2012-08-02 2013-07-01 Procédé pour fabriquer un cable électrique comprenant un revêtement hydrophobe

Country Status (2)

Country Link
EP (1) EP2693447B1 (fr)
FR (1) FR2994328A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064370A1 (fr) * 2012-10-17 2014-05-01 Nexans Fil de transport électrique en alliage d'aluminium a conductivite electrique elevee

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961111A (en) * 1975-03-18 1976-06-01 Pennwalt Corporation Method of increasing corrosion resistance of anodized aluminum
US5091609A (en) * 1989-02-14 1992-02-25 Sumitomo Electric Industries, Ltd. Insulated wire
DE4124730A1 (de) * 1991-07-25 1993-01-28 Friebe & Reininghaus Ahc Verfahren zur einlagerung von polymeren in mikroporoese oberflaechen
WO2006072648A1 (fr) 2004-12-03 2006-07-13 Valtion Teknillinen Tutkimuskeskus Procédé et configuration de traitement d’un câble aérien et câble aérien
US20090194914A1 (en) * 2006-06-30 2009-08-06 Yoshihiro Uozu Mold, process for producing mold, and process for producing sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961111A (en) * 1975-03-18 1976-06-01 Pennwalt Corporation Method of increasing corrosion resistance of anodized aluminum
US5091609A (en) * 1989-02-14 1992-02-25 Sumitomo Electric Industries, Ltd. Insulated wire
DE4124730A1 (de) * 1991-07-25 1993-01-28 Friebe & Reininghaus Ahc Verfahren zur einlagerung von polymeren in mikroporoese oberflaechen
WO2006072648A1 (fr) 2004-12-03 2006-07-13 Valtion Teknillinen Tutkimuskeskus Procédé et configuration de traitement d’un câble aérien et câble aérien
US20090194914A1 (en) * 2006-06-30 2009-08-06 Yoshihiro Uozu Mold, process for producing mold, and process for producing sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064370A1 (fr) * 2012-10-17 2014-05-01 Nexans Fil de transport électrique en alliage d'aluminium a conductivite electrique elevee
US20150279518A1 (en) * 2012-10-17 2015-10-01 Nexans Electrical transport wire made of an aluminum alloy, having high electrical conductivity
US10600535B2 (en) 2012-10-17 2020-03-24 Nexans Electrical transport wire made of an aluminum alloy, having high electrical conductivity

Also Published As

Publication number Publication date
EP2693447B1 (fr) 2014-07-23
FR2994328A1 (fr) 2014-02-07

Similar Documents

Publication Publication Date Title
JP5138118B2 (ja) 圧着端子及び、接続構造体並びに、これらの製造方法
JP4686728B2 (ja) 陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金製品の製造方法
FR2996951A1 (fr) Fil de transport d'electricite en alliage d'aluminium
JP5687955B2 (ja) アルミ電線と金属端子の圧着接続部の構造及びその製法
WO2014104054A1 (fr) Fil électrique en aluminium équipé d'une borne à sertir et son procédé de fabrication
EP2544190B1 (fr) Câble électrique à corrosion limitée et à résistance au feu améliorée
EP2693447B1 (fr) Procédé pour fabriquer un cable électrique comprenant un revêtement hydrophobe
EP1693857A1 (fr) Fil Electrique a ame en aluminium ou alliage d'aluminium
EP3472843B1 (fr) Câble électrique comprenant une couche métallique
EP2693445A1 (fr) Procédé pour fabriquer un câble électrique comprenant une couche hydrophobe
JP5613917B2 (ja) マグネシウム又はマグネシウム合金からなる成形品の製造方法
WO2016189842A1 (fr) Câble d'aluminium, faisceau et procédé de production de faisceau
WO2018126230A1 (fr) Substrat à taches d'analyte hydrophile nanostructuré sans matrice destiné à être utilisé en spectrométrie de masse
FR3035738A1 (fr) Cable de transmission de courant electrique et procede de fabrication d'un tel cable
TW202212640A (zh) 在合金上施加著色塗層的方法
FR2977704A1 (fr) Cable electrique
Lahlouh et al. Structural and light trapping properties of nanoporous silicon micro-pyramid patterns encrusted with silver nanoparticles
US3956676A (en) Electrical device having anode riser assembly with polymeric film means
FR2986898A1 (fr) Element metallique allonge entoure par un revetement protecteur metallique colore
FR2977705A1 (fr) Conducteur de lignes aeriennes
FR3060022A1 (fr) Materiau composite aluminium-alumine et son procede de preparation
EP4050129A1 (fr) Câble électrique protégé contre la corrosion
TWI672398B (zh) 油水雙疏結構與其形成方法
JP6887211B2 (ja) 端子および端子付き電線
JPH0124818Y2 (fr)

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20131212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 7/28 20060101AFI20140224BHEP

Ipc: H01B 3/12 20060101ALI20140224BHEP

Ipc: H01B 17/50 20060101ALI20140224BHEP

Ipc: H01B 5/00 20060101ALI20140224BHEP

INTG Intention to grant announced

Effective date: 20140314

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 679271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013000132

Country of ref document: DE

Effective date: 20140904

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140723

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 679271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140723

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140723

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013000132

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180727

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20220725

Year of fee payment: 10

Ref country code: DE

Payment date: 20220720

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220720

Year of fee payment: 10

Ref country code: BE

Payment date: 20220720

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220725

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013000132

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731