EP2683851A1 - Hydrogen filling station system and method of operation therefor - Google Patents

Hydrogen filling station system and method of operation therefor

Info

Publication number
EP2683851A1
EP2683851A1 EP12713905.3A EP12713905A EP2683851A1 EP 2683851 A1 EP2683851 A1 EP 2683851A1 EP 12713905 A EP12713905 A EP 12713905A EP 2683851 A1 EP2683851 A1 EP 2683851A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
compression device
refueling
filling station
station system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12713905.3A
Other languages
German (de)
French (fr)
Inventor
Fred Farchmin
Manfred Waidhas
Thomas WASSER
Andreas Wiest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2683851A1 publication Critical patent/EP2683851A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a hydrogen filling station system for the production of hydrogen on demand and a Be ⁇ operating method for such a hydrogen refueling system.
  • a supply infrastructure in the form of filling station systems must be developed in addition to the vehicles.
  • conven ⁇ tional filling stations for petrol / diesel usually have subterranean ⁇ cal tanks.
  • points-of-sales For the expansion of these current gas stations ("points-of-sales") to the fuel hydrogen al ⁇ le gas stations with an additional storage tank (additional space required) with the appropriate safety approvals, technical examinations, etc.
  • Today's filling stations for hydrogen basically consist of the three sections “hydrogen production”, “hydrogen storage” and “compression and refueling system.”
  • the section “hydrogen production” is provided either centrally (usually by means of "natural gas” or “gas”).
  • Steam reforming ") the recovered hydrogen is then delivered by special tanker trucks at the gas stations and stored there in tanks (usually above ground), or it is generated locally, but then stored in tanks until use.
  • the invention has for its object to provide a hydrogen refueling system and an operating method for such a hydrogen refueling system, with which the expenditure on equipment and space required for such a hydrogen refueling system can be reduced and the reliability can be increased.
  • a hydrogen refueling system for generating hydrogen on demand comprising a PEM electrolyzer for generating hydrogen, a compression device for compressing the hydrogen and a refueling system for refueling a vehicle the compressed hydrogen, wherein the PEM electrolyzer with the compression device and the compression device with the refueling system are each interconnected with no storage.
  • the object relating to a method of operation object is According to the invention achieved by a method for operating a petrol station What ⁇ serstoff system for a production of water ⁇ material on demand, comprising the steps of:
  • Caching is understood, in particular, to mean a subterranean or above-ground tank which is filled with excess hydrogen, the hydrogen being used for the refilling process at a later time, in particular after hours or days.
  • PEM electrolyzer is connected directly and without intermediate memory with the compression device and the compression device is also directly and intermediately connected to the refueling system, means that usually only as much hydrogen is generated by the PEM electrolyzer, how much for the current refueling process is required so that no excess hydrogen is stored along the production line between the PEM electrolyzer and the refueling system.
  • the hydrogen is produced by the PEM electrolyzer with an outlet pressure of 20-75 bar, in particular 30-50 bar.
  • the compression device is designed for compressing the hydrogen to 700 bar.
  • Be ⁇ preferably the compression device has a compressor tank, which is directly connected to the refueling system.
  • the compressor tank is an integral part of the compression device in that the compressor tank in particular spatially directly connected to a compressor for compressing the hydrogen is. The compressor tank is therefore smaller than the usual storage at hydrogen filling stations today.
  • the PEM electrolyzer In order to provide the required hydrogen flow rate, has the PEM electrolyzer conveniently a Maxi ⁇ painting performance of at least 5.5 MW, in particular Minim ⁇ least 4 MW.
  • Performance is limited, dynamic operation is not possible due to the "thermal inertia", ie start-up time of about 30 minutes until the nominal load is reached, whereas the PEM technology has a start-up time of about 10 seconds (black start) and can therefore be switched on for refueling and then switched off again.
  • the PEM technology has the property of over ⁇ load (up to 300%) to be operated. This reduces the investment costs on the one hand and reduces the volume of construction required on the other, since a PEM electrolyzer can be built much more compactly than an alkaline electrolyzer with comparable parameters. Due to the anticipated market penetration, it may be more efficient to equip gas stations without large memory sections.
  • a filling station system consisting of a 2 MW PEM electrolyser, a further compression stage (at 700 bar) and a refueling system without intermediate storage is more flexible in terms of location and does not depend on additional infrastructure (except for electricity and water supply).
  • the gas station system is modular ⁇ builds and has an infrastructure of piping and fittings, through which additional components can be connected.
  • additional components for example by connecting a buffer section.
  • the FIGURE shows an exemplary embodiment of a filling station system 1 according to the invention with a PEM electrolyzer 2, 1b of a compression device 3, a refueling system 4 and a vehicle b to be refueled.
  • the PEM electrolyser 2 has a capacity of 1.9 MW, an overload capacity of up to 300% and a start-up time of about 10 seconds (black start) by means of electric current, which is indicated by the arrow 6
  • hydrogen H 2 is generated with an outlet pressure of 30 - bO bar.
  • the hydrogen H 2 is fed into the compression device 3 and compressed there to 700 bar.
  • the compressed hydrogen H 2 is then fed directly to the refueling system 4
  • the Tankstel ⁇ lens system 1 is characterized by a small footprint and a high level of operational safety, since the generated hydrogen H 2 is transported to the refueling system 4 without caching.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

The invention relates to a hydrogen filling station system (1) for generating hydrogen on demand. The hydrogen filling station system (1) comprises a PEM electrolyzer (2) for generating hydrogen, a compression device (3) for compressing the hydrogen, and a filling system (4) for filling a vehicle (5) with the compressed hydrogen. The required space for the hydrogen filling station system (1) is reduced and operational safety is increased in that the PEM electrolyzer (2) is directly connected to the compression device (3) and the compression device (3) is directly connected to the filling system (4), without temporary storage respectively, meaning the compressed hydrogen is not temporarily stored.

Description

Beschreibung description
Wasserstoff-Tankstellensystem und Betriebsverfahren hierfür Die Erfindung betrifft ein Wasserstoff-Tankstellensystem für eine Erzeugung von Wasserstoff auf Anforderung sowie ein Be¬ triebsverfahren für ein derartiges Wasserstoff-Tankstellensystem. Zum Aufbau einer Wasserstoff-basierten Mobilität muss neben den Fahrzeugen auch eine Versorgungsinfrastruktur in Form von Tankstellensystemen entwickelt werden. Heutige, konventio¬ nelle Tankstellen für Benzin/Diesel besitzen meist unterirdi¬ sche Tanks. Für die Erweiterung dieser heutigen Tankstellen („points-of-sales" ) um den Treibstoff Wasserstoff müssten al¬ le Tankstellen mit einem zusätzlichen Speichertank (zusätzlicher Platzbedarf) mit den entsprechenden sicherheitstechnischen Zulassungen, techn. Prüfungen, etc. ausgerüstet werden. Die Versorgung erfolgt dann über Anlieferung (Transport mittels Spezialfahrzeug) oder über eine dezentrale Erzeugung mittels Elektrolyse. Heutige Beispiele für Wasserstofftank¬ steilen zeigen, dass auf Grund der technischen Rahmenbedingungen der eingesetzten Elektrolyse-Technologie (alkalische Elektrolyse) eine Zwischenspeicherung des erzeugten Wasser- stoffs zwingend notwendig ist, wenn man die Tankzeit in einem akzeptablen Maß halten will. Typischerweise werden 5 kg Wasserstoff bei 700 bar in drei Minuten betankt. The invention relates to a hydrogen filling station system for the production of hydrogen on demand and a Be ¬ operating method for such a hydrogen refueling system. To build a hydrogen-based mobility, a supply infrastructure in the form of filling station systems must be developed in addition to the vehicles. Today, conven ¬ tional filling stations for petrol / diesel usually have subterranean ¬ cal tanks. For the expansion of these current gas stations ("points-of-sales") to the fuel hydrogen al ¬ le gas stations with an additional storage tank (additional space required) with the appropriate safety approvals, technical examinations, etc. The supply takes place then on delivery (transport by special vehicle) or decentralized generation by means of electrolysis Today's examples of hydrogen tanks show that, because of the technical framework conditions of the electrolysis technology used (alkaline electrolysis), intermediate storage of the generated hydrogen is absolutely necessary. if you want to keep the tank time to an acceptable level Typically, 5 kg of hydrogen are refueled at 700 bar in three minutes.
Heutige Tankstellen für Wasserstoff (beispielsweise im Rahmen von Demonstrationspro ekten) bestehen grundsätzlich aus den drei Sektionen „Wasserstofferzeugung" , „Wasserstoffspeicherung" und „Kompression und Betankungssystem" . Die Sektion „Wasserstofferzeugung" wird entweder zentral erbracht (meist mittels „Erdgas-, bzw. Dampfreformierung" ) , der gewonnene Wasserstoff wird dann mittels Spezial-Tankwägen bei den Tankstellen angeliefert und dort in Tanks (meist überirdisch) zwischengelagert, oder er wird vor Ort erzeugt, dann aber auch bis zur Verwendung in Tanks zwischengelagert. Der Erfindung liegt die Aufgabe zugrunde, ein Wasserstoff- Tankstellensystem sowie ein Betriebsverfahren für ein derartiges Wasserstoff-Tankstellensystem anzugeben, mit dem der apparative Aufwand und Platzbedarf für ein derartiges Wasser- stoff-Tankstellensystem reduziert und die Betriebssicherheit vergrößert werden kann. Today's filling stations for hydrogen (for example in the context of demonstration products) basically consist of the three sections "hydrogen production", "hydrogen storage" and "compression and refueling system." The section "hydrogen production" is provided either centrally (usually by means of "natural gas" or "gas"). Steam reforming "), the recovered hydrogen is then delivered by special tanker trucks at the gas stations and stored there in tanks (usually above ground), or it is generated locally, but then stored in tanks until use. The invention has for its object to provide a hydrogen refueling system and an operating method for such a hydrogen refueling system, with which the expenditure on equipment and space required for such a hydrogen refueling system can be reduced and the reliability can be increased.
Die auf ein Wasserstoff-Tankstellensystem gerichtete Aufgabe wird erfindungsgemäß gelöst durch ein Wasserstoff-Tankstel- lensystem für eine Erzeugung von Wasserstoff auf Anforderung, umfassend einen PEM-Elektrolyseur zur Erzeugung von Wasserstoff, eine Kompressionseinrichtung zur Komprimierung des Wasserstoffes und ein Betankungssystem zur Betankung eines Fahrzeuges mit dem komprimierten Wasserstoff, wobei der PEM- Elektrolyseur mit der Kompressionseinrichtung und die Kompressionseinrichtung mit dem Betankungssystem jeweils zwischenspeicherlos miteinander verbunden sind. The object directed to a hydrogen refueling system is achieved according to the invention by a hydrogen refueling system for generating hydrogen on demand, comprising a PEM electrolyzer for generating hydrogen, a compression device for compressing the hydrogen and a refueling system for refueling a vehicle the compressed hydrogen, wherein the PEM electrolyzer with the compression device and the compression device with the refueling system are each interconnected with no storage.
Die auf ein Betriebsverfahren gerichtete Aufgabe wird erfin- dungsgemäß gelöst durch ein Verfahren zum Betrieb eines Was¬ serstoff-Tankstellensystems für eine Erzeugung von Wasser¬ stoff auf Anforderung, mit den folgenden Schritten: The object relating to a method of operation object is According to the invention achieved by a method for operating a petrol station What ¬ serstoff system for a production of water ¬ material on demand, comprising the steps of:
- Erzeugung von Wasserstoff in einem PEM-Elektrolyseur  - Generation of hydrogen in a PEM electrolyzer
- Zuführen des erzeugten Wasserstoffes direkt und ohne eine Zwischenspeicherung zu einer Kompressionseinrichtung zur - Supplying the generated hydrogen directly and without caching to a compression device for
Komprimierung des Wasserstoffes, Compression of the hydrogen,
- Komprimieren des erzeugten Wasserstoffes in der Kompressionseinrichtung,  Compressing the generated hydrogen in the compression device,
- Zuführen des komprimierten Wasserstoffes ohne eine Zwi- schenspeicherung zu einem Betankungssystem zur Betankung eines Fahrzeuges mit dem komprimierten Wasserstoff.  - Supply the compressed hydrogen without an intermediate storage to a refueling system for refueling a vehicle with the compressed hydrogen.
Die in Bezug auf das Wasserstoff-Tankstellensystem nachstehend angeführten Vorteile und bevorzugten Ausgestaltungen lassen sich sinngemäß auf das Betriebsverfahren übertragen. The advantages and preferred embodiments set forth below with respect to the hydrogen refueling station system can be applied analogously to the operating method.
Mit der Entwicklung der Elektrolyse basierend auf einer PEM (proton exchange membrane) Technologie und der Skalierung in die entsprechenden Leistungsklassen kann auf eine Zwischen- speicherung des erzeugten Wasserstoffes verzichtet werden. Unter Zwischenspeicherung wird insbesondere ein unter- oder überirdischer Tank verstanden, der mit überschüssigen Wasserstoff befüllt wird, wobei der Wasserstoff zu einem späteren Zeitpunkt, insbesondere nach Stunden oder Tagen, für den Be- tankungsprozess verwendet wird. Dass der PEM-Elektrolyseur unmittelbar und zwischenspeicherlos mit der Kompressionseinrichtung verbunden ist und die Kompressionseinrichtung ebenfalls unmittelbar und zwischenspeicherlos mit dem Betankungs- system verbunden ist, bedeutet hierbei, dass in der Regel nur so viel Wasserstoff durch die PEM-Elektrolyseur erzeugt wird, wie viel für den aktuellen Betankungsprozess erforderlich ist, so dass kein überschüssiger Wasserstoff entlang der Produktionslinie zwischen dem PEM-Elektrolyseur und dem Betan- kungssystem gelagert wird. Bei der Erzeugung und Bereitstel¬ lung von Wasserstoff auf Anforderung wird der PEM-Elektroly¬ seur insbesondere zum Beginn des Betankungsprozesses hochge¬ fahren und nach dem Beenden des Betankungsprozesses heruntergefahren. Der durch den Betankungsprozess vorgegebene bzw. benötigte Volumenstrom von ca. l,5kg/min wird somit direkt - ohne Zwischenspeicherung - durch den PEM-Elektrolyseur zur Verfügung gestellt. With the development of electrolysis based on PEM (proton exchange membrane) technology and scaling in the corresponding performance classes can be dispensed with intermediate storage of the hydrogen produced. Caching is understood, in particular, to mean a subterranean or above-ground tank which is filled with excess hydrogen, the hydrogen being used for the refilling process at a later time, in particular after hours or days. The fact that the PEM electrolyzer is connected directly and without intermediate memory with the compression device and the compression device is also directly and intermediately connected to the refueling system, means that usually only as much hydrogen is generated by the PEM electrolyzer, how much for the current refueling process is required so that no excess hydrogen is stored along the production line between the PEM electrolyzer and the refueling system. In the generation and READY ¬ development of hydrogen at the request of the PEM electrolyzer ¬ seur is hochge ¬ drive in particular the start of the fueling process, and shut down after the completion of the fueling process. The volume flow of approx. 1.5 kg / min specified or required by the refueling process is thus provided directly - without intermediate storage - by the PEM electrolyzer.
Nach einer bevorzugten Variante wird der Wasserstoff von dem PEM-Elektrolyseur mit einem Ausgangsdruck von 20 - 75 bar, insbesondere von 30 - 50 bar erzeugt. Nach einer weiteren bevorzugten Variante ist die Kompressionseinrichtung für eine Komprimierung des Wasserstoffs auf 700 bar ausgebildet. Be¬ vorzugt weist die Kompressionseinrichtung dabei einen Kompressor-Tank, der mit dem Betankungssystem direkt verbunden ist. Somit ist lediglich im Rahmen der Kompressionseinrichtung (bzw. Kompressionsstufe) eine kleine Hilfsspeicherein- richtung des Wasserstoffs über den Kompressor-Tank notwendig, von dem aus die Betankung stattfindet. Der Kompressor-Tank ist integraler Bestandteil der Kompressionseinrichtung, indem der Kompressor-Tank insbesondere räumlich unmittelbar mit einem Verdichter zum Komprimieren des Wasserstoffs verbunden ist. Der Kompressor-Tank ist daher kleiner als die heute üblichen Speicher an Wasserstoff-Tankstellen. According to a preferred variant, the hydrogen is produced by the PEM electrolyzer with an outlet pressure of 20-75 bar, in particular 30-50 bar. According to another preferred variant, the compression device is designed for compressing the hydrogen to 700 bar. Be ¬ preferably the compression device has a compressor tank, which is directly connected to the refueling system. Thus, only in the context of the compression device (or compression stage) a small Hilfsspeicherein- direction of the hydrogen on the compressor tank is necessary, from which the refueling takes place. The compressor tank is an integral part of the compression device in that the compressor tank in particular spatially directly connected to a compressor for compressing the hydrogen is. The compressor tank is therefore smaller than the usual storage at hydrogen filling stations today.
Um den geforderten Wasserstoff-Volumenstrom bereitzustellen, weist der PEM-Elektrolyseur zweckdienlicherweise eine Maxi¬ malleistung von mindestens 5,5 MW, insbesondere von mindes¬ tens 4 MW auf. In order to provide the required hydrogen flow rate, has the PEM electrolyzer conveniently a Maxi ¬ painting performance of at least 5.5 MW, in particular Minim ¬ least 4 MW.
Die bisher eingesetzte alkalische Elektrolyse braucht eine kontinuierliche Betriebsweise und ist auf die vorhandeneThe previously used alkaline electrolysis needs a continuous operation and is based on the existing
Leistung beschränkt, eine dynamische Betriebsweise ist auf Grund der „thermischen Trägheit" nicht möglich, d.h. Anlaufzeit von ca. 30 Minuten bis zum Erreichen der Nennlast. Die PEM Technologie besitzt dagegen eine „Startup Time" von ca. 10 Sekunden (black start) und kann daher zur Betankung eingeschaltet und danach wieder ausgeschaltet werden. Performance is limited, dynamic operation is not possible due to the "thermal inertia", ie start-up time of about 30 minutes until the nominal load is reached, whereas the PEM technology has a start-up time of about 10 seconds (black start) and can therefore be switched on for refueling and then switched off again.
Zudem besitzt die PEM-Technologie die Eigenschaft bei Über¬ last (bis zu 300%) betrieben werden zu können. Dadurch werden zum einen die Investitionskosten und zum anderen das benötigte Bauvolumen reduziert, da ein PEM-Elektrolyseur viel kompakter aufgebaut werden kann, als ein alkalischer Elektroly- seur mit vergleichbaren Kenngrößen. Auf Grund des zu erwartenden Marktdurchdringungsverlaufs kann es effizienter sein, Tankstellen ohne große Speicher-Sektionen auszustatten. Ein Tankstellensystem bestehend aus einem 2 MW PEM-Elektrolyseur, einer weiteren Kompressionsstufe (auf 700 bar) und eines Betankungssystems ohne Zwischenspei- eher ist flexibler bei der Standortwahl und nicht auf weitere Infrastruktur angewiesen (außer Strom- und Wasseranschluss ) . In addition, the PEM technology has the property of over ¬ load (up to 300%) to be operated. This reduces the investment costs on the one hand and reduces the volume of construction required on the other, since a PEM electrolyzer can be built much more compactly than an alkaline electrolyzer with comparable parameters. Due to the anticipated market penetration, it may be more efficient to equip gas stations without large memory sections. A filling station system consisting of a 2 MW PEM electrolyser, a further compression stage (at 700 bar) and a refueling system without intermediate storage is more flexible in terms of location and does not depend on additional infrastructure (except for electricity and water supply).
Durch die Produktion des Wasserstoffs „on demand" und den Wegfall der Zwischenspeicherung ergeben sich auch Akzeptanz- Vorteile, wenn sich der Standort in einer sicherheits¬ sensiblen Umgebung (Wohngebiet) befindet. b Through the production of hydrogen "on demand" and the elimination of caching also acceptance provides advantages when the site in a safety ¬ sensitive environment (residential area) is. b
Zweckdienlicherweise ist das Tankstellensystem modular aufge¬ baut und weist eine Infrastruktur von Rohrleitungen und Armaturen auf, durch welche zusätzliche Komponenten anschließbar sind. Somit besteht die Möglichkeit das Wasserstoff-Tankstel- b lensystem bei Bedarf jederzeit durch zusätzliche Komponenten zu erweitern, beispielsweise indem eine Zwischenspeicher- Sektion angeschlossen wird. Durch das Design und der Konfiguration des Wasserstoff-Tankstellensystems kann auf die Ent¬ wicklung der Märkte flexibler reagiert werden und die nötige 10 Versorgungs-Infrastruktur schneller und flächendeckender realisiert werden. Conveniently, the gas station system is modular ¬ builds and has an infrastructure of piping and fittings, through which additional components can be connected. Thus, it is possible to expand the hydrogen fueling system at any time by additional components, for example by connecting a buffer section. By the design and the configuration of the hydrogen filling station system can respond flexibly to the Ent ¬ development of markets and the necessary 10 supply infrastructure can be realized faster and area-wide.
Die Figur zeigt ein Ausführungsbeispiel eines erfindungs¬ gemäßen Tankstellensystems 1 mit einem PEM-Elektrolyseur 2, lb einer Kompressionseinrichtung 3, einem Betankungssystem 4 und einem zu betankenden Fahrzeug b. Der PEM-Elektrolyseur 2 hat eine Leistung von 1,9 MW, eine Überlastfähigkeit von bis zu 300% und eine „Startup Time" von ca. 10 Sekunden (black start) . Mittels elektrischen Stroms, was durch den Pfeil 6The FIGURE shows an exemplary embodiment of a filling station system 1 according to the invention with a PEM electrolyzer 2, 1b of a compression device 3, a refueling system 4 and a vehicle b to be refueled. The PEM electrolyser 2 has a capacity of 1.9 MW, an overload capacity of up to 300% and a start-up time of about 10 seconds (black start) by means of electric current, which is indicated by the arrow 6
20 angedeutete ist, wird im PEM-Elektrolyseur 2 Wasserstoff H2 mit einem Ausgangsdruck von 30 - bO bar erzeugt. Der Wasserstoff H2 wird in die Kompressionseinrichtung 3 eingespeist und dort auf 700 bar verdichtet. Der komprimierte Wasserstoff H2 wird anschließend direkt dem Betankungssystem 4 zugeführt20 is indicated, in the PEM electrolyzer 2 hydrogen H 2 is generated with an outlet pressure of 30 - bO bar. The hydrogen H 2 is fed into the compression device 3 and compressed there to 700 bar. The compressed hydrogen H 2 is then fed directly to the refueling system 4
2b und wird zum Betanken des Fahrzeugs b benutzt. Das Tankstel¬ lensystem 1 zeichnet sich dabei durch einen geringen Platzbedarf und eine große Betriebssicherheit aus, da der erzeugte Wasserstoff H2 ohne Zwischenspeicherung zum Betankungssystem 4 befördert wird. 2b and is used to refuel the vehicle b. The Tankstel ¬ lens system 1 is characterized by a small footprint and a high level of operational safety, since the generated hydrogen H 2 is transported to the refueling system 4 without caching.
30  30

Claims

Patentansprüche claims
1. Wasserstoff-Tankstellensystem (1) für eine Erzeugung von Wasserstoff auf Anforderung, umfassend einen PEM-Elektro- lyseur (2) zur Erzeugung von Wasserstoff, eine Kompressions¬ einrichtung (3) zur Komprimierung des Wasserstoffes und ein Betankungssystem (4) zur Betankung eines Fahrzeugs (5) mit dem komprimierten Wasserstoff, wobei der PEM-Elektrolyseur (2) mit der Kompressionseinrichtung (3) und die Kompressions- einrichtung (3) mit dem Betankungssystem (4) jeweils zwischenspeicherlos miteinander verbunden sind. A hydrogen refueling system (1) for generating hydrogen on demand, comprising a PEM electrolyzer (2) for generating hydrogen, a compression device (3) for compressing the hydrogen and a refueling system (4) for refueling a vehicle (5) with the compressed hydrogen, wherein the PEM electrolyser (2) with the compression device (3) and the compression device (3) with the refueling system (4) are each interconnected without a buffer.
2. Wasserstoff-Tankstellensystem (1) nach Anspruch 1, wobei ein Ausgangsdruck des im PEM-Elektrolyseur (2) erzeug- ten Wasserstoffs ca. 20 - 70 bar, insbesondere 30 - 50 bar beträgt . 2. hydrogen filling station system (1) according to claim 1, wherein an outlet pressure of the PEM electrolyzer (2) generated hydrogen is about 20 - 70 bar, in particular 30 - 50 bar.
3. Wasserstoff-Tankstellensystem (1) nach Anspruch 1 oder 2, wobei die Kompressionseinrichtung (3) für eine Komprimierung des Wasserstoffes auf 700 bar ausgebildet ist. 3. hydrogen filling station system (1) according to claim 1 or 2, wherein the compression device (3) is designed for compression of the hydrogen to 700 bar.
4. Wasserstoff-Tankstellensystem (1) nach einem der vorhergehenden Ansprüche, 4. hydrogen filling station system (1) according to one of the preceding claims,
wobei die Kompressionseinrichtung (3) einen Kompressor-Tank aufweist, der mit dem Betankungssystem (4) direkt verbunden ist . wherein the compression means (3) comprises a compressor tank directly connected to the refueling system (4).
5. Wasserstoff-Tankstellensystem (1) nach einem der vorhergehenden Ansprüche, 5. hydrogen filling station system (1) according to one of the preceding claims,
wobei der PEM-Elektrolyseur (2) eine Maximalleistung von 5,5 MW, insbesondere von 4 MW aufweist. wherein the PEM electrolyzer (2) has a maximum power of 5.5 MW, in particular of 4 MW.
6. Wasserstoff-Tankstellensystem (1) nach einem der vorhergehenden Ansprüche, 6. hydrogen filling station system (1) according to one of the preceding claims,
das modular aufgebaut ist und eine Infrastruktur aufweist, durch welche zusätzliche Komponenten anschließbar sind. which is modular and has an infrastructure through which additional components can be connected.
7. Verfahren zum Betrieb eines Wasserstoff-Tankstellensystems (1) für eine Erzeugung von Wasserstoff auf Anforderung, mit den folgenden Schritten: A method of operating a hydrogen refueling system (1) for on-demand hydrogen production, comprising the steps of:
- Erzeugung von Wasserstoff in einem PEM-Elektrolyseur (2), - Zuführen des erzeugten Wasserstoffes ohne eine Zwischen- speicherung zu einer Kompressionseinrichtung (3) zur Komprimierung des Wasserstoffes,  - Generation of hydrogen in a PEM electrolyzer (2), - Supplying the hydrogen produced without an intermediate storage to a compression device (3) for compressing the hydrogen,
- Komprimieren des erzeugten Wasserstoffes in der Kompressionseinrichtung (3),  Compressing the generated hydrogen in the compression device (3),
- Zuführen des komprimierten Wasserstoffes ohne eine Zwi- schenspeicherung zu einem Betankungssystem (4) zur Betankung eines Fahrzeugs (5) mit dem komprimierten Wasserstoff. - Supplying the compressed hydrogen without an intermediate storage to a refueling system (4) for refueling a vehicle (5) with the compressed hydrogen.
EP12713905.3A 2011-04-18 2012-03-20 Hydrogen filling station system and method of operation therefor Withdrawn EP2683851A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011017451 2011-04-18
DE102011081178A DE102011081178A1 (en) 2011-04-18 2011-08-18 Hydrogen fueling station system and method of operation therefor
PCT/EP2012/054876 WO2012143192A1 (en) 2011-04-18 2012-03-20 Hydrogen filling station system and method of operation therefor

Publications (1)

Publication Number Publication Date
EP2683851A1 true EP2683851A1 (en) 2014-01-15

Family

ID=46935647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12713905.3A Withdrawn EP2683851A1 (en) 2011-04-18 2012-03-20 Hydrogen filling station system and method of operation therefor

Country Status (4)

Country Link
US (1) US20140034187A1 (en)
EP (1) EP2683851A1 (en)
DE (1) DE102011081178A1 (en)
WO (1) WO2012143192A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899449A3 (en) * 2014-01-20 2015-09-02 Michael Feldmann Method and system configuration for dynamised construction of a petrol station infrastructure
DE102015118207A1 (en) * 2015-10-26 2017-04-27 Richard Siegbert Wegerer Energy converter and storage system for providing hydrogen for the operation of hydrogen fuel cells
DE102017204672A1 (en) 2017-03-21 2018-09-27 Robert Bosch Gmbh Method and system for refueling a vehicle with hydrogen
DE102019204664A1 (en) * 2019-04-02 2020-10-08 ENERCOLL GmbH System for the self-sufficient provision of energy sources for motor vehicles
US11552317B2 (en) 2019-10-07 2023-01-10 ElektrikGreen, Inc. Autonomous power generation system
US20220344691A1 (en) * 2021-04-26 2022-10-27 Standard Hydrogen Corporation Systems for converting and storing energy
CN115928103B (en) * 2023-01-06 2023-05-16 长春吉电氢能有限公司 PEM hydrogen production and hydrogenation integrated system and hydrogen production control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60001321T2 (en) * 1999-05-12 2003-11-27 Stuart Energy Sys Corp HYDROGEN FILLER REFILL METHOD AND SYSTEM

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2472027A1 (en) * 2002-01-10 2003-07-24 Matthew A. Harper Hydrogen fueling station
JP4635514B2 (en) * 2004-08-20 2011-02-23 日立造船株式会社 Hydrogen supply device using solid polymer water electrolyzer
US7624770B2 (en) * 2004-09-23 2009-12-01 The Boc Group, Inc. Intelligent compressor strategy to support hydrogen fueling
FR2896028B1 (en) * 2006-01-06 2008-07-04 Air Liquide METHOD AND DEVICE FOR FILLING GAS CONTAINERS UNDER PRESSURE
CA2928768C (en) * 2008-10-30 2017-11-21 Next Hydrogen Corporation Power dispatch system for electrolytic production of hydrogen from wind power
JP5525188B2 (en) * 2009-06-09 2014-06-18 本田技研工業株式会社 Hydrogen filling apparatus and hydrogen filling method
IT1398498B1 (en) * 2009-07-10 2013-03-01 Acta Spa DEVICE FOR THE PRODUCTION ON DEMAND OF HYDROGEN BY MEANS OF ELECTROLYSIS OF WATER SOLUTIONS.
DE202010001737U1 (en) * 2010-02-03 2010-06-24 Meissner, Peter Autonomous wind-hydrogen station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60001321T2 (en) * 1999-05-12 2003-11-27 Stuart Energy Sys Corp HYDROGEN FILLER REFILL METHOD AND SYSTEM

Also Published As

Publication number Publication date
US20140034187A1 (en) 2014-02-06
WO2012143192A1 (en) 2012-10-26
DE102011081178A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
WO2012143192A1 (en) Hydrogen filling station system and method of operation therefor
DE10107187A1 (en) Gas station for cryogenic media
EP3321501B1 (en) System for energy storage and recovery
WO2013064276A2 (en) Units and methods for energy storage
EP3353462B1 (en) Maintenance system for a high pressure gas tank system
EP2803755B1 (en) Method for operating a high pressure electrolysis installation, high pressure electrolysis installation and hydrogen filling station with a high pressure electrolysis installation
DE102013018741A1 (en) Device unit and method for energy storage and recovery
DE102011117158A1 (en) Tank system for a motor vehicle and operating method therefor
DE102007040629A1 (en) Safety heat exchanger for the combination of a heat pump with a device of a public drinking water supply system
EP4078012A1 (en) Method for refuelling a vehicle
EP2536957B1 (en) Device for providing a supply pressure
DE102017204672A1 (en) Method and system for refueling a vehicle with hydrogen
EP3746725B1 (en) Production of liquefied natural gas in a gas accumulator
DE102011117982A1 (en) Inoperative power plant, particularly nuclear power plant for temporary storage of energy, has components for energy conversion, energy storage and power distribution
DE102015209870A1 (en) Process for refueling hydrogen vehicles and home-filling system therefor
DE102022104030A1 (en) Arrangement for stabilizing electricity grids with a cavern for gas storage
DE102017120256B4 (en) Traction energy hybrid charging arrangement
DE102014016491A1 (en) Energy storage and recovery system
DE102018216996A1 (en) Method and system for refueling a vehicle with hydrogen and hydrogen-powered vehicle
EP3105368A1 (en) Continuous supply of power to an electrolysis plant
DE102019007317A1 (en) Pressure power plant
EP1249883A2 (en) Device for uninterrupted power supply with a fuel cell
DE102018219373A1 (en) Electrolysis device and method for operating an electrolysis device
WO2018172074A1 (en) Fuel cell system, and method for operating a fuel cell system
EP1642062A1 (en) Storage system for cryogenic media

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151106

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161011