EP2687286B1 - Mixing device for the aftertreatment of exhaust gases - Google Patents

Mixing device for the aftertreatment of exhaust gases Download PDF

Info

Publication number
EP2687286B1
EP2687286B1 EP13002562.0A EP13002562A EP2687286B1 EP 2687286 B1 EP2687286 B1 EP 2687286B1 EP 13002562 A EP13002562 A EP 13002562A EP 2687286 B1 EP2687286 B1 EP 2687286B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
inner pipe
mixing device
main
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13002562.0A
Other languages
German (de)
French (fr)
Other versions
EP2687286A3 (en
EP2687286A2 (en
Inventor
Albert Herbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Publication of EP2687286A2 publication Critical patent/EP2687286A2/en
Publication of EP2687286A3 publication Critical patent/EP2687286A3/en
Application granted granted Critical
Publication of EP2687286B1 publication Critical patent/EP2687286B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/103Mixing by creating a vortex flow, e.g. by tangential introduction of flow components with additional mixing means other than vortex mixers, e.g. the vortex chamber being positioned in another mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/32Injector mixers wherein the additional components are added in a by-pass of the main flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus

Definitions

  • the invention relates to a mixing device for the aftertreatment of exhaust gases in an exhaust system of an internal combustion engine, which has a housing having an inlet cross section and a housing arranged inside the housing, essentially parallel to a main injection direction of a metering device for supplying a liquid and / or a liquid-gas mixture extending inner tube, with a mixing area formed in the interior of the inner tube.
  • the disclosure document DE 10 2009 053 950 A1 teaches a mixing device in which an exhaust gas is mixed with a liquid reducing agent applied via a metering device, the exhaust gas reaching the interior of the inner pipe radially via openings remote from the metering device and entering the interior of the inner pipe via an opening near the metering device.
  • a substantial partial flow of the exhaust gas flows directly into the injection area of the metering device and influences the introduction of the reducing agent.
  • the EP 2 465 602 A2 discloses a method for purifying exhaust gas.
  • a reactive substance is introduced into an exhaust gas flow flowing in an exhaust gas line.
  • the exhaust gas flow is divided into a central flow flowing in the middle of the cross section of the exhaust pipe and a peripheral flow which rotates around the central flow and moves forward.
  • the invention is based on the object of developing a mixing device in such a way that the mixing of the liquid with the exhaust gas takes place reliably and as homogeneously as possible, independently or only under a slight influence of the exhaust gas volume flow.
  • a further object of the invention is to achieve the mixing by passing through a short mixing section and to keep the volume of the mixing device low.
  • the core of the invention is considered to be that the housing has a spiral housing section and on one end face of the housing the
  • Dosing device is arranged, wherein a main exhaust gas flow is guided between the housing and the outer jacket surface of the inner pipe and can be fed to a main mixing area and a partial exhaust gas flow can be fed through an inner pipe passage into a premixing area closer to the dosing device, the partial exhaust gas flow flowing through the premixing area into the main mixing area and the main exhaust gas flow being a larger one Volume fraction as the exhaust gas partial flow includes.
  • the inner pipe passage enables a pressure equalization between the main exhaust gas flow and the interior of the inner pipe near the nozzle as well as a smaller partial exhaust gas mass flow to support the spray discharge from the interior of the inner pipe.
  • a liquid by the metering device, this can also include a liquid-gas mixture, for example in the form of a spray; a liquid is used below for a simplified and exemplary basis.
  • the metering device introduces a reducing agent such as a urea solution or a hydrocarbon-containing substance into the mixing device and mixes it as homogeneously as possible with the exhaust gas.
  • a reducing agent such as a urea solution or a hydrocarbon-containing substance
  • the mixing device introduces a reducing agent such as a urea solution or a hydrocarbon-containing substance into the mixing device and mixes it as homogeneously as possible with the exhaust gas.
  • the urea solution this for example fed to a downstream hydrolysis catalytic converter and reacted there.
  • the main injection direction of the metering device is arranged essentially parallel and / or coaxially to the longitudinal axis of the housing and / or to the longitudinal axis of the inner tube.
  • a compact and effective construction of the mixing device can thus be achieved, since the partial exhaust gas flows are aligned with the walls of the housing and / or the inner tube and are guided to them.
  • a rectified movement of the exhaust gas part and / or the main exhaust gas flow and the introduction of liquid are thus achieved in a simple constructive manner.
  • the exhaust gas flow is divided into two or a maximum of three partial flows.
  • a main exhaust gas flow introduced as the last into the mixing area comprises at least 70% by volume of the exhaust gas flow, preferably at least 80% by volume of the exhaust gas flow, particularly preferably at least 90% by volume of the exhaust gas flow, the above-described effect becomes the most reliable Homogenization and the slight influence on the introduction of liquid by the exhaust gas feed achieved.
  • the exhaust gas supplied in the inlet cross-sectional area is referred to as the exhaust gas flow.
  • the inner tube with a cylindrical section and with a tapering section, the tapering section being upstream of the cylindrical section in the flow direction of the main exhaust gas flow.
  • the tapering section acts as a deflection area and directs the main flow of exhaust gas supplied "with little pressure loss" - i.e. with minimal resistance - parallel to the main injection direction of the metering device.
  • the tapering section preferably comprises a steadily and / or continuously changing radius, which is designed, for example, as a radius that increases steadily and / or continuously in the flow direction of the main exhaust gas flow on the outside of the inner tube.
  • a continuous change or enlargement of the radius means an uninterrupted change and / or a change that always progresses in one (increasing) direction. This measure leads to a diversion of the exhaust gas with a low resistance acting on the exhaust gas flow.
  • the deflection area can also comprise a constant and continuous radius; this embodiment is more cost-effective and easier to manufacture.
  • the partial exhaust gas flow is fed to the premixing area essentially (i.e. +/- 10%) at right angles to the main injection direction. Since only a small proportion of the exhaust gas passes through this bypass to the mixing area, its movement, at least in some areas at right angles to the main injection direction, is not or only insignificantly disadvantageous for the introduction of the liquid into the mixing area.
  • guide elements are arranged within the inner tube and / or in or on the premixing area, which deflect the partial exhaust gas flow towards the main injection direction To run.
  • a “protective collar” can be arranged around the vicinity of the metering device, so that the introduction of liquid is initially not disturbed by exposure to the partial exhaust gas flow.
  • the guide elements result in an advantageous deflection of the partial exhaust gas flow in the main injection direction. This creates three areas for liquid mixing, a first area within the guide element, in which only liquid is introduced without exposure to exhaust gas.
  • the third area - main mixing area - the main exhaust gas flow is fed to the premixed liquid / exhaust gas partial flow mixture.
  • the guide element is preferably designed in the form of a ring and designed to be circular-cylindrical on its inside and tapering in its cross section towards its free end.
  • the guide element and / or a further deflection element can induce a movement component running at right angles to the main injection direction and / or a spiral-like movement path in the partial exhaust gas flow.
  • a swirl-like movement is thus impressed on the partial exhaust gas flow.
  • a swirl of the partial exhaust gas flow which may already have been generated by the spiral shape of the housing, into the premixing area can thus be taken over and / or reinforced.
  • the length of the guide element (in the direction of the longitudinal axis of the inner tube) is shorter than the length of the inner tube.
  • the length of the guide element can be shorter than half or shorter than a quarter of the inner tube.
  • the guiding element mainly serves to protect the area close to the metering device from the partial exhaust gas flow and to divert the partial exhaust gas flow radially fed to the guiding element or the main injection axis into the main injection direction. So that, in particular, the low-mass drops of the liquid in the inlet area are not deflected by the partial exhaust gas flow.
  • the main exhaust gas flow itself can have a positive effect with regard to the flow conditions in the premixing area, in that a suction effect generated by the main exhaust gas flow (generation of negative pressure) in the premixing area a further directional influencing of the liquid and / or the partial exhaust gas flow can be carried out towards or parallel to the main injection direction.
  • the spray angle ⁇ is preferably selected in such a way that the spray (the liquid) essentially does not touch the inner wall of the inner tube when the exhaust gas is not flowing through it. In this way, only a small proportion of the mass of the liquid should touch the inner wall of the inner tube and possibly settle there. If this is fulfilled when the exhaust gas is not flowing through, then in the exhaust gas flowing through (operating state) a slight (less than 15%, preferably less than 8%) wetting of the inside of the inner pipe that exists at least in defined load scenarios of the engine is achieved. This contact or this wetting takes place on the inside of the inner tube on the end area facing away from the metering device, preferably in the last eighth of the inner tube and thus near the transition to the main mixing area advantageous.
  • the dosing device usually works intermittently. In this way, a "breakdown" of the liquid located on the inner wall of the inner tube can be achieved during the non-injection periods. This effect is promoted by the fact that the inner tube is thin-walled and / or is heated on the outside by the main exhaust gas flow, so that the liquid located on the wall sections of the inner wall is also heated. This heat facilitates the separation effect and splitting effect (secondary breakup) of the liquid droplets resting on the inside of the inner tube. In other words, the targeted slight temporary wall contact of the liquid further enhances the mixing function of the mixing device.
  • this "liquid reservoir” is arranged at the end of the inner tube and thus close to the main mixing area, the suction and negative pressure effects of the passage into the main mixing area, preferably designed as an annular gap, can also promote the mixing properties of the mixing device.
  • the degree of temporary adhesion of the liquid can be set in a structurally simple and effective manner.
  • the metering device and thus the spray angle and the density of the liquid are specified. These parameters influence the spreading properties of the spray depending on the exhaust gas volume flow. If a liquid with a different density and / or a metering device with a different spray angle is to be installed, it is sufficient if the mixing device is adapted by changing the length of the inner tube in order to set the above-described effect (secondary opening). This also enables a modular design and / or a retrofit system by appropriate selection of an inner tube of the preferred length.
  • Another advantageous measure is to design the inlet cross-section (i.e. diameter or clear width of the inlet cross-section) of the exhaust gas on the housing to be smaller than or equal to the length of the inner tube.
  • a ratio of the inlet cross-section of the exhaust gas to the length of the inner tube in the range from 1: 1 to 1: 1.5 has proven itself. A compact and at the same time effective mixing device is thus achieved.
  • the inner pipe passage is formed by a plurality of passage openings, the passage openings preferably being arranged on a circular ring or on a circular ring segment, with the circular ring or the circular ring segment particularly preferably in the first third of the length facing the metering device or quarter length of the inner tube is arranged.
  • This arrangement of the passage openings close to the metering device enables homogeneous mixing and only a slight influence on the introduction of liquid by the partial exhaust gas flow.
  • the passage openings can be designed, for example, as slots, elongated holes or the like.
  • the passage opening can also be designed as a completely circumferential annular gap.
  • the inner tube is connected to the housing in a load-bearing and / or supporting manner via at least one web.
  • This at least one web is preferably arranged on the end face and within the bypass channel.
  • Of the Bypass channel is the area in which the partial exhaust gas flow passes from the passage opening into the radially inner premixing area.
  • the web can also have a geometry that enables a defined influencing of the partial exhaust gas flow passing it (eg its direction), for example the partial exhaust gas flow is deflected by the web and / or set in a swirling movement.
  • the partial exhaust gas flow is deflected by at least 10 °, preferably by at least 25 °.
  • it is advantageous if the webs are equidistantly spaced on a circular line and their geometry is at least similar so that a partial exhaust gas flow deflection can be carried out in the same way over the circumference.
  • the passage openings of the inner tube can also be arranged closer to the metering device in the longitudinal direction than the area of the inlet cross section facing the metering device.
  • the passage of the main exhaust gas flow into the main mixing area takes place preferably by passing through an annular gap at the end of the inner tube.
  • the dimensioning and design of the geometry of the annular gap which is easy to define, enables the underpressure conditions of the premixing area to be set in a simple and effective manner.
  • the inner tube, the guide element and / or the at least one web over the inner tube cross-section is point-symmetrical to the main injection direction / axis and / or the inner tube, the guide element and / or the webs are designed / arranged in a rotationally symmetrical manner, preferably around the main injection direction / axis.
  • the inner tube and the guide element are designed as a rotationally symmetrical body which is aligned coaxially to one another and coaxially to the main injection direction / axis.
  • the webs can be designed in the same way, so that they are arranged in a rotationally symmetrical manner (for example with a 120 ° rotation for three webs or 90 ° rotation for four webs, etc.).
  • This symmetrical configuration enables a mixing device that is easy to manufacture and positive flow conditions with a high degree of homogenization of liquid and exhaust gas.
  • a simple and inexpensive manufacture of the mixing device can be achieved, for example, in that the housing, the inner tube, the guide element and / or the deflection element are designed in one piece, preferably forming a component that is cast in one piece or manufactured in a melting process (e.g. laser sintering or laser melting process).
  • a melting process e.g. laser sintering or laser melting process
  • Exhaust gases 2 from an internal combustion engine are fed into the mixing device 1 through the inlet cross section 3 of a housing 4 of the mixing device 1 and, after passing through the mixing device 1, fed to a catalytic converter (not shown).
  • a metering device 6 which is essentially parallel to a main injection direction 5 (shown as an arrow) extending inner tube 7 is arranged.
  • a liquid 9, for example in the form of a spray - represented by the two jets 29, 30 - is introduced into the interior space 8 of the inner tube 7 by the metering device 6.
  • the interior 8 is thus defined as a premixing area 10.
  • the spray is introduced conically or in the form of several spray cones, the axis of symmetry of the cone or the axis of symmetry of the plurality of cones essentially forming the main axis of injection.
  • the main axis of injection can also generally be viewed as an imaginary line, around which the main amount of the liquid 9 is introduced in a straight line into the interior space 8 of the inner tube 7.
  • the exhaust gases 2 are mixed with the liquid 9.
  • the main direction of injection 5 and thus in Figure 1 the main injection axes also coincide and are aligned coaxially to the longitudinal axis of the housing 4, the longitudinal axis of the housing 4 referring to the rotationally symmetrical area of the housing 4, i.e. the housing area 26 adjoining the spiral-shaped area 13 Figure 1 shown - the main injection direction 5 can also run coaxially to the longitudinal axis of the inner tube 7.
  • the housing 4 has a spiral-shaped housing section A which extends at least partially around the inner tube 7. Due to the spiral shape, the exhaust gas 2 is supplied evenly around the circumference of the inner tube 7.
  • the metering device 6 is arranged on the end face 11 of the housing 4.
  • the main exhaust gas flow 12 is deflected on the outer surface (jacket surface 14) of the inner pipe 7 towards the main injection direction 5 and guided between the inner wall of the housing 4 and the outer surface of the inner pipe 7 and directed to the main mixing area 16 located at the end 15 of the inner pipe 7. Due to the at least spiral-shaped first region 13 of the housing 4, a uniform force component of the exhaust gas 2 acting radially inward on the inner pipe 7 is achieved. A symmetrical, radially inwardly acting pressurization by the exhaust gas 2 is thus achieved.
  • the premixing area 10 is arranged closer to the metering device 6 than the main mixing area 16.
  • the inner tube 7 has a cylindrical section 20 and a tapering section 21, the tapering section 21 being arranged closer to the metering device 6 and / or being upstream in the flow direction S of the main exhaust gas flow 12.
  • the tapering section 21 relates at least to the outer jacket surface 14 of the inner tube 7.
  • the inner surface can have a corresponding curvature - as in FIG Figure 1 shown - have or according to Figure 2 have a constant cross section in the interior 8 of the inner tube 7.
  • a guide element 22 is arranged inside the inner tube 7 and prevents the liquid 9 from being exposed to the partial exhaust gas flow 17 passing through the bypass channel 19 in the introduction area 23 near the metering device and upstream of the premixing area 10.
  • the guiding element 22 also directs the partial exhaust gas flow 17 in the main injection direction 5 to the premixing area 10 go to.
  • the guide element 22 is designed to be ring-like and preferably rotationally symmetrical. On the inside 24 of the guide element 22, this is circular-cylindrical and tapering in its cross-section at least on its outer surface towards the free end 25.
  • the length 27 of the guide element 22 is shorter than the length 28 of the inner tube 7.
  • the cross section in the premixing area 10 thus widens.
  • the length 27 of the guide element 22 is shorter than a quarter of the length 28 of the inner tube. 7th
  • the exhaust gas main flow 12 and the exhaust gas partial flow 17 corresponds essentially to 75% by volume and the exhaust gas partial flow 17 essentially corresponds to 25% by volume of the entering exhaust gas 2.
  • the spray angle ⁇ is the angle that results between the jets 29, 30 extending linearly from the center of the metering device 6, the jets 29, 30 being the essentially outer jet area of the liquid introduction represent.
  • the main direction of injection 5 and / or the main axis of injection is here the bisector of the two beams 29, 30, cf. Figure 1 .
  • the inlet cross-section 3 and thus the maximum transverse extension of the inlet area of the exhaust gas 2 is dimensioned such that it is less than or equal to the length 28 of the inner pipe 7, preferably the ratio of the inlet cross-section 3 to the length 28 of the inner pipe is 1: 1.3 to 1: 5.0. It is advantageous if the inlet cross section corresponds essentially (i.e. +/- 10%) to the length 31 of the tapering section 21 of the inner tube 7. As a result of this adaptation, the exhaust gas 2, which is supplied partly radially, partly due to the spiral shape of the housing 4, in a twist-like manner can be deflected with little loss by the tapering section 21 of the inner tube 7.
  • the inner pipe passage 18 is according to the embodiment of FIG Figures 4 and 5 formed with a plurality of passage openings 32 arranged equidistantly on a circular line, this circular line, viewed along the longitudinal axis of the inner tube 7, being arranged in the quarter facing the metering device 6.
  • the inner tube 7 and the guide element 22 are also shown in cross section - cf. Figure 5 - Arranged point-symmetrically to the main injection direction 5.
  • Both the inner tube 7 and the guide element 22 also have a rotationally symmetrical geometry and are coaxial with the main injection direction 5 (center in Figure 5 ) aligned.
  • the partial exhaust gas flow 17 reaches the premixing region 10 via the passage openings 32 through the bypass channel 19; in this case, the partial exhaust gas flow 17 moves in direction B, which runs opposite to the main injection direction 5.
  • This "detour” enables a compact mixing device 1.
  • This embodiment provides that the passage openings 32 of the inner tube 7 and / or the bypass channel 19 are arranged closer to the metering device 6 in the longitudinal direction than the area of the inlet cross section 3 facing the metering device 6 to be understood as the closest (here linear) boundary surface 33 of the inlet cross section 3.
  • the bypass channel 19 runs in the longitudinal direction closer to the metering device 6 than the boundary surface 33 of the inlet cross section 3
  • Another advantage of this embodiment is that the "detour" or the return movement of the partial exhaust gas flow 17 in direction B removes a swirl movement component imposed on the exhaust gas by the spiral housing, so that the partial exhaust gas flow 17 penetrating into the premixing area 10 has no or at least a lower swirl , as the main exhaust gas flow 12.
  • the bypass channel 19 has a widened space.
  • the volume of the bypass channel 19 expands at least temporarily before the partial exhaust gas flow 17 reaches the premixing area; the outlet to the premixing area is preferably provided with an opening section of reduced diameter and directed in the direction of the main injection direction 5.
  • the widened section of the bypass duct 19 can act to remove further swirl components from the partial exhaust gas flow 17.
  • a - as in Figure 2 shown - exhaust gas partial flow 17 fed into the bypass duct in a jerky manner the pulse components are reduced so that the expanded section acts as a "calming chamber" for exhaust gas partial flow 17.
  • ⁇ b> List of reference symbols ⁇ /b> 1 Mixing device A. Housing section 2 Exhaust gases B.

Description

Die Erfindung betrifft eine Mischvorrichtung zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine, die ein einen Eintrittsquerschnitt aufweisendes Gehäuse und ein innerhalb des Gehäuses angeordnetes, sich im Wesentlichen parallel zu einer Hauptinjektionsrichtung einer Dosiereinrichtung zur Zuführung einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches erstreckendes Innenrohr, mit einem im Inneren des Innenrohres ausgebildeten Mischbereich, umfasst.The invention relates to a mixing device for the aftertreatment of exhaust gases in an exhaust system of an internal combustion engine, which has a housing having an inlet cross section and a housing arranged inside the housing, essentially parallel to a main injection direction of a metering device for supplying a liquid and / or a liquid-gas mixture extending inner tube, with a mixing area formed in the interior of the inner tube.

Die Offenlegungsschrift DE 10 2009 053 950 A1 lehrt eine Mischvorrichtung, in welcher ein Abgas mit einem, über eine Dosiereinrichtung applizierten flüssigen Reduktionsmittel vermischt wird, wobei das Abgas über dosiereinrichtungsferne Öffnungen eines Innenrohres radial in dessen Innenraum gelangt und über eine stirnseitig angeordnete, dosiereinrichtungsnahe Öffnung in den Innenraum des Innenrohres gelangt. Hierbei strömt ein wesentlicher Teilstrom des Abgases direkt in den Injektionsbereich der Dosiereinrichtung und beeinflusst die Reduktionsmitteleinleitung.The disclosure document DE 10 2009 053 950 A1 teaches a mixing device in which an exhaust gas is mixed with a liquid reducing agent applied via a metering device, the exhaust gas reaching the interior of the inner pipe radially via openings remote from the metering device and entering the interior of the inner pipe via an opening near the metering device. A substantial partial flow of the exhaust gas flows directly into the injection area of the metering device and influences the introduction of the reducing agent.

Die EP 2 465 602 A2 offenbart ein Verfahren zum Reinigen von Abgas. In dem Verfahren wird eine reaktionsfähige Substanz in eine in einer Abgasleitung strömende Abgasströmung eingeleitet. Die Abgasströmung wird in eine in der Mitte des Querschnitts der Abgasleitung strömende Mittelströmung und eine Randströmung geteilt, die um die Mittelströmung herum rotiert und sich vorwärtsbewegt.The EP 2 465 602 A2 discloses a method for purifying exhaust gas. In the method, a reactive substance is introduced into an exhaust gas flow flowing in an exhaust gas line. The exhaust gas flow is divided into a central flow flowing in the middle of the cross section of the exhaust pipe and a peripheral flow which rotates around the central flow and moves forward.

Weitere Vorrichtungen zur Abgasnachbehandlung sind in der FR 1 323 501 A , der CN 1 187 778 A , der WO 2012/047159 A1 , der DE 40 12 411 A1 , der DE 199 55 013 A1 , der DE 10 2010 035311 A1 und der WO 2011/163395 A1 offenbart.Further devices for exhaust gas aftertreatment are in the FR 1 323 501 A , of the CN 1 187 778 A , of the WO 2012/047159 A1 , of the DE 40 12 411 A1 , of the DE 199 55 013 A1 , of the DE 10 2010 035311 A1 and the WO 2011/163395 A1 disclosed.

Der Erfindung liegt die Aufgabe zugrunde, eine Mischvorrichtung derart weiterzubilden, dass das Vermischen der Flüssigkeit mit dem Abgas unabhängig oder nur unter geringem Einfluss des Abgasvolumenstroms zuverlässig und möglichst homogen erfolgt. Ferner ist es Aufgabe der Erfindung, die Vermischung unter Durchlaufen einer kurzen Mischstrecke zu realisieren und das Volumen der Mischvorrichtung gering zu halten.The invention is based on the object of developing a mixing device in such a way that the mixing of the liquid with the exhaust gas takes place reliably and as homogeneously as possible, independently or only under a slight influence of the exhaust gas volume flow. A further object of the invention is to achieve the mixing by passing through a short mixing section and to keep the volume of the mixing device low.

Diese Aufgabe wird durch die Merkmale des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen 2 bis 14.This object is achieved by the features of claim 1. Advantageous further developments of the invention emerge from subclaims 2 to 14.

Als Kern der Erfindung wird angesehen, dass das Gehäuse einen spiralförmigen Gehäuseabschnitt aufweist und an einer Stirnseite des Gehäuses dieThe core of the invention is considered to be that the housing has a spiral housing section and on one end face of the housing the

Dosiereinrichtung angeordnet ist, wobei ein Abgashauptstrom zwischen dem Gehäuse und der äußeren Mantelfläche des Innenrohres geführt und einem Hauptmischbereich zuführbar ist und ein Abgasteilstrom durch einen Innenrohrdurchtritt in einen dosiereinrichtungsnäheren Vormischbereich zuführbar ist, wobei der Abgasteilstrom über den Vormischbereich in den Hauptmischbereich mündet und der Abgashauptstrom einen größeren Volumenanteil als der Abgasteilstrom umfasst. Dadurch, dass der Abgasstrom in einen volumenärmeren Abgasteilstrom und einen volumenreicheren Abgashauptstrom unterteilt und beide Abgasströme innerhalb eines Hauptmischbereichs zusammengeführt werden, wird sowohl eine unter geringem Einfluss des Abgasvolumenstromes liegende Flüssigkeitseinbringung, als auch gleichzeitig eine durch die noch im Hauptmischbereich erfolgende Zusammenführung des Abgashaupt- und Abgasteilstromes zuverlässig homogene Vermischung der Flüssigkeit innerhalb des gesamten Abgasstromes erreicht. Die Funktion des spiralförmigen Gehäuses ist darin zu sehen, dass zumindest dem Abgashauptstrom eine Drallbewegung aufgeprägt wird. Diese Drallbewegung wirkt sich vorteilhaft auf die Vermischung von Flüssigkeit und Abgas und deren Homogenisierung im Vor- und/oder Hauptmischbereich aus. Der Innenrohrdurchtritt ermöglicht einen Druckausgleich zwischen dem Abgashauptstrom und dem düsennahen Inneren des Innenrohres sowie einen kleineren Teilabgasmassenstrom zur Unterstützung des Sprayaustrags aus dem Inneren des Innenrohres zu erzielen. Ohne das Vorsehen des Bypasskanals und der Zuführung des Abgasteilstromes in den Vormischbereich kann die zeitweise eingebrachte Flüssigkeit sich nach Art eines Feder-Masse-Systems verhalten und zu zumindest temporären Druckschwankungen in den Mischbereichen - und damit ungünstigeren Bedingungen für eine homogene Vermischung führen, dies wird mit der erfindungsgemäßen Ausführung verhindert.Dosing device is arranged, wherein a main exhaust gas flow is guided between the housing and the outer jacket surface of the inner pipe and can be fed to a main mixing area and a partial exhaust gas flow can be fed through an inner pipe passage into a premixing area closer to the dosing device, the partial exhaust gas flow flowing through the premixing area into the main mixing area and the main exhaust gas flow being a larger one Volume fraction as the exhaust gas partial flow includes. The fact that the exhaust gas flow is divided into a lower volume exhaust gas partial flow and a higher volume exhaust gas main flow and both exhaust gas flows are brought together within a main mixing area, both a liquid introduction which is under little influence of the exhaust gas volume flow and at the same time a merging of the exhaust gas main and exhaust gas partial flow still taking place in the main mixing area reliably homogeneous mixing of the liquid within the entire exhaust gas flow is achieved. The function of the spiral-shaped housing can be seen in the fact that a swirling movement is impressed at least on the main exhaust gas flow. This swirling movement has an advantageous effect on the mixing of liquid and exhaust gas and their homogenization in the pre-mixing and / or main mixing area. The inner pipe passage enables a pressure equalization between the main exhaust gas flow and the interior of the inner pipe near the nozzle as well as a smaller partial exhaust gas mass flow to support the spray discharge from the interior of the inner pipe. Without the provision of the bypass duct and the supply of the partial exhaust gas flow into the premixing area, the liquid introduced at times can behave in the manner of a spring-mass system and lead to at least temporary pressure fluctuations in the mixing areas - and thus more unfavorable conditions for homogeneous mixing the embodiment according to the invention prevented.

Wenn die Einbringung einer Flüssigkeit durch die Dosiereinrichtung beschrieben wird, so kann diese auch ein Flüssigkeit-Gas-Gemisch, beispielsweise in Form eines Sprays umfassen, nachfolgend wird vereinfacht und exemplarisch von einer Flüssigkeit ausgegangen. Grundsätzlich bringt die Dosiereinrichtung ein Reduktionsmittel wie z.B. eine Harnstofflösung oder auch einen kohlenwasserstoffhaltigen Stoff in die Mischvorrichtung ein und vermischt diese möglichst homogen mit dem Abgas. Im Fall der Harnstofflösung wird diese beispielsweise einem stromab angeordneten Hydrolysekatalysator zugeführt und dort umgesetzt.If the introduction of a liquid by the metering device is described, this can also include a liquid-gas mixture, for example in the form of a spray; a liquid is used below for a simplified and exemplary basis. In principle, the metering device introduces a reducing agent such as a urea solution or a hydrocarbon-containing substance into the mixing device and mixes it as homogeneously as possible with the exhaust gas. In the case of the urea solution, this for example fed to a downstream hydrolysis catalytic converter and reacted there.

In einer vorteilhaften Ausführungsform ist die Hauptinjektionsrichtung der Dosiereinrichtung im Wesentlichen parallel und/oder koaxial zu der Längsachse des Gehäuses und/oder zu der Längsachse des Innenrohres angeordnet. Damit lässt sich ein kompakter und effektiver Aufbau der Mischvorrichtung erreichen, da die Abgasteilströme sich an den Wandungen des Gehäuses und/oder des Innenrohres ausrichten und an diesen geleitet werden. Damit wird auf einfache konstruktive Weise eine gleichgerichtete Abgasteil- und/oder Abgashauptstrombewegung und Flüssigkeitseinbringung erreicht.In an advantageous embodiment, the main injection direction of the metering device is arranged essentially parallel and / or coaxially to the longitudinal axis of the housing and / or to the longitudinal axis of the inner tube. A compact and effective construction of the mixing device can thus be achieved, since the partial exhaust gas flows are aligned with the walls of the housing and / or the inner tube and are guided to them. A rectified movement of the exhaust gas part and / or the main exhaust gas flow and the introduction of liquid are thus achieved in a simple constructive manner.

Es hat sich als vorteilhaft erwiesen, wenn der Abgasstrom in zwei oder maximal drei Teilströme aufgeteilt wird. Insbesondere wenn ein, als letzter in den Mischbereich eingebrachter Abgashauptstrom mindestens 70-Vol-% des Abgasstroms, vorzugsweise mindestens 80 Vol.-% des Abgasstroms, besonders bevorzugt mindestens 90-Vol.-% des Abgasstroms umfasst, wird der oben beschriebene Effekt der zuverlässigen Homogenisierung und der geringen Beeinflussung der Flüssigkeitseinbringung durch die Abgaszuführung erreicht. Dadurch, dass lediglich ein geringer Teil (mindestens kleiner 30-Vol-%) als einer oder ggf. als mehrere Teilströme über die Längsachse des Innenrohres vor dem Hauptabgasstrom eine Vermischung mit der zugeführten Flüssigkeit erfährt, wird eine homogene und nur geringfügig vom Abgasvolumenstrom abhängige Einbringung der Flüssigkeit in das Abgas erreicht. Insbesondere für die injizierten Flüssigkeitstropfen mit geringer Masse ist der Teilabgasstrom mit seinem geringen Volumenstrom vorteilhaft, da diese Tropfen dann nicht übermäßig von dem Abgasvolumenstrom umgelenkt werden. Diese Tropfen weisen einen geringen Impuls auf und würden bei Beaufschlagung mit einem größeren Volumenstrom (vgl. Abgashauptstrom) derart stark abgelenkt werden, dass diese sich übermäßig an der Innenwand des Innenrohres ablagern könnten. Dies wird mit der erfindungsgemäßen Vorrichtung - insbesondere durch den volumenärmeren, früher auf die Flüssigkeit einwirkenden Abgasteilstrom - vermieden oder zumindest in einem geringen, den Mischprozeß nicht wesentlich beeinträchtigen Rahmen gehalten. Als Abgasstrom wird das zugeführte Abgas im Eintrittsquerschnittsbereich bezeichnet.It has proven to be advantageous if the exhaust gas flow is divided into two or a maximum of three partial flows. In particular, if a main exhaust gas flow introduced as the last into the mixing area comprises at least 70% by volume of the exhaust gas flow, preferably at least 80% by volume of the exhaust gas flow, particularly preferably at least 90% by volume of the exhaust gas flow, the above-described effect becomes the most reliable Homogenization and the slight influence on the introduction of liquid by the exhaust gas feed achieved. The fact that only a small part (at least less than 30% by volume) as one or, if necessary, as several partial flows over the longitudinal axis of the inner pipe before the main exhaust gas flow is mixed with the supplied liquid, results in a homogeneous introduction that is only slightly dependent on the exhaust gas volume flow of the liquid in the exhaust gas. The partial exhaust gas flow with its low volume flow is particularly advantageous for the injected liquid droplets with a low mass, since these droplets are then not excessively deflected by the exhaust gas volume flow. These droplets have a low impulse and, if subjected to a larger volume flow (cf. main exhaust gas flow), would be deflected to such an extent that they could be excessively deposited on the inner wall of the inner tube. With the device according to the invention, this is avoided or at least kept to a small extent that does not significantly impair the mixing process, in particular by the lower volume of the partial exhaust gas flow acting earlier on the liquid. The exhaust gas supplied in the inlet cross-sectional area is referred to as the exhaust gas flow.

Ferner hat es sich als vorteilhaft erwiesen, das Innenrohr mit einem zylindrischen Abschnitt und mit einem sich verjüngenden Abschnitt zu versehen, wobei der sich verjüngende Abschnitt dem zylindrischen Abschnitt in Strömungsrichtung des Hauptabgasstromes vorgelagert ist. Der sich verjüngende Abschnitt wirkt als Umlenkbereich und lenkt den zugeführten Abgashauptstrom "druckverlustarm" - d.h. mit einem minimalen Widerstand - parallel zu der Hauptinjektionsrichtung der Dosiereinrichtung. Hierbei umfasst der sich verjüngende Abschnitt vorzugsweise einen sich stetig und/oder kontinuierlich verändernden Radius, der zum Beispiel als ein sich an der Außenseite des Innenrohres stetig und/oder kontinuierlich in Strömungsrichtung des Abgashauptstromes vergrößernder Radius ausgestaltet ist. Als stetige Veränderung bzw. Vergrößerung des Radius ist eine ununterbrochene und/oder sich stets in eine (vergrößernde) Richtung fortschreitende Veränderung gemeint. Diese Maßnahme führt zu einer Umlenkung des Abgases unter einem geringen, auf den Abgasstrom wirkenden Widerstand. Alternativ kann der Umlenkbereich auch einen konstanten und kontinuierlichen Radius umfassen, diese Ausführung ist kostengünstiger und einfacher zu fertigen.Furthermore, it has proven to be advantageous to provide the inner tube with a cylindrical section and with a tapering section, the tapering section being upstream of the cylindrical section in the flow direction of the main exhaust gas flow. The tapering section acts as a deflection area and directs the main flow of exhaust gas supplied "with little pressure loss" - i.e. with minimal resistance - parallel to the main injection direction of the metering device. In this case, the tapering section preferably comprises a steadily and / or continuously changing radius, which is designed, for example, as a radius that increases steadily and / or continuously in the flow direction of the main exhaust gas flow on the outside of the inner tube. A continuous change or enlargement of the radius means an uninterrupted change and / or a change that always progresses in one (increasing) direction. This measure leads to a diversion of the exhaust gas with a low resistance acting on the exhaust gas flow. Alternatively, the deflection area can also comprise a constant and continuous radius; this embodiment is more cost-effective and easier to manufacture.

Über die Rohrbreite des Innenrohres, die als Bereich zwischen dem maximalen Rohraussendruchmesser und dem minimalen Rohrinnendurchmesser zu verstehen ist, erfolgt eine Zuführung des Abgasteilstromes zu dem Vormischbereich im Wesentlichen (d.h. +/- 10%) rechtwinklig zu der Hauptinjektionsrichtung. Da nur ein geringer Anteil des Abgases diesen Bypass zum Mischbereich durchläuft, ist dessen zumindest bereichsweise rechtwinklig zur Hauptinjektionsrichtung erfolgende Bewegung nicht oder nur unwesentlich nachteilig für die Einbringung der Flüssigkeit in den Mischbereich.Over the pipe width of the inner pipe, which is to be understood as the area between the maximum outer pipe diameter and the minimum inner pipe diameter, the partial exhaust gas flow is fed to the premixing area essentially (i.e. +/- 10%) at right angles to the main injection direction. Since only a small proportion of the exhaust gas passes through this bypass to the mixing area, its movement, at least in some areas at right angles to the main injection direction, is not or only insignificantly disadvantageous for the introduction of the liquid into the mixing area.

Alternativ und/oder zusätzlich zu der oben beschriebenen, zumindest bereichsweise rechtwinklig zur Hauptinjektionsrichtung verlaufenden Zuführung des Abgasteilstromes in den Vormischbereich, ist es vorteilhaft, wenn innerhalb des Innenrohres und/oder in oder am Vormischbereich Leitelemente angeordnet sind, die eine Umlenkung des Abgasteilstroms hin zur Hauptinjektionsrichtung ausführen. Damit kann beispielsweise ein "Schutzkragen" um den Nahbereich der Dosiervorrichtung angeordnet sein, so dass die Flüssigkeitseinbringung anfangs keine Störung durch eine Beaufschlagung mit dem Abgasteilstrom erfährt. Auch kann durch die Leitelemente eine vorteilhafte Umlenkung des Abgasteilstromes in Hauptinjektionsrichtung erfolgen. Damit werden drei Bereiche zur Flüssigkeitsvermischung gebildet, ein erster Bereich innerhalb des Leitelementes, in welchem ausschließlich eine Flüssigkeitseinbringung ohne Beaufschlagung mit Abgas erfolgt. Ein zweiter Bereich - der Vormischbereich - in welchem der Abgasteilstrom mit dem aus dem ersten Bereich austretenden Flüssigkeit "vorvermischt" wird. Im dritten Bereich - Hauptmischbereich - erfolgt die Zuführung des Abgashauptstroms zu dem vorvermischten Flüssigkeit-Abgasteilstrom-Gemisch. Hierbei ist das Leitelement vorzugsweise ringartig ausgebildet und an seiner Innenseite kreiszylindrisch und in seinem Querschnitt zu seinem freien Ende verjüngend ausgebildet.Alternatively and / or in addition to the above-described feeding of the partial exhaust gas flow into the premixing area, which runs at least in some areas at right angles to the main injection direction, it is advantageous if guide elements are arranged within the inner tube and / or in or on the premixing area, which deflect the partial exhaust gas flow towards the main injection direction To run. In this way, for example, a “protective collar” can be arranged around the vicinity of the metering device, so that the introduction of liquid is initially not disturbed by exposure to the partial exhaust gas flow. Also can the guide elements result in an advantageous deflection of the partial exhaust gas flow in the main injection direction. This creates three areas for liquid mixing, a first area within the guide element, in which only liquid is introduced without exposure to exhaust gas. A second area - the premixing area - in which the partial exhaust gas flow is "premixed" with the liquid emerging from the first area. In the third area - main mixing area - the main exhaust gas flow is fed to the premixed liquid / exhaust gas partial flow mixture. In this case, the guide element is preferably designed in the form of a ring and designed to be circular-cylindrical on its inside and tapering in its cross section towards its free end.

In einer besonders bevorzugten Ausführung kann das Leitelemente und/oder ein weiteres Ablenkelement dem Abgasteilstrom eine rechtwinklig zur Hauptinjektionsrichtung verlaufende Bewegungskomponente und/oder einen spiralartigen Bewegungsverlauf induzieren. Damit wird dem Abgasteilstrom eine drallartige Bewegung aufgeprägt. Beispielsweise kann damit ein gegebenenfalls bereits durch die Spiralform des Gehäuses erzeugter Drall des Abgasteilstromes in den Vormischbereich hinein übernommen und/oder verstärkt werden.In a particularly preferred embodiment, the guide element and / or a further deflection element can induce a movement component running at right angles to the main injection direction and / or a spiral-like movement path in the partial exhaust gas flow. A swirl-like movement is thus impressed on the partial exhaust gas flow. For example, a swirl of the partial exhaust gas flow, which may already have been generated by the spiral shape of the housing, into the premixing area can thus be taken over and / or reinforced.

In einer vorteilhaften konstruktiven Ausgestaltung ist die Länge des Leitelementes (in Richtung der Längsachse des Innenrohres) kürzer als die Länge des Innenrohres. Insbesondere kann die Länge des Leitelementes kürzer als die Hälfte oder kürzer als ein Viertel des Innenrohres sein. Diese Ausgestaltung ermöglicht eine kompakte und effektive Mischvorrichtung. Das Leitelement dient hauptsächlich dazu den dosiereinrichtungsnahen Bereich vor der Abgasteilströmung zu schützen und den dem Leitelement bzw. der Hauptinjektionsachse radial zugeleiteten Abgasteilstrom in die Hauptinjektionsrichtung umzulenken. So dass insbesondere die massearmen Tropfen der Flüssigkeit im Eintrittsbereich keine Ablenkung durch den Abgasteilstrom erfahren.In an advantageous structural embodiment, the length of the guide element (in the direction of the longitudinal axis of the inner tube) is shorter than the length of the inner tube. In particular, the length of the guide element can be shorter than half or shorter than a quarter of the inner tube. This configuration enables a compact and effective mixing device. The guiding element mainly serves to protect the area close to the metering device from the partial exhaust gas flow and to divert the partial exhaust gas flow radially fed to the guiding element or the main injection axis into the main injection direction. So that, in particular, the low-mass drops of the liquid in the inlet area are not deflected by the partial exhaust gas flow.

Auch kann sich alternativ oder zusätzlich der Hauptabgasstrom selbst hinsichtlich der Strömungsverhältnisse im Vormischbereich positiv auswirken, indem durch eine vom Hauptabgasstrom erzeugte Sogwirkung (Unterdruckerzeugung) im Vormischbereich eine weitere Richtungsbeeinflussung der Flüssigkeit und/oder des Teilabgasstromes, hin bzw. parallel zur Hauptinjektionsrichtung ausführbar ist.Alternatively or additionally, the main exhaust gas flow itself can have a positive effect with regard to the flow conditions in the premixing area, in that a suction effect generated by the main exhaust gas flow (generation of negative pressure) in the premixing area a further directional influencing of the liquid and / or the partial exhaust gas flow can be carried out towards or parallel to the main injection direction.

Bevorzugt wird der Spraywinkel α derart gewählt ist, dass das Spray (die Flüssigkeit) die Innenwand des Innenrohres im nicht abgasdurchströmten Zustand im Wesentlichen nicht berührt. Damit soll nur ein geringer Masseanteil der Flüssigkeit an die Innenwand des Innenrohres berühren und sich dort ggf. ansetzten. Wenn dies im nicht abgasdurchströmten Zustand erfüllt ist, dann wird im abgasdurchströmten Zustand (Betriebszustand) eine geringfügige (kleiner 15 %, vorzugsweise kleiner 8 %) und zumindest in definierten Lastszenarien des Motors vorhandene Benetzung der Innenseite des Innenrohres erreicht. Dieser Kontakt oder diese Benetzung erfolgt hierbei Innenrohr-innenseitig auf dem der Dosiereinrichtung abgewandten Endbereich, vorzugsweise im letzten Achtel des Innenrohres und damit nahe dem Übergang zu dem Hauptmischbereich Eine geringfügige und/oder temporäre Benetzung der Innenwand des Innenrohrendes ist insbesondere im abgasdurchströmten Zustand tolerierbar und auch vorteilhaft. Dadurch, dass ein geringer Teil der Flüssigkeit sich zumindest temporär an der Innenwand des Innenrohres ansetzt wird auf diese Weise ein gewisser Flüssigkeitsspeicher realisiert. Die Dosiereinrichtung arbeitet in der Regel zeitweise. Damit kann während der Nichteinspritzzeiträume ein "Abbau" der an der Innenwand des Innenrohres befindlichen Flüssigkeit erreicht werden. Dieser Effekt wird dadurch begünstigt, dass das Innenrohr dünnwandig ist und/oder außenseitig von dem Abgashauptstrom erwärmt wird, sodass sich auch die an den Wandabschnitten der Innenwand befindliche Flüssigkeit erwärmt. Diese Wärme erleichtert den Abtrenneffekt und Aufspaltungseffekt (Sekundäraufbruch) der sich an dem Innenrohr innenseitig anlegenden Flüssigkeitströpfchen. Mit anderen Worten wird durch den gezielten geringfügigen temporären Wandkontakt der Flüssigkeit die Mischfunktion der Mischvorrichtung ferner begünstigt. Insbesondere dadurch, dass dieser "Flüssigkeitsspeicher" am Innenrohrende und damit nahe dem Hauptmischbereich angeordnet ist, können sich ferner die Sog- und Unterdruckwirkungen des über den vorzugsweise als Ringspalt ausgebildeten Übertritts in den Hauptmischbereich, als Förderer der Mischeigenschaften der Mischvorrichtung erweisen.The spray angle α is preferably selected in such a way that the spray (the liquid) essentially does not touch the inner wall of the inner tube when the exhaust gas is not flowing through it. In this way, only a small proportion of the mass of the liquid should touch the inner wall of the inner tube and possibly settle there. If this is fulfilled when the exhaust gas is not flowing through, then in the exhaust gas flowing through (operating state) a slight (less than 15%, preferably less than 8%) wetting of the inside of the inner pipe that exists at least in defined load scenarios of the engine is achieved. This contact or this wetting takes place on the inside of the inner tube on the end area facing away from the metering device, preferably in the last eighth of the inner tube and thus near the transition to the main mixing area advantageous. Because a small part of the liquid attaches itself to the inner wall of the inner tube, at least temporarily, a certain liquid reservoir is realized in this way. The dosing device usually works intermittently. In this way, a "breakdown" of the liquid located on the inner wall of the inner tube can be achieved during the non-injection periods. This effect is promoted by the fact that the inner tube is thin-walled and / or is heated on the outside by the main exhaust gas flow, so that the liquid located on the wall sections of the inner wall is also heated. This heat facilitates the separation effect and splitting effect (secondary breakup) of the liquid droplets resting on the inside of the inner tube. In other words, the targeted slight temporary wall contact of the liquid further enhances the mixing function of the mixing device. In particular, because this "liquid reservoir" is arranged at the end of the inner tube and thus close to the main mixing area, the suction and negative pressure effects of the passage into the main mixing area, preferably designed as an annular gap, can also promote the mixing properties of the mixing device.

Über die Auslegung der Länge des Innenrohres kann auf konstruktiv einfache und effektive Weise der Grad des temporären Anhaftens der Flüssigkeit eingestellt werden. In der Regel ist die Dosiereinrichtung und damit der Spraywinkel sowie die Dichte der Flüssigkeit vorgegeben. Diese Parameter beeinflussen die Ausbreitungseigenschaften des Sprays abhängig von dem Abgasvolumenstrom. Soll nun eine Flüssigkeit mit einer anderen Dichte und/oder eine Dosiereinrichtung mit einem anderen Spraywinkel verbaut werden, so genügt es, wenn die Mischvorrichtung durch Veränderung der Länge des Innenrohres angepasst wird, um den oben beschriebenen Effekt (Sekundäraufbruch) einzustellen. Dies ermöglicht ebenfall eine Modulbauweise und/oder ein Nachrüstsystem durch entsprechende Auswahl eines Innenrohres der bevorzugten Länge.By designing the length of the inner tube, the degree of temporary adhesion of the liquid can be set in a structurally simple and effective manner. As a rule, the metering device and thus the spray angle and the density of the liquid are specified. These parameters influence the spreading properties of the spray depending on the exhaust gas volume flow. If a liquid with a different density and / or a metering device with a different spray angle is to be installed, it is sufficient if the mixing device is adapted by changing the length of the inner tube in order to set the above-described effect (secondary opening). This also enables a modular design and / or a retrofit system by appropriate selection of an inner tube of the preferred length.

Eine weitere vorteilhafte Maßnahme ist, den Eintrittsquerschnitt (d.h. Durchmesser oder lichte Weite des Eintrittsquerschnitts) des Abgases am Gehäuse kleiner oder gleich, als die Länge des Innenrohres auszulegen. Insbesondere hat sich ein Verhältnis von Eintrittsquerschnitt des Abgases zu der Länge des Innenrohres im Bereich von 1:1 bis 1:1,5 bewährt. Damit wird eine kompakte und zugleich effektive Mischvorrichtung erreicht.Another advantageous measure is to design the inlet cross-section (i.e. diameter or clear width of the inlet cross-section) of the exhaust gas on the housing to be smaller than or equal to the length of the inner tube. In particular, a ratio of the inlet cross-section of the exhaust gas to the length of the inner tube in the range from 1: 1 to 1: 1.5 has proven itself. A compact and at the same time effective mixing device is thus achieved.

Nach einer vorteilhaften Ausgestaltung der Mischvorrichtung ist vorgesehen, dass der Innenrohrdurchtritt durch eine Mehrzahl an Durchtrittsöffnungen gebildet ist, wobei die Durchtrittsöffnungen vorzugsweise auf einem Kreisring oder auf einem Kreisringsegment liegend angeordnet sind, wobei besonders bevorzugt der Kreisring oder das Kreisringsegment im ersten, der Dosiereinrichtung zugewandten Längendrittel oder Längenviertel des Innenrohres angeordnet ist. Diese dosiervorrichtungsnahe Anordnung der Durchtrittsöffnungen ermöglicht die homogene Vermischung und die nur geringe Beeinflussung der Flüssigkeitseinbringung durch den Abgasteilstrom. Die Durchtrittsöffnungen können beispielsweise als Schlitze, Länglöcher oder dergleichen ausgebildet sein.According to an advantageous embodiment of the mixing device, it is provided that the inner pipe passage is formed by a plurality of passage openings, the passage openings preferably being arranged on a circular ring or on a circular ring segment, with the circular ring or the circular ring segment particularly preferably in the first third of the length facing the metering device or quarter length of the inner tube is arranged. This arrangement of the passage openings close to the metering device enables homogeneous mixing and only a slight influence on the introduction of liquid by the partial exhaust gas flow. The passage openings can be designed, for example, as slots, elongated holes or the like.

Auch kann die Durchtrittsöffnung als ein vollständig umlaufender Ringspalt ausgebildet sein. Hierbei ist das Innenrohr über wenigstens einen Steg mit dem Gehäuse tragend und/oder abstützend verbunden. Dieser wenigstens ein Steg ist vorzugsweise an der Stirnseite und innerhalb des Bypasskanals angeordnet. Der Bypasskanal ist der Bereich in welchem der Abgasteilstrom von der Durchtrittsöffnung in radial innen liegenden Vormischbereich gelangt. Der Steg kann ferner eine Geometrie aufweisen, die eine definierte Beeinflussung des an ihm vorbeitretenden Abgasteilstromes (z.B. dessen Richtung) ermöglicht, beispielsweise wird der Abgasteilstrom durch den Steg umgelenkt und/oder in eine Drallbewegung versetzt. In einer konkreten Ausführung erfährt der Abgasteilstrom eine Umlenkung um wenigstens 10°, vorzugsweise um wenigstens 25°. Allgemein ist es vorteilhaft, wenn die Stege äquidistant auf einer Kreislinie liegend beabstandet sind und deren Geometrie zumindest ähnlich ausgestaltet ist, so dass eine Abgasteilstromumlenkung über den Umfang gleichartig ausführbar ist.The passage opening can also be designed as a completely circumferential annular gap. Here, the inner tube is connected to the housing in a load-bearing and / or supporting manner via at least one web. This at least one web is preferably arranged on the end face and within the bypass channel. Of the Bypass channel is the area in which the partial exhaust gas flow passes from the passage opening into the radially inner premixing area. The web can also have a geometry that enables a defined influencing of the partial exhaust gas flow passing it (eg its direction), for example the partial exhaust gas flow is deflected by the web and / or set in a swirling movement. In a specific embodiment, the partial exhaust gas flow is deflected by at least 10 °, preferably by at least 25 °. In general, it is advantageous if the webs are equidistantly spaced on a circular line and their geometry is at least similar so that a partial exhaust gas flow deflection can be carried out in the same way over the circumference.

Zusätzlich oder alternativ hierzu kann ferner vorgesehen sein, dass der Abgasteilstrom ausgehend von dem Eintrittsquerschnitt zu den Durchtrittsöffnungen eine Bewegung entgegen der Hauptinjektionsrichtung ausführt, bevor dieser in den Vormischbereich gelangt. Auch können die Durchtrittsöffnungen des Innenrohres in Längsrichtung näher an der Dosiereinrichtung angeordnet sein, als der der Dosiereinrichtung zugewandte Bereich des Eintrittsquerschnitts. Diese beiden einzelnen oder kombinierbaren Ausführungsformen bedingen eine größere Wegstrecke für den Abgasteilstrom als die Wegstrecke für den Abgashauptstrom. Dies ermöglicht und/oder fördert die Bildung und/oder das Einstellen eines Unterdrucks bzw. einer Sogwirkung in der Vormischkammer ausgehend von dem Abgashauptstrom. Durch die kürzere Strecke des Abgashauptstromes im Vergleich zum Abgasteilstrom bis zum Hauptmischbereich wird die Sogwirkung (und damit ein Unterdruck) auf einfache und effektive Weise im Vormischbereich erzeugt.In addition or as an alternative to this, provision can also be made for the partial exhaust gas flow, starting from the inlet cross section to the passage openings, to execute a movement counter to the main injection direction before it reaches the premixing area. The passage openings of the inner tube can also be arranged closer to the metering device in the longitudinal direction than the area of the inlet cross section facing the metering device. These two individual or combinable embodiments require a greater path for the partial exhaust gas flow than the path for the main exhaust gas flow. This enables and / or promotes the formation and / or the setting of a negative pressure or a suction effect in the premixing chamber starting from the main exhaust gas flow. Due to the shorter distance of the main exhaust gas flow compared to the partial exhaust gas flow to the main mixing area, the suction effect (and thus a negative pressure) is generated in the premixing area in a simple and effective manner.

Der Übertritt des Abgashauptstromes in den Hauptmischbereich erfolgt vorzugsweise durch Durchlaufen eines Ringspaltes am Ende des Innenrohres. Die einfach zu definierende Dimensionierung und Auslegung der Geometrie des Ringspaltes ermöglicht auf einfache und effektive Weise die Unterdruckverhältnisse des Vormischbereiches einzustellen.The passage of the main exhaust gas flow into the main mixing area takes place preferably by passing through an annular gap at the end of the inner tube. The dimensioning and design of the geometry of the annular gap, which is easy to define, enables the underpressure conditions of the premixing area to be set in a simple and effective manner.

In einer weiteren vorteilhaften Ausführungsform ist das Innenrohr, das Leitelement und/oder der wenigstens eine Steg über den Innenrohrquerschnitt punktsymmetrisch zu der Hauptinjektionsrichtung/-achse und/oder das Innenrohr, das Leitelement und/oder die Stege rotationssymmetrisch ausgebildet/angeordnet, vorzugsweise um die Hauptinjektionsrichtung/-achse. Beispielsweise sind das Innenrohr und das Leitelement als rotationssymmetrischer Körper ausgebildet, der koaxial zueinander und koaxial zu der Hauptinjektionsrichtung/-achse ausgerichtet ist. Ferner können hierbei die Stege gleichartig ausgebildet sein, so dass diese rotationssymmetrisch (z.B. mit einer 120°-Verdrehung bei drei Stegen oder 90°-Verdrehung bei vier Stegen, usw.) angeordnet sind. Diese symmetrische Ausgestaltung ermöglicht eine einfach zu fertigende Mischvorrichtung sowie positive Strömungsbedingungen bei einem hohen Grad der Homogenisierung von Flüssigkeit und Abgas.In a further advantageous embodiment, the inner tube, the guide element and / or the at least one web over the inner tube cross-section is point-symmetrical to the main injection direction / axis and / or the inner tube, the guide element and / or the webs are designed / arranged in a rotationally symmetrical manner, preferably around the main injection direction / axis. For example, the inner tube and the guide element are designed as a rotationally symmetrical body which is aligned coaxially to one another and coaxially to the main injection direction / axis. Furthermore, the webs can be designed in the same way, so that they are arranged in a rotationally symmetrical manner (for example with a 120 ° rotation for three webs or 90 ° rotation for four webs, etc.). This symmetrical configuration enables a mixing device that is easy to manufacture and positive flow conditions with a high degree of homogenization of liquid and exhaust gas.

Eine einfache und kostengünstige Fertigung der Mischvorrichtung lässt sich beispielsweise dadurch erreichen, dass das Gehäuse, das Innenrohr, das Leitelement und/oder das Ablenkelement einstückig ausgebildet sind, vorzugsweise ein einstückig gegossenes oder in einem Schmelzverfahren (z.B. Lasersinter- oder Laserschmelzverfahren) gefertigtes Bauteil bilden.A simple and inexpensive manufacture of the mixing device can be achieved, for example, in that the housing, the inner tube, the guide element and / or the deflection element are designed in one piece, preferably forming a component that is cast in one piece or manufactured in a melting process (e.g. laser sintering or laser melting process).

Die Erfindung ist anhand von Ausführungsbeispielen in den Zeichnungsfiguren erläutert. Diese zeigen:

  • Fig. 1 eine schematische Längsschnittdarstellung einer ersten Ausführungsform der Mischvorrichtung;
  • Fig. 2 eine schematische Längsschnittdarstellung einer zweiten Ausführungsform der Mischvorrichtung;
  • Fig. 3 eine schematische Vollschnittdarstellung einer weiteren Ausführungsform der Mischvorrichtung;
  • Fig. 4 eine Vollschnittdarstellung gemäß Detail C aus Figur 3;
  • Fig. 5 eine Vollschnittdarstellung gemäß Schnittlinie A-A aus Figur 3;
  • Fig. 6 eine Vollschnittdarstellung einer alternativen Ausgestaltung zu Fig. 4.
The invention is explained in the drawings on the basis of exemplary embodiments. These show:
  • Fig. 1 a schematic longitudinal sectional view of a first embodiment of the mixing device;
  • Fig. 2 a schematic longitudinal sectional view of a second embodiment of the mixing device;
  • Fig. 3 a schematic full sectional view of a further embodiment of the mixing device;
  • Fig. 4 a full sectional view according to detail C. Figure 3 ;
  • Fig. 5 a full sectional view according to section line AA Figure 3 ;
  • Fig. 6 a full section view of an alternative embodiment Fig. 4 .

In die Mischseinrichtung 1 werden Abgase 2 einer Verbrennungskraftmaschine (nicht dargestellt) durch den Eintrittsquerschnitt 3 eines Gehäuses 4 der Mischvorrichtung 1 zugeführt und nach Durchlaufen der Mischvorrichtung 1 einem Katalysator (nicht dargestellt) zugeführt. Innerhalb des Gehäuses 4 ist ein sich im Wesentlichen parallel zu einer Hauptinjektionsrichtung 5 (als Pfeil dargestellt) einer Dosiereinrichtung 6 erstreckendes Innenrohr 7 angeordnet. Durch die Dosiereinrichtung 6 wird in den Innenraum 8 des Innenrohres 7 eine Flüssigkeit 9 z.B. in Form eines Sprays - durch die beiden Strahlen 29, 30 dargestellt - eingebracht. Der Innenraum 8 ist damit als Vormischbereich 10 definiert. Das Spray wird kegelförmig eingebracht oder in Form mehrer Spraykegel, wobei die Symmetrieachse des Kegels oder die Symmetrieachse der mehreren Kegel im Wesentlichen die Hauptinjektsionsachse bilden. Auch kann die Hauptinjektionsachse allgemein als gedachte Linie angesehen werden, um welche die hauptsächliche Menge der Flüssigkeit 9 geradlinig in den Innenraum 8 des Innenrohres 7 eingebracht wird. Dabei werden die Abgase 2 mit der Flüssigkeit 9 vermischt. Die Hauptinjektionsrichtung 5 und damit in Figur 1 auch die Hauptinjektionsachse fallen zusammen und sind koaxial zu der Längsachse des Gehäuses 4 ausgerichtet, wobei die Längsachse des Gehäuses 4 sich auf den rotationssymmetrischen Bereich des Gehäuses 4 bezieht, also den sich dem spiralförmigen Bereich 13 anschließenden Gehäusebereich 26. Alternativ oder-wie in Figur 1 dargestellt - kann zusätzlich die Hauptinjektionsrichtung 5 koaxial zu der Längsachse des Innenrohres 7 verlaufen.Exhaust gases 2 from an internal combustion engine (not shown) are fed into the mixing device 1 through the inlet cross section 3 of a housing 4 of the mixing device 1 and, after passing through the mixing device 1, fed to a catalytic converter (not shown). Inside the housing 4 there is a metering device 6 which is essentially parallel to a main injection direction 5 (shown as an arrow) extending inner tube 7 is arranged. A liquid 9, for example in the form of a spray - represented by the two jets 29, 30 - is introduced into the interior space 8 of the inner tube 7 by the metering device 6. The interior 8 is thus defined as a premixing area 10. The spray is introduced conically or in the form of several spray cones, the axis of symmetry of the cone or the axis of symmetry of the plurality of cones essentially forming the main axis of injection. The main axis of injection can also generally be viewed as an imaginary line, around which the main amount of the liquid 9 is introduced in a straight line into the interior space 8 of the inner tube 7. The exhaust gases 2 are mixed with the liquid 9. The main direction of injection 5 and thus in Figure 1 the main injection axes also coincide and are aligned coaxially to the longitudinal axis of the housing 4, the longitudinal axis of the housing 4 referring to the rotationally symmetrical area of the housing 4, i.e. the housing area 26 adjoining the spiral-shaped area 13 Figure 1 shown - the main injection direction 5 can also run coaxially to the longitudinal axis of the inner tube 7.

Das Gehäuse 4 weist einen spiralförmigen Gehäuseabschnitt A auf, der sich zumindest teilweise um das Innenrohr 7 erstreckt. Durch die Spiralform wird das Abgas 2 gleichmäßig um den Umfang des Innenrohres 7 zugeführt. An der Stirnseite 11 des Gehäuses 4 ist die Dosiereinrichtung 6 angeordnet.The housing 4 has a spiral-shaped housing section A which extends at least partially around the inner tube 7. Due to the spiral shape, the exhaust gas 2 is supplied evenly around the circumference of the inner tube 7. The metering device 6 is arranged on the end face 11 of the housing 4.

Der Abgashauptstrom 12 wird an der äußeren Fläche (Mantelfläche 14) des Innenrohres 7 zur Hauptinjektionsrichtung 5 hin abgelenkt und zwischen der Innenwand des Gehäuses 4 und der äußeren Fläche des Innenrohres 7 geführt und zu dem am Ende 15 des Innenrohres 7 angeordneten Hauptmischbereichs 16 geleitet. Durch den zumindest spiralförmigen ersten Bereich 13 des Gehäuses 4 wird eine gleichmäßig, nach radial innen wirkende Kraftkomponente des Abgases 2 auf das Innenrohr 7 erreicht. Damit wird eine symmetrisch, nach radial innen wirkende Druckbeaufschlagung durch das Abgas 2 erreicht. Ein gegenüber dem Masse- und/oder Volumenbetrag des Abgashauptstroms 12 geringerer Abgasteilstrom 17 wird durch einen Innenrohrdurchtritt 18 über einen Bypasskanal 19 zu dem Vormischbereich 10 verbracht und gelangt von diesem aus zu dem Hauptmischbereich 16 und damit zu dem Abgashauptstrom 12. Der Vormischbereich 10 ist näher an der Dosiereinrichtung 6 angeordnet als der Hauptmischbereich 16.The main exhaust gas flow 12 is deflected on the outer surface (jacket surface 14) of the inner pipe 7 towards the main injection direction 5 and guided between the inner wall of the housing 4 and the outer surface of the inner pipe 7 and directed to the main mixing area 16 located at the end 15 of the inner pipe 7. Due to the at least spiral-shaped first region 13 of the housing 4, a uniform force component of the exhaust gas 2 acting radially inward on the inner pipe 7 is achieved. A symmetrical, radially inwardly acting pressurization by the exhaust gas 2 is thus achieved. An exhaust gas partial flow 17, which is smaller than the mass and / or volume amount of the main exhaust gas flow 12, is brought through an inner pipe passage 18 via a bypass channel 19 to the premixing area 10 and arrives therefrom Main mixing area 16 and thus to the main exhaust gas flow 12. The premixing area 10 is arranged closer to the metering device 6 than the main mixing area 16.

Das Innenrohr 7 weist einen zylindrischen Abschnitt 20 und einen sich verjüngenden Abschnitt 21 auf, wobei der sich verjüngende Abschnitt 21 der Dosiereinrichtung 6 näher liegend angeordnet ist und/oder in Strömungsrichtung S des Abgashauptstroms 12 vorgelagert ist. Der sich verjüngende Abschnitt 21 betrifft zumindest die äußere Mantelfläche 14 des Innenrohres 7. Die Innenfläche kann eine korrespondierende Krümmung - wie in Figur 1 dargestellt - aufweisen oder gemäß Figur 2 im Innenraum 8 des Innenrohres 7 einen konstanten Querschnitt aufweisen.The inner tube 7 has a cylindrical section 20 and a tapering section 21, the tapering section 21 being arranged closer to the metering device 6 and / or being upstream in the flow direction S of the main exhaust gas flow 12. The tapering section 21 relates at least to the outer jacket surface 14 of the inner tube 7. The inner surface can have a corresponding curvature - as in FIG Figure 1 shown - have or according to Figure 2 have a constant cross section in the interior 8 of the inner tube 7.

Ein Leitelement 22 ist innerhalb des Innenrohres 7 angeordnet und verhindert eine Beaufschlagung der Flüssigkeit 9 mit dem den Bypasskanal 19 passierenden Abgasteilstrom 17 im dosiereinrichtungsnahen und dem Vormischbereich 10 vorgelagerten Einbringbereich 23. Das Leitelement 22 lenkt ferner den Abgasteilstrom 17 in Hauptinjektionsrichtung 5, zu dem Vormischbereich 10 hin, um. Hierzu ist das Leitelement 22 ringartig und vorzugsweise rotationssymmetrisch ausgebildet. An der Innenseite 24 des Leitelements 22 ist dieses kreiszylindrisch und in seinem Querschnitt zumindest an seiner Außenfläche zu dem freien Ende 25 hin verjüngend ausgebildet.A guide element 22 is arranged inside the inner tube 7 and prevents the liquid 9 from being exposed to the partial exhaust gas flow 17 passing through the bypass channel 19 in the introduction area 23 near the metering device and upstream of the premixing area 10. The guiding element 22 also directs the partial exhaust gas flow 17 in the main injection direction 5 to the premixing area 10 go to. For this purpose, the guide element 22 is designed to be ring-like and preferably rotationally symmetrical. On the inside 24 of the guide element 22, this is circular-cylindrical and tapering in its cross-section at least on its outer surface towards the free end 25.

Die Länge 27 des Leitelements 22 ist kürzer als die Länge 28 des Innenrohres 7. Damit erweitert sich der Querschnitt im Vormischbereich 10. Die Länge 27 des Leitelementes 22 ist herbei kürzer als ein Viertel der Länge 28 des Innenrohres. 7.The length 27 of the guide element 22 is shorter than the length 28 of the inner tube 7. The cross section in the premixing area 10 thus widens. The length 27 of the guide element 22 is shorter than a quarter of the length 28 of the inner tube. 7th

Wie in den Figuren 1 und 2 durch die Anzahl der das Abgas 2, den Abgashauptstrom 12 sowie den Abgasteilstrom 17 darstellenden Pfeile gezeigt, entspricht der Abgashauptstrom 12 im Wesentlichen 75 Vol.-% und der Abgasteilstrom 17 im Wesentlichen 25 Vol.-% des eintretenden Abgases 2.As in the Figures 1 and 2 As shown by the number of arrows representing the exhaust gas 2, the exhaust gas main flow 12 and the exhaust gas partial flow 17, the exhaust gas main flow 12 corresponds essentially to 75% by volume and the exhaust gas partial flow 17 essentially corresponds to 25% by volume of the entering exhaust gas 2.

Der Spraywinkel α ist der Winkel, der sich zwischen den, aus dem Zentrum der Dosiereinrichtung 6 linear erstreckenden Strahlen 29, 30 ergibt, wobei die Strahlen 29, 30 den Wesentlichen äußeren Strahlbereich der Flüssigkeitseinbringung darstellen. Die Hauptinjektionsrichtung 5 und/oder die Hauptinjektionsachse ist hierbei die Winkelhalbierende der beiden Strahlen 29, 30, vgl. Figur 1.The spray angle α is the angle that results between the jets 29, 30 extending linearly from the center of the metering device 6, the jets 29, 30 being the essentially outer jet area of the liquid introduction represent. The main direction of injection 5 and / or the main axis of injection is here the bisector of the two beams 29, 30, cf. Figure 1 .

Der Eintrittsquerschnitt 3 und damit die maximale Quererstreckung des Eintrittsbereichs des Abgases 2 derart dimensioniert, dass dieser kleiner oder gleich der Länge 28 des Innenrohres 7 ist, vorzugsweise beträgt das Verhältnis von Eintrittsquerschnitt 3 zu der Länge 28 des Innenrohres 1:1,3 bis 1:5,0. Wobei es vorteilhaft ist, wenn der Eintrittsquerschnitt im Wesentlichen (d.h. +/- 10%) der Länge 31 des sich verjüngenden Abschnittes 21 des Innenrohres 7 entspricht. Durch diese Anpassung kann das zum Teil radial, zum Teil, durch die Spiralform des Gehäuses 4, drallartig zugeführte Abgas 2 verlustarm durch den sich verjüngenden Abschnitt 21 des Innenrohres 7 umgelenkt werden.The inlet cross-section 3 and thus the maximum transverse extension of the inlet area of the exhaust gas 2 is dimensioned such that it is less than or equal to the length 28 of the inner pipe 7, preferably the ratio of the inlet cross-section 3 to the length 28 of the inner pipe is 1: 1.3 to 1: 5.0. It is advantageous if the inlet cross section corresponds essentially (i.e. +/- 10%) to the length 31 of the tapering section 21 of the inner tube 7. As a result of this adaptation, the exhaust gas 2, which is supplied partly radially, partly due to the spiral shape of the housing 4, in a twist-like manner can be deflected with little loss by the tapering section 21 of the inner tube 7.

Der Innenrohrdurchtritt 18 ist gemäß der Ausführungsform der Figuren 4 und 5 mit mehreren, äquidistant auf einer Kreislinie angeordneten Durchtrittsöffnungen 32 gebildet, wobei sich diese Kreislinie entlang der Längsachse des Innenrohres 7 betrachtet im zur Dosiereinrichtung 6 zugewandten Viertel angeordnet ist. Auch sind das Innenrohr 7 sowie das Leitelement 22 im Querschnitts - vgl. Figur 5 - punktsymmetrisch zu der Hauptinjektionsrichtung 5 angeordnet. Auch weist sowohl das Innenrohr 7 als auch das Leitelement 22 eine rotationssymmetrische Geometrie auf und ist koaxial zu der Hauptinjektionsrichtung 5 (Zentrum in Figur 5) ausgerichtet.The inner pipe passage 18 is according to the embodiment of FIG Figures 4 and 5 formed with a plurality of passage openings 32 arranged equidistantly on a circular line, this circular line, viewed along the longitudinal axis of the inner tube 7, being arranged in the quarter facing the metering device 6. The inner tube 7 and the guide element 22 are also shown in cross section - cf. Figure 5 - Arranged point-symmetrically to the main injection direction 5. Both the inner tube 7 and the guide element 22 also have a rotationally symmetrical geometry and are coaxial with the main injection direction 5 (center in Figure 5 ) aligned.

Über die Durchtrittsöffnungen 32 gelangt der Teilabgasstrom 17 durch den Bypasskanal 19 an in den Vormischbereich 10, hierbei vollzieht der Teilabgasstrom 17 eine Bewegung in Richtung B, die entgegengesetzt der Hauptinjektionsrichtung 5 verläuft. Durch diesen "Umweg" wird eine kompakt bauende Mischvorrichtung 1 ermöglicht. Diese Ausführung sieht vor, dass die Durchtrittsöffnungen 32 des Innenrohres 7 und/oder der Bypasskanal 19 in Längsrichtung näher an der Dosiereinrichtung 6 angeordnet sind, als der der Dosiereinrichtung 6 zugewandte Bereich des Eintrittsquerschnitts 3. Der zugewandte Bereich (Begrenzungsfläche 33) des Eintrittsquerschnitts 3 ist als die nächstgelegene (hier lineare) Begrenzungsfläche 33 des Eintrittsquerschnitts 3 zu verstehen. Wie in den Figuren 4 und 5 dargestellt, verläuft jeweils der Bypasskanal 19 in Längsrichtung näher an der Dosiereinrichtung 6 als die Begrenzungsfläche 33 des Eintrittsquerschnitts 3. Ein weiterer Vorteil dieser Ausführung ist, dass durch den "Umweg" bzw. durch die Zurückbewegung des Abgasteilstroms 17 in Richtung B eine vom Spiralgehäuse dem Abgas aufgeprägte Drallbewegungskomponente abgenommen wird, so dass der in den Vormischbereich 10 eindringende Abgasteilstrom 17 keinen oder zumindest einen geringeren Drall aufweist, als der Hauptabgasstrom 12.The partial exhaust gas flow 17 reaches the premixing region 10 via the passage openings 32 through the bypass channel 19; in this case, the partial exhaust gas flow 17 moves in direction B, which runs opposite to the main injection direction 5. This "detour" enables a compact mixing device 1. This embodiment provides that the passage openings 32 of the inner tube 7 and / or the bypass channel 19 are arranged closer to the metering device 6 in the longitudinal direction than the area of the inlet cross section 3 facing the metering device 6 to be understood as the closest (here linear) boundary surface 33 of the inlet cross section 3. As in the Figures 4 and 5 shown, the bypass channel 19 runs in the longitudinal direction closer to the metering device 6 than the boundary surface 33 of the inlet cross section 3 Another advantage of this embodiment is that the "detour" or the return movement of the partial exhaust gas flow 17 in direction B removes a swirl movement component imposed on the exhaust gas by the spiral housing, so that the partial exhaust gas flow 17 penetrating into the premixing area 10 has no or at least a lower swirl , as the main exhaust gas flow 12.

Gemäß der Ausführung aus Figur 2 weist der Bypasskanal 19 einen aufgeweiteten Raum auf. Das Volumen des Bypasskanals 19 erweitert sich zumindest temporär bevor der Abgasteilstrom 17 in den Vormischbereich gelangt, vorzugsweise ist der Ausgang hin zum Vormischbereich mit einem durchmesserreduzierten und in Richtung der Hauptinjektionsrichtung 5 gerichteten Öffnungsabschnitt versehen. Der erweiterte Abschnitt des Bypasskanals 19 kann zur weiteren Drallkomponentenentnahme am Abgasteilstrom 17 wirken. Ferner wird damit auch ein - wie in Figur 2 dargestellt - stoßartig in den Bypasskanal zugeführten Abgasteilstrom 17 die Impulskomponente abgebaut werden, so dass der erweiterte Abschnitt als "Beruhigungskammer" für den Abgasteilstrom 17 wirkt. Bezugszeichenliste 1 Mischvorrichtung A Gehäuseabschnitt 2 Abgase B Richtung 3 Eintrittsquerschnitt S Strömungsrichtung 4 Gehäuse 5 Hauptinjektionsrichtung 6 Dosiereinrichtung 7 Innenrohr 8 Innenraum v. 7 9 Flüssigkeit 10 Vormischbereich 11 Stirnseite 12 Abgashauptstrom 13 erster Bereich v. 4 (Spiralform) 14 Mantelfläche v. 7 15 Ende v. 7 16 Hauptmischbereich 17 Abgasteilstrom 18 Innenrohrdurchtritt 19 Bypasskanal 20 zylindrischer Abschnitt v. 7 21 verjüngter Abschnitt v. 7 22 Leitelement 23 Einbringbereich 24 Innenseite v. 22 25 Ende v. 22 26 zweiter Bereich v. 4 27 Länge v. 22 28 Länge v. 7 29 Strahl 30 Strahl 31 Länge v. 21 32 Durchtrittsöffnung 33 Begrenzungsfläche v. 3 According to the execution from Figure 2 the bypass channel 19 has a widened space. The volume of the bypass channel 19 expands at least temporarily before the partial exhaust gas flow 17 reaches the premixing area; the outlet to the premixing area is preferably provided with an opening section of reduced diameter and directed in the direction of the main injection direction 5. The widened section of the bypass duct 19 can act to remove further swirl components from the partial exhaust gas flow 17. Furthermore, a - as in Figure 2 shown - exhaust gas partial flow 17 fed into the bypass duct in a jerky manner, the pulse components are reduced so that the expanded section acts as a "calming chamber" for exhaust gas partial flow 17. <b> List of reference symbols </b> 1 Mixing device A. Housing section 2 Exhaust gases B. direction 3 Inlet cross-section S. Direction of flow 4th casing 5 Main direction of injection 6th Dosing device 7th Inner tube 8th Interior v. 7th 9 liquid 10 Premix area 11 Front side 12th Main exhaust gas flow 13th first area v. 4 (spiral shape) 14th Outer surface v. 7th 15th End of 7th 16 Main mixing area 17th Partial exhaust gas flow 18th Inner tube passage 19th Bypass duct 20th cylindrical section v. 7th 21 tapered section v. 7th 22nd Guiding element 23 Introduction area 24 Inside v. 22nd 25th End of 22nd 26th second area v. 4th 27 Length v. 22nd 28 Length v. 7th 29 beam 30th beam 31 Length v. 21 32 Passage opening 33 Boundary surface v. 3

Claims (14)

  1. Mixing device (1) for the aftertreatment of exhaust gases (2) in an exhaust system of an internal combustion engine, said mixing device comprising a housing (4) which has an inlet cross section (3) and comprising an inner pipe (7) which is arranged within the housing (4), extends substantially parallel to a main injection direction (5) of a dosing device (6) for supplying a liquid and/or a liquid-gas mixture and has a premix region (10) formed in the interior (8) of the inner pipe (7), wherein the housing (4) has a spiral-shaped housing portion (13) and the dosing device (6) is arranged on an end side (11) of the housing (4), wherein a main exhaust-gas stream (12) is conducted between the housing (4) and the outer lateral surface (14) of the inner pipe (7) and can be supplied to a main mixing region (16), and a partial exhaust-gas stream (17) can be supplied through an inner pipe passage (18) into the premix region (10) which is situated closer to the dosing device, wherein the partial exhaust-gas stream (17) issues into the main mixing region (16) via the premix region (10), and the main exhaust-gas stream (12) comprises a greater volume fraction of exhaust gas than the partial exhaust-gas stream (17).
  2. Mixing device (1) according to Claim 1, wherein the main injection direction (5) of the dosing device (6) runs substantially parallel and/or coaxially with respect to the longitudinal axis of the housing (4) and/or with respect to the longitudinal axis of the inner pipe (7).
  3. Mixing device (1) according to Claim 1 or 2, wherein the main exhaust-gas stream (12) comprises at least 70 vol% of the exhaust gas (2) supplied at the inlet cross section (3), preferably at least 80 vol% of the exhaust gas (2), particularly preferably at least 90 vol% of the exhaust gas (2).
  4. Mixing device (1) according to one of the preceding claims, wherein the inner pipe (7) comprises a cylindrical portion (20) and a tapering portion (21), wherein the tapering portion (21) is positioned upstream of the cylindrical portion (20) as viewed in the flow direction (S) of the main exhaust-gas stream (12).
  5. Mixing device (1) according to one of the preceding claims, wherein a diversion of the partial exhaust-gas stream (17) towards the main injection direction (5) takes place within the inner pipe (7) and/or directly upstream of the premix region (10) and/or at the forward end of the premix region (10) by means of a guide element (22).
  6. Mixing device (1) according to Claim 5, wherein the guide element (22) is of annular and/or rotationally symmetrical design and is preferably designed, on its inner side (24), so as to be circular-cylindrical and/or tapered in terms of its cross section toward its free end (25).
  7. Mixing device (1) according to Claim 5 or 6, wherein the length (27) of the guide element (22) is shorter than the length (28) of the inner pipe (7), preferably that the length (27) of the guide element (22) is shorter than one half of the length (28) of the inner pipe (7), particularly preferably that the length (27) of the guide element (22) is shorter than one quarter of the length (28) of the inner pipe (7).
  8. Mixing device (1) according to one of the preceding claims, wherein the spray angle (α) is selected such that the spray substantially does not make contact with the inner wall of the inner pipe (7) in the state in which exhaust gas is not flowing through.
  9. Mixing device (1) according to one of the preceding claims, wherein the inlet cross section (3) of the exhaust gas is smaller than or equal to the length (28) of the inner pipe (7), preferably that the ratio of inlet cross section (3) of the exhaust gas (2) to the length (28) of the inner pipe (7) is 1:1 to 1:1.5.
  10. Mixing device (1) according to one of the preceding claims, wherein the inner pipe passage (18) is formed by a multiplicity of passage openings (32), wherein the passage openings (32) are preferably arranged so as to lie on a circular ring or on a circular ring segment, wherein it is particularly preferable for the circular ring or circular ring segment to be arranged in the first third of the length or quarter of the length, facing toward the dosing device (6), of the inner pipe (7).
  11. Mixing device (1) according to one of the preceding claims, wherein the inner pipe (7) is arranged within the mixing device (1) via webs, and the webs are arranged preferably exclusively in the bypass duct which conducts the partial exhaust-gas stream (17) from the inlet region into the premix region (10).
  12. Mixing device (1) according to Claim 11, wherein at least one web is shaped such that the partial exhaust-gas stream (17) conducted past the web is subjected to a defined directional change, preferably is subjected to a diversion through at least 10°, wherein the geometry of the webs is particularly preferably at least similar, such that the diversion can be performed at least similarly.
  13. Mixing device according to one of the preceding claims, wherein the partial exhaust-gas stream (17) must, on the path from the inlet cross section to the passage openings, perform a movement (B) counter to the main injection direction (5), and/or that the passage openings and/or the bypass duct (19) of the inner pipe (7) are arranged closer to the dosing device (6) as viewed in the longitudinal direction than that region of the inlet cross section which faces toward the dosing device (6).
  14. Mixing device according to one of the preceding claims, wherein the inner pipe (7), the guide element (22) and/or the webs are, in cross section, point-symmetrical with respect to the main injection direction (5)/axis, and/or that the inner pipe (7), the guide element (22) and/or the webs have a rotationally symmetrical geometry, preferably about the main injection direction (5)/axis.
EP13002562.0A 2012-07-20 2013-05-16 Mixing device for the aftertreatment of exhaust gases Active EP2687286B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012014333.8A DE102012014333A1 (en) 2012-07-20 2012-07-20 Mixing device for aftertreatment of exhaust gases

Publications (3)

Publication Number Publication Date
EP2687286A2 EP2687286A2 (en) 2014-01-22
EP2687286A3 EP2687286A3 (en) 2017-06-28
EP2687286B1 true EP2687286B1 (en) 2021-03-31

Family

ID=48444032

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13002562.0A Active EP2687286B1 (en) 2012-07-20 2013-05-16 Mixing device for the aftertreatment of exhaust gases

Country Status (5)

Country Link
EP (1) EP2687286B1 (en)
CN (1) CN103573350B (en)
BR (1) BR102013017993B1 (en)
DE (1) DE102012014333A1 (en)
RU (1) RU2631591C2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008001547U1 (en) 2007-07-24 2008-04-10 Emcon Technologies Germany (Augsburg) Gmbh Assembly for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
DE102012010878A1 (en) 2012-06-01 2013-12-05 Daimler Ag Reductant addition and treatment system of a motor vehicle
EP3152419B1 (en) 2014-06-03 2020-03-04 Faurecia Emissions Control Technologies, USA, LLC Doser cone assembly
WO2016013319A1 (en) * 2014-07-25 2016-01-28 フタバ産業株式会社 Dosing pipe
SE538308C2 (en) * 2014-09-03 2016-05-10 Scania Cv Ab Device for injecting a reducing agent into exhaust gases
DE102015002432A1 (en) * 2015-02-26 2016-09-01 Daimler Ag Exhaust after-treatment device for an internal combustion engine of a motor vehicle
DE102015002974A1 (en) 2015-03-10 2016-09-15 Man Truck & Bus Ag Device for the aftertreatment of exhaust gas of a motor vehicle
WO2016176078A1 (en) 2015-04-30 2016-11-03 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US9726064B2 (en) 2015-04-30 2017-08-08 Faurecia Emissions Control Technologies, Usa, Llc Mixer for use in a vehicle exhaust system
US9828897B2 (en) 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
US9719397B2 (en) 2015-04-30 2017-08-01 Faurecia Emissions Control Technologies Usa, Llc Mixer with integrated doser cone
US10086332B2 (en) * 2015-05-07 2018-10-02 Ford Global Technologies, Llc Exhaust flow device
US10100706B2 (en) * 2016-02-12 2018-10-16 Ford Global Technologies, Llc Urea mixer
AT518758B1 (en) * 2016-05-23 2018-11-15 Avl List Gmbh EXHAUST GAS TREATMENT DEVICE FOR AN INTERNAL COMBUSTION ENGINE
US10612442B2 (en) 2016-08-22 2020-04-07 Daimler Ag Exhaust gas treatment device for an internal combustion engine of a motor vehicle
WO2018075061A1 (en) 2016-10-21 2018-04-26 Faurecia Emissions Control Technologies Usa, Llc Reducing agent mixer
US10787946B2 (en) 2018-09-19 2020-09-29 Faurecia Emissions Control Technologies, Usa, Llc Heated dosing mixer
FI20205784A1 (en) * 2020-08-05 2022-02-06 Proventia Oy Method in a flow device for exhaust gas aftertreatment and the flow device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1323501A (en) * 1956-10-17 1963-04-12 Atomizer mixer device
DE4012411A1 (en) * 1990-04-19 1991-10-24 Webasto Ag Fahrzeugtechnik Exhaust-operated filter-regenerating burner - divides gas into equal evenly-distributed currents before combustion chamber inlet
CN1187778A (en) * 1995-06-28 1998-07-15 西门子公司 Catalytic purification process and device for exhaust gas from combustion system
DE19913462A1 (en) * 1999-03-25 2000-09-28 Man Nutzfahrzeuge Ag Urea hydrolysis to generate ammonia for reducing nitrogen oxides in an exhaust gas catalytic converter comprises reacting urea with a side stream of exhaust gas
DE19955013B4 (en) * 1999-11-16 2008-04-03 Volkswagen Ag Exhaust system of an internal combustion engine
EP1875051B1 (en) * 2005-04-13 2008-08-13 Grundfos NoNox a/s A mixing device for mixing urea and air
CN102007277B (en) * 2008-04-17 2014-08-20 丰田自动车株式会社 Exhaust purifying system for internal combustion engine
DE102009053950A1 (en) * 2009-11-19 2011-05-26 Man Nutzfahrzeuge Aktiengesellschaft Device for aftertreatment of exhaust gases of internal combustion engines
US8302389B2 (en) * 2009-11-23 2012-11-06 International Engine Intellectual Property Company, Llc Urea SCR diesel aftertreatment system
EP2339139B1 (en) * 2009-12-16 2013-08-21 FPT Motorenforschung AG Method for dosing an urea based reducing agent into a gas exhaust stream
US9670811B2 (en) * 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
DE102010032576A1 (en) * 2010-07-28 2012-02-02 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for near-exhaust gas treatment
DE102010035311A1 (en) * 2010-08-25 2012-03-01 Boa Balg- Und Kompensatoren-Technologie Gmbh Decoupling element, in particular for exhaust systems
SE535198C2 (en) * 2010-09-30 2012-05-15 Scania Cv Ab Arrangement for introducing a liquid medium into exhaust gases from an internal combustion engine
SE535219C2 (en) * 2010-10-06 2012-05-29 Scania Cv Abp Arrangement for introducing a liquid medium into exhaust gases from an internal combustion engine
SE535235C2 (en) * 2010-10-22 2012-06-05 Scania Cv Abp Arrangement for introducing a liquid medium into exhaust gases from an internal combustion engine
FI20106317A0 (en) * 2010-12-14 2010-12-14 Proventia Emission Control Oy METHOD AND DEVICE FOR CLEANING THE EXHAUST GAS
DE102010056314A1 (en) * 2010-12-27 2012-06-28 Friedrich Boysen Gmbh & Co. Kg Device for distributing fluids in exhaust systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103573350A (en) 2014-02-12
DE102012014333A1 (en) 2014-01-23
EP2687286A3 (en) 2017-06-28
RU2013130797A (en) 2015-01-10
RU2631591C2 (en) 2017-09-25
BR102013017993B1 (en) 2021-04-06
BR102013017993A2 (en) 2015-06-30
CN103573350B (en) 2019-01-11
EP2687286A2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
EP2687286B1 (en) Mixing device for the aftertreatment of exhaust gases
EP3018311B1 (en) Injection section for an exhaust gas aftertreatment device
EP2865861B1 (en) Catalyst assembly with injection section
EP2700442B1 (en) Exhaust system with mixing and/or vaporisation device
EP1990513B2 (en) Device for distributing liquid substances in exhaust gas systems
EP2687697B1 (en) Mixing device for the aftertreatment of exhaust gases
EP2179222B2 (en) Burner for a combustion chamber of a turbo group
EP3478947B1 (en) Mixer device for an exhaust-gas aftertreatment system of a motor vehicle, exhaust-gas aftertreatment system, and motor vehicle
EP3443209B1 (en) Exhaust-gas aftertreatment device with catalytic converter and mixing device
DE112017007996T5 (en) Injector cone like a Venturi nozzle
DE102008029110A1 (en) Mixing and evaporating device for exhaust-gas system of internal combustion engine, particularly motor vehicle, has ring body which has internal shovel, where shovel is fastened with retaining elements in exhaust gas guiding pipe
WO2012120000A1 (en) Exhaust system of an internal combustion engine
DE102011077156A1 (en) Exhaust system for internal combustion engine of motor vehicle, has mixing channel with helical/helically configured spiral region that is inclined at specific angle with respect to center axis
EP3500739B1 (en) Exhaust gas aftertreatment device for an internal combustion engine of a motor vehicle
DE102020124106A1 (en) MOTOR VEHICLE EXHAUST AFTER-TREATMENT SYSTEM
DE102013211662A1 (en) Mixer means
EP2726718A1 (en) Device and method for introducing a reducing agent into an exhaust train
EP3726017B1 (en) Mixer
DE102019130972A1 (en) REDUCING AGENT NOZZLE WITH SPACE-SHAPED CHANNEL DESIGN
WO2017137032A1 (en) Mixer for mixing an exhaust gas flow of an internal combustion engine, and exhaust gas system
DE102019100267A1 (en) Mixer for an exhaust system of an internal combustion engine
WO2019029880A1 (en) Device for mixture preparation, exhaust-gas aftertreatment system
EP4063626A1 (en) Exhaust gas/reaction agent mixed module
EP3752721B1 (en) Exhaust aftertreatment device for dosing a liquid exhaust aftertreatment agent
AT518758B1 (en) EXHAUST GAS TREATMENT DEVICE FOR AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01N 3/20 20060101ALI20170522BHEP

Ipc: B01F 5/00 20060101ALI20170522BHEP

Ipc: B01F 5/04 20060101ALI20170522BHEP

Ipc: F01N 13/08 20100101ALI20170522BHEP

Ipc: B01F 3/04 20060101AFI20170522BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171017

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TRUCK & BUS SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015598

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1376309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013015598

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003040000

Ipc: B01F0023200000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015598

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210630

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1376309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230525

Year of fee payment: 11

Ref country code: IT

Payment date: 20230525

Year of fee payment: 11

Ref country code: FR

Payment date: 20230523

Year of fee payment: 11

Ref country code: DE

Payment date: 20230530

Year of fee payment: 11