EP2679726B1 - Verfahren zur Herstellung von Rohrkonstruktionen sowie Bestückungsrahmen - Google Patents

Verfahren zur Herstellung von Rohrkonstruktionen sowie Bestückungsrahmen Download PDF

Info

Publication number
EP2679726B1
EP2679726B1 EP13173881.7A EP13173881A EP2679726B1 EP 2679726 B1 EP2679726 B1 EP 2679726B1 EP 13173881 A EP13173881 A EP 13173881A EP 2679726 B1 EP2679726 B1 EP 2679726B1
Authority
EP
European Patent Office
Prior art keywords
segments
assembly frame
mounting frame
receiving
receiving clamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13173881.7A
Other languages
English (en)
French (fr)
Other versions
EP2679726A3 (de
EP2679726A2 (de
Inventor
Emilio Reales Bertomeo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maritime Offshore Group GmbH
Original Assignee
Maritime Offshore Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maritime Offshore Group GmbH filed Critical Maritime Offshore Group GmbH
Publication of EP2679726A2 publication Critical patent/EP2679726A2/de
Publication of EP2679726A3 publication Critical patent/EP2679726A3/de
Application granted granted Critical
Publication of EP2679726B1 publication Critical patent/EP2679726B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts

Definitions

  • the invention relates to a method for producing tubular structures, in particular foundation structures for offshore wind turbines, as well as a mounting frame for receiving a plurality of pipe construction segments for a pipe construction, in particular a foundation structure for an offshore wind turbine.
  • wind turbines have not only been installed "onshore", ie on land, but increasingly offshore, for example in so-called offshore wind farms in the North and Baltic Seas.
  • the offshore wind turbines are exposed to extreme conditions. For example, they are anchored at a depth of 20 to 60 meters with the help of a foundation.
  • the foundation which can also be called a supporting structure, is exposed to high mechanical and chemical loads as well as ocean currents.
  • Various types of offshore foundations are known, such as monopile, jacket, tripod, tripile or bucket constructions.
  • the present invention primarily relates to a so-called jacket construction. This is a framework or pipe construction, preferably constructed of steel pipes.
  • Such a foundation structure is, for example, in DE 20 2011 101 599 U1 disclosed by the present applicant.
  • the founding structure disclosed therein has a plurality of, preferably six anchored in the seabed, in particular tubular piles and connectable to the piles, from a plurality of rods, in particular steel tubes, composite framework structure.
  • the individual bars of the framework structure are interconnected by means of various nodes, such as cross nodes, center nodes and foot nodes.
  • the individual nodes are also formed of rods or tubes, which are welded together at appropriate angles.
  • foundation structures are complicated and complex, not least because of the high weight and the large dimensions. Usually this is carried out in the context of workshop production by hand. For this simple scaffolds and supports for fixing the individual segments such as pipes, pipe sections and nodes, used to then weld them together.
  • the foundation structures are built up from bottom to top, d. h., It is initially started with the foot node, which form the connection to the Rammpfählen, and then the truss-like structure is gradually built up to the so-called transition peace (or head called), which connects to a wind turbine (WEA) represents.
  • transition peace or head called
  • Segments are understood to be individual elements of a pipe construction, in particular pipes, pipe sections, prefabricated nodes, which consist of a plurality of interconnected pipe stubs, prefabricated sections and the like.
  • the mounting frame forms according to the invention a kind of template for the pipe construction.
  • the arrangement preferably takes place from above, so that the individual segments are deposited on the assembly frame.
  • the individual segments can be aligned on the mounting frame arranged in a simple manner to each other. After the individual segments are aligned, they are welded.
  • the segments are arranged substantially horizontally aligned on the mounting frame.
  • a flat section of a lateral jacket surface of the jacket foundation structure is produced.
  • a jacket structure can be hexagonal, pentagonal, square, or triangular.
  • a side surface is a side wall of the substantially hexagonal, cone-shaped tube construction.
  • This flat section is referred to here as a conductor element. This is preferably lying, so aligned horizontally manufactured.
  • the individual segments can simply be laid from above on the assembly frame and aligned horizontally. If the individual segments are arranged in this way, workers can easily reach them without having to resort to complicated frameworks, chain hoists and hydraulic drives.
  • the method further comprises the step of: fixing the individual segments by means of receiving clamps on the mounting frame.
  • the individual segments are preferably fixed by means of receiving clips on the mounting frame.
  • the receiving clamps are preferably arranged on the mounting frame. This further facilitates the arranging and in particular the alignment.
  • the method further comprises the step of heating the segments to a common uniform temperature. More preferably, the step of heating is performed after the positioning and before the alignment of the segments. This is particularly advantageous, on the one hand to achieve a proportional length expansion of all segments before welding, so that the delay is significantly reduced after welding. Furthermore, the heating is advantageous to reduce excessive stresses caused by the welding or the local heating of the material during welding.
  • the alignment of individual segments takes place by moving the receiving clamps.
  • the segments do not have to be pushed back and forth inside the clamps, but the segments can first be fixed by means of the receiving clamps, and the receiving clamps are then moved.
  • the receiving clamps are preferably movable relative to each other and relative to a frame bed of the mounting frame.
  • the alignment of individual segments takes place by means of hydraulic elements.
  • Such hydraulic elements can cooperate, for example, with the receiving clamps to move them and so the align individual segments to each other. Hydraulic elements are preferred because they can apply raw forces and are very precisely adjustable.
  • Such desired positions can for example be recorded on a mounting plan or stored centrally in a computer and then adjusted to the measured positions.
  • the measuring of the positions takes place for example by means of inductive or optical measuring means.
  • the surveying and / or the alignment are carried out automatically, in particular computer-aided.
  • the individual segments are aligned until the measured positions correspond to the target positions.
  • This is preferably computerized.
  • automatically operable measuring means such as in particular inductive measuring lifter and optical measuring means are used.
  • CAM computer aided manufacturing
  • the method comprises the step of chamfering pipe ends of the segments before arranging a plurality of pipe construction segments on a mounting frame.
  • Chamfering is particularly advantageous when pipe ends are butt welded together.
  • the chamfers are preferably mounted on an outer circumferential surface of the pipe end, in particular at a 45 degree angle to a central axis of the pipe. This results in the butt joint V-shaped grooves into which a weld, such as a fillet weld, can be introduced.
  • the welding takes place by means of orbital welding and / or by means of welding robots. Occasionally it may also be preferred that individual Segments are also welded together by hand. This is particularly advantageous for unfavorable welding angles or oversized sheet thicknesses.
  • At least segments for forming a conductor element of an offshore foundation structure are particularly preferably arranged on an assembly frame.
  • a ladder element here (as mentioned above) side parts, consisting of knots and tubes, a polygonal jacket foundation structure understood.
  • the individual conductor elements can be prefabricated individually. These can then be further processed lying down.
  • the individual segments are welded together starting from a foot end of the conductor element. If the individual segments are arranged and aligned on the mounting frame, they are preferably welded together starting from the foot end. As a result, individual tolerances caused by welding can be more easily compensated and produce a dimensionally stable conductor element overall, which leads to a dimensionally stable offshore foundation structure overall.
  • the object mentioned at the outset is also achieved by a mounting frame for accommodating a plurality of pipe construction segments for a pipe construction, in particular a foundation structure for an offshore wind turbine, with a frame bed on which at least segments for forming a conductor element an offshore foundation structure are to be arranged.
  • the mounting frame has a plurality of receiving clamps for fixing arranged on the mounting frame segments.
  • the method according to one of the preferred embodiments described above for the production of pipe structures, in particular foundation structures for offshore wind turbines using the mounting frame is preferred.
  • the production time for producing a foundation structure is substantially reduced, and the dimensional accuracy is improved, so that the overall efficiency is increased.
  • Such a mounting frame enables industrial manufacture of offshore foundation structures constructed in a jacket construction.
  • the receiving clamps are arranged movable relative to each other and to the frame.
  • individual segments arranged on the assembly frame or fixed by means of the receiving clips can be aligned with one another.
  • the mounting frame is provided to be aligned substantially horizontally, so that the segments are arranged substantially horizontally aligned on this.
  • the foundation structure can be made lying down.
  • the individual welds are easily accessible by workers.
  • the individual segments can be easily stored on the mounting frame from above.
  • the mounting frame preferably has a heating device for the uniform and uniform heating of the segments arranged on the mounting frame.
  • the receiving clamps are movable by means of drives in the longitudinal and / or transverse direction of the axes of the axes of the tubes received in these.
  • the movement is preferably carried out by means of hydraulic elements.
  • the drives are remotely controlled, in particular by means of a central computer.
  • the mounting frame further comprises means for adjusting a height of the mounting brackets relative to the frame bed.
  • different pipe diameters can be aligned in such a way that the core axes of the pipes are in each case essentially coaxial with one another or lie in one plane or intersect.
  • the production is further simplified and shortened production throughput time.
  • the receiving clamps have a substantially U-shaped cross-section.
  • the opening of the receiving clips is oriented upward.
  • the segments can be easily inserted from above into the receiving clamps, for example by means of a crane, forklift or by hand, and fix by means of the receiving clamps. Alone by the effect of gravity, the segments are already absorbed to some degree in the receiving brackets and fixed in these and can be clamped in addition of these.
  • the mounting frame further comprises a measuring device for determining positions of the segments arranged on the mounting frame. This allows the segments to be better aligned.
  • the measuring device preferably interacts with a central computer, for example a computer-aided manufacturing system, so that alignment can also be carried out automatically after measuring the positions.
  • the offshore foundation structure 1 for wind turbines has according to FIG. 1 six anchored in the seabed piles 2 (not all are provided with reference numerals). With the piles 2 a truss structure 4 is connected.
  • the framework structure 4 is substantially conical or frusto-conical in shape and has a substantially hexagonal cross-section with respect to a longitudinal axis 5 of the framework structure 4. It is provided with its six lower corners 3a (only one provided with reference numerals) via corresponding foot nodes 20 (see FIG. 4 ) connected to the six piles 2.
  • the truss structure 4 has four sections 6, 8, 10, 12, which are arranged one above the other substantially coaxially with each other.
  • the truss structure 4 and the sections 6, 8, 10, 12 are formed from tubes 14 (not all provided with reference numerals) which are interconnected by means of nodes 20, 22, 24.
  • Each of the sections 6, 8, 10, 12 is formed substantially conical or frusto-conical and has a hexagonal cross section, which is formed according to a uniform hexagon.
  • a section 6, 8, 10, 12 thus has six lower corners 3a, 3b, 3c, 3d and six upper corners 3a, 3b, 3c, 3d (only one corner provided with reference numerals).
  • the lowermost portion 6 has six lower corners 3a (only one provided with reference numerals) and six upper corners 3b (only one provided with reference numerals).
  • the six upper corners 3b of the lowermost portion 6 simultaneously form the lower corners 3b of the second lowermost portion 4.
  • either foot nodes 20 or W nodes 24 are arranged according to this embodiment.
  • the foot node 20 and the W node 24 are each connected in such a way with substantially horizontally oriented tubes 14, that a substantially uniform hexagon is formed.
  • the upper corners 3a, 3b, 3c, 3d of each section 6, 8, 10, 12 are further connected to the lower corners 3a, 3b, 3c, 3d of each section 6, 8, 10, 12 via tubes 14 and X-nodes 22 spaced apart in the vertical direction.
  • the tubes 14 and the X-nodes 22 are arranged on the truss structure 4, that they lie substantially in a lateral surface of the truss structure 4.
  • the interior of the truss structure 4 is therefore hollow or free of pipes or struts.
  • the exact design of the individual nodes 20, 22, 24 is from the FIGS. 2 to 4 seen.
  • a transition piece 16 is arranged on the truss structure 4 for receiving a wind energy plant.
  • the transition piece 16 is connected to the upper node 26 of the uppermost portion 12.
  • a conductor element 30, 31, 32 consists of two lower foot nodes, adjoining tubes with an X node 22, above this two W nodes 24, which form the corner 3b, and in turn tubes 14 with an X node 22 up to the W-node 24, which form the corner 3 c, in turn, tubes 14 with an X-node 22 and arranged above W-node 24, which form the corner 3d, in order subsequently again via tubes 14 and an X-node 22 to the to connect the upper node 26.
  • Such a conductor element 30, 31, 32 is substantially planar.
  • FIGS. 2 to 6 For example, individual pipe construction segments 14, 20, 22, 24, 26 are shown as mounted on a mounting frame (see FIG FIGS. 7 and 8 ; described in more detail below) can be arranged to form a foundation structure 1.
  • an X-node 22 has a main tube 34, on which two further tube stubs 36, 38 are arranged by means of welds 40, 42 such that the longitudinal axes of the individual tubes 34, 36, 38 intersect.
  • the X-node 22 has four ports 44a, 44b, 44c, 44d for another four tubes 14 (see FIG Fig. 5 ) to connect with each other.
  • the X-node 22 is formed substantially X- or cross-shaped and includes between its legs two acute and two obtuse angles.
  • the ports 44a, 44b, 44c, 44d are oriented such that the associated tubes 14 (not shown) are all substantially in one plane.
  • a W-node also has a main tube 46 and two tube stubs 48, 50 welded to this main tube 46.
  • a W-node 24 is shown in FIG Fig. 3 four terminals 52a, 52b, 52c, 52d, wherein to the terminal 52a preferably another W-node 24 is arranged, the mirrored to the in Fig. 3 formed W-node is formed.
  • corners 3b, 3c, 3d form, as in Fig. 1 shown.
  • the main tube 46 is preferably curved, so that the corners 3b, 3c, 3d are rounded ("rounded nodes"). This leads to an advantageous flow of force within the foundation structure 1.
  • a foot node 20 is basically formed similar to a W node 24, but has no terminal 52d oriented downwardly (see FIG. Fig. 3 ), but is connected there with a pile 2.
  • a mounting frame 60 is shown in side and top views, respectively.
  • the mounting frame 60 essentially constitutes a template for a conductor element 30, 31, 32 of the foundation structure 1.
  • the mounting frame 60 has a frame bed 62, which is formed from a plurality of struts 64.
  • the struts 64 are arranged such that a template for the conductor element 30, 31, 32 results. Therefore, the mounting frame 60 has four sections, in Fig. 7 with 6 ', 8', 10 ', 12', each separated by straight struts 64, the templates for the ring elements 7 according to FIG Fig. 1 form and in Fig. 7 denoted by 7 '.
  • a plurality of receiving clips 66 are arranged, each of which in FIGS. 7 and 8 only two are designated.
  • the receiving clips 66 which according to Fig. 8 have a substantially U-shaped cross section, the individual segments 14, 20, 22, 24 can be fixed by clamping.
  • the receiving clamps 66 are arranged on the struts 64 in such a way that they can be moved in the direction of the axis of the individual segments and transversely thereto.
  • the receiving clamps 66 are connected to hydraulic elements, not shown, which are remotely controllable by means of a central computer, also not shown.
  • the mounting frame 60 is disposed on a base G lying, so that the arranging, aligning and welding of the segments 14, 20, 22, 24 to the conductor element 30, 31, 32 is horizontal, that is substantially horizontal.
  • the height H of the mounting frame 60 is selected such that personnel standing on this can work comfortably. For example, a height H of 80 cm to 1.40 m is preferred, particularly preferably about 1 meter.
  • Each of a head end 60a and a foot end 60b of the mounting frame 60 has tapered portions 61a, 61b extending obliquely away from the base G, so that the mounting frame tapers substantially wedge-shaped at the head end 60a and at the foot end 60b.
  • the mounting frame 60 is easier to transport overall and can also be tilted in certain areas.
  • the mounting frame 60 also has a heating device, not shown, as well as a measuring device, not shown, as described above.
  • Fig. 9 schematically shows the sequence of a method 100 for the production of pipe structures, in particular foundation structures for offshore wind turbines.
  • the material delivery ie, here the individual segments 14, 20, 22, 24 are delivered to the production plant.
  • a check 102 of the dimensions of these segments 14, 20, 22, 24 in order to determine whether they meet the dimensional requirements. If this is not the case, an optional length correction takes place in step 103.
  • chamfers are attached to the pipe mouths to bring in the butt joint a weld. Such chamfers are preferably mounted at an angle of 45 degrees to an outside of the tube. If the segments 14, 20, 22, 24 prepared in this way are not further processed directly, they are taken into a production warehouse in step 105.
  • the individual segments 14, 20, 22, 24 are then placed on the mounting frame 60 in step 106 to produce the tubular construction.
  • a crane or the like can be used.
  • these arranged segments 14, 20, 22, 24 are then fixed by means of the receiving clamps 66.
  • the arranged 106 and fixed 107 segments 14, 20, 22, 24 are then heated in step 108 to a uniform and uniform temperature. This means that all segments 14, 20, 22, 24 have substantially the same temperature.
  • a measurement 109 of the position of the parts is very advantageous since the proportional elongation of the individual segments 14, 20, 22, 24 can be taken into account.
  • the individual segments 14, 20, 22, 24 are aligned in step 110.
  • aligning is preferably also assumed from the foot. First, the foot nodes are aligned, then the tubes that are connected to them, and so on, up to the top nodes that are connected to the transition piece 16. Thus, a uniform distribution of tolerances is achieved and a total of a dimensionally stable conductor element 30, 31, 33 generated.
  • step 111 Following the alignment 110 of all segments 14, 20, 22, 24, they can be welded by orbital welding 111. If the use of orbital welding in step 111 is not possible, for example due to unfavorable wind conditions or oversize metal sheets, welding robots or welding can also be used manually in step 111.
  • step 111 the segments 14, 20, 22, 24 disposed on the mounting frame 60 are re-measured (step 112), and a correction of the gauge blocks (step 113) takes place if necessary.
  • step 112 the raw structure thus produced, namely the conductor element 30, 31, 32 thus produced is removed (step 114) in order to be connected to further conductor elements 30, 31, 32 in order to form the offshore foundation structure 1.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Rohrkonstruktionen, insbesondere Gründungsstrukturen für Offshore-Windenergieanlagen sowie einen Bestückungsrahmen zur Aufnahme von einer Mehrzahl an Rohrkonstruktions-Segmenten für eine Rohrkonstruktion, insbesondere eine Gründungsstruktur für eine Offshore-Windenergieanlage.
  • Seit einiger Zeit werden Windenergieanlagen nicht nur "Onshore", also an Land, sondern verstärkt auf dem Meer "Offshore" installiert, beispielsweise in sogenannten Offshore-Windparks in der Nord- und Ostsee. Die Offshore-Windenergieanlagen sind extremen Bedingungen ausgesetzt. Sie werden beispielsweise in 20 bis 60 Metern Meerestiefe mit Hilfe eines Fundaments verankert. Das Fundament, welches auch als Tragstruktur bezeichnet werden kann, ist hohen mechanischen und chemischen Belastungen sowie Meeresströmungen ausgesetzt. Verschiedene Typen von Offshore-Fundamenten sind bekannt, beispielsweise Monopile-, Jacket-, Tripod-, Tripile- oder Bucket-Konstruktionen. Die vorliegende Erfindung betrifft in erster Linie eine sogenannte Jacket-Konstruktion. Diese ist eine Stabwerk- oder Rohrkonstruktion, bevorzugt aus Stahlrohren errichtet.
  • Eine derartige Gründungsstruktur ist beispielsweise in DE 20 2011 101 599 U1 der hiesigen Anmelderin offenbart. Die dort offenbarte Gründungsstruktur weist mehrere, vorzugsweise sechs im Meeresgrund verankerbare, insbesondere rohrförmige Pfähle und eine mit den Pfählen verbindbare, aus einer Vielzahl von Stäben, insbesondere Stahlrohren, zusammengesetzte Stabwerkstruktur auf. Die einzelnen Stäbe der Stabwerkstruktur sind mittels verschiedener Knoten, wie beispielsweise Kreuzknoten, Mittelknoten und Fußknoten, miteinander verbunden. Die einzelnen Knoten sind ebenfalls aus Stäben bzw. Rohren gebildet, die in entsprechenden Winkeln miteinander verschweißt sind.
  • Die Herstellung derartiger Gründungsstrukturen ist nicht zuletzt aufgrund des hohen Gewichts und der großen Ausmaße aufwendig und komplex. Meist wird diese im Rahmen von Werkstattfertigung per Hand durchgeführt. Dazu werden einfache Baugerüste und Stützen zur Fixierung der einzelnen Segmente wie beispielsweise Rohre, Rohrabschnitte und Knoten, benutzt, um diese anschließend miteinander zu verschweißen. Üblicherweise werden dabei die Gründungsstrukturen von unten nach oben hin aufgebaut, d. h., es wird zunächst mit den Fußknoten begonnen, die die Verbindung zu den Rammpfählen bilden, und anschließend wird die fachwerkartige Struktur nach und nach in die Höhe aufgebaut bis zum sogenannten Transition Peace (oder auch Kopfstück genannt), welches die Verbindung zu einer Windenergieanlage (WEA) darstellt.
  • Darunter leidet nicht nur die Durchlaufzeit bei der Herstellung derartiger Gründungsstrukturen, sondern auch die Maßhaltigkeit, da die einzelnen Segmente von Hand zueinander ausgerichtet werden. Dabei kommen üblicherweise einfache Handmessstäbe, Theodoliten und Augenmaß zum Einsatz. Die endgültige Ausrichtung der einzelnen Segmente zueinander wird dann meist mittels Kettenzügen, handbetätigten Hydraulikkolben oder auch schweren Hämmern vorgenommen. In der Regel erfolgt das Verschweißen von Hand ohne den Einsatz automatisierter Schweißanlagen.
  • Es besteht also Bedarf daran, ein Verfahren anzugeben, mittels dem derartige Gründungsstrukturen effizienter herstellbar sind, insbesondere mittels dem die Herstellungsdauer verringert ist, Kosten gesenkt werden und die Maßhaltigkeit verbessert ist.
  • Die vorliegende Erfindung löst die Aufgabe bei einem Verfahren eingangs genannter Art mit den Schritten:
    • Anordnen einer Mehrzahl an Rohrkonstruktions-Segmenten auf einem Bestückungsrahmen;
    • Ausrichten einzelner Segmente zueinander;
    • Verschweißen der Segmente.
  • Unter Segmente werden einzelne Elemente einer Rohrkonstruktion verstanden, wie insbesondere Rohre, Rohrabschnitte, vorgefertigte Knoten, welche aus mehreren miteinander verbundenen Rohrstümpfen bestehen, vorgefertigte Abschnitte und dergleichen. Der Bestückungsrahmen bildet erfindungsgemäß eine Art Schablone für die Rohrkonstruktion. Auf dieser werden die einzelnen Rohrkonstruktions-Segmente angeordnet. Dies kann beispielsweise per Hand oder per Kran erfolgen. Vorzugsweise erfolgt das Anordnen von oben, so dass die einzelnen Segmente auf dem Bestückungsrahmen abgelegt werden. Die einzelnen Segmente lassen sich so auf dem Bestückungsrahmen angeordnet auf einfache Art und Weise zueinander ausrichten. Nachdem die einzelnen Segmente ausgerichtet sind, werden diese verschweißt. Indem die einzelnen Segmente an dem Bestückungsrahmen angeordnet werden, der eine Schablone für die Rohrkonstruktion bildet, ist die Herstellung der Gründungsstruktur wesentlich vereinfacht. Ein aufwendiges Neuausrichten der einzelnen Segmente für jede einzelne Gründungsstruktur wird so vermieden. Vielmehr kann standardisiert vorgegangen werden, und der Bestückungsrahmen bildet die Grundlage hierfür.
  • Bevorzugt werden die Segmente im Wesentlichen horizontal ausgerichtet auf dem Bestückungsrahmen angeordnet. Dadurch ist weiter die Fertigung wesentlich vereinfacht. Vorzugsweise wird zunächst ein flächiger Abschnitt einer seitlichen Mantelfläche der Jacket-Gründungsstruktur hergestellt. Eine Jacket-Struktur kann beispielsweise sechseckig, fünfeckig, viereckig oder dreieckig sein. Demnach ist eine solche Seitenfläche eine Seitenwand des im Wesentlichen sechseckig, kegelstromförmig ausgebildeten Rohrkonstrukts. Dieser flächige Abschnitt wird hier als Leiterelement bezeichnet. Dieses wird bevorzugt liegend, also horizontal ausgerichtet, hergestellt. So können die einzelnen Segmente einfach von oben auf den Bestückungsrahmen gelegt werden und liegend zueinander ausgerichtet werden. Sind die einzelnen Segmente derart angeordnet, können Arbeiter diese leicht erreichen, ohne auf komplizierte Gerüste, Kettenzüge und Hydraulikantriebe zurückgreifen zu müssen.
  • Vorzugsweise umfasst das Verfahren ferner den Schritt: Fixieren der einzelnen Segmente mittels Aufnahmeklammern auf dem Bestückungsrahmen. Die einzelnen Segmente werden bevorzugt mittels Aufnahmeklammern an dem Bestückungsrahmen fixiert. Die Aufnahmeklammern sind dazu an dem Bestückungsrahmen vorzugsweise angeordnet. Dies erleichtert weiter das Anordnen sowie insbesondere das Ausrichten.
  • Gemäß einer bevorzugten Weiterbildung umfasst das Verfahren ferner den Schritt: Erwärmen der Segmente auf eine gemeinsame einheitliche Temperatur. Besonders bevorzugt wird der Schritt des Erwärmens nach dem Anordnen bzw. Fixieren und vor dem Ausrichten der Segmente durchgeführt. Dies ist besonders vorteilhaft, um einerseits vor dem Schweißen eine proportionale Längenausdehnung sämtlicher Segmente zu erreichen, so dass der Verzug nach dem Schweißen wesentlich verringert ist. Ferner ist das Erwärmen vorteilhaft, um übermäßige Spannungen, die durch das Schweißen bzw. die lokale Erwärmung des Materials beim Schweißen hervorgerufen werden, zu verringern.
  • In der weiteren bevorzugten Ausführungsform des Verfahrens erfolgt das Ausrichten einzelner Segmente mittels Bewegen der Aufnahmeklammern. Dies ist besonders vorteilhaft, da so die Segmente nicht innerhalb der Klammern hin- und hergeschoben werden müssen, sondern die Segmente können zunächst mittels der Aufnahmeklammern fixiert werden, und die Aufnahmeklammern werden dann bewegt. Dazu sind die Aufnahmeklammern vorzugsweise relativ zueinander und relativ zu einem Rahmenbett des Bestückungsrahmens bewegbar. Besonders vorteilhaft ist es, wenn das Ausrichten einzelner Segmente mittels hydraulischer Elemente erfolgt. Derartige hydraulische Elemente können beispielsweise mit den Aufnahmeklammern zusammenwirken, um diese zu bewegen und so die einzelnen Segmente zueinander auszurichten. Hydraulische Elemente sind bevorzugt, da diese rohe Kräfte aufbringen können und sehr genau einstellbar sind.
  • In einer bevorzugten Weiterbildung umfasst das Verfahren ferner die Schritte:
    • Vermessen der Position der Segmente auf dem Bestückungsrahmen;
    • Vergleichen der gemessenen Positionen mit Soll-Positionen.
  • Derartige Soll-Positionen können beispielsweise auf einem Montageplan verzeichnet oder auch in einem Computer zentral gespeichert sein und dann mit den gemessenen Positionen abgeglichen werden. Das Vermessen der Positionen erfolgt beispielsweise mittels induktiver oder mittels optischer Messmittel.
  • Besonders bevorzugt erfolgen das Vermessen und/oder das Ausrichten automatisch, insbesondere computergestützt. Nachdem die Positionen der Segmente auf dem Bestückungsrahmen vermessen wurden und nachdem diese gemessenen Positionen mit den Soll-Positionen verglichen wurden, werden die einzelnen Segmente ausgerichtet, bis die gemessenen Positionen den Soll-Positionen entsprechen. Dies erfolgt vorzugsweise computergestützt. Dazu kommen vorzugsweise automatisiert betreibbare Messmittel wie insbesondere induktive Messwertheber und optische Messmittel zum Einsatz. Als Computer können beispielsweise bekannte Computer Aided Manufacturing (CAM)-Systeme zum Einsatz kommen.
  • Gemäß einer bevorzugten Weiterbildung umfasst das Verfahren den Schritt: Anfasen von Rohrenden der Segmente vor dem Anordnen einer Mehrzahl an Rohrkonstruktions-Segmenten auf einem Bestückungsrahmen. Das Anfasen ist besonders vorteilhaft, wenn Rohrenden stumpf miteinander verschweißt werden. Die Fasen werden vorzugsweise an einer äußeren Umfangsfläche des Rohrendes angebracht, insbesondere in einem 45-Grad-Winkel zu einer Zentralachse des Rohres. Dadurch bilden sich beim Stumpfstoß V-förmige Nuten, in die eine Schweißnaht, wie beispielsweise eine Kehlnaht, eingebracht werden kann.
  • Besonders bevorzugt erfolgt das Schweißen mittels Orbitalschweißen und/oder mittels Schweißrobotern. Vereinzelt kann es auch bevorzugt sein, dass einzelne Segmente auch per Hand miteinander verschweißt werden. Dies ist insbesondere vorteilhaft bei ungünstigen Schweißwinkeln oder übergroßen Blechstärken.
  • Besonders bevorzugt werden auf einem Bestückungsrahmen wenigstens Segmente zum Bilden eines Leiterelements einer Offshore-Gründungsstruktur angeordnet. Unter dem Leiterelement werden hier (wie oben bereits erwähnt) Seitenteile, bestehend aus Knoten und Rohren, einer polygonalen Jacket-Gründungsstruktur verstanden. So können die einzelnen Leiterelemente einzeln vorgefertigt werden. Anschließend können diese insbesondere liegend weiterverarbeitet werden.
  • Vorzugsweise werden die einzelnen Segmente beginnend von einem Fußende des Leiterelements aus miteinander verschweißt. Sind die einzelnen Segmente auf dem Bestückungsrahmen angeordnet und ausgerichtet, werden diese vorzugsweise vom Fußende ausgehend miteinander verschweißt. Dadurch lassen sich einzelne schweißbedingte Toleranzen leichter ausgleichen und insgesamt ein maßhaltiges Leiterelement erzeugen, was insgesamt zu einer maßhaltigen Offshore-Gründungsstruktur führt.
  • Gemäß einem weiteren Aspekt der Erfindung wird die eingangs genannte Aufgabe ferner gelöst durch einen Bestückungsrahmen zur Aufnahme von einer Mehrzahl an Rohrkonstruktions-Segmenten für eine Rohrkonstruktion, insbesondere eine Gründungsstruktur für eine Offshore-Windenergieanlage, mit einem Rahmenbett, auf dem wenigstens Segmente zum Bilden eines Leiterelements einer Offshore-Gründungsstruktur anzuordnen sind. Besonders bevorzugt weist der Bestückungsrahmen eine Mehrzahl an Aufnahmeklammern zum Fixieren von auf dem Bestückungsrahmen angeordneten Segmenten auf. Durch einen derartigen Bestückungsrahmen lassen sich Offshore-Gründungsstrukturen auf einfache Art und Weise herstellen. Besonders bevorzugt wird ein derartiger Bestückungsrahmen in einem Verfahren nach einer der oben beschriebenen bevorzugten Ausführungsformen zur Herstellung von Rohrkonstruktionen, insbesondere Gründungsstrukturen für Offshore-Windenergieanlagen, verwendet. Ferner ist es bevorzugt das Verfahren nach einer der oben beschriebenen bevorzugten Ausführungsformen zur Herstellung von Rohrkonstruktionen, insbesondere Gründungsstrukturen für Offshore-Windenergieanlagen unter Nutzung des Bestückungsrahmen auszuführen. Insgesamt ist durch einen derartigen Bestückungsrahmen die Produktionszeit zur Herstellung einer Gründungsstruktur wesentlich verringert, und die Maßhaltigkeit ist verbessert, so dass insgesamt die Effizienz erhöht ist. Ein derartiger Bestückungsrahmen befähigt zum industriellen Herstellen von Offshore-Gründungsstrukturen, welche in einer Jacket-Bauweise konstruiert sind.
  • Gemäß einer bevorzugten Ausführungsform des Bestückungsrahmens sind die Aufnahmeklammern relativ zueinander und zu dem Rahmen bewegbar angeordnet. Dadurch lassen sich einzelne auf dem Bestückungsrahmen angeordnete bzw. mittels der Aufnahmeklammern fixierte Segmente zueinander ausrichten.
  • In einer bevorzugten Weiterbildung ist der Bestückungsrahmen vorgesehen, im Wesentlich horizontal ausgerichtet zu werden, so dass die Segmente im Wesentlichen horizontal ausgerichtet auf diesem anordenbar sind. Dadurch kann die Gründungsstruktur liegend hergestellt werden. So sind die einzelnen Schweißpunkte auf einfache Art und Weise durch Arbeiter erreichbar. Ferner sind zum Anordnen der Segmente auf dem Bestückungsrahmen keine komplexen Hebezeuge erforderlich, vielmehr können die einzelnen Segmente einfach auf dem Bestückungsrahmen von oben abgelegt werden.
  • Vorzugsweise weist der Bestückungsrahmen eine Heizeinrichtung zum gleichmäßigen und einheitlichen Erwärmen der auf dem Bestückungsrahmen angeordneten Segmente auf. Ferner ist bevorzugt, dass die Aufnahmeklammern mittels Antrieben in Längs- und/oder Querrichtung der Seelenachsen der in diesen aufgenommenen Rohren bewegbar sind. Das Bewegen erfolgt vorzugsweise mittels hydraulischer Elemente. Besonders bevorzugt sind die Antriebe ferngesteuert, insbesondere mittels eines Zentralrechners. Dadurch lassen sich die einzelnen Segmente auf besonders einfache Art und Weise zueinander ausrichten. Die Ausrichtung erfolgt über die Fernsteuerung, so dass hier weniger Arbeitskraft in Form von Personen eingesetzt werden muss und die Effizienz insgesamt erhöht ist.
  • Vorzugsweise weist der Bestückungsrahmen ferner eine Einrichtung zum Verstellen einer Höhe der Aufnahmeklammern relativ zu dem Rahmenbett auf. So lassen sich auch auf einfache Art und Weise verschiedene Rohrdurchmesser derart ausrichten, dass die Seelenachsen der Rohre jeweils im Wesentlichen koaxial zueinander sind bzw. in einer Ebene liegen oder sich schneiden. Dadurch ist die Fertigung weiter vereinfacht und eine Produktionsdurchlaufzeit verkürzt.
  • Besonders bevorzugt weisen die Aufnahmeklammern einen im Wesentlichen U-förmigen Querschnitt auf. Vorzugsweise ist die Öffnung der Aufnahmeklammern nach oben ausgerichtet. Dadurch lassen sich die Segmente einfach von oben in die Aufnahmeklammern einsetzen, beispielsweise mittels eines Krans, Gabelstaplers oder händisch, und mittels der Aufnahmeklammern fixieren. Allein durch die Schwerkraftwirkung sind die Segmente schon in einem gewissen Grad in den Aufnahmeklammern aufgenommen und in diesen fixiert und können zusätzlich von diesen noch geklemmt werden.
  • In einer bevorzugten Weiterbildung weist der Bestückungsrahmen ferner eine Messeinrichtung zum Bestimmen von Positionen der auf dem Bestückungsrahmen angeordneten Segmente auf. Dadurch können die Segmente besser ausgerichtet werden. Vorzugsweise wirkt die Messeinrichtung mit einem Zentralcomputer, beispielsweise einem Computer Aided Manufacturing-System zusammen, so dass auch das Ausrichten nach dem Messen der Positionen automatisiert erfolgen kann.
  • Es soll verstanden werden, dass das Verfahren zur Herstellung von Rohrkonstruktionen sowie der Bestückungsrahmen zur Aufnahme einer Mehrzahl an Rohrkonstruktions-Segmenten gleiche und ähnliche Aspekte aufweisen, die insbesondere in den Unteransprüchen Niederschlag finden.
  • Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die beiliegenden Figuren näher erläutert. Hierbei zeigen:
  • Fig. 1
    eine Seitenansicht einer Offshore-Gründungsstruktur nach der Jacket-Bauweise;
    Fig. 2
    einen X-Knoten für die Offshore-Gründungsstruktur aus Fig. 1;
    Fig. 3
    einen W-Knoten für die Offshore-Gründungsstruktur aus Fig. 1;
    Fig. 4
    einen Fußknoten mit Fuß für eine Offshore-Gründungsstruktur aus Fig. 1;
    Fig. 5
    ein Rohr in einer Seitenansicht für eine Offshore-Gründungsstruktur aus Fig. 1;
    Fig. 6
    eine Seitenansicht eines Transition Piece für eine Offshore-Gründungsstruktur aus Fig. 1;
    Fig. 7
    eine Draufsicht auf einen Bestückungsrahmen;
    Fig. 8
    eine Seitenansicht des Bestückungsrahmens aus Fig. 7 und
    Fig. 9
    einen schematischen Ablauf eines Verfahrens zur Herstellung von Rohrkonstruktionen.
  • Die Offshore-Gründungsstruktur 1 für Windenergieanlagen (WEA) weist gemäß Figur 1 sechs im Meeresgrund verankerbare Pfähle 2 auf (nicht alle sind mit Bezugszeichen versehen). Mit den Pfählen 2 ist eine Fachwerkstruktur 4 verbunden. Die Fachwerkstruktur 4 ist im Wesentlichen konisch oder kegelstumpfförmig ausgebildet und hat einen im Wesentlichen sechseckigen Querschnitt bezogen auf eine Längsachse 5 der Fachwerkstruktur 4. Sie ist mit ihren sechs unteren Ecken 3a (nur eine mit Bezugszeichen versehen) über entsprechende Fußknoten 20 (siehe Figur 4) mit den sechs Pfählen 2 verbunden. Die Fachwerkstruktur 4 weist vier Abschnitte 6, 8, 10, 12 auf, die übereinander im Wesentlichen koaxial zueinander angeordnet sind. Die Fachwerkstruktur 4 sowie die Abschnitte 6, 8, 10, 12 sind aus Rohren 14 (nicht alle mit Bezugszeichen versehen) gebildet, welche mittels Knoten 20, 22, 24 miteinander verbunden sind.
  • Jeder der Abschnitte 6, 8, 10, 12 ist im Wesentlichen konisch bzw. kegelstumpfförmig gebildet und weist einen sechseckigen Querschnitt auf, der entsprechend eines gleichmäßigen Sechsecks gebildet ist. Ein Abschnitt 6, 8, 10, 12 weist demnach sechs untere Ecken 3a, 3b, 3c, 3d und sechs obere Ecken 3a, 3b, 3c, 3d auf (jeweils nur eine Ecke mit Bezugszeichen versehen). So weist beispielsweise der unterste Abschnitt 6 sechs untere Ecken 3a (nur eine mit Bezugszeichen versehen) und sechs obere Ecken 3b (nur eine mit Bezugszeichen versehen) auf. Die sechs oberen Ecken 3b des untersten Abschnitts 6 bilden gleichzeitig die unteren Ecken 3b des zweituntersten Abschnitts 4. An den Ecken 3a, 3b, 3c, 3d sind gemäß diesem Ausführungsbeispiel entweder Fußknoten 20 oder W-Knoten 24 angeordnet. Die Fußknoten 20 sowie die W-Knoten 24 sind dabei jeweils derart mit im Wesentlichen horizontal ausgerichteten Rohren 14 verbunden, dass ein im Wesentlichen gleichmäßiges Sechseck gebildet wird. Die oberen Ecken 3a, 3b, 3c, 3d eines jeden Abschnitts 6, 8, 10, 12 sind ferner mit den unteren Ecken 3a, 3b, 3c, 3d eines jeden Abschnitts 6, 8, 10, 12 über Rohre 14 und X-Knoten 22 in vertikaler Richtung beabstandet miteinander verbunden. Dabei sind die Rohre 14 sowie die X-Knoten 22 derart an der Fachwerkstruktur 4 angeordnet, dass sie im Wesentlichen in einer Mantelfläche der Fachwerkstruktur 4 liegen. Das Innere der Fachwerkstruktur 4 ist demnach hohl bzw. frei von Rohren oder Verstrebungen. Die genaue Gestaltung der einzelnen Knoten 20, 22, 24 ist aus den Figuren 2 bis 4 ersichtlich.
  • Am oberen Ende der Gründungsstruktur 1 ist an der Fachwerkstruktur 4 ein Transition Piece 16 für die Aufnahme einer Windenergieanlage angeordnet. Das Transition Piece 16 ist dazu mit den oberen Knoten 26 des obersten Abschnitts 12 verbunden.
  • Genauso wie die Gründungsstruktur 1 über die vier koaxial senkrecht übereinander angeordneten Abschnitte 6, 8, 10 und 12 beschrieben werden kann, kann diese über sechs ringförmig um die Zentralachse 5 herum angeordneten Leiterelemente 30, 31, 32 (in Fig. 1 nur drei gezeigt) beschrieben werden. Ein Leiterelement 30, 31, 32 besteht demnach aus zwei unteren Fußknoten, sich daran anschließenden Rohren mit einem X-Knoten 22, darüber zwei W-Knoten 24, die die Ecke 3b bilden, darüber wiederum Rohre 14 mit einem X-Knoten 22 bis zu den W-Knoten 24, die die Ecke 3c bilden, darüber wiederum Rohre 14 mit einem X-Knoten 22 und darüber angeordneten W-Knoten 24, welche die Ecke 3d bilden, um anschließend wiederum über Rohre 14 sowie einen X-Knoten 22 an die oberen Knoten 26 anzuschließen. Ein solches Leiterelement 30, 31, 32 ist im Wesentlichen flächenförmig.
  • In den Figuren 2 bis 6 sind einzelne Rohrkonstruktions-Segmente 14, 20, 22, 24, 26 dargestellt, wie sie auf einem Bestückungsrahmen (siehe Fig. 7 und 8; weiter unten detaillierter beschrieben) anordenbar sind, um eine Gründungsstruktur 1 zu bilden.
  • Gemäß Fig. 2 weist ein X-Knoten 22 ein Hauptrohr 34 auf, an dem zwei weitere Rohrstümpfe 36, 38 mittels Schweißnähten 40, 42 derart angeordnet sind, dass sich die Längsachsen der einzelnen Rohre 34, 36, 38 jeweils schneiden. Dadurch weist der X-Knoten 22 vier Anschlüsse 44a, 44b, 44c, 44d auf, um weitere vier Rohre 14 (siehe Fig. 5) miteinander zu verbinden. Der X-Knoten 22 ist im Wesentlichen X- oder kreuzförmig gebildet und schließt zwischen seinen Schenkeln je zwei spitze und zwei stumpfe Winkel ein. Die Anschlüsse 44a, 44b, 44c, 44d sind derart ausgerichtet, dass die damit verbundenen Rohre 14 (diese werden nicht gezeigt) sämtlich im Wesentlich in einer Ebene liegen.
  • Gemäß Fig. 3 weist ein W-Knoten ebenfalls ein Hauptrohr 46 auf, sowie zwei an diesem Hauptrohr 46 angeschweißte Rohrstümpfe 48, 50. Ein W-Knoten 24 weist gemäß Fig. 3 vier Anschlüsse 52a, 52b, 52c, 52d auf, wobei an den Anschluss 52a vorzugsweise ein weiterer W-Knoten 24 angeordnet wird, der spiegelverkehrt zu dem in Fig. 3 gezeigten W-Knoten ausgebildet ist. So lassen sich dann Ecken 3b, 3c, 3d bilden, wie in Fig. 1 gezeigt. Das Hauptrohr 46 ist vorzugsweise gekrümmt ausgebildet, so dass die Ecken 3b, 3c, 3d abgerundet sind ("rounded nodes"). Dies führt zu einem vorteilhaften Kraftfluss innerhalb der Gründungsstruktur 1.
  • Gemäß Fig. 4 ist ein Fußknoten 20 grundsätzlich ähnlich zu einem W-Knoten 24 gebildet, er weist jedoch nach unten ausgerichtet keinen Anschluss 52d auf (vgl. Fig. 3), sondern ist dort mit einem Pfahl 2 verbunden.
  • In den Figuren 7 und 8 ist ein Bestückungsrahmen 60 jeweils in einer Seiten- und einer Draufsicht gezeigt. Wie insbesondere aus Fig. 7 ersichtlich ist, stellt der Bestückungsrahmen 60 im Wesentlichen eine Schablone für ein Leiterelement 30, 31, 32 der Gründungsstruktur 1 dar. Der Bestückungsrahmen 60 weist ein Rahmenbett 62 auf, welches aus einer Mehrzahl von Streben 64 gebildet ist. Die Streben 64 sind derart angeordnet, dass sich eine Schablone für das Leiterelement 30, 31, 32 ergibt. Daher weist auch der Bestückungsrahmen 60 vier Abschnitte, in Fig. 7 mit 6', 8', 10', 12' bezeichnet, auf, die jeweils durch gerade Streben 64 getrennt sind, die Schablonen für die Ringelemente 7 gemäß Fig. 1 bilden und in Fig. 7 mit 7' bezeichnet sind.
  • Auf diesen Streben 64 sind mehrere Aufnahmeklammern 66 angeordnet, von denen jeweils in Fig. 7 und 8 nur zwei bezeichnet sind. Mittels den Aufnahmeklammern 66, die gemäß Fig. 8 einen im Wesentlichen U-förmigen Querschnitt haben, können die einzelnen Segmente 14, 20, 22, 24 klemmend fixiert werden. Die Aufnahmeklammern 66 sind derart an den Streben 64 angeordnet, dass diese in Richtung der Seelenachse der einzelnen Segmente bewegbar sind sowie quer zu diesen. Dazu sind die Aufnahmeklammern 66 mit nicht gezeigten Hydraulikelementen verbunden, die mittels eines ebenfalls nicht gezeigten Zentralcomputers fernsteuerbar sind.
  • Wie aus Fig. 8 ersichtlich, ist der Bestückungsrahmen 60 auf einem Grund G liegend angeordnet, so dass das Anordnen, Ausrichten und Verschweißen der Segmente 14, 20, 22, 24 zu dem Leiterelement 30, 31, 32 horizontal, also im Wesentlichen liegend erfolgt. Die Höhe H des Bestückungsrahmens 60 ist derart gewählt, dass Personal an diesem stehend bequem arbeiten kann. Beispielsweise ist eine Höhe H von 80 cm bis 1,40 m bevorzugt, besonders bevorzugt ca. 1 Meter. Jeweils an einem Kopfende 60a und einem Fußende 60b des Bestückungsrahmens 60 weist dieser abgeschrägte Abschnitte 61a, 61b auf, die sich schräg vom Grund G weg erstrecken, so dass der Bestückungsrahmen an dem Kopfende 60a und an dem Fußende 60b im Wesentlichen keilförmig zuläuft. Dadurch ist der Bestückungsrahmen 60 insgesamt einfacher zu transportieren und kann auch in gewissen Bereichen gekippt werden.
  • Der Bestückungsrahmen 60 verfügt ferner über eine nicht gezeigte Heizeinrichtung sowie über eine nicht gezeigt Messeinrichtung, wie diese weiter oben beschrieben sind.
  • Fig. 9 zeigt schematisch den Ablauf eines Verfahrens 100 zur Herstellung von Rohrkonstruktionen, insbesondere Gründungsstrukturen für Offshore-Windenergieanlagen. Zunächst erfolgt in einem ersten Schritt 101 die Materialanlieferung, d. h., hier werden die einzelnen Segmente 14, 20, 22, 24 zur Produktionsstäte angeliefert. Anschließend erfolgt eine Kontrolle 102 der Maße dieser Segmente 14, 20, 22, 24, um festzustellen, ob diese den Maßanforderungen genügen. Ist dies nicht der Fall, erfolgt in Schritt 103 eine optionale Längenkorrektur. In Schritt 104 werden Fasen an den Rohrmündungen angebracht, um im Stumpfstoß eine Schweißnaht einbringen zu können. Solche Fasen sind vorzugsweise im 45-Grad-Winkel an einer Außenseite des Rohres angebracht. Werden die so vorbereiteten Segmente 14, 20, 22, 24 nicht direkt weiterverarbeitet, werden sie in Schritt 105 in ein Produktionslager aufgenommen.
  • Nach diesen vorbereitenden Schritten werden dann zum Erzeugen der Rohrkonstruktion die einzelnen Segmente 14, 20, 22, 24 in Schritt 106 auf dem Bestückungsrahmen 60 angeordnet. Dazu kann beispielsweise ein Kran oder dergleichen benutzt werden. Auch können einzelne Knoten 20, 22, 24 beispielsweise per Hand eingelegt werden, solange diese noch kein Gewicht erreicht haben, welches den Einsatz eines Krans erfordert. In Schritt 107 werden diese angeordneten Segmente 14, 20, 22, 24 dann mittels der Aufnahmeklammern 66 fixiert. Zum besseren Verschweißen werden die angeordneten 106 und fixierten 107 Segmente 14, 20, 22, 24 in Schritt 108 dann auf eine einheitliche und gleichmäßige Temperatur erwärmt. Dies bedeutet, dass alle Segmente 14, 20, 22, 24 im Wesentlichen die gleiche Temperatur haben. Anschließend erfolgt ein Vermessen 109 der Position der Teile. Das Vermessen 109 nach dem Erwärmen 108 durchzuführen, ist sehr vorteilhaft, da so die proportionale Längendehnung der einzelnen Segmente 14, 20, 22, 24 mit berücksichtigt werden können.
  • Nachdem die einzelnen Segmente 14, 20, 22, 24 vermessen wurden und das Ergebnis mit den Soll-Positionen abgeglichen wurde, können die einzelnen Segmente 14, 20, 22, 24 in Schritt 110 ausgerichtet werden. Beim Ausrichten wird vorzugsweise ebenfalls vom Fußende ausgegangen. Zunächst werden die Fußknoten ausgerichtet, anschließend die Rohre, die mit diesen verbunden sind, und so fort, bis zu den oberen Knoten, die an das Transition Piece 16 angeschlossen werden. So wird eine gleichmäßige Verteilung der Toleranzen erreicht und insgesamt ein maßhaltiges Leiterelement 30, 31, 33 erzeugt.
  • Im Anschluss an das Ausrichten 110 sämtlicher Segmente 14, 20, 22, 24, können diese mittels Orbitalschweißen 111 verschweißt werden. Ist der Einsatz von Orbitalschweißen im Schritt 111 nicht möglich, beispielsweise aufgrund ungünstiger Windverhältnisse oder überdicker Bleche, können in Schritt 111 auch Schweißroboter oder Schweißen von Hand eingesetzt werden.
  • Folgend an den Schritt 111 werden die Segmente 14, 20, 22, 24, welche auf dem Bestückungsrahmen 60 angeordnet sind, erneut vermessen (Schritt 112), und eine Korrektur der Endmaße (Schritt 113) findet erforderlichenfalls statt. Anschließend wird die so erzeugte Rohkonstruktion, nämlich das so erzeugte Leiterelement 30, 31, 32 abtransportiert (Schritt 114), um mit weiteren Leiterelementen 30, 31, 32 verbunden zu werden, um die Offshore-Gründungsstruktur 1 zu bilden.

Claims (15)

  1. Verfahren (100) zur Herstellung von Rohrkonstruktionen, insbesondere Gründungstrukturen (1) für Offshore-Windenergieanlagen, mit den Schritten:
    - Anordnen (106) einer Mehrzahl an Rohrkonstruktions-Segmenten (14, 20, 22, 24) auf einem Bestückungsrahmen (60);
    - Ausrichten (110) der einzelnen Segmente (14, 20, 22, 24) zueinander;
    - Verschweißen (111) der Segmente (14, 20, 22, 24).
  2. Verfahren nach Anspruch 1,
    gekennzeichnet durch den Schritt:
    - Fixieren (107) der einzelnen Segmente (14, 20, 22, 24) mittels Aufnahmeklammern (66) auf dem Bestückungsrahmen (60),
    wobei vorzugsweise die Segmente (14, 20, 22, 24) im Wesentlichen horizontal ausgerichtet auf dem Bestückungsrahmen (60) angeordnet werden, und/oder das Ausrichten (110) der einzelnen Segmente (14, 20, 22, 24) mittels Bewegen der Aufnahmeklammern (66) erfolgt, vorzugsweise das Ausrichten (110) der einzelnen Segmente (14, 20, 22, 24) mittels hydraulischer Elemente erfolgt.
  3. Verfahren nach einem der Ansprüche 1 bis 2,
    gekennzeichnet durch den Schritt:
    - Erwärmen (108) der Segmente (14, 20, 22, 24) auf eine gemeinsame einheitliche Temperatur,
    wobei vorzugsweise der Schritt des Erwärmens (108) nach dem Fixieren (107) und vor dem Ausrichten (110) der Segmente (14, 20, 22, 24) erfolgt.
  4. Verfahren nach einem der vorstehenden Ansprüche,
    gekennzeichnet durch den Schritt:
    - Vermessen (109) der Position der Segmente (14, 20, 22, 24) auf dem Bestückungsrahmen (60);
    - Vergleichen der gemessenen Positionen mit Sollpositionen,
    wobei vorzugsweise das Ausrichten (110) und/oder das Vermessen (109) automatisch, insbesondere computergestützt, erfolgt.
  5. Verfahren nach einem der vorstehenden Ansprüche,
    gekennzeichnet durch den Schritt:
    - Anfasen (104) von Rohrenden der Segmente (14, 20, 22, 24) vor dem Anordnen (106) einer Mehrzahl an Rohrkonstruktions-Segmenten (14, 20, 22, 24) auf einem Bestückungsrahmen (60).
  6. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass das Schweißen (111) mittels Orbitalschweißen und/oder mittels Schweißrobotern erfolgt.
  7. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass auf dem Bestückungsrahmen (60) wenigstens Segmente (14, 20, 22, 24) zum Bilden eines Leiterelements (30, 31, 32) einer Offshore-Gründungsstruktur (1) angeordnet werden,
    wobei vorzugsweise beginnend von einem Fußende des Leiterelements (30, 31, 32) aus die einzelnen Segmente (14, 20, 22, 24) miteinander verschweißt (111) werden.
  8. Bestückungsrahmen (60) zur Aufnahme von einer Mehrzahl an Rohrkonstruktions-Segmenten (14, 20, 22, 24) für eine Rohrkonstruktion, insbesondere eine Gründungsstruktur (1) für eine Offshore-Windenergieanlage, mit einem Rahmenbett (62), auf dem wenigstens Segmente (14, 20, 22, 24) zum Bilden eines Leiterelements (30, 31, 32) einer Offshore-Gründungsstruktur (1) anordenbar sind.
  9. Bestückungsrahmen nach Anspruch 8,
    gekennzeichnet durch eine Mehrzahl an Aufnahmeklammern (66) zum Fixieren von auf dem Bestückungsrahmen (60) angeordneten Segmenten (14, 20, 22, 24),
    wobei vorzugsweise die Aufnahmeklammern (66) relativ zueinander und zu dem Rahmenbett (62) bewegbar angeordnet sind,
    und/oder der Bestückungsrahmen (60) vorgesehen ist im Wesentlichen horizontal ausgerichtet zu werden, sodass die Segmente (14, 20, 22, 24) im Wesentlichen horizontal ausgerichtet auf diesem anordenbar sind.
  10. Bestückungsrahmen nach Anspruch 9,
    gekennzeichnet durch eine Heizeinrichtung zum gleichmäßigen und einheitlichen Erwärmen der auf dem Bestückungsrahmen (60) angeordneten Segmente (14, 20, 22, 24).
  11. Bestückungsrahmen nach einem der Ansprüche 9 bis 10,
    dadurch gekennzeichnet, dass die die Aufnahmeklammern (66) mittels Antrieben in Längs- und/oder Querrichtung der Seelenachsen der in diesen aufgenommenen Rohre (14) bewegbar sind,
    wobei vorzugsweise die Antriebe ferngesteuert sind, insbesondere mittels eines Zentralrechners ferngesteuert sind.
  12. Bestückungsrahmen nach einem der Ansprüche 9 bis 11,
    gekennzeichnet durch eine Einrichtung zum Verstellen einer Höhe der Aufnahmeklammern (66) relativ zu dem Rahmenbett (62).
  13. Bestückungsrahmen nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet, dass die die Aufnahmeklammern (66) einen im Wesentlichen U-förmigen Querschnitt aufweisen.
  14. Bestückungsrahmen nach Anspruch 13,
    dadurch gekennzeichnet, dass die Öffnungen der Aufnahmeklammern (66) nach oben ausgerichtet sind.
  15. Bestückungsrahmen nach einem der Ansprüche 9 bis 14,
    gekennzeichnet durch eine Messeinrichtung zum Bestimmen von Positionen der auf dem Bestückungsrahmen (60) angeordneten Segmente (14, 20, 22, 24).
EP13173881.7A 2012-06-26 2013-06-26 Verfahren zur Herstellung von Rohrkonstruktionen sowie Bestückungsrahmen Active EP2679726B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012210904.8A DE102012210904A1 (de) 2012-06-26 2012-06-26 Verfahren zur Herstellung von Rohrkonstruktionen sowie Bestückungsrahmen

Publications (3)

Publication Number Publication Date
EP2679726A2 EP2679726A2 (de) 2014-01-01
EP2679726A3 EP2679726A3 (de) 2015-06-03
EP2679726B1 true EP2679726B1 (de) 2016-08-10

Family

ID=48874763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13173881.7A Active EP2679726B1 (de) 2012-06-26 2013-06-26 Verfahren zur Herstellung von Rohrkonstruktionen sowie Bestückungsrahmen

Country Status (4)

Country Link
EP (1) EP2679726B1 (de)
DE (1) DE102012210904A1 (de)
DK (1) DK2679726T3 (de)
ES (1) ES2587677T3 (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2908472B2 (ja) * 1989-07-01 1999-06-21 株式会社ゼプロチュービング パイプに接続金具を溶接する自動溶接機
DE202011101599U1 (de) 2011-05-12 2011-09-23 Emilio Reales Bertomeo Offshore-Fundament für Windenergieanlagen

Also Published As

Publication number Publication date
EP2679726A3 (de) 2015-06-03
DK2679726T3 (da) 2016-12-05
EP2679726A2 (de) 2014-01-01
ES2587677T3 (es) 2016-10-26
DE102012210904A1 (de) 2014-01-02

Similar Documents

Publication Publication Date Title
EP2522780B1 (de) Offshore-Fundament für Windenergieanlagen
DE102008055607A1 (de) Verfahren zum Errichten eines segmentierten Turms aus Spannbeton für Windkraftanlagen und Turm für Windkraftanlagen
EP2828436B1 (de) Offshore-fundament für windenergieanlagen mit bogenförmig gekrümmten knoten
EP2072685A1 (de) Gründungsstruktur für Offshore-Bauwerke, insbesondere für Offshore-Windenergieanlagen, und Verfahren zur Herstellung derselben
EP3208405B1 (de) Vorrichtung und verfahren zur errichtung von turmartigen bauwerken aus fertigteilelementen
EP3208404B1 (de) Verfahren und vorrichtung zur montage eines rohrturmsegments
EP2828523B1 (de) Offshore-tragstruktur für windenergieanlagen, sowie stabwerkelement für selbige
EP3042010B1 (de) Verfahren zur herstellung eines jacket für eine windkraftanlage
DE102009014926A1 (de) Turm
DE102012007425A1 (de) Gitterturm für Windenergieanlagen und Verfahren zur Errichtung eines solchen Gitterturmes
EP2692967A2 (de) Verfahren zum Errichten eines Turmes aus Stahl einer Windenergieanlage und Turm aus Stahl für eine Windenergieanlage
DE3146521A1 (de) Verfahren und vorrichtung zum erstellen eines geschichteten behaelters an ort und stelle
EP2679726B1 (de) Verfahren zur Herstellung von Rohrkonstruktionen sowie Bestückungsrahmen
EP2430245B1 (de) Verfahren zur bildung eines fundaments
EP3056611B1 (de) Kopplungsvorrichtung zum verbinden einer tragstruktur mit einem fundament im meeresboden
EP3704332B1 (de) Verfahren zum herstellen einer teilsektion einer mehrteiligen turmsektion
DE2061544B2 (de) Verfahren zum errichten mehrstoeckiger gebaeude unter verwendung von vorgefertigten raumzellen
EP3704333B1 (de) Verfahren zum errichten eines turms mit einer mehrteiligen turmsektion
DE102017115141A1 (de) Verfahren zur Herstellung einer Betonschalung für ein Turmsegment und Verfahren zur Herstellung eines Turmsegments für einen Turm einer Windenergieanlage
EP3724425B1 (de) Verfahren zum herstellen einer teilsektion einer mehrteiligen turmsektion eines turms und teilsektion einer mehrteiligen turmsektion eines turms
DE202012009679U1 (de) Vorrichtung zur Herstellung von Offshore-Fundamenten
DE102010008152A1 (de) Verfahren zur Herstellung einer Gründungsstruktur für ein Offshore-Bauwerk
EP0670400A1 (de) Verfahren zur Herstellung von Stützen oder Säulen bei der Erstellung von Gebäuden und dergleichen sowie aus einer rohrförmigen Schalungsform bestehenden Vorrichtung zur Herstellung von Stützen oder Säulen
DE2253803A1 (de) Tragkonstruktion fuer oelfoerderanlagen und verfahren zu ihrer herstellung
DE102013009024A1 (de) Tragstruktur eines Bauwerks, insbesondere einer Offshore-Windenergieanlage und Verfahren zur Herstellung einer solchen Tragstruktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 27/42 20060101AFI20150428BHEP

17P Request for examination filed

Effective date: 20151203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160229

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 819194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004010

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2587677

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161026

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20161128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004010

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170626

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170626

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130626

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 819194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013004010

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004010

Country of ref document: DE

Owner name: THYSSENKRUPP STEEL EUROPE AG, DE

Free format text: FORMER OWNER: MARITIME OFFSHORE GROUP GMBH, 28355 BREMEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 11

Ref country code: DK

Payment date: 20230622

Year of fee payment: 11

Ref country code: DE

Payment date: 20230620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 11

Ref country code: ES

Payment date: 20230829

Year of fee payment: 11