EP2685560B1 - Réflecteur d'antenne de télécommunication pour application à hautes fréquences dans un environnement spatial géostationnaire - Google Patents

Réflecteur d'antenne de télécommunication pour application à hautes fréquences dans un environnement spatial géostationnaire Download PDF

Info

Publication number
EP2685560B1
EP2685560B1 EP13176211.4A EP13176211A EP2685560B1 EP 2685560 B1 EP2685560 B1 EP 2685560B1 EP 13176211 A EP13176211 A EP 13176211A EP 2685560 B1 EP2685560 B1 EP 2685560B1
Authority
EP
European Patent Office
Prior art keywords
reflector
angle
angular
layer
sectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13176211.4A
Other languages
German (de)
English (en)
Other versions
EP2685560A1 (fr
Inventor
Florent Lebrun
Patrick Martineau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2685560A1 publication Critical patent/EP2685560A1/fr
Application granted granted Critical
Publication of EP2685560B1 publication Critical patent/EP2685560B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/165Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal composed of a plurality of rigid panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/168Mesh reflectors mounted on a non-collapsible frame

Definitions

  • the invention is in the field of telecommunications satellites comprising passive antennas equipped with reflectors.
  • the invention is particularly intended for applications in very high frequency bands Ka and Q / V but also meets the lower technical requirements of the Ku frequency band.
  • the frequency band designated Ku corresponds to the frequencies between 12 and 18 GHz, ie a wavelength of between 2.5 and 1.6 cm.
  • the frequency band designated Ka corresponds to the frequencies between 26.5 and 40 GHz, ie a wavelength of between 11.3 and 7.5 mm.
  • the frequency band designated Q / V corresponds to frequencies between 33 and 75 GHz, ie a wavelength of between 9.1 and 3.3 mm.
  • the gains requested are less important (of the order of 40 to 50 dB), but the main constraint is on the level of space and the mass to be sent into space. Indeed, it is not possible to oversize the reflectors to improve the gain.
  • One solution is to use the concept of a Gregorian type antenna with two reflectors positioned vis-à-vis and to obtain in a small volume a larger equivalent focal length antenna.
  • a first conventional technology called “thick shell” technology is widespread. This technology is based on a structure called “sandwich”.
  • a reflector developed according to this technology comprises two membranes or skins and a spacer corresponding to a structure maintaining a relative position of the membranes and ensuring the rigidity of the "sandwich” structure thus formed.
  • the membranes are generally made of carbon reinforcement and the spacer is generally of the “honeycomb” or CFRP (Carbon Fiber Renforced Polymer) type.
  • This concept is particularly competitive for reflectors whose diameter is between 1 and 2 m, the assembly of this type of structure is however too complex and therefore too expensive for small diameter reflectors.
  • a 500 mm diameter reflector developed according to the so-called "thick shell” technology weighs 550 g. This technology does not achieve the weight goals set for applications in a space environment.
  • a second technology called "metallic" is used for the development of small diameter reflectors.
  • the reflectors are conventionally made by machining. This technology is economically interesting.
  • the mass of a 500 mm diameter main reflector comprising a Ta 6 V type alloy is about 900 g, more than twice the desired weight objectives for space applications.
  • This product is a reflector comprising a membrane on which is fixed a stiffening network.
  • the stiffening network is a reinforcing grid forming a triangular pattern called "Isogrid" disposed adjacent to the first structure, the stiffening network being fixed to the membrane by gluing.
  • a fourth technology called “monolithic technology with peripheral stiffener” overcomes the problems related to weight.
  • This technology comprises a monolithic membrane on which a peripheral stiffening ring is glued.
  • the stiffening ring is a rib comprising carbon to stiffen the reflector and thus achieve resonance frequency objectives.
  • the cold bonding of the peripheral stiffening ring on the active face of the reflector limits the range of operating temperatures.
  • the document US2007 / 0069970 discloses a parabolic antenna reflector comprising four dials, each dial consisting of a metal mesh.
  • the document FR2944154 discloses the use of a composite material for an antenna reflector, the composite material consisting of carbon fibers embedded in a cured epoxy resin.
  • An object of the invention is to develop a telecommunication antenna reflector compatible with high frequency applications and adapted for a space environment and whose development process requires little manpower.
  • an antenna reflector compatible with high frequency applications between 12 and 75 GHz and adapted for a paraboloidal or ellipsoidal geostationary space environment comprising a reflecting surface for focusing a radiation electromagnetic.
  • the reflector comprises a superposition of at least one layer comprising a fiber composite material, characterized in that at least one layer of fiber composite material comprises angular sectors arranged around a center, each of the angular sectors is defined by a first angle at the center, and is oriented in a median radial direction of the angle at the center, each of the angular sectors comprises the fiber composite material comprising first fibers oriented in a first direction and second fibers oriented in a second direction different from the first direction, the first direction of the first fibers of an angular sector forming a second angle with the radial direction of the angular segment.
  • the angular sectors comprise three concentric zones: a central zone, a peripheral zone and an intermediate zone located between the central zone and the peripheral zone, the intermediate zone forming a rim.
  • the second angle is between 0 and 60 °.
  • the rim formed at the periphery of the active surface acts as a stiffening ring directly integrated in the reflector thus avoiding the disadvantages encountered in the so-called technology "monolithic technology with peripheral stiffener” related to the production of molds and the cold bonding of the crown on the active surface.
  • the reflector thus produced makes it possible to limit the number of hours of labor required.
  • the reflector comprises at least one layer having a central portion centered on the center which facilitates the assembly of the angular sectors and prevents the overlap of the angular segments in the center of the reflector
  • a reflector as described above wherein the angular difference between the second angle of a first angular sector of a first layer and the second angle of a first sector angle of a second successive layer is constant so as to ensure mechanical continuity between consecutive sectors.
  • the angular difference is between 0 ° and 60 °.
  • the stack comprises between 2 and 10 layers, and preferably 6 layers. This value is a compromise between the weight of the reflector and the geometric quality of the reflector.
  • First sectors have an angle at the center ( ⁇ i + X) and second angular sectors have an angle at the center ( ⁇ i -X), the value of X being fixed beforehand.
  • a layer alternately comprises a first angular sector and then a second angular sector.
  • the value of X is between 2 ° and 5 °.
  • the first angular sectors of a layer cover the second angular sectors of the successive layer, so as to ensure a continuity of the mechanical strength between consecutive sectors.
  • the layers have a diameter of between 250 and 700 mm, and preferably 500 mm.
  • the woven composite material comprises a fiber material impregnated with a thermosetting resin allowing the reflector to reach operating temperatures of 165 ° C.
  • the fiber composite material comprises a fiber material impregnated with a thermoplastic resin making it possible to achieve operating temperatures greater than 200 ° C.
  • the fiber material is a fabric.
  • the fiber material is of the NCF (or non-crimp Fabric) type.
  • the figure 1a illustrates a reflector R, comprising a fiber material M of paraboloid form comprising a rim, the diameter of the reflector R being between 250 and 700 mm, and preferably 500 mm.
  • the reflector may be ellipsoid.
  • the concave surface of the layer constitutes the reflective surface of the reflector R and is oriented towards the terrestrial globe.
  • the flange acts as a stiffening ring to stiffen the structure and reach resonance frequencies of 60 Hz at a temperature of 20 ° C.
  • the figure 1b highlights the constituent elements of the reflector R.
  • the reflector R comprises a stack of at least one layer C n .
  • the stack comprises between 2 and 10 layers, the number of layer C n depends on the type of material used.
  • the required mechanical performances can be obtained by considering a superposition of six layers C1-C6.
  • the figure 2 illustrates the different constituent parts of a layer C n .
  • a layer C n comprises a central portion P C and angular sectors (S i ) n , the truncated angular sectors S i being arranged around the central portion P C.
  • the layer may comprise a center (c).
  • the layer C n comprises three concentric zones: a first central zone Zc corresponding to the active surface of the reflector, a second zone Zp peripheral and a third zone Zi intermediate, the second zone Zi intermediate forming a rim.
  • the intermediate zone Zi is of concave shape with a small radius of curvature, typically 5 mm so as to limit the effects of parasitic reflections of the electromagnetic waves towards the source of the antenna. This radius can not be reduced further because of the low capacity of carbon fabrics to follow without breaking small radii.
  • the axis of orientation of the peripheral zone Zp forms an angle y with a vertical axis passing through the centers of the central portions P C layers forming a stiffener directly integrated into the reflector structure to achieve the stiffness objectives set for high frequency telecommunications applications.
  • the figure 3 describes the arrangement and orientation of the fiber material M constituting the angular sectors (S i ) n of a layer C n .
  • the geometric stability of the reflector in hot or cold temperature is obtained in part by the use of a single composite material M for all the constituent elements of the reflector R.
  • the proposed reflector concept is compatible with a use of a material M comprising carbon fibers and a thermoplastic resin making it possible to achieve a use temperature greater than 200 ° C.
  • the angular sectors (S i ) n of a layer C n are oriented in a radial direction d R of the angular sector (S i ) n considered.
  • An angular sector (S i ) n comprises a thermoplastic fiber material M comprising first fibers f1 and second fibers f2.
  • the first fibers f1 are oriented in a first direction (d i1 ) n , i being an index corresponding to the sector considered and n being an index corresponding to the layer considered, the second fibers f2 being oriented in a direction (d i2 ) n , different from the first direction (d i1 ) n .
  • a second angle ( ⁇ i ) n is defined as the angular difference between the first direction (d i1 ) n and the radial direction d R of the angular sector.
  • the second angle ( ⁇ i ) n is between 0 ° and 180 °, in this case the second angle ( ⁇ i ) n is equal to 60 ° for all the angular sectors of the first layer C1.
  • the first fibers f1 of the woven material M are oriented in the direction d radial R of the angular sector (S i ) n considered.
  • the figure 4 represents a stack of six layers C1-C6 and the arrangement of the material M constituting the angular sectors (S i ) n of one layer (C) n to another.
  • a first layer C1 comprises angular sectors (S i ) 1 comprising a woven material M comprising first fibers f1 and second oriented fibers f2 as defined above.
  • the first fibers f1 of a first angular segment (S 1 ) 1 of the first layer (C) 1 are oriented in a first direction (d 11 ) 1 , the first direction (d 11 ) 1 forming an angle ( ⁇ 1 ) 1 with the radial direction d R of the first angular sector.
  • the angle ( ⁇ 1 ) 1 is zero, in other words, the first fibers are oriented in the radial direction d R of the first angular sector (S 1 ) 1 .
  • the first fibers f1 of a first angular sector (S 1 ) 2 of the second layer C 2 are oriented in a first direction (d 11 ) 2 , the first direction (d 11 ) 2 forming a second angle ( ⁇ 1 ) 2 with the first direction (d 11 ) 1 of the first sector (S 1 ) 1 of the first layer C 1 .
  • the second angle ⁇ is equal to 60 °.
  • the angular difference ⁇ is constant from one layer to another.
  • the first fibers f1 of the first layer C 1 are oriented in the direction d radial R of the angular sector considered
  • the first fibers f1 of the second layer C 2 are oriented in a direction forming a An angle of 60 ° with the radial direction d R
  • the first fibers of the third layer are oriented in a direction forming an angle of 120 ° with the radial direction d R.
  • the angular distance ⁇ is variable from one layer to another.
  • the figure 5a represents the arrangement of the angular sectors (S i ) n as a function of the first angles in the center ( ⁇ i ) n .
  • First sectors S A have an angle at the center ( ⁇ i + X) and second angular sectors S B have an angle at the center ( ⁇ i -X), the value of X being fixed beforehand.
  • a layer C n alternately comprises a first angular sector S A and a second angular sector S B.
  • the value of X is between 2 ° and 5 °.
  • the figure 5b represents the arrangement of the angular sectors S A and S B on a first layer C n and a second layer C n + 1 successive.
  • a first layer C n comprises first angular sectors S A with an angle in the center ( ⁇ + X) alternating with second angular sectors S B of central angle ( ⁇ -X).
  • a second successive layer C n + 1 comprises an alternation of first sectors S A and second sectors S B.
  • the angular sectors are arranged in such a way that a first angular sector S A of the layer C n covers a second angular sector S B of the successive layer C n + 1.
  • the angular sectors (S i ) n may have random angles ⁇ i at the center, the angular sectors of a first layer (C) n covering at least partially the angular sectors of a second successive layer (C) n + 1 .
  • the antenna reflector developed according to one aspect of the invention has a mass less than 20% compared to a reflector developed using a "thick shell" technology, for example. This advantage is particularly interesting for applications on antennas positioned on the earth face of satellites. In this type of configuration, the reflectors are positioned on the upper part of the satellite, they are therefore subject to significant accelerations at launch.
  • the reflector developed according to the proposed technology does not have cold bonding.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Aerials With Secondary Devices (AREA)

Description

  • L'invention se situe dans le domaine des satellites de télécommunication comprenant des antennes passives équipées de réflecteurs. L'invention est particulièrement destinée pour des applications dans des bandes de très hautes fréquences de type Ka et Q/V mais répond aussi aux exigences techniques moindres de la bande de fréquences Ku.
  • La bande de fréquences désignée Ku correspond aux fréquences comprises entre 12 et 18 GHz soit une longueur d'onde comprise entre 2,5 et 1,6 cm. La bande de fréquences désignée Ka correspond aux fréquences comprises entre 26,5 et 40 GHz soit une longueur d'onde comprise entre 11,3 et 7,5 mm.
  • La bande de fréquences désignée Q/V correspond aux fréquences comprises entre 33 et 75 GHz soit une longueur d'onde comprise entre 9,1 et 3,3 mm.
  • Il existe une multitude d'application faisant intervenir les antennes à réflecteurs. Elles ont pour principal objectif d'atteindre des gains élevés en construisant des réflecteurs immenses, ce qui n'est envisageable que pour les radiotélescopes au sol.
  • Pour les satellites, les gains demandés sont moins importants (de l'ordre de 40 à 50 dB), mais la principale contrainte se situe au niveau de l'encombrement et de la masse à envoyer dans l'espace. En effet, il n'est pas possible de surdimensionner les réflecteurs pour améliorer le gain.
  • Une des solutions consiste à utiliser le concept d'antenne de type grégorienne à deux réflecteurs positionnés en vis-à-vis et permettant d'obtenir dans un petit volume une antenne à focale équivalente plus importante.
  • Pour ce type d'antenne, les réflecteurs doivent :
    • avoir un diamètre compris entre 250 et 1200 mm compatible avec un environnement spatial,
    • présenter un profil réfléchissant fabriqué avec une très grande précision. Le défaut de fabrication d'une surface active peut être évalué à partir de la valeur RMS. La valeur RMS est la valeur moyenne des écarts type entre le profil de la surface élaborée et le profil de la surface théorique souhaitée. Les applications dans des bandes de fréquences Q/V nécessitent d'atteindre un RMS de l'ordre de 20 microns,
    • afficher une grande stabilité du profil réfléchissant sur une large plage de température, allant de -200°C à +200C. Ceci impose l'utilisation de matériaux à faible coefficient de dilatation thermo élastique.
    • être rigides, autrement dit, le premier mode de résonance doit être supérieur à une fréquence de 60Hz pour un type d'antenne défini.
    • être de faibles poids, typiquement, une masse inférieure à 400 g pour un réflecteur de 500 mm de diamètre par exemple, et
    • de mise en oeuvre facile de manière à limiter les coûts de production.
  • Une première technologie classique dite technologie « coque épaisse » est largement répandue. Cette technologie repose sur une structure dite « sandwich ». Un réflecteur élaboré selon cette technologie comprend deux membranes ou peaux et un espaceur correspondant à une structure maintenant une position relative des membranes et assurant la rigidité de la structure « sandwich » ainsi formée. Pour les applications spatiales, les membranes sont généralement réalisées à base de renfort de carbone et l'espaceur est généralement de type « nid d'abeilles » ou CFRP (Carbon Fiber Renforced Polymer).
  • Ce concept est particulièrement compétitif pour les réflecteurs dont le diamètre est compris entre 1 et 2 m, l'assemblage de ce type de structure est toutefois trop complexe et donc trop coûteux pour les réflecteurs de petit diamètre.
  • De plus, cette technologie requiert l'utilisation de grande quantité de colle, ce qui non compatible avec des applications à des températures élevées.
  • Par ailleurs, un réflecteur de diamètre 500 mm élaboré suivant la technologie dite « coque épaisse » pèse 550 g. Cette technologie ne permet pas d'atteindre les objectifs de poids fixés pour les applications dans un environnement spatial.
  • Une deuxième technologie dite « métallique » est utilisée pour l'élaboration de réflecteurs de petit diamètre. Les réflecteurs sont classiquement réalisés par usinage. Cette technologie est économiquement intéressante.
  • Par contre, cette technologie est peu performante concernant les objectifs de poids. En effet, la masse d'un réflecteur principal de 500 mm diamètre comprenant un alliage de type Ta6V est d'environ 900 g, soit plus de deux fois les objectifs de poids souhaités pour des applications spatiales.
  • Une troisième technologie dite « Isogrid » décrite dans la demande de brevet EP 0948085 est techniquement très performante.
  • Ce produit est un réflecteur comprenant une membrane sur laquelle est fixé un réseau de raidissage. Le réseau de raidissage est une grille de renfort formant un motif triangulaire dit « Isogrid » disposé de manière adjacente à la première structure, le réseau de raidissage étant fixé à la membrane par collage.
  • La complexité d'assemblage de la grille de renfort rend cette technologie peu performante économiquement pour les réflecteurs de petit diamètre, de la même manière que la technologie dite « coque épaisse ».
  • Une quatrième technologie dite « technologie monolithique à raidisseur périphérique » permet de surmonter les problèmes liés au poids.
  • Cette technologie comprend une membrane monolithique sur laquelle une couronne de raidissage périphérique est collée. La couronne de raidissage est une nervure comprenant du carbone permettant de rigidifier le réflecteur et ainsi d'atteindre les objectifs de fréquence de résonance.
  • Cette solution apporte une amélioration en terme de poids du réflecteur, toutefois le processus d'assemblage et de fabrication n'est pas optimisé.
  • En effet, la réalisation d'un réflecteur selon cette technologie semble nécessiter la réalisation de deux moules distincts : un premier moule permettant la réalisation de la face active du réflecteur et un deuxième moule permettant la réalisation de la couronne de raidissage périphérique.
  • D'autre part, le collage à froid de la couronne de raidissage périphérique sur la face active du réflecteur limite la gamme des températures d'utilisation.
  • Le document US2007/0069970 décrit un réflecteur d'antenne parabolique comprenant quatre cadrans, chaque cadran étant constitué d'un maillage métallique. Le document FR2944154 décrit l'utilisation d'un matériau composite pour un réflecteur d'antenne, le matériau composite étant constitué de fibres de carbone noyées dans une résine époxy durcie.
  • Un but de l'invention est d'élaborer un réflecteur d'antenne de télécommunication compatible avec des applications à hautes fréquences et adapté pour un environnement spatial et dont le processus d'élaboration nécessite peu de temps de main d'oeuvre.
  • Selon un aspect de l'invention, il est proposé un réflecteur d'antenne compatible avec des applications à hautes fréquences comprises entre 12 et 75 GHz et adapté pour un environnement spatial géostationnaire de forme paraboloïdale ou ellipsoïdale comprenant une face réfléchissante permettant de focaliser un rayonnement électromagnétique. le réflecteur comprend une superposition d'au moins une couche comprenant un matériau composite fibré, caractérisé en ce qu'au moins une couche de matériau composite fibré comprend des secteurs angulaires disposés autour d'un centre, chacun des secteurs angulaires est défini par un premier angle au centre, et est orienté selon une direction radiale médiane de l'angle au centre, chacun des secteurs angulaires comprend le matériau composite fibré comprenant des premières fibres orientées dans une première direction et des deuxièmes fibres orientées dans une deuxième direction différente de la première direction, la première direction des premières fibres d'un secteur angulaire formant un deuxième angle avec la direction radiale du segment angulaire.
  • Les secteurs angulaires comprennent trois zones concentriques : une zone centrale, une zone périphérique et une zone intermédiaire située entre la zone centrale et la zone périphérique, la zone intermédiaire formant un rebord.
  • Avantageusement, le deuxième angle est compris entre 0 et 60°.
  • L'utilisation d'un unique matériau composite fibré garantie de faibles déformations thermoplastiques.
  • Le rebord formé à la périphérie de la surface active joue le rôle de couronne de raidissage directement intégrée dans le réflecteur évitant ainsi les inconvénients rencontrés dans la technologie dite « technologie monolithique à raidisseur périphérique » liés à la réalisation de moules et au collage à froid de la couronne sur la surface active. En effet, le réflecteur ainsi réalisé permet de limiter le nombre d'heures de main d'oeuvre nécessaires.
  • Avantageusement le réflecteur comprend au moins une couche possédant une partie centrale centrée sur le centre ce qui facilite l'assemblage des secteurs angulaires et évite que le chevauchement des segments angulaires au centre du réflecteur
  • Selon un autre mode de réalisation de l'invention, il est proposé un réflecteur tel que décrit précédemment dans lequel l'écart angulaire entre le deuxième angle d'un premier secteur angulaire d'une première couche et le deuxième angle d'un premier secteur angulaire d'une deuxième couche successive est constant de manière à assurer une continuité mécanique entre des secteurs consécutifs.
  • Avantageusement, l'écart angulaire est compris entre 0°et 60°.
  • Avantageusement, l'empilement comprend entre 2 et 10 couches, et préférentiellement 6 couches. Cette valeur est un compromis entre le poids du réflecteur et la qualité géométrique du réflecteur.
  • Des premiers secteurs ont un angle au centre (αi + X) et des deuxièmes secteurs angulaires ont un angle au centre (αi -X), la valeur de X étant fixée préalablement. Une couche comprend alternativement un premier secteur angulaire puis un deuxième secteur angulaire.
  • Avantageusement, la valeur de X est comprise entre 2° et 5°.
  • Les premiers secteurs angulaires d'une couche recouvrent les deuxièmes secteurs angulaires de la couche successive, de manière à assurer une continuité de la tenue mécanique entre secteurs consécutifs.
  • Réflecteur tel que décrit précédemment dans lequel la zone intermédiaire (Zi) forme un rebord de forme concave.
  • Réflecteur tel que décrit précédemment lequel la direction de la zone périphérique (Zp) forme un troisième angle (γ) avec un axe vertical passant par les centres (c) des parties centrales (Pc) des couches [(C)n], le troisième angle (γ) étant compris entre 0 et 30°.
  • Les couches ont un diamètre compris entre 250 et 700 mm, et préférentiellement 500 mm.
  • Selon une variante de l'invention, le matériau composite tissé comprend un matériau fibré imprégné d'une résine thermodurcissable permettant au réflecteur d'atteindre des températures d'utilisation de 165°C.
  • Selon une autre variante de l'invention, le matériau composite fibré comprend un matériau fibré imprégné d'une résine thermoplastique permettant d'atteindre des températures d'utilisation supérieures à 200°C.
  • Préférentiellement, le matériau fibré est un tissu. Alternativement, le matériau fibré est de type NCF (ou non crimp Fabric).
  • L'invention sera mieux comprise à l'étude de quelques modes de réalisation décrits à titre d'exemples nullement limitatifs, et illustrés par des dessins annexés sur lesquels :
    • la figure 1a représente un réflecteur, selon un aspect de l'invention,
    • la figure 1b représente une superposition de couches constitutives du réflecteur, selon un aspect de l'invention,
    • la figure 2 représente la structure d'une couche, selon un aspect de l'invention,
    • la figure 3 illustre l'agencement et l'orientation du matériau fibré dans une couche du réflecteur, selon un aspect de l'invention,
    • La figure 4 représente l'agencement relatif des secteurs comprenant le matériau fibré de l'ensemble des couches, selon un aspect de l'invention, et
    • les figures 5a et 5b représente l'agencement des secteurs angulaires en fonction de l'angle au centre dans une couche et l'agencement des secteurs angulaires d'une couche à une autre, selon un aspect de l'invention.
  • La figure 1a illustre un réflecteur R, comprenant un matériau M fibré de forme paraboloïde comprenant un rebord, le diamètre du réflecteur R étant compris entre 250 et 700 mm, et préférentiellement 500 mm. Alternativement, le réflecteur peut être de forme ellipsoïde.
  • La surface concave de la couche constitue la surface réfléchissante du réflecteur R et est orientée vers le globe terrestre. Le rebord joue le rôle de couronne de raidissage permettant de rigidifier la structure et d'atteindre des fréquences de résonnances de 60 Hz à une température de 20°C.
  • La figure 1b met en évidence les éléments constitutifs du réflecteur R. Le réflecteur R comprend un empilement d'au moins une couche Cn. Avantageusement, l'empilement comprend entre 2 et 10 couches, le nombre de couche Cn dépend du type de matériau utilisé. Les performances mécaniques requises peuvent être obtenues en considérant une superposition de six couches C1-C6.
  • La figure 2 illustre les différentes parties constituantes d'une couche Cn.
  • Une couche Cn comprend une partie centrale PC et des secteurs angulaires (Si)n, les secteurs angulaires Si tronqués étant disposés autour de la partie centrale PC.
  • Dans une variante de l'invention, la couche peut comprendre un centre (c).
  • Par ailleurs, la couche Cn comprend trois zones concentriques: une première zone Zc centrale, correspondant à la surface active du réflecteur, une deuxième zone Zp périphérique et une troisième zone Zi intermédiaire, la deuxième zone Zi intermédiaire formant un rebord.
  • La zone Zi intermédiaire est de forme concave de faible rayon de courbure, typiquement 5 mm de manière à limiter les effets de réflexions parasites des ondes électromagnétiques vers la source de l'antenne. Ce rayon ne peut être réduit davantage du fait de la faible capacité des tissus carbone à suivre sans se rompre des courbures de faible rayon.
  • L'axe d'orientation de la zone Zp périphérique forme un angle y avec un axe vertical passant par les centres des parties centrales PC des couches formant un raidisseur directement intégré à la structure du réflecteur permettant d'atteindre les objectifs de raideur fixés pour les applications de télécommunication à hautes fréquences.
  • La figure 3 décrit l'agencement et l'orientation du matériau M fibré constituant les secteurs angulaires (Si)n d'une couche Cn. La stabilité géométrique du réflecteur en température chaude ou froide est obtenue en partie par l'utilisation d'un matériau M composite unique pour tous les éléments constitutifs du réflecteur R.
  • Préférentiellement, le concept de réflecteur proposé est compatible avec une utilisation d'un matériau M comprenant des fibres de carbone et une résine thermoplastique permettant d'atteindre une température d'utilisation supérieure à 200°C.
  • Les secteurs angulaires (Si)n d'une couches Cn sont orientés selon une direction radiale dR du secteur angulaire (Si)n considéré.
  • Un secteur angulaire (Si)n comprend un matériau M fibré thermoplastique comprenant des premières fibres f1 et des deuxièmes fibres f2. Les premières fibres f1 sont orientées selon une première direction (di1)n, i étant un indice correspondant au secteur considéré et n étant un indice correspondant à la couche considérée, les deuxièmes fibres f2 étant orientées selon une direction (di2)n, différente de la première direction (di1)n. Un deuxième angle (βi)n est défini comme l'écart angulaire entre la première direction (di1)n et la direction dR radiale du secteur angulaire.
  • Le deuxième angle (βi)n est compris entre 0° et 180°, en l'espèce, le deuxième angle (βi)n est égal à 60° pour tous les secteurs angulaires de la première couche C1.
  • Lorsque le deuxième angle (βi)n est égal à 0°, les premières fibres f1 du matériau M tissé sont orientées selon la direction dR radiale du secteur angulaire (Si)n considéré.
  • La figure 4 représente un empilement de six couches C1-C6 et l'agencement du matériau M constitutif des secteurs angulaires (Si)n d'une couches (C)n à une autre.
  • Une première couche C1 comprend des secteurs angulaires (Si)1 comprenant un matériau M tissé comprenant des premières fibres f1 et des deuxièmes fibres f2 orientées telles que défini précédemment.
  • Les premières fibres f1 d'un premier segment angulaire (S1)1 de la première couche (C)1 sont orientées selon une première direction (d11)1, la première direction (d11)1 formant un angle (β1)1 avec la direction radiale dR du premier secteur angulaire. En l'espèce, l'angle (β1)1 est nul, autrement dit, les premières fibres sont orientées selon la direction radiale dR du premier secteur angulaire (S1)1.
  • Les premières fibres f1 d'un premier secteur angulaire (S1)2 de la deuxième couche C2 sont orientées selon une première direction (d11)2, la première direction (d11)2 formant un deuxième angle (β1)2 avec la première direction (d11)1 du premier secteur (S1)1 de la première couche C1. En l'espèce, le deuxième angle β est égal à 60°.
  • L'écart angulaire θ correspond à la différence d'angle entre la direction (d11)2 des premières fibres f1 du premier secteur angulaire (S1)2 de la deuxième couche C2 et la direction (d11)1 des premières fibres f1 du premier secteur (S1)2 de la première coucheC1, autrement dit θ=(β1)2-(β1)1. En l'espèce, l'écart angulaire θ est constant d'une couche à une autre.
  • Ainsi, les premières fibres f1 de la première couche C1 sont orientées selon la direction dR radiale du secteur angulaire considéré, les premières fibres f1 de la deuxième couche C2 sont orientées selon une direction formant un angle de 60° avec la direction dR radiale, les premières fibres de la troisième couche sont orientées selon une direction formant un angle de 120° avec la direction dR radiale.
  • Selon une variante de l'invention, l'écart angulaire θ est variable d'une couche à une autre.
  • La figure 5a représente l'agencement des secteurs angulaires (Si)n en fonction des premiers angles au centre (αi)n.
  • Des premiers secteurs SA ont un angle au centre (αi + X) et des deuxièmes secteurs angulaires SB ont un angle au centre (αi -X), la valeur de X étant fixée préalablement. Une couche Cn comprend alternativement un premier secteur angulaire SA puis un deuxième secteur angulaire SB. Avantageusement, la valeur de X est comprise entre 2° et 5°.
  • La figure 5b représente l'agencement des secteurs angulaires SA et SB sur une première couche Cn et une deuxième couche Cn+1 successive.
  • Une première couche Cn comprend des premiers secteurs angulaires SA d'angle au centre (α+X) en alternance avec des deuxièmes secteurs angulaires SB d'angle au centre (α-X). Une deuxième couche Cn+1 successive comprend une alternance de premiers secteurs SA et de deuxièmes secteurs SB. Les secteurs angulaires sont disposés de manière à ce qu'un premier secteur angulaire SA de la couche Cn recouvre un deuxième secteur angulaire SB de la couche successive Cn+1 En variante, les secteurs angulaires (Si)n peuvent avoir des angles au centre αi aléatoires, les secteurs angulaires d'une première couche (C)n recouvrant au moins partiellement les secteurs angulaires d'une deuxième couche successive (C)n+1. Le réflecteur d'antenne élaboré selon un aspect de l'invention a une masse inférieure de 20% par rapport à un réflecteur élaboré selon une technologie « coque épaisse », par exemple. Cet avantage est particulièrement intéressant pour les applications sur des antennes positionnées sur la face terre des satellites. Dans ce type de configuration, les réflecteurs sont positionnés sur la partie haute du satellite, ils sont donc soumis à d'importantes accélérations lors du lancement.
  • De plus, le réflecteur élaboré selon la technologie proposée ne présente pas de collage à froid.

Claims (14)

  1. Réflecteur d'antenne de forme paraboloïdale ou ellipsoïdale (R) compatible avec des applications à hautes fréquences comprises entre 12 et 75 GHz et adapté pour un environnement spatial géostationnaire comprenant une face réfléchissante permettant de focaliser un rayonnement électromagnétique, le réflecteur (R) comprenant une superposition d'au moins une couche (Cn) comprenant un matériau (M) composite fibré,
    caractérisé en ce qu'au moins une couche (Cn) de matériau (M) composite fibré comprend des secteurs angulaires [(Si)n] disposés autour d'un centre (c),
    chacun des secteurs angulaires [(Si)n] est défini par un premier angle au centre [(αi)n], et est orienté selon une direction (dR) radiale médiane de l'angle au centre [(αi)n], des premiers secteurs angulaires ont un angle au centre d'une valeur de (αi+X) et des deuxièmes secteurs angulaires ont un angle au centre d'une valeur de (αi-X), un premier secteur angulaire alternant avec un deuxième secteur angulaire dans une couche (Cn),
    chacun des secteurs angulaires [(Si)n] comprend le matériau (M) composite fibré comprenant des premières fibres (f1) orientées dans une première direction [(di1)n] et des deuxièmes fibres (f2) orientées dans une deuxième direction [(di2)n] différente de la première direction [(di1)n], la première direction [(di1)n] des premières fibres (f1) d'un secteur angulaire [(Si)n] formant un deuxième angle [(βi)n] avec la direction (dR) radiale du segment angulaire [(Si)n],
    et en ce que les secteurs angulaires [(Si)n] comprennent trois zones concentriques : une zone centrale (Zc), une zone périphérique (Zp) et une zone intermédiaire (Zi) située entre la zone centrale (Zc) et la zone périphérique (Zp), la zone intermédiaire (Zi) formant un rebord.
  2. Réflecteur selon la revendication 1 dans lequel le deuxième angle [(βi)n] est compris entre 0 et 60°.
  3. Réflecteur selon les revendications 1 ou 2 dans lequel au moins une couche comprend une partie centrale (PC) centrée sur le centre (C).
  4. Réflecteur selon l'une des revendications précédentes dans lequel l'écart angulaire (θ) entre le deuxième angle (βi)n d'un premier segment angulaire [(Si)n] d'une couche [(Cn] et le deuxième angle [(βi)n+1] d'un premier secteur angulaire [(Si)n+1] d'une couche [(C)n+1] successive est constant.
  5. Réflecteur selon l'une des revendications précédentes dans lequel la superposition comprend entre 2 et 10 couches [(Cn].
  6. Réflecteur selon la revendication 4 dans lequel l'écart angulaire (θ) est compris entre 0° et 60°.
  7. Réflecteur selon la revendication 1 dans lequel l'angle X est compris entre 2° et 5°.
  8. Réflecteur selon la revendication 1 dans lequel les premiers secteurs [(SA)n] angulaires d'une couche [(Cn] recouvrent les deuxièmes secteurs [(SB)n] angulaires de la couche [(Cn+1] successive, de manière à assurer une continuité de la tenue mécanique entre secteurs consécutifs.
  9. Réflecteur selon l'une des revendications précédentes dans lequel la zone intermédiaire (Zi) forme un rebord de forme concave.
  10. Réflecteur selon l'une des revendications précédentes dans lequel la direction de la zone périphérique (Zp) forme un troisième angle (γ) avec un axe vertical passant par les centres (c) des parties centrales (Pc) des couches [(Cn], le troisième angle (γ) étant compris entre 0 et 30°.
  11. Réflecteur (R) selon l'une des revendications précédentes dans lequel le réflecteur (R) a un diamètre compris entre 250 et 700 mm.
  12. Réflecteur (R) selon l'une des revendications précédentes dans lequel le matériau (M) composite fibré comprend un matériau fibré imprégné d'une résine thermodurcissable.
  13. Réflecteur des revendications 1 à 11 dans lequel le matériau (M) composite fibré est un matériau fibré imprégné d'une résine thermoplastique.
  14. Réflecteur selon l'une des revendications 12 ou 13 dans lequel le matériau fibré est un tissu.
EP13176211.4A 2012-07-13 2013-07-11 Réflecteur d'antenne de télécommunication pour application à hautes fréquences dans un environnement spatial géostationnaire Active EP2685560B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1201995A FR2993414B1 (fr) 2012-07-13 2012-07-13 Reflecteur d'antenne de telecommunication pour application a hautes frequences dans un environnement spatial geostationnaire

Publications (2)

Publication Number Publication Date
EP2685560A1 EP2685560A1 (fr) 2014-01-15
EP2685560B1 true EP2685560B1 (fr) 2019-08-21

Family

ID=47172694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13176211.4A Active EP2685560B1 (fr) 2012-07-13 2013-07-11 Réflecteur d'antenne de télécommunication pour application à hautes fréquences dans un environnement spatial géostationnaire

Country Status (4)

Country Link
US (1) US9673535B2 (fr)
EP (1) EP2685560B1 (fr)
ES (1) ES2753969T3 (fr)
FR (1) FR2993414B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088461B1 (en) * 2020-10-12 2021-08-10 Custom Microwave Inc. Quad band petal reflector antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944154A1 (fr) * 2009-04-02 2010-10-08 Astrium Sas Antenne radioelectrique comportant des moyens de rigidification ameliores

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460807C3 (de) 1974-12-21 1981-04-02 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Flächenhaftes Leichtbauteil aus faserverstärktem Kunststoff
US4242686A (en) * 1978-04-24 1980-12-30 General Dynamics Corporation, Pomona Division Three-dimensionally curved, knit wire electromagnetic wave reflector
US5488383A (en) * 1994-01-21 1996-01-30 Lockheed Missiles & Space Co., Inc. Method for accurizing mesh fabric reflector panels of a deployable reflector
US5686930A (en) * 1994-01-31 1997-11-11 Brydon; Louis B. Ultra lightweight thin membrane antenna reflector
US6064352A (en) 1998-04-01 2000-05-16 Trw Inc. Composite isogrid structures for parabolic surfaces
US7324057B2 (en) * 2005-09-26 2008-01-29 Gideon Argaman Low wind load parabolic dish antenna fed by crosspolarized printed dipoles
US9350083B2 (en) * 2012-03-10 2016-05-24 Harris Corporation Portable satellite communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944154A1 (fr) * 2009-04-02 2010-10-08 Astrium Sas Antenne radioelectrique comportant des moyens de rigidification ameliores

Also Published As

Publication number Publication date
FR2993414B1 (fr) 2014-08-22
US9673535B2 (en) 2017-06-06
ES2753969T3 (es) 2020-04-15
US20140015735A1 (en) 2014-01-16
FR2993414A1 (fr) 2014-01-17
EP2685560A1 (fr) 2014-01-15

Similar Documents

Publication Publication Date Title
Abitbol et al. CMB-S4 technology book
EP0519775A1 (fr) Réflecteur d'antenne reconfigurable en service
FR2550663A1 (fr) Structure de reflecteur de rayonnement electromagnetique
EP2808943B1 (fr) Procédé de réalisation d'un réflecteur d'antenne à surface formée, réflecteur à surface formée obtenu par ce procédé et antenne comportant un tel réflecteur
EP2185345B1 (fr) Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre
JP5330538B2 (ja) 広帯域パラボラアンテナのレーダド−ム
EP0546913B1 (fr) Antenne à réflecteur fixe pour plusieurs faisceaux de télécommunications
EP2362489B1 (fr) Membrane réfléchissante déformable pour réflecteur reconfigurable, réflecteur d'antenne reconfigurable et antenne comportant une telle membrane
EP2648281B1 (fr) Réflecteur d'antenne reconfigurable
EP2690709A1 (fr) Réflecteur d'antenne, de diamètre supérieur à 1m, pour application à hautes fréquences dans un environnement spatial
EP2685560B1 (fr) Réflecteur d'antenne de télécommunication pour application à hautes fréquences dans un environnement spatial géostationnaire
FR2531817A1 (fr) Structure d'antenne
US20120176693A1 (en) Layered Mirror Assembly
EP1583176A1 (fr) Antenne réflecteur à structure 3D de mise en forme de faisceaux d'ondes appartenant à des bandes de fréquences différentes
EP0466579B1 (fr) Biréflecteur à grilles
FR3077270A1 (fr) Dispositif pliable/deployable comprenant au moins quatre secteurs gauches relies par des charnieres
US20230291095A1 (en) Environmentally robust fabric radome for planar mmwave beam-steering antennas
FR2701169A1 (fr) Réflecteur d'antenne à diffraction pour plusieurs faisceaux de télécommunications.
GB2616480A (en) Environmentally Robust Fabric Radome for Planar mmWave Beam-steering Antennas
FR2502852A1 (fr) Reflecteur en particulier pour grandes antennes de reception de telecommunications par satellites
JPH11239019A (ja) アンテナ装置
FR2579374A1 (fr) Dispositif de support et/ou de renforcement d'un element de surface, notamment de la face arriere convexe d'un reflecteur d'antenne
FR2902934A1 (fr) Paroi pour radomes et radomes munis de telles parois

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140711

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180927

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 15/16 20060101AFI20190306BHEP

Ipc: H01Q 15/14 20060101ALI20190306BHEP

Ipc: H01Q 1/28 20060101ALI20190306BHEP

INTG Intention to grant announced

Effective date: 20190403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013059384

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1170806

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1170806

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2753969

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013059384

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230810

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240613

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240626

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240627

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240618

Year of fee payment: 12