WO2016013319A1 - Dosing pipe - Google Patents

Dosing pipe Download PDF

Info

Publication number
WO2016013319A1
WO2016013319A1 PCT/JP2015/066884 JP2015066884W WO2016013319A1 WO 2016013319 A1 WO2016013319 A1 WO 2016013319A1 JP 2015066884 W JP2015066884 W JP 2015066884W WO 2016013319 A1 WO2016013319 A1 WO 2016013319A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
dosing pipe
pipe
exhaust
dosing
Prior art date
Application number
PCT/JP2015/066884
Other languages
French (fr)
Japanese (ja)
Inventor
好伸 永田
Original Assignee
フタバ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フタバ産業株式会社 filed Critical フタバ産業株式会社
Priority to JP2016535838A priority Critical patent/JPWO2016013319A1/en
Publication of WO2016013319A1 publication Critical patent/WO2016013319A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel

Definitions

  • the present invention relates to a dosing pipe used by being attached to an exhaust pipe.
  • the exhaust pipe is provided with a catalyst for exhaust gas purification. Further, in the exhaust pipe on the upstream side of the exhaust of the catalyst, a reducing agent such as urea water is injected toward the catalyst in order to maintain the performance of the catalyst.
  • a reducing agent such as urea water
  • an injection such as a reducing agent may adhere to the inner wall surface of the exhaust pipe due to the influence of the exhaust gas (for example, the injection direction is changed by the exhaust gas). In that case, the problem that the deposit which is the lump of the deposit derived from the injection thing or the lump of the chemically reacted injection substance may be formed in the inner wall surface of the exhaust pipe or the like.
  • Patent Document 1 air is sent from the intake system to the exhaust pipe at the timing when the fuel is injected from the injector, but the timing at which the fuel is injected from the injector is different from the timing at which the exhaust gas flows through the exhaust pipe in the first place. The above problem could not be solved.
  • the dosing pipe of one aspect of the present invention is A dosing pipe that is attached to an exhaust pipe and used.
  • a main body that forms a cylindrical injection passage having an opening that opens inside the exhaust pipe;
  • An intake opening that opens toward the exhaust upstream side of the exhaust pipe inside the exhaust pipe on the exhaust upstream side of the opening;
  • an air curtain is provided at a position that surrounds an injection range in which an injection material is injected in a cone shape in the injection path, and surrounds the injection range toward the opening.
  • the flow passage section has a larger flow passage cross-sectional area than the opening area opened toward the opening, and the flow passage section guides the exhaust gas taken in at the intake opening to the jet outlet. Is provided.
  • the injection is injected into the exhaust pipe from the opening. Further, when exhaust gas is caused to flow through the exhaust pipe to which the dosing pipe is attached, the exhaust gas is taken into the flow path portion from the intake port that is opened upstream of the opening portion. And the taken-in exhaust gas forms the air curtain surrounding the injected injection material.
  • the opening area of the jet port is smaller than the channel cross-sectional area of the channel part, a high dynamic pressure acts on the exhaust gas when flowing into the channel part. Therefore, when the dosing pipe is attached to the exhaust pipe, exhaust gas having a higher momentum than the exhaust gas flowing in the vicinity of the opening can be ejected from the ejection port.
  • the exhaust gas ejected from the ejection port is prevented from adhering the injection material to the inside of the main body, so that the occurrence of deposits in the dosing pipe can be suppressed.
  • the exhaust gas ejected from the ejection port serves as an air curtain that resists the high-pressure exhaust gas flowing in the exhaust pipe. For this reason, it is possible to suppress the injection material flowing out from the dosing pipe into the exhaust pipe from being pushed by the exhaust gas flowing through the exhaust pipe and being biased in the pushed direction in the exhaust pipe.
  • the injection can be injected into the exhaust pipe while suppressing the generation of deposits.
  • inclination is suppressed, When it merges with the exhaust gas which flows through the inside of an exhaust pipe, it will be disperse
  • the opening area in which the jet port is open toward the opening can also be referred to as, for example, the area of the projection surface when the jet port is projected in the direction of viewing the inside of the injection path through the opening. It can also be said to be the area of a cross section perpendicular to the axial direction.
  • the main body portion may be formed in a double tubular shape having an inner cylindrical portion and an outer cylindrical portion.
  • the intake port may be formed in the outer cylindrical portion, and the ejection port may be provided so as to be positioned inside the inner cylindrical portion when the inside of the ejection path is viewed through the opening.
  • the flow path portion is formed by a space between the inner cylindrical portion and the outer cylindrical portion, and a direction changing portion that changes the direction of the exhaust gas flowing from the intake port in the direction from the jet port toward the opening portion. You may make it prepare.
  • the outer cylindrical part of the main body becomes the outer edge of the dosing pipe, a hole through which the upper part of the outer cylinder passes is formed in the exhaust pipe, and the main body is formed in the hole so that the intake port faces the upstream side of the exhaust pipe.
  • the dosing pipe is attached to the exhaust pipe by being inserted.
  • the dosing pipe has an overlap part where the end of the outer cylindrical part opposite to the side where the opening is provided is folded back to the position where it covers the inner side of the inner cylindrical part, the dosing pipe is injected into the overlap part.
  • An outlet may be formed.
  • a spout will open on the inner surface of an inner cylindrical part, or a position near the inner surface of an inner cylindrical part, and the position of a spout can be installed in the position near an inner cylindrical part. Therefore, the dosing pipe can be minimized.
  • the exhaust gas can be ejected vigorously from the ejection port as compared with the case where the intake port is arranged at another location.
  • the main body is a length along the central axis of the main body, and the center of the main body with respect to the side where the intake port is provided It is good also as a shape where the opening surface of an opening part inclines with respect to the central axis of a main-body part so that the length of the other side on both sides of an axis
  • the main body portion has a blowing portion provided along the circumferential direction on the inner wall surface on the end portion side opposite to the end portion side where the opening portion is formed, and the blowing portion is provided through the opening portion.
  • the pipe portion that has the jet opening that opens toward the opening portion side extends from the intake port that opens upstream from the opening portion toward the blowing portion, and forms a flow path portion. It is good also as a structure provided.
  • the main body portion may be a single tube structure, and it is only necessary to form a blow-in portion in the main body portion of the single tube structure, attach the main body portion to the exhaust pipe, and attach the pipe portion to the exhaust pipe. Therefore, when the dosing pipe of the present invention is used, a simple structure main body portion is formed without forming a complicated structure main body portion, which is attached to the exhaust pipe, and the pipe portion is simply attached to the exhaust pipe. Good.
  • the main body portion may be formed in a shape whose diameter increases toward the opening, for example, a trumpet shape.
  • a jet nozzle is good also as a slit-shaped opening formed in the ring shape.
  • the spout may have a shape in which a plurality of holes are arranged in a circle.
  • FIG. 2A is a perspective view of the dosing pipe.
  • FIG. 2B is a plan view of FIG. 2A.
  • FIG. 2C is a sectional view of FIG. 2B taken along IIC-IIC.
  • FIG. 2D is a cross-sectional view of FIG. 2C taken along IID-IID.
  • FIG. 3A is a perspective view of a modified example of the dosing pipe.
  • FIG. 3B is a plan view of FIG. 3A.
  • FIG. 3C is a sectional view of FIG.
  • FIG. 4A is a perspective view of a modified example of the dosing pipe.
  • FIG. 4B is a plan view of FIG. 4A.
  • FIG. 4C is a sectional view of FIG. 4B taken along IVC-IVC.
  • FIG. 5A is a perspective view of a modified example of the dosing pipe.
  • FIG. B is a plan view of FIG. 5A.
  • FIG. 5C is a sectional view taken along the line VC-VC of FIG. 5B.
  • FIG. 5D is a VD-VD cross-sectional view of FIG. 5C.
  • FIG. 6A is a cross-sectional view of the dosing pipe on which FIG.
  • FIG. 6B is a view showing a modified example of the dosing pipe, and is a cross-sectional view of FIG. 6A along VIB-VIB.
  • FIG. 6C is a view showing a modified example of the dosing pipe, and is a cross-sectional view of FIG. 6A along VIB-VIB.
  • FIG. 6D is a view showing a modified example of the dosing pipe, and is a VIB-VIB sectional view of FIG. 6A.
  • FIG. 7A is an explanatory view of a modified example of the dosing pipe, and is a cross-sectional view cut along the same cut surface as FIG.
  • FIG. 7B is an explanatory view of a modified example of the dosing pipe, and is a cross-sectional view cut along the same cut surface as FIG. 2C. It is explanatory drawing for demonstrating the dosing pipe of 2nd Embodiment, and is sectional drawing of the exhaust pipe of the exhaust upstream of the part by which the catalyst is arrange
  • the two-dot chain lines in FIG. 2A, FIG. 3A, FIG. 4A, and FIG. 5A are lines written to express the shape of the dosing pipe, and are lines attached to the dosing pipe itself. is not.
  • the dosing pipe 1 of the first embodiment is formed in a cylindrical shape, and the exhaust pipe h is bent on the exhaust upstream side of the exhaust pipe h where the catalyst is attached. It is installed in the part.
  • a hole is formed in the pipe surface on the side (outside) far from the bending center 92.
  • the dosing pipe 1 is installed in the exhaust pipe h by passing the dosing pipe 1 through the hole.
  • the dosing pipe 1 is connected to the exhaust pipe h so that the opening 22 provided at one end of both ends in the axial direction is opposed to the catalyst installed on the exhaust downstream side in the exhaust pipe h. Installed.
  • the dosing pipe 1 is welded to the exhaust pipe h. As shown in FIG. 2, the dosing pipe 1 includes a main body portion 2 including an inner cylindrical portion 20 and an outer cylindrical portion 21. The inner cylindrical portion 20 and the outer cylindrical portion 21 are arranged coaxially.
  • the inner cylindrical part 20 forms the cylindrical injection path 200 which has the opening part 22 opened inside the exhaust pipe in the inner side.
  • an intake port 3 for taking in exhaust gas is provided on the cylindrical surface of the outer cylindrical portion 21.
  • the intake 3 is provided at a position close to the opening 22. Specifically, the intake port 3 is provided at a position closer to the opening 22 side than the center of the main body 2 when viewed in the direction along the central axis 91 of the main body 2.
  • the dosing pipe 1 When the dosing pipe 1 is installed in the exhaust pipe h, the dosing pipe 1 is installed so that the intake port 3 opens toward the exhaust upstream side (see FIG. 1).
  • the dosing pipe 1 is folded so that one end (the end on the side facing the catalyst when installed in the exhaust pipe h) of both ends in the axial direction of the outer cylindrical portion 21 is drawn in a semicircle,
  • the inner cylindrical portion 20 is connected to one end portion of both end portions in the axial direction.
  • the aforementioned opening 22 is formed inside the folded portion.
  • the other end portion of the outer cylindrical portion 21 is folded back so as to draw a semicircle with a flat top portion up to a position where an overlap portion 24 is formed covering the other end portion of the inner cylindrical portion 20 from the inside. ing.
  • the rear opening 23 opens inside the folded portion.
  • the overlap part 24 forms a space between the inner wall surface of the inner cylindrical part 20 as shown in FIG. 2C and FIG. 2D. Then, when it sees through the opening part 22, when it sees through the opening part 22, the slit formed in the ring shape which is the jet nozzle 4 opened toward the opening part 22 side is formed.
  • urea water which is a reducing agent, is injected as a spray in the shape of a cone in the injection path 200, but the overlap part 24 is configured in this way, and thus the injection path through the opening 22.
  • the outlet 4 is provided at a position surrounding the injection range 90 in which the urea water is injected in a cone shape in the injection path 200.
  • the flow path portion 5 that guides the exhaust gas taken in at the intake port 3 to the jet port 4 is formed between the inner cylindrical portion 20 and the outer cylindrical portion 21. Is done.
  • the flow path portion 5 has an area shown in FIG. 2D and has a larger flow path cross-sectional area than the opening area where the jet nozzle 4 opens toward the opening portion 22.
  • the other end part side (the direction side in which the rear opening part 23 opens) as viewed from the overlap part 24 is taken in by folding the other end part side of the outer cylindrical part 21.
  • a direction changing portion 50 is formed that turns back the direction in which the exhaust gas taken in at the port 3 flows from the outlet 4 toward the opening 22.
  • an injector (not shown) is installed on the dosing pipe 1 configured in this manner so that the injection port 9 is located at the center of the rear opening 23.
  • urea water is injected.
  • the injection direction of urea water in the first embodiment is a direction in which the injection axis coincides with the central axis 91 of the main body 2 and is directed from the rear opening 23 toward the opening 22. (Characteristic effects of the first embodiment)
  • the dosing pipe 1 described above is attached to the exhaust pipe h on the exhaust upstream side of the catalyst and urea water is injected through the injection path 200 formed by the main body 2, the urea water is introduced into the exhaust pipe h from the opening 22. leak.
  • the exhaust gas when the exhaust gas is caused to flow through the exhaust pipe h to which the dosing pipe 1 is attached, the exhaust gas is taken into the flow path portion 5 from the intake port 3 that is open upstream of the opening portion 22. .
  • the taken-in exhaust gas forms an air curtain surrounding the injected urea water.
  • the opening area of the jet port 4 is smaller than the cross-sectional area of the flow path portion 5. Therefore, the exhaust gas is ejected vigorously from the ejection port 4 by the exhaust gas on which the high dynamic pressure that flows into the flow path portion 5 acts.
  • the exhaust gas ejected from the ejection port 4 suppresses the adhesion of urea water inside the main body 2, so that the generation of deposits in the dosing pipe 1 is prevented. Can be suppressed.
  • the exhaust gas ejected from the ejection port 4 serves as an air curtain that resists the high-pressure exhaust gas flowing through the exhaust pipe h. Therefore, urea water flowing out from the dosing pipe 1 into the exhaust pipe h is pushed by the exhaust gas flowing through the exhaust pipe h, and is prevented from being biased in the pushed direction in the exhaust pipe h.
  • urea water can be injected into the exhaust pipe h while suppressing generation of deposits due to urea water.
  • the urea water is injected into the exhaust pipe h from the opening 22 in a state in which the bias is suppressed. Therefore, when the urea water merges with the exhaust gas flowing through the exhaust pipe h, the urea water is almost uniformly dispersed throughout the exhaust gas.
  • the jet nozzle 4 opens on the inner surface of the inner cylindrical portion 20 or at a position close to the inner surface of the inner cylindrical portion 20. Since the position of the spout 4 can be installed at a position close to the inner cylindrical portion 20, the dosing pipe 1 can be minimized.
  • the outer cylindrical portion 21 of the main body portion 2 becomes the outer edge of the dosing pipe 1, a hole through which the outer cylindrical portion 21 passes is formed in the exhaust pipe h, and the intake port
  • the main body 2 can be attached to the exhaust pipe h simply by inserting the main body 2 into the hole so that 3 faces the upstream side of the exhaust pipe h.
  • the intake port 3 of the dosing pipe 1 of the first embodiment is provided at a position closer to the opening 22 side than the center of the main body 2 when viewed in the direction along the central axis 91.
  • the amount of exhaust gas directed to the side opposite to the ejection port 4 when viewed from the intake port 3 is reduced. Therefore, dispersion of dynamic pressure applied to the exhaust gas taken in from the intake port 3 can be reduced. And as a result, compared with the case where the intake 3 is arrange
  • the diameter of the dosing pipe 1 increases from the other end side toward one end side, that is, the opening 22 side. You may form so that it may become a shape, what is called a trumpet shape.
  • the main body 2 has a longer length along the central axis 91 than the side where the intake 3 is provided. You may make it the opening surface of the opening part 22 incline with respect to the center axis
  • the outer cylindrical portion on the lower side of the central shaft 91 (the side opposite to the side where the intake port 3 is provided as viewed from the central shaft 91). It is good also as a shape which folded the edge part of the other side of 21 to the part close
  • the area shown in FIG. 5D may be formed so that the flow path cross-sectional area of the flow path portion 5 is larger than the opening area of the ejection port 4.
  • the spout 4 is not only a hole formed by a space formed between the overlap part 24 and the inner cylindrical part 20 as in the above-described embodiment, but also FIG. 6A to FIG. 6D may be adopted.
  • the jet nozzle 4 is good also as a form which arranged the circular-arc-shaped hole along the predetermined
  • the spout 4 may have a shape in which a plurality of circular holes are arranged along a predetermined circle. As shown in FIG.
  • the spout 4 is formed by combining FIG. 6B and FIG. 6C, and arranging two arc-shaped holes and a plurality of circular holes along a predetermined circle. Also good. Moreover, the number of the jet nozzles 4 may be any number, and the interval may be any interval. Moreover, the jet nozzle 4 is not only formed in a circular shape or an elliptical shape, but may be formed in any shape such as a polygonal shape. Furthermore, the jet nozzle 4 does not necessarily have a shape arranged along a circle.
  • a ring-shaped plate member 40 having a predetermined width in the radial direction is used, and the outer peripheral edge portion of the plate member 40 is an inner cylindrical portion. If it installs in the dosing pipe 1 so that it may contact
  • the folded portion of the outer cylindrical portion 21 may be configured as shown in FIG. 7A or FIG. 7B.
  • the outer tubular portion 21 may be folded back so short that the overlap portion 24 does not occur.
  • the length of the overlap portion 24 is such that the portion on the opposite side is shorter than the portion on the intake port 3 side when viewed from the central axis 91. A portion formed by folding may be formed. (Second Embodiment) Next, a second embodiment will be described.
  • the dosing pipe 1 of the second embodiment is formed in a cylindrical shape and has one end formed with an opening 22 that opens to the exhaust downstream side when attached to the exhaust pipe h.
  • a blow-in portion 26 is provided along the circumferential direction.
  • the blow-in part 26 was formed by folding the other end of the main body part 2 inward. And when it sees the side of the other end part of the main-body part 2 through the opening part 22 through the opening part 22, it is the spout 4 which opens toward the opening part 22 in the side surface which opposes the opening part 22. Is formed.
  • the main body 2 is attached to the exhaust pipe h so that the opening 22 faces the exhaust downstream side.
  • the urea water is injected from the injection port 9 provided in the center portion of the rear opening 23 on the side where the blowing portion 26 is provided, and is injected from the opening 22 toward the catalyst through the main body 2. .
  • the dosing pipe 1 is provided with the pipe part 10, and one opening of the pipe part 10 opens in the exhaust pipe h of the exhaust_gas
  • FIG. 1 the dosing pipe 1 is provided with the pipe part 10, and one opening of the pipe part 10 opens in the exhaust pipe h of the exhaust_gas
  • the main body portion 2 may have a single tube structure as compared with the dosing pipe 1 of the first embodiment, and the blowing portion 26 is formed in the main body portion 2 of the single tube structure.
  • the main body 2 is attached to the exhaust pipe h, and the pipe 10 is only attached to the exhaust pipe h.
  • the main body 2 having a simple structure is formed without forming the main body 2 having a complicated structure, and this is attached to the exhaust pipe h.
  • the dosing pipe 1 can be attached to the exhaust pipe h simply by attaching to the exhaust pipe h.
  • both end portions of the outer cylindrical portion 21 are folded and joined to the inner cylindrical portion 20, or the overlap portion 24 is formed, but other members constituting the folding are prepared, This may be constructed by welding to the end of the outer cylindrical portion 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A dosing pipe provided with: a main body portion forming a tubular injection channel having an opening portion; an inlet opened toward an exhaust upstream side of an exhaust pipe; an ejection port for ejecting an exhaust gas that forms an air curtain directed toward the opening portion in the main body portion; and a flow channel portion that guides the exhaust gas taken through the inlet to the ejection port.

Description

ドージングパイプDosing pipe 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2014年7月25日に日本国特許庁に出願された日本国特許出願第2014-151896号に基づく優先権を主張するものであり、日本国特許出願第2014-151896号の全内容を参照により本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2014-151896 filed with the Japan Patent Office on July 25, 2014. The entire contents are incorporated herein by reference.
 本発明は、排気管に取り付けて使用するドージングパイプに関する。 The present invention relates to a dosing pipe used by being attached to an exhaust pipe.
 排気管には、排気ガス浄化用の触媒が備えられている。また、触媒の排気上流側の排気管内では、触媒の性能を維持するため、尿素水等の還元剤が触媒に向かって噴射される。
 しかし、還元剤等の噴射物は、排気ガスの影響(排気ガスにより噴射方向が変えられるなど)を受けて排気管の内壁面に付着してしまう場合がある。その場合、排気管の内壁面等には、噴射物由来の析出物の塊や、化学反応した噴射物の塊であるデポジットが形成される、という問題が発生し得る。
The exhaust pipe is provided with a catalyst for exhaust gas purification. Further, in the exhaust pipe on the upstream side of the exhaust of the catalyst, a reducing agent such as urea water is injected toward the catalyst in order to maintain the performance of the catalyst.
However, an injection such as a reducing agent may adhere to the inner wall surface of the exhaust pipe due to the influence of the exhaust gas (for example, the injection direction is changed by the exhaust gas). In that case, the problem that the deposit which is the lump of the deposit derived from the injection thing or the lump of the chemically reacted injection substance may be formed in the inner wall surface of the exhaust pipe or the like.
 この問題を解決するため、吸気系から空気を取り込んで、その取り込んだ空気を噴射物の噴射口の回りから噴出することによって、尿素水が排気ガスの流れの影響を受けにくくして、デポジットの発生を抑制する提案がなされている(例えば特許文献1)。 In order to solve this problem, the urea water is less affected by the flow of the exhaust gas by taking in air from the intake system and ejecting the taken air from around the injection port of the injected matter. Proposals for suppressing the occurrence have been made (for example, Patent Document 1).
特開2010-059805号公報JP 2010-059805 A
 しかし、排気管内には高圧の排気ガスが流れており、これに抗し得るだけの勢いのある空気を噴出することは難しかった。
 特許文献1では、インジェクタから燃料が噴射されるタイミングで吸気系から排気管に空気を送っているが、インジェクタから燃料が噴射されるタイミングはそもそも排気ガスが排気管内を流れるタイミングとは異なるので、上記の問題が解決され得なかった。
However, high-pressure exhaust gas is flowing in the exhaust pipe, and it has been difficult to eject air with a momentum sufficient to resist this.
In Patent Document 1, air is sent from the intake system to the exhaust pipe at the timing when the fuel is injected from the injector, but the timing at which the fuel is injected from the injector is different from the timing at which the exhaust gas flows through the exhaust pipe in the first place. The above problem could not be solved.
 本発明の一つの局面では、噴射物によるデポジットの発生を抑制しつつ排気管内での噴射物の噴射を可能とするドージングパイプを提供できることが望ましい。 In one aspect of the present invention, it is desirable to be able to provide a dosing pipe that enables injection of an injection material in an exhaust pipe while suppressing generation of deposits by the injection material.
 本発明の一側面のドージングパイプは、
 排気管に取り付けて使用するドージングパイプであって、
 前記排気管の内側で開口する開口部を有する筒形状の噴射路を形成する本体部と、
 前記開口部よりも排気上流側の前記排気管の内側で、前記排気管の排気上流側に向かって開口する取込口と、
 前記開口部を通して前記噴射路内をみたとき、噴射物が前記噴射路内で錐体状に噴射される噴射範囲を囲う位置に設けられ、前記噴射範囲を囲って前記開口部に向かうエアカーテンを形成する排気ガスを噴出する噴出口と、
 前記噴出口が前記開口部に向かって開いた開口面積に比べて流路断面積が大きく、前記取込口で取り込んだ前記排気ガスを前記噴出口に導く流路部と、
を備える。
The dosing pipe of one aspect of the present invention is
A dosing pipe that is attached to an exhaust pipe and used.
A main body that forms a cylindrical injection passage having an opening that opens inside the exhaust pipe;
An intake opening that opens toward the exhaust upstream side of the exhaust pipe inside the exhaust pipe on the exhaust upstream side of the opening;
When the inside of the injection path is viewed through the opening, an air curtain is provided at a position that surrounds an injection range in which an injection material is injected in a cone shape in the injection path, and surrounds the injection range toward the opening. A spout for ejecting the exhaust gas to be formed;
The flow passage section has a larger flow passage cross-sectional area than the opening area opened toward the opening, and the flow passage section guides the exhaust gas taken in at the intake opening to the jet outlet.
Is provided.
 上記のドージングパイプを排気管に取り付け、本体部が形成する噴射路を通るように噴射物を噴射すると、噴射物は開口部から排気管内に噴射される。
 また、上記のドージングパイプが取り付けられた排気管に排気ガスを流すと、開口部よりも排気上流側で開口している取込口から排気ガスが流路部内に取り込まれる。そして、その取り込まれた排気ガスが、噴射された噴射物を囲うエアカーテンを形成する。
When the dosing pipe is attached to the exhaust pipe and the injection is injected through the injection path formed by the main body, the injection is injected into the exhaust pipe from the opening.
Further, when exhaust gas is caused to flow through the exhaust pipe to which the dosing pipe is attached, the exhaust gas is taken into the flow path portion from the intake port that is opened upstream of the opening portion. And the taken-in exhaust gas forms the air curtain surrounding the injected injection material.
 このとき、取込口が排気管の上流側に向かって開口しているので、取込口から取り込まれた排気ガスには動圧が作用する。しかも、取込口が開口部より上流側で開口しているので、排気ガスには、仮に開口部付近に取込口を設置した場合に比べて高い動圧が作用する。 At this time, since the intake port opens toward the upstream side of the exhaust pipe, dynamic pressure acts on the exhaust gas taken in from the intake port. In addition, since the intake port is opened upstream from the opening, a higher dynamic pressure acts on the exhaust gas as compared with the case where the intake is installed near the opening.
 また、噴出口の開口面積が流路部の流路断面積に比べて小さいので、排気ガスには、流路部に流れ込む際に高い動圧が作用する。
 そのため、上記のドージングパイプを排気管に取り付けた場合、開口部付近を流れる排気ガスよりも勢いの強い排気ガスを噴出口から噴出させることができる。
In addition, since the opening area of the jet port is smaller than the channel cross-sectional area of the channel part, a high dynamic pressure acts on the exhaust gas when flowing into the channel part.
Therefore, when the dosing pipe is attached to the exhaust pipe, exhaust gas having a higher momentum than the exhaust gas flowing in the vicinity of the opening can be ejected from the ejection port.
 したがって、上記のドージングパイプを用いると、噴出口から噴出する排気ガスが、本体部の内側に噴射物が付着することを抑制するので、ドージングパイプ内でのデポジットの発生を抑制することができる。 Therefore, when the above-described dosing pipe is used, the exhaust gas ejected from the ejection port is prevented from adhering the injection material to the inside of the main body, so that the occurrence of deposits in the dosing pipe can be suppressed.
 また、上記のドージングパイプを用いると、噴出口から噴出する排気ガスが、排気管内を流れる高圧の排気ガスに抗するエアカーテンの役目を果たす。
 そのため、ドージングパイプから排気管内に流出する噴射物が、排気管内を流れる排気ガスに押され、排気管内でその押された方向に偏って位置することが抑制される。
Further, when the dosing pipe is used, the exhaust gas ejected from the ejection port serves as an air curtain that resists the high-pressure exhaust gas flowing in the exhaust pipe.
For this reason, it is possible to suppress the injection material flowing out from the dosing pipe into the exhaust pipe from being pushed by the exhaust gas flowing through the exhaust pipe and being biased in the pushed direction in the exhaust pipe.
 したがって、上記のドージングパイプを排気管に取り付けると、デポジットの発生を抑制しつつ排気管内に噴射物を噴射することができる。
 なお、噴射物は、偏りが抑制されつつ開口部から排気管内に噴射されるので、排気管内を流れる排気ガスと合流すると、その排気ガスの全体にほぼ均一に分散される。
Therefore, when the dosing pipe is attached to the exhaust pipe, the injection can be injected into the exhaust pipe while suppressing the generation of deposits.
In addition, since an injection is injected in an exhaust pipe from an opening part, the bias | inclination is suppressed, When it merges with the exhaust gas which flows through the inside of an exhaust pipe, it will be disperse | distributed to the whole exhaust gas substantially uniformly.
 また、噴出口が開口部に向かって開いた開口面積は、例えば、開口部を介して噴射路内をみる方向に噴出口を投影したときの投影面の面積ということもでき、また、本体部の軸方向に垂直な断面の面積ということもできる。 In addition, the opening area in which the jet port is open toward the opening can also be referred to as, for example, the area of the projection surface when the jet port is projected in the direction of viewing the inside of the injection path through the opening. It can also be said to be the area of a cross section perpendicular to the axial direction.
 上記のドージングパイプにおいて、本体部は、内側筒状部と外側筒状部とを有する二重管状に形成されていてもよい。
 この場合、取込口は、外側筒状部に形成され、噴出口は、開口部を通して噴射路内をみたとき、内側筒状部の内側に位置するように設けてもよい。
In the dosing pipe, the main body portion may be formed in a double tubular shape having an inner cylindrical portion and an outer cylindrical portion.
In this case, the intake port may be formed in the outer cylindrical portion, and the ejection port may be provided so as to be positioned inside the inner cylindrical portion when the inside of the ejection path is viewed through the opening.
 流路部は、内側筒状部と外側筒状部との間の空間によって形成し、取込口から流れてきた排気ガスを、噴出口から開口部に向かう方向に方向転換させる方向転換部を備えるようにしてもよい。 The flow path portion is formed by a space between the inner cylindrical portion and the outer cylindrical portion, and a direction changing portion that changes the direction of the exhaust gas flowing from the intake port in the direction from the jet port toward the opening portion. You may make it prepare.
 この場合、本体部の外側筒状部がドージングパイプの外縁になるため、外側筒上部が通る孔を排気管に開け、取込口が排気管の上流側に向くように本体部をその孔に差し込むことによって、ドージングパイプが排気管に取り付けられる。 In this case, since the outer cylindrical part of the main body becomes the outer edge of the dosing pipe, a hole through which the upper part of the outer cylinder passes is formed in the exhaust pipe, and the main body is formed in the hole so that the intake port faces the upstream side of the exhaust pipe. The dosing pipe is attached to the exhaust pipe by being inserted.
 上記のドージングパイプが、開口部が設けられる側とは反対側の外側筒状部の端部を、内側筒状部の内側に被さる位置まで折り返したオーバーラップ部を有する場合、オーバーラップ部に噴出口を形成するようにしてもよい。 If the dosing pipe has an overlap part where the end of the outer cylindrical part opposite to the side where the opening is provided is folded back to the position where it covers the inner side of the inner cylindrical part, the dosing pipe is injected into the overlap part. An outlet may be formed.
 このようにすると、噴出口が、内側筒状部の内側表面上か、内側筒状部の内側表面から近い位置で開口することとなり、噴出口の位置を内側筒状部に近い位置に設置できるので、ドージングパイプを最小化することができる。 If it does in this way, a spout will open on the inner surface of an inner cylindrical part, or a position near the inner surface of an inner cylindrical part, and the position of a spout can be installed in the position near an inner cylindrical part. Therefore, the dosing pipe can be minimized.
 ところで、流路部が、内側筒状部と外側筒状部との間の空間によって形成される場合、取込口は、開口部の側に寄った位置に設けるとよい。
 このようにすると、開口部の側に向かう排気ガスが少なくなるので、排気ガスにかかった動圧の分散を抑制することができる。
By the way, when a flow-path part is formed of the space between an inner side cylindrical part and an outer side cylindrical part, it is good to provide an intake port in the position near the opening part side.
In this way, the amount of exhaust gas directed toward the opening is reduced, so that dispersion of dynamic pressure applied to the exhaust gas can be suppressed.
 その結果、取込口を他の場所に配置した場合に比べ、噴出口から排気ガスを勢いよく噴出させることができる。
 次に、二重管構造の本体部を備えるドージングパイプの場合、本体部は、本体部の中心軸に沿った長さであって、取込口が設けられた側に対し、本体部の中心軸を挟んだ反対側の長さが、取込口が設けられた側に比べ短くなるように、開口部の開口面が本体部の中心軸に対して傾斜する形状としてもよい。
As a result, the exhaust gas can be ejected vigorously from the ejection port as compared with the case where the intake port is arranged at another location.
Next, in the case of a dosing pipe having a double-pipe main body, the main body is a length along the central axis of the main body, and the center of the main body with respect to the side where the intake port is provided It is good also as a shape where the opening surface of an opening part inclines with respect to the central axis of a main-body part so that the length of the other side on both sides of an axis | shaft may become short compared with the side in which the intake port was provided.
 このようにすると、流路部の容積が少なくなるので、取込口から取り込まれた排気ガスにかかった動圧の分散を抑制することができる。
 次に、本体部は、開口部が形成された端部側とは反対の端部側の内壁面上に、円周方向に沿って設けられた吹入部を有するとともに、開口部を通して吹入部をみたとき、開口部の側に向かって開口する前記噴出口を有し、開口部よりも上流側で開口する取込口から吹入部に向かって延設され、流路部を形成するパイプ部を備える構造としてもよい。
In this way, since the volume of the flow path portion is reduced, it is possible to suppress the dispersion of the dynamic pressure applied to the exhaust gas taken in from the intake port.
Next, the main body portion has a blowing portion provided along the circumferential direction on the inner wall surface on the end portion side opposite to the end portion side where the opening portion is formed, and the blowing portion is provided through the opening portion. When viewed, the pipe portion that has the jet opening that opens toward the opening portion side, extends from the intake port that opens upstream from the opening portion toward the blowing portion, and forms a flow path portion. It is good also as a structure provided.
 この場合、本体部が単筒管構造でもよく、その単筒管構造の本体部に吹入部を形成し、その本体部を排気管に取り付け、さらにパイプ部を排気管に取り付けるだけでよい。
 そのため、本発明のドージングパイプを用いると、複雑な構造の本体部を形成することなく、シンプルな構造の本体部を形成して、これを排気管に取り付け、パイプ部を排気管に取り付けるだけでよい。
In this case, the main body portion may be a single tube structure, and it is only necessary to form a blow-in portion in the main body portion of the single tube structure, attach the main body portion to the exhaust pipe, and attach the pipe portion to the exhaust pipe.
Therefore, when the dosing pipe of the present invention is used, a simple structure main body portion is formed without forming a complicated structure main body portion, which is attached to the exhaust pipe, and the pipe portion is simply attached to the exhaust pipe. Good.
 なお、本体部は、開口部の側に向かって径が大きくなる形状、例えば、ラッパ形状に形成されていてもよい。
 また、噴出口は、リング形状に形成されたスリット状の開口としてもよい。
The main body portion may be formed in a shape whose diameter increases toward the opening, for example, a trumpet shape.
Moreover, a jet nozzle is good also as a slit-shaped opening formed in the ring shape.
 また、噴出口は、複数の孔部を円状に並べた形状であってもよい。 Also, the spout may have a shape in which a plurality of holes are arranged in a circle.
第1実施形態のドージングパイプついて説明するための説明図で、触媒が配置された部分の排気上流側の排気管及びドージングパイプの断面図である。It is explanatory drawing for demonstrating the dosing pipe of 1st Embodiment, and is sectional drawing of the exhaust pipe and dosing pipe of the exhaust gas upstream side of the part by which the catalyst is arrange | positioned. FIG.2Aは、ドージングパイプの斜視図である。FIG.2Bは、FIG.2Aの平面図である。FIG.2Cは、FIG.2BのIIC-IIC断面図である。FIG.2Dは、FIG.2CののIID-IID断面図である。FIG. 2A is a perspective view of the dosing pipe. FIG. 2B is a plan view of FIG. 2A. FIG. 2C is a sectional view of FIG. 2B taken along IIC-IIC. FIG. 2D is a cross-sectional view of FIG. 2C taken along IID-IID. FIG.3Aは、ドージングパイプの変形例の斜視図である。FIG.3BはFIG.3Aの平面図である。FIG.3CはFIG.3BのIIIC-IIIC断面図である。FIG. 3A is a perspective view of a modified example of the dosing pipe. FIG. 3B is a plan view of FIG. 3A. FIG. 3C is a sectional view of FIG. 3B taken along IIIC-IIIC. FIG.4Aは、ドージングパイプの変形例の斜視図である。FIG.4Bは、FIG.4Aの平面図である。FIG.4Cは、FIG.4BのIVC-IVC断面図である。FIG. 4A is a perspective view of a modified example of the dosing pipe. FIG. 4B is a plan view of FIG. 4A. FIG. 4C is a sectional view of FIG. 4B taken along IVC-IVC. FIG.5Aは、ドージングパイプの変形例の斜視図である。FIG.Bは、FIG.5Aの平面図である。FIG.5Cは、FIG.5BのVC-VC断面図である。FIG.5Dは、FIG.5CのVD-VD断面図である。FIG. 5A is a perspective view of a modified example of the dosing pipe. FIG. B is a plan view of FIG. 5A. FIG. 5C is a sectional view taken along the line VC-VC of FIG. 5B. FIG. 5D is a VD-VD cross-sectional view of FIG. 5C. FIG.6Aは、FIG.6B~FIG.6Dが示す切断面の切断位置を説明するため、FIG.2Cを再掲したドージングパイプの断面図である。FIG.6Bは、ドージングパイプの変形例を示す図であり、FIG.6AのVIB-VIB断面図である。FIG.6Cは、ドージングパイプの変形例を示す図であり、FIG.6AのVIB-VIB断面図である。FIG.6Dは、ドージングパイプの変形例を示す図であり、FIG.6AのVIB-VIB断面図である。FIG. 6A is a cross-sectional view of the dosing pipe on which FIG. 2C has been reprinted in order to explain the cutting positions of the cutting planes shown in FIG. 6B to FIG. 6D. FIG. 6B is a view showing a modified example of the dosing pipe, and is a cross-sectional view of FIG. 6A along VIB-VIB. FIG. 6C is a view showing a modified example of the dosing pipe, and is a cross-sectional view of FIG. 6A along VIB-VIB. FIG. 6D is a view showing a modified example of the dosing pipe, and is a VIB-VIB sectional view of FIG. 6A. FIG.7Aは、ドージングパイプの変形例の説明図であり、FIG.2Cと同じ切断面で切断した断面図である。FIG.7Bは、ドージングパイプの変形例の説明図であり、FIG.2Cと同じ切断面で切断した断面図である。FIG. 7A is an explanatory view of a modified example of the dosing pipe, and is a cross-sectional view cut along the same cut surface as FIG. 2C. FIG. 7B is an explanatory view of a modified example of the dosing pipe, and is a cross-sectional view cut along the same cut surface as FIG. 2C. 第2実施形態のドージングパイプについて説明するための説明図で、触媒が配置された部分の排気上流側の排気管、ドージングパイプ、及び、パイプ部の断面図である。It is explanatory drawing for demonstrating the dosing pipe of 2nd Embodiment, and is sectional drawing of the exhaust pipe of the exhaust upstream of the part by which the catalyst is arrange | positioned, a dosing pipe, and a pipe part. 第2実施形態のドージングパイプの変形例について説明するための説明図で、触媒が配置された部分の排気上流側の排気管、ドージングパイプの変形例、及び、パイプ部の断面図である。It is explanatory drawing for demonstrating the modification of the dosing pipe of 2nd Embodiment, and is an exhaust pipe of the exhaust upstream side of the part by which the catalyst is arrange | positioned, the modification of a dosing pipe, and sectional drawing of a pipe part.
 1…ドージングパイプ 10… パイプ部 2…本体部 3… 取込口 4… 噴出口
 5…流路部 9… 噴射口 20… 内側筒状部 200…噴射路
 21…外側筒状部 22… 開口部 23…後方開口部 24… オーバーラップ部
 26…吹入部 40… 板材 50… 方向転換部 h…排気管
DESCRIPTION OF SYMBOLS 1 ... Dosing pipe 10 ... Pipe part 2 ... Main-body part 3 ... Intake port 4 ... Jet port 5 ... Flow path part 9 ... Injection port 20 ... Inner cylindrical part 200 ... Injection path 21 ... Outer cylindrical part 22 ... Opening part 23 ... Back opening 24 ... Overlap part 26 ... Blow-in part 40 ... Plate material 50 ... Direction change part h ... Exhaust pipe
(第1実施形態)
 以下に本発明が適用された第1実施形態を図面と共に説明する。
 なお、図1、図8、図9中の符号95が付された矢印は、排気ガスの流れを示している。
(First embodiment)
A first embodiment to which the present invention is applied will be described below with reference to the drawings.
In addition, the arrow to which the code | symbol 95 was attached | subjected in FIG.1, FIG.8, FIG.9 has shown the flow of exhaust gas.
 また、FIG.2A、FIG.3A、FIG.4A、FIG.5A中の二点鎖線は、ドージングパイプの形状を表現するために記された線であって、ドージングパイプそれ自体に付された線ではない。 The two-dot chain lines in FIG. 2A, FIG. 3A, FIG. 4A, and FIG. 5A are lines written to express the shape of the dosing pipe, and are lines attached to the dosing pipe itself. is not.
 第1実施形態のドージングパイプ1は、図1に示すように、筒状に形成されており、排気管hのうち、触媒が取り付けられた部分よりも排気上流側において、排気管hが曲げられた部分に設置されている。 As shown in FIG. 1, the dosing pipe 1 of the first embodiment is formed in a cylindrical shape, and the exhaust pipe h is bent on the exhaust upstream side of the exhaust pipe h where the catalyst is attached. It is installed in the part.
 具体的には、排気管hの曲げられた部分のうち、その曲げ中心92からみて遠い側(外側)の管面に孔が開けられる。そして、この孔にドージングパイプ1を通すことによって、ドージングパイプ1は排気管hに設置される。 Specifically, in the bent portion of the exhaust pipe h, a hole is formed in the pipe surface on the side (outside) far from the bending center 92. The dosing pipe 1 is installed in the exhaust pipe h by passing the dosing pipe 1 through the hole.
 このとき、ドージングパイプ1は、軸方向両端の端部のうち一方の端部に設けられた開口部22が排気管h内において排気下流側に設置された触媒に対向するように排気管hに設置される。 At this time, the dosing pipe 1 is connected to the exhaust pipe h so that the opening 22 provided at one end of both ends in the axial direction is opposed to the catalyst installed on the exhaust downstream side in the exhaust pipe h. Installed.
 そして、ドージングパイプ1は、排気管hに溶接される。
 ドージングパイプ1は、図2に示すように、内側筒状部20及び外側筒状部21を備える本体部2を含む。これら内側筒状部20及び外側筒状部21は、同軸状に配置される。
The dosing pipe 1 is welded to the exhaust pipe h.
As shown in FIG. 2, the dosing pipe 1 includes a main body portion 2 including an inner cylindrical portion 20 and an outer cylindrical portion 21. The inner cylindrical portion 20 and the outer cylindrical portion 21 are arranged coaxially.
 このうち、内側筒状部20は、その内側に、排気管の内側で開口する開口部22を有する筒形状の噴射路200を形成する。
 一方、外側筒状部21の筒面には、排気ガスを取り込む取込口3が設けられている。
Among these, the inner cylindrical part 20 forms the cylindrical injection path 200 which has the opening part 22 opened inside the exhaust pipe in the inner side.
On the other hand, an intake port 3 for taking in exhaust gas is provided on the cylindrical surface of the outer cylindrical portion 21.
 取込口3は、開口部22に寄った位置に設けられている。具体的には、取込口3は、本体部2の中心軸91に沿った方向でみて、本体部2の中央よりも開口部22の側に寄った位置に設けられている。 The intake 3 is provided at a position close to the opening 22. Specifically, the intake port 3 is provided at a position closer to the opening 22 side than the center of the main body 2 when viewed in the direction along the central axis 91 of the main body 2.
 そして、ドージングパイプ1は、排気管hに設置されるとき、取込口3が排気上流側に向かって開口するように設置される(図1参照)。
 ドージングパイプ1は、外側筒状部21の軸方向の両端部のうち一方の端部(排気管hに設置したとき触媒に対向する側の端部)が、半円を描くように折り返され、内側筒状部20の軸方向の両端部のうち一方の端部と接続している。折り返された部分の内側に前述した開口部22が形成されている。
When the dosing pipe 1 is installed in the exhaust pipe h, the dosing pipe 1 is installed so that the intake port 3 opens toward the exhaust upstream side (see FIG. 1).
The dosing pipe 1 is folded so that one end (the end on the side facing the catalyst when installed in the exhaust pipe h) of both ends in the axial direction of the outer cylindrical portion 21 is drawn in a semicircle, The inner cylindrical portion 20 is connected to one end portion of both end portions in the axial direction. The aforementioned opening 22 is formed inside the folded portion.
 一方、外側筒状部21の他方の端部は、内側筒状部20の他方の端部に内側から被さるオーバーラップ部24を形成する位置まで、頂部が平坦な半円を描くように折り返されている。折り返された部分の内側で後方開口部23が開口する。 On the other hand, the other end portion of the outer cylindrical portion 21 is folded back so as to draw a semicircle with a flat top portion up to a position where an overlap portion 24 is formed covering the other end portion of the inner cylindrical portion 20 from the inside. ing. The rear opening 23 opens inside the folded portion.
 オーバーラップ部24は、FIG.2C及びFIG.2Dに示すように、内側筒状部20の内壁面との間に空間を形成する。すると、オーバーラップ部24によって、開口部22を通してみたときに、開口部22側に向かって開口する噴出口4であるリング形状に形成されたスリットが形成される。 The overlap part 24 forms a space between the inner wall surface of the inner cylindrical part 20 as shown in FIG. 2C and FIG. 2D. Then, when it sees through the opening part 22, when it sees through the opening part 22, the slit formed in the ring shape which is the jet nozzle 4 opened toward the opening part 22 side is formed.
 第1実施形態では、噴射物として還元剤である尿素水が噴射路200内で錐体状に噴射されるが、オーバーラップ部24がこのように構成されることによって、開口部22を通して噴射路200内をみたとき、尿素水が噴射路200内で錐体状に噴射される噴射範囲90を囲う位置に噴出口4が設けられる。 In the first embodiment, urea water, which is a reducing agent, is injected as a spray in the shape of a cone in the injection path 200, but the overlap part 24 is configured in this way, and thus the injection path through the opening 22. When the inside of the nozzle 200 is viewed, the outlet 4 is provided at a position surrounding the injection range 90 in which the urea water is injected in a cone shape in the injection path 200.
 そのため、このように形成された噴出口4から、取込口3から取り込まれた排気ガスを噴出すると、尿素水の噴射範囲90を囲って開口部22に向かうエアカーテンが形成される。 Therefore, when the exhaust gas taken in from the intake port 3 is ejected from the jet port 4 formed in this way, an air curtain is formed that surrounds the urea water injection range 90 and faces the opening 22.
 次に、第1実施形態のドージングパイプ1では、内側筒状部20と外側筒状部21との間に、取込口3で取り込んだ排気ガスを噴出口4に導く流路部5が形成される。
 流路部5は、FIG.2Dで示される面積であって、噴出口4が開口部22に向かって開いた開口面積に比べて流路断面積が大きい。
Next, in the dosing pipe 1 of the first embodiment, the flow path portion 5 that guides the exhaust gas taken in at the intake port 3 to the jet port 4 is formed between the inner cylindrical portion 20 and the outer cylindrical portion 21. Is done.
The flow path portion 5 has an area shown in FIG. 2D and has a larger flow path cross-sectional area than the opening area where the jet nozzle 4 opens toward the opening portion 22.
 流路部5のうち、オーバーラップ部24からみて他方の端部側(後方開口部23が開口する方向側)には、外側筒状部21の他方の端部側を折り返すことによって、取込口3で取り込んだ排気ガスが流れる方向を噴出口4から開口部22に向かう方向に折り返す方向転換部50が形成される。 In the flow path part 5, the other end part side (the direction side in which the rear opening part 23 opens) as viewed from the overlap part 24 is taken in by folding the other end part side of the outer cylindrical part 21. A direction changing portion 50 is formed that turns back the direction in which the exhaust gas taken in at the port 3 flows from the outlet 4 toward the opening 22.
 このように構成されたドージングパイプ1に対して、図1に示すように、後方開口部23の中心に噴射口9が位置するように図示しない噴射器が設置される。第1実施形態の噴射器では、尿素水を噴射する。 As shown in FIG. 1, an injector (not shown) is installed on the dosing pipe 1 configured in this manner so that the injection port 9 is located at the center of the rear opening 23. In the injector of the first embodiment, urea water is injected.
 第1実施形態における尿素水の噴射方向は、その噴射軸が、本体部2の中心軸91と一致する方向であって、後方開口部23から開口部22に向かう方向である。
(第1実施形態の特徴的な作用効果)
 以上説明したドージングパイプ1を触媒の排気上流側の排気管hに取り付け、本体部2が形成する噴射路200を通るように尿素水を噴射すると、尿素水は開口部22から排気管h内に流出する。
The injection direction of urea water in the first embodiment is a direction in which the injection axis coincides with the central axis 91 of the main body 2 and is directed from the rear opening 23 toward the opening 22.
(Characteristic effects of the first embodiment)
When the dosing pipe 1 described above is attached to the exhaust pipe h on the exhaust upstream side of the catalyst and urea water is injected through the injection path 200 formed by the main body 2, the urea water is introduced into the exhaust pipe h from the opening 22. leak.
 また、上記のドージングパイプ1が取り付けられた排気管hに排気ガスを流すと、開口部22よりも排気上流側で開口している取込口3から流路部5内に排気ガスが取り込まれる。そして、その取り込まれた排気ガスが、噴射された尿素水を囲うエアカーテンを形成する。 Further, when the exhaust gas is caused to flow through the exhaust pipe h to which the dosing pipe 1 is attached, the exhaust gas is taken into the flow path portion 5 from the intake port 3 that is open upstream of the opening portion 22. . The taken-in exhaust gas forms an air curtain surrounding the injected urea water.
 このとき、取込口3が排気管hの上流側に向かって開口しているので、取込口3から取り込まれた排気ガスには動圧が作用する。しかも、取込口3が開口部22より上流側で開口しているので、排気ガスには、仮に開口部22に取込口3を設置した場合に比べて高い動圧が作用する。 At this time, since the intake port 3 opens toward the upstream side of the exhaust pipe h, dynamic pressure acts on the exhaust gas taken in from the intake port 3. In addition, since the intake port 3 is opened upstream of the opening 22, a higher dynamic pressure acts on the exhaust gas than when the intake 3 is installed in the opening 22.
 また、噴出口4の開口面積は、流路部5の流路断面積に比べて小さい。そのため、流路部5に流れ込む高い動圧が作用した排気ガスによって、排気ガスが噴出口4から勢いよく噴出する。 Also, the opening area of the jet port 4 is smaller than the cross-sectional area of the flow path portion 5. Therefore, the exhaust gas is ejected vigorously from the ejection port 4 by the exhaust gas on which the high dynamic pressure that flows into the flow path portion 5 acts.
 そのため、第1実施形態のドージングパイプ1を排気管hに取り付けた場合、開口部22付近を流れる排気ガスよりも勢いの強い排気ガスを噴出口4から噴出させることができる。 Therefore, when the dosing pipe 1 of the first embodiment is attached to the exhaust pipe h, exhaust gas having a stronger momentum than the exhaust gas flowing in the vicinity of the opening 22 can be ejected from the ejection port 4.
 したがって、第1実施形態のドージングパイプ1を用いると、噴出口4から噴出する排気ガスが、本体部2の内部での尿素水の付着を抑制するので、ドージングパイプ1内でのデポジットの発生を抑制することができる。 Therefore, when the dosing pipe 1 of the first embodiment is used, the exhaust gas ejected from the ejection port 4 suppresses the adhesion of urea water inside the main body 2, so that the generation of deposits in the dosing pipe 1 is prevented. Can be suppressed.
 また、第1実施形態のドージングパイプ1を用いると、噴出口4から噴出する排気ガスが排気管h内を流れる高圧の排気ガスに抗するエアカーテンの役目を果たす。
 そのため、ドージングパイプ1から排気管h内に流出する尿素水が、排気管h内を流れる排気ガスに押され、排気管h内でその押された方向に偏って位置することが抑制される。
Further, when the dosing pipe 1 of the first embodiment is used, the exhaust gas ejected from the ejection port 4 serves as an air curtain that resists the high-pressure exhaust gas flowing through the exhaust pipe h.
Therefore, urea water flowing out from the dosing pipe 1 into the exhaust pipe h is pushed by the exhaust gas flowing through the exhaust pipe h, and is prevented from being biased in the pushed direction in the exhaust pipe h.
 したがって、上記のドージングパイプ1を排気管hに取り付けると、尿素水によるデポジットの発生を抑制しつつ排気管h内に尿素水を噴射することができる。
 尚、尿素水は、偏りが抑制された状態で開口部22から排気管h内に噴射されるので、排気管h内を流れる排気ガスと合流すると、その排気ガスの全体にほぼ均一に分散される。
Therefore, when the dosing pipe 1 is attached to the exhaust pipe h, urea water can be injected into the exhaust pipe h while suppressing generation of deposits due to urea water.
The urea water is injected into the exhaust pipe h from the opening 22 in a state in which the bias is suppressed. Therefore, when the urea water merges with the exhaust gas flowing through the exhaust pipe h, the urea water is almost uniformly dispersed throughout the exhaust gas. The
 また、第1実施形態では、オーバーラップ部24を形成することによって、噴出口4が、内側筒状部20の内側表面上か、内側筒状部20の内側表面から近い位置で開口することとなり、噴出口4の位置を内側筒状部20に近い位置に設置できるので、ドージングパイプ1を最小化することができる。 Further, in the first embodiment, by forming the overlap portion 24, the jet nozzle 4 opens on the inner surface of the inner cylindrical portion 20 or at a position close to the inner surface of the inner cylindrical portion 20. Since the position of the spout 4 can be installed at a position close to the inner cylindrical portion 20, the dosing pipe 1 can be minimized.
 次に、第1実施形態のドージングパイプ1は、本体部2の外側筒状部21がドージングパイプ1の外縁になるため、排気管hに外側筒状部21が通る孔を開け、取込口3が排気管hの上流側に向くように本体部2をその孔に差し込むだけで、排気管hに取り付けることができる。 Next, in the dosing pipe 1 of the first embodiment, since the outer cylindrical portion 21 of the main body portion 2 becomes the outer edge of the dosing pipe 1, a hole through which the outer cylindrical portion 21 passes is formed in the exhaust pipe h, and the intake port The main body 2 can be attached to the exhaust pipe h simply by inserting the main body 2 into the hole so that 3 faces the upstream side of the exhaust pipe h.
 また、第1実施形態のドージングパイプ1の取込口3は、中心軸91に沿った方向でみて、本体部2の中央よりも開口部22の側に寄った位置に設けられているので、外側筒状部21と内側筒状部20との間に形成される空間のうち、取込口3からみて噴出口4とは反対側に向かう排気ガスが少なくなる。そのため、取込口3から取り込まれた排気ガスにかかった動圧の分散を少なくすることができる。そして、その結果、取込口3を他の場所に配置した場合に比べ、排気ガスを噴出口4から勢いよく噴出させることができる。 In addition, the intake port 3 of the dosing pipe 1 of the first embodiment is provided at a position closer to the opening 22 side than the center of the main body 2 when viewed in the direction along the central axis 91. In the space formed between the outer cylindrical portion 21 and the inner cylindrical portion 20, the amount of exhaust gas directed to the side opposite to the ejection port 4 when viewed from the intake port 3 is reduced. Therefore, dispersion of dynamic pressure applied to the exhaust gas taken in from the intake port 3 can be reduced. And as a result, compared with the case where the intake 3 is arrange | positioned in another place, exhaust gas can be spouted from the jet outlet 4 vigorously.
 ところで、ドージングパイプ1の変形例としては下記の例が挙げられる。
(1)第1に、FIG.3A~FIG.3Cに示すように、ドージングパイプ1は、他方の端部側から一方の端部側、すなわち、開口部22の側に向かって径が大きくなる形状、いわゆるラッパ形状となるように形成してもよい。
By the way, the following example is given as a modification of the dosing pipe 1.
(1) First, as shown in FIG. 3A to FIG. 3C, the diameter of the dosing pipe 1 increases from the other end side toward one end side, that is, the opening 22 side. You may form so that it may become a shape, what is called a trumpet shape.
 このようにすると、噴射口9(図1参照)から開口部22までの距離が短くても広い範囲に尿素水を噴射できる。
(2)第2に、FIG.4A~FIG.4Cに示すように、本体部2は、中心軸91に沿った長さについて、取込口3が設けられた側に比べ、中心軸91を挟んだ反対側が短くなるように、開口部22の開口面が中心軸91に対して傾斜するようにしてもよい。
If it does in this way, even if the distance from the injection port 9 (refer FIG. 1) to the opening part 22 is short, urea water can be injected in a wide range.
(2) Secondly, as shown in FIG. 4A to FIG. 4C, the main body 2 has a longer length along the central axis 91 than the side where the intake 3 is provided. You may make it the opening surface of the opening part 22 incline with respect to the center axis | shaft 91 so that the opposite side on both sides may become short.
 このようにすると、流路部5の容積が少なくなるので、取込口3から取り込まれた排気ガスにかかった動圧の分散を少なくすることができる。
(3)第3に、FIG.5A~FIG.5Dに示すように、中心軸91より下方側(中心軸91からみて取込口3が設けられた側とは反対側)の外側筒状部21の他方側の端部を内側筒状部20の中心軸91に近い部分まで折り込んだ形状としてもよい。
In this way, since the volume of the flow path part 5 is reduced, the dispersion of the dynamic pressure applied to the exhaust gas taken in from the intake port 3 can be reduced.
(3) Third, as shown in FIG. 5A to FIG. 5D, the outer cylindrical portion on the lower side of the central shaft 91 (the side opposite to the side where the intake port 3 is provided as viewed from the central shaft 91). It is good also as a shape which folded the edge part of the other side of 21 to the part close | similar to the central axis 91 of the inner side cylindrical part 20.
 ただし、FIG.5Dで示される面積であって、噴出口4の開口面積よりも流路部5の流路断面積のほうが大きくなるように形成するとよい。
(4)第4に、噴出口4は、上述した実施形態のように、オーバーラップ部24と内側筒状部20との間に形成される空間によって形成される孔というだけでなく、FIG.6A~FIG.6Dに示すような形態としてもよい。FIG.6Bのように、噴出口4は、円弧状の複数の孔を所定の円に沿って並べた形態としてもよい。FIG.6Cのように、噴出口4は、円状の複数の孔を所定の円に沿って並べた形状としてもよい。FIG.6Dのように、噴出口4は、FIG.6BとFIG.6Cとを組み合わせ、円弧状の二つの孔と、円状の複数の孔を所定の円に沿って並べた形状であってもよい。また、噴出口4は、その数はいくつでも良く、その間隔もどのような間隔でもよい。また、噴出口4は、円状や楕円状に形成されているだけでなく、多角形状など、どのような形状に形成されていてもよい。さらに、噴出口4は、円に沿って並べられた形状である必要は必ずしもない。
However, the area shown in FIG. 5D may be formed so that the flow path cross-sectional area of the flow path portion 5 is larger than the opening area of the ejection port 4.
(4) Fourth, the spout 4 is not only a hole formed by a space formed between the overlap part 24 and the inner cylindrical part 20 as in the above-described embodiment, but also FIG. 6A to FIG. 6D may be adopted. Like FIG.6B, the jet nozzle 4 is good also as a form which arranged the circular-arc-shaped hole along the predetermined | prescribed circle. As shown in FIG. 6C, the spout 4 may have a shape in which a plurality of circular holes are arranged along a predetermined circle. As shown in FIG. 6D, the spout 4 is formed by combining FIG. 6B and FIG. 6C, and arranging two arc-shaped holes and a plurality of circular holes along a predetermined circle. Also good. Moreover, the number of the jet nozzles 4 may be any number, and the interval may be any interval. Moreover, the jet nozzle 4 is not only formed in a circular shape or an elliptical shape, but may be formed in any shape such as a polygonal shape. Furthermore, the jet nozzle 4 does not necessarily have a shape arranged along a circle.
 尚、このような形状の噴出口4を設けるには、FIG.6Aに示すように、径方向に所定の幅を有するリング状の板材40を用い、板材40の外周縁部が内側筒状部20の端部に当接し、内側縁部が折り返された外側筒状部21の筒面に当接するようにドージングパイプ1内に設置し、板材40に、上述した各孔を設けるようにすればよい。
(5)第5に、外側筒状部21の折り返し部分は、FIG.7A又はFIG.7Bに示すような形態としてもよい。
In order to provide the spout 4 having such a shape, as shown in FIG. 6A, a ring-shaped plate member 40 having a predetermined width in the radial direction is used, and the outer peripheral edge portion of the plate member 40 is an inner cylindrical portion. If it installs in the dosing pipe 1 so that it may contact | abut to the edge part of 20 and the cylindrical surface of the outer side cylindrical part 21 by which the inner edge part was turned back, and each hole mentioned above should be provided in the board | plate material 40, Good.
(5) Fifth, the folded portion of the outer cylindrical portion 21 may be configured as shown in FIG. 7A or FIG. 7B.
 具体的には、FIG.7Aに示すように、外側筒状部21の折り返しについて、オーバーラップ部24が生じない程度の短い折り返しとしてもよい。
 また、FIG.7Bに示すように、オーバーラップ部24の長さが、中心軸91からみて取込口3側の部分よりも反対側の部分のほうが短くなるように、外側筒状部21の折り返しによって形成される部分を形成してもよい。
(第2実施形態)
 次に、第2実施形態について説明する。
Specifically, as shown in FIG. 7A, the outer tubular portion 21 may be folded back so short that the overlap portion 24 does not occur.
Also, as shown in FIG. 7B, the length of the overlap portion 24 is such that the portion on the opposite side is shorter than the portion on the intake port 3 side when viewed from the central axis 91. A portion formed by folding may be formed.
(Second Embodiment)
Next, a second embodiment will be described.
 第2実施形態のドージングパイプ1は、FIG.8に示すように、筒形状に形成され、排気管hに取り付けられたときに排気下流側へ開口する開口部22が形成された一方の端部側とは反対の他方の端部側の内壁面上に、円周方向に沿って設けられた吹入部26を有する。 As shown in FIG. 8, the dosing pipe 1 of the second embodiment is formed in a cylindrical shape and has one end formed with an opening 22 that opens to the exhaust downstream side when attached to the exhaust pipe h. On the inner wall surface on the other end side opposite to the side, a blow-in portion 26 is provided along the circumferential direction.
 吹入部26は、本体部2の他端を内側に折り返して形成した。
 そして、吹入部26の側面であって、開口部22を通して本体部2の他方の端部の
側をみたとき、開口部22に対向する側面には、開口部22に向かって開口する噴出口4が形成されている。
The blow-in part 26 was formed by folding the other end of the main body part 2 inward.
And when it sees the side of the other end part of the main-body part 2 through the opening part 22 through the opening part 22, it is the spout 4 which opens toward the opening part 22 in the side surface which opposes the opening part 22. Is formed.
 本体部2は、開口部22が排気下流側に向くように排気管hに取り付けられる。
 尿素水は、吹入部26が設けられた側の後方開口部23の中心部分に設置された噴射口9から噴射されて、本体部2内を通って開口部22から触媒に向かって噴射される。
The main body 2 is attached to the exhaust pipe h so that the opening 22 faces the exhaust downstream side.
The urea water is injected from the injection port 9 provided in the center portion of the rear opening 23 on the side where the blowing portion 26 is provided, and is injected from the opening 22 toward the catalyst through the main body 2. .
 また、第2実施形態では、ドージングパイプ1がパイプ部10を備えており、パイプ部10の一方の開口が、開口部22よりも排気上流側の排気管h内で開口し、他方の開口が吹入部26内で開口するように設置される。 Moreover, in 2nd Embodiment, the dosing pipe 1 is provided with the pipe part 10, and one opening of the pipe part 10 opens in the exhaust pipe h of the exhaust_gas | exhaustion upstream rather than the opening part 22, and the other opening is It installs so that it may open in the blowing part 26. FIG.
 パイプ部10の一方の開口は、取込口3となり、パイプ部10を設置することによって、取込口3から吹入部26に向かって延設された流路部5が形成される。
(第2実施形態の特徴的な作用効果)
 以上説明したドージングパイプ1を用いると、第1実施形態のドージングパイプ1と比べた場合、本体部2が単筒管構造でよく、その単筒管構造の本体部2に吹入部26を形成し、その本体部2を排気管hに取り付け、さらにパイプ部10を排気管hに取り付けるだけでよい。
One opening of the pipe portion 10 becomes the intake port 3, and the flow passage portion 5 extending from the intake port 3 toward the blowing portion 26 is formed by installing the pipe portion 10.
(Characteristic effects of the second embodiment)
When the dosing pipe 1 described above is used, the main body portion 2 may have a single tube structure as compared with the dosing pipe 1 of the first embodiment, and the blowing portion 26 is formed in the main body portion 2 of the single tube structure. The main body 2 is attached to the exhaust pipe h, and the pipe 10 is only attached to the exhaust pipe h.
 そのため、第2実施形態のドージングパイプ1を用いると、複雑な構造の本体部2を形成することなく、シンプルな構造の本体部2を形成して、これを排気管hに取り付け、パイプ部10を排気管hに取り付けるだけでドージングパイプ1を排気管hに取り付けることができる。 Therefore, when the dosing pipe 1 of the second embodiment is used, the main body 2 having a simple structure is formed without forming the main body 2 having a complicated structure, and this is attached to the exhaust pipe h. The dosing pipe 1 can be attached to the exhaust pipe h simply by attaching to the exhaust pipe h.
 尚、吹入部26に形成される噴出口4については、図9に示すように、本体部2の中心軸91に最も近い位置に設けてもよい。
[他の実施形態]
 以上、実施形態について説明したが、特許請求の範囲に記載された発明は、上記実施形態に限定されることなく、種々の形態を採り得ることはいうまでもない。
In addition, about the jet nozzle 4 formed in the blowing part 26, you may provide in the position nearest to the central axis 91 of the main-body part 2, as shown in FIG.
[Other Embodiments]
Although the embodiment has been described above, it is needless to say that the invention described in the claims is not limited to the above embodiment and can take various forms.
 (1)上記実施形態では、被噴射体として触媒を例示したが、これに限られるものではない。また、還元剤として尿素水を例示したが、これに限られるものではない。
 (2)上記実施形態では、外側筒状部21の両端部を折り返して内側筒状部20と接合し、あるいは、オーバーラップ部24を形成したが、折り返しを構成する他の部材を用意し、これを外側筒状部21の端部に溶接して構成してもよい。
(1) In the said embodiment, although the catalyst was illustrated as a to-be-injected body, it is not restricted to this. Moreover, although urea water was illustrated as a reducing agent, it is not restricted to this.
(2) In the above embodiment, both end portions of the outer cylindrical portion 21 are folded and joined to the inner cylindrical portion 20, or the overlap portion 24 is formed, but other members constituting the folding are prepared, This may be constructed by welding to the end of the outer cylindrical portion 21.

Claims (9)

  1.  排気管に取り付けて使用するドージングパイプであって、
     前記排気管の内側で開口する開口部を有する筒形状の噴射路を形成する本体部と、
     前記開口部よりも排気上流側の前記排気管の内側で、前記排気管の排気上流側に向かって開口する取込口と、
     前記開口部を通して前記噴射路内をみたとき、噴射物が前記噴射路内で錐体状に噴射される噴射範囲を囲う位置に設けられ、前記噴射範囲を囲って前記開口部に向かうエアカーテンを形成する排気ガスを噴出する噴出口と、
     前記噴出口が前記開口部に向かって開いた開口面積に比べて流路断面積が大きく、前記取込口で取り込んだ前記排気ガスを前記噴出口に導く流路部と、
    を備えることを特徴とするドージングパイプ。
    A dosing pipe that is attached to an exhaust pipe and used.
    A main body that forms a cylindrical injection passage having an opening that opens inside the exhaust pipe;
    An intake opening that opens toward the exhaust upstream side of the exhaust pipe inside the exhaust pipe on the exhaust upstream side of the opening;
    When the inside of the injection path is viewed through the opening, an air curtain is provided at a position that surrounds an injection range in which an injection material is injected in a cone shape in the injection path, and surrounds the injection range toward the opening. A spout for ejecting the exhaust gas to be formed;
    The flow passage section has a larger flow passage cross-sectional area than the opening area opened toward the opening, and the flow passage section guides the exhaust gas taken in at the intake opening to the jet outlet.
    A dosing pipe characterized by comprising:
  2.  請求項1に記載のドージングパイプにおいて、
     前記本体部は、内側筒状部と外側筒状部とを有する二重管状に形成され、
     前記取込口は、前記外側筒状部に形成され、
     前記噴出口は、前記開口部を通して前記噴射路内をみたとき、前記内側筒状部の内側に位置し、
     前記流路部は、前記内側筒状部と前記外側筒状部との間の空間によって形成され、前記取込口から流れてきた前記排気ガスを、前記噴出口から前記開口部に向かう方向に方向転換させる方向転換部を備える
     ことを特徴とするドージングパイプ。
    The dosing pipe according to claim 1, wherein
    The main body is formed in a double tubular shape having an inner cylindrical portion and an outer cylindrical portion,
    The intake port is formed in the outer cylindrical portion,
    The spout is located inside the inner cylindrical portion when the inside of the jet passage is viewed through the opening,
    The flow path portion is formed by a space between the inner cylindrical portion and the outer cylindrical portion, and the exhaust gas flowing from the intake port is directed in a direction from the jet port toward the opening portion. A dosing pipe comprising a direction changing portion for changing the direction.
  3.  請求項2に記載のドージングパイプにおいて、
     前記開口部が設けられる側とは反対側の前記外側筒状部の端部を、前記内側筒状部の内側に被さる位置まで折り返したオーバーラップ部を有し、
     前記オーバーラップ部に前記噴出口が形成されている
     ことを特徴とするドージングパイプ。
    The dosing pipe according to claim 2,
    Having an overlap portion that is folded back to a position where the end of the outer cylindrical portion opposite to the side where the opening is provided covers the inner cylindrical portion;
    The dosing pipe, wherein the jet port is formed in the overlap portion.
  4.  請求項2又は請求項3に記載されたドージングパイプにおいて、
     前記取込口は、
     前記開口部の側に寄った位置に設けられている
     ことを特徴とするドージングパイプ。
    In the dosing pipe according to claim 2 or 3,
    The intake is
    A dosing pipe, wherein the dosing pipe is provided at a position close to the opening.
  5.  請求項2~4のいずれか1項に記載されたドージングパイプにおいて、
     前記本体部は、
     当該本体部の中心軸に沿った長さであって、前記取込口が設けられた側に対し、前記中心軸を挟んだ反対側の長さが、前記取込口が設けられた側に比べ短くなるように、前記開口部の開口面が前記中心軸に対して傾斜している
     ことを特徴とするドージングパイプ。
    The dosing pipe according to any one of claims 2 to 4,
    The main body is
    The length along the central axis of the main body portion, the length of the opposite side across the central axis with respect to the side where the intake port is provided is on the side where the intake port is provided The dosing pipe, wherein an opening surface of the opening portion is inclined with respect to the central axis so as to be shorter.
  6.  請求項1に記載されたドージングパイプにおいて、
     前記本体部は、
     前記開口部が形成された端部側とは反対の端部側の内壁面上に、円周方向に沿って設けられた吹入部を有するとともに、前記開口部を通して前記吹入部をみたとき、前記開口部の側に向かって開口する前記噴出口を有し、
     前記開口部よりも上流側で開口する前記取込口から前記吹入部に向かって延設され、前記流路部を形成するパイプ部を備えることを特徴とするドージングパイプ。
    The dosing pipe of claim 1,
    The main body is
    On the inner wall surface on the end side opposite to the end side on which the opening is formed, there is a blowing portion provided along the circumferential direction, and when the blowing portion is viewed through the opening, The spout opening that opens toward the opening side,
    A dosing pipe, comprising: a pipe portion that extends from the intake port that opens upstream from the opening portion toward the blow-in portion and forms the flow passage portion.
  7.  請求項1~6のいずれか1項に記載されたドージングパイプにおいて、
     前記本体部は、
     前記開口部の側に向かって径が大きくなる形状に形成されている
     ことを特徴とするドージングパイプ。
    The dosing pipe according to any one of claims 1 to 6,
    The main body is
    A dosing pipe, wherein the dosing pipe is formed in a shape whose diameter increases toward the opening.
  8.  請求項1~7のいずれか1項に記載されたドージングパイプにおいて、
     前記噴出口は、
     リング形状に形成されたスリットからなることを特徴とするドージングパイプ。
    The dosing pipe according to any one of claims 1 to 7,
    The spout is
    A dosing pipe comprising a slit formed in a ring shape.
  9.  請求項1~7のいずれか1項に記載されたドージングパイプにおいて、
     前記噴出口は、
     複数の孔部を円状に並べた形状であることを特徴とするドージングパイプ。
    The dosing pipe according to any one of claims 1 to 7,
    The spout is
    A dosing pipe having a shape in which a plurality of holes are arranged in a circle.
PCT/JP2015/066884 2014-07-25 2015-06-11 Dosing pipe WO2016013319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016535838A JPWO2016013319A1 (en) 2014-07-25 2015-06-11 Dosing pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-151896 2014-07-25
JP2014151896 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013319A1 true WO2016013319A1 (en) 2016-01-28

Family

ID=55162855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066884 WO2016013319A1 (en) 2014-07-25 2015-06-11 Dosing pipe

Country Status (2)

Country Link
JP (1) JPWO2016013319A1 (en)
WO (1) WO2016013319A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664081B2 (en) 2007-07-24 2017-05-30 Faurecia Emissions Control Technologies, Germany Gmbh Assembly and method for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
US9714598B2 (en) 2015-04-30 2017-07-25 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US9719397B2 (en) 2015-04-30 2017-08-01 Faurecia Emissions Control Technologies Usa, Llc Mixer with integrated doser cone
US9726064B2 (en) 2015-04-30 2017-08-08 Faurecia Emissions Control Technologies, Usa, Llc Mixer for use in a vehicle exhaust system
US9828897B2 (en) 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
US10227907B2 (en) 2014-06-03 2019-03-12 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US10787946B2 (en) 2018-09-19 2020-09-29 Faurecia Emissions Control Technologies, Usa, Llc Heated dosing mixer
US10933387B2 (en) 2016-10-21 2021-03-02 Faurecia Emissions Control Technologies, Usa, Llc Reducing agent mixer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540225A (en) * 2010-09-30 2013-10-31 スカニア シーブイ アクチボラグ Device for introducing a liquid medium into flue gas from a combustion engine
JP2013543561A (en) * 2010-10-19 2013-12-05 テンネコ・オートモティブ・オペレーティング・カンパニー・インコーポレイテッド Exhaust gas flow vortex breaker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008001547U1 (en) * 2007-07-24 2008-04-10 Emcon Technologies Germany (Augsburg) Gmbh Assembly for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
DE102008008564A1 (en) * 2008-02-08 2009-08-13 Robert Bosch Gmbh Dosing device for pollutant reduction in exhaust gases
DE102012014333A1 (en) * 2012-07-20 2014-01-23 Man Truck & Bus Ag Mixing device for aftertreatment of exhaust gases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540225A (en) * 2010-09-30 2013-10-31 スカニア シーブイ アクチボラグ Device for introducing a liquid medium into flue gas from a combustion engine
JP2013543561A (en) * 2010-10-19 2013-12-05 テンネコ・オートモティブ・オペレーティング・カンパニー・インコーポレイテッド Exhaust gas flow vortex breaker

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664081B2 (en) 2007-07-24 2017-05-30 Faurecia Emissions Control Technologies, Germany Gmbh Assembly and method for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
US10227907B2 (en) 2014-06-03 2019-03-12 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US10294843B2 (en) 2014-06-03 2019-05-21 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US9714598B2 (en) 2015-04-30 2017-07-25 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US9719397B2 (en) 2015-04-30 2017-08-01 Faurecia Emissions Control Technologies Usa, Llc Mixer with integrated doser cone
US9726064B2 (en) 2015-04-30 2017-08-08 Faurecia Emissions Control Technologies, Usa, Llc Mixer for use in a vehicle exhaust system
US9828897B2 (en) 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
US10933387B2 (en) 2016-10-21 2021-03-02 Faurecia Emissions Control Technologies, Usa, Llc Reducing agent mixer
US10787946B2 (en) 2018-09-19 2020-09-29 Faurecia Emissions Control Technologies, Usa, Llc Heated dosing mixer

Also Published As

Publication number Publication date
JPWO2016013319A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2016013319A1 (en) Dosing pipe
RU2499689C2 (en) Fueling device
US8635858B2 (en) Fluid-spray atomizer
US8490661B1 (en) Fuel tank filler neck
US10703196B2 (en) Refueling retainer
CN205135751U (en) Exhaust pipe
US9803866B2 (en) Fuel injector
EP2907684A1 (en) Fuel inlet
CN104832255B (en) Two-layer hybrid pipe and its exhaust gas treatment device
JP6356413B2 (en) Catalytic converter
WO2015182709A1 (en) Exhaust gas stirring device
JP4123513B2 (en) Fuel injection valve
JP5791489B2 (en) Exhaust gas purification device for internal combustion engine
JP2018084158A (en) Intake pipe structure
JP2009085056A (en) Internal combustion engine
JP5513814B2 (en) Fuel consumption improvement device for vehicle exhaust pipe
JP5898868B2 (en) Exhaust gas purification device
JP5705707B2 (en) Muffler
WO2009107375A1 (en) Exhaust device for internal combustion engine
US9238992B2 (en) Exhaust system having a flow rotation element and method for operation of an exhaust system
JP5648521B2 (en) Intake duct connection structure and air cleaner device
JP2007071106A (en) Fuel injector
US20150275740A1 (en) Exhaust Apparatus
US11162403B2 (en) Reductant dosing unit with flow variability reduction and purge improvement device
KR102550290B1 (en) Combustors and gas turbines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016535838

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15824822

Country of ref document: EP

Kind code of ref document: A1