EP2673842B1 - Waveguide antenna having annular slots - Google Patents
Waveguide antenna having annular slots Download PDFInfo
- Publication number
- EP2673842B1 EP2673842B1 EP12708914.2A EP12708914A EP2673842B1 EP 2673842 B1 EP2673842 B1 EP 2673842B1 EP 12708914 A EP12708914 A EP 12708914A EP 2673842 B1 EP2673842 B1 EP 2673842B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slot
- guide
- antennal
- annular
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005672 electromagnetic field Effects 0.000 claims 1
- 230000010287 polarization Effects 0.000 description 54
- 230000005855 radiation Effects 0.000 description 38
- 241000985719 Antennariidae Species 0.000 description 30
- 238000005388 cross polarization Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/18—Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/106—Microstrip slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0037—Particular feeding systems linear waveguide fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0037—Particular feeding systems linear waveguide fed arrays
- H01Q21/0043—Slotted waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/068—Two dimensional planar arrays using parallel coplanar travelling wave or leaky wave aerial units
Definitions
- the present invention relates to the field of telecommunications. Within this field, the invention relates more particularly to antennas intended to receive or transmit a telecommunication signal.
- the antenna can be used in a variety of systems. Its design based on the technique of slot guides allows use in embedded systems, that is to say on a typically mobile support such as a train or an aircraft, for which the constraints of size, weight, consumption can be extremely severe.
- the antenna is more particularly suitable for so-called “high-speed” or even “very high-speed” links, for example for satellite transmissions in the Ka band which extends in transmission from 27.5 to 31 GHz and in reception of 18.3 at 18.8 GHz and 19.7 at 20.2 GHz.
- the antenna consists of base antenna elements associated in one dimension to form a slotted guide.
- the antenna may be composed of several slot guides associated to form a network.
- Figure la shows schematically a waveguide basic antenna element with a rectangular slot cut on one of the faces, generally the so-called upper face which is oriented in the direction of the element in communication with the antenna.
- the slot is excited by the propagation of the field in the waveguide.
- the basic antenna elements are associated in series along an axis to form a slotted guide as shown figure 1b , then the slot guides are associated in parallel to obtain an antenna as shown in FIG. figure 1c .
- Such an association to form a network is described in article [2].
- the arrangement of the slots as represented on the Figures 1a-1c gives rise to a radiation having a linear polarization.
- a misalignment can be obtained mechanically by means of a mechanical movement of the antenna, controlled manually or by a motor.
- Congestion constraints for example for systems embedded (installation of an antenna on a train, an airplane %) prohibit any mechanism of mechanical misalignment. Such misalignment must therefore be obtained electronically.
- Article [5] describes how to control the radiation of an SIW antenna and how to detach the beam in the plane of networking by feeding in parallel each slot guide and controlling the phase of each feed point slotted guides.
- the curves of the Figure 2c represent the radiation in site of this type of double slot guides corresponding to the Figure 2a or 2b for different planes offset by an angle Phi (0 °, 45 °, 90 °, 135 °) relative to the axis of the guide, this angle Phi is said bearing angle.
- the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface. DirLHCP lines represent cross-polarized (left) radiation. An adjustment of the dimensions, positions and inclinations of the slots provides a low level of cross polarization in the direction of the maximum radiation.
- the level of cross polarization rises rapidly and returns to the level of the main polarization, at around 40 °, according to the illustration of the Figure 2c .
- This rise is mainly due to the geometry of the slits which individually generate dissymmetrical E and H planes which, after recombination in amplitude and in phase, create a large level of circular polarization crossed out of the axis.
- the invention proposes an antenna element with a slotted waveguide which is an alternative to known antennal elements, of equivalent or even more efficient performance for certain configurations.
- the subject of the invention is an antenna element with a slotted waveguide comprising at least one conducting surface provided with at least one annular slot which delimits at its central part a conducting zone and which electrically isolates this zone from the rest of the the face.
- Such antennal element is typically obtained by means of SIW (Substrate Integrated Waveguide) technology.
- SIW Substrate Integrated Waveguide
- This technology makes it possible to print the slots by printing.
- the annular shape of the slot makes it possible to obtain equivalent performances, even more interesting in certain configurations than the rectangular shape, while simplifying the manufacturing process, in particular in cases where a circular polarization must be obtained.
- the printing mask has only one annular slot while according to the prior art at least two rectangular slots are required with positioning constraints of one with respect to the other.
- the antenna element is such that the annular slot is offset with respect to the axis of the slot guide.
- a slotted guide has a shape that is generally close to that of a parallelepiped, therefore characterized by at least one length.
- the length is the dimension in the axis of the parallelepiped.
- the offset of the annular slot with respect to the axis advantageously makes it possible to obtain a circular polarization.
- only the offset of the print mask with respect to the axis is necessary to obtain a circular polarization.
- the manufacture of a slit-fence antennal element which is of rectilinear polarization or circular polarization requires a different polarization-specific mask. Indeed, to obtain a circular polarization according to the prior art a double rectangular slot is necessary with a particular arrangement of the double slot.
- the double slot consists of a cross centered relative to the axis of the guide with two weakly asymmetrical arms, or the double slot consists of a cross offset relative to the guide axis, or the double slot consists of two slots offset along the length and width of the guide and inclined by approximately 45 °.
- the same mask makes it possible to obtain an antenna element according to the invention with either a linear polarization or a circular polarization, and this only by shifting the mask on the face of the substrate on which the slot must be printed.
- the antennal element according to the invention generates radiation in circular polarization with an isolation between the main and crossed polarizations for angles greater than 40 °.
- the antennal element is such that the distance between the inner and outer edges of the annular slot comprises along the perimeter of the slot significant variations which delimit out-breaks.
- the offsets typically have the form of notches in the case of an annular slot of circular shape or the shape of triangles in the case of a square-shaped annular slot. These offsets are made on the central zone along the inner edge of the slot or on the outer portion along the outer edge of the slot, which part belongs to the rest of the face. These releases act as disrupters that alter the symmetry of the slot. Thus, even if the slot is wedged on the axis of the slotted guide, the offsets make it possible to obtain a circular polarization. If the slot is offset with respect to the axis of the slot guide, the offsets allow to modify the radiation and limit the frequency band with respect to the same slot without disconnection.
- the antenna element is such that the distance between the inner and outer edges of the annular slot is variable along the periphery of the slot.
- the variation in the width of the annular slot may result for example because the inner and outer edges of the slot are not concentric. This asymmetry advantageously makes it possible to modify the radiation of the slot relative to the same element with an invariable distance between the two edges of the slot.
- This latter embodiment may or may not be combined with a previous mode to define another embodiment.
- the antenna element comprises another annular slot surrounding the annular slot.
- annular slot whose central portion includes the first annular slot provides a two-band antennal element.
- the antennal element is said to have double annular slits.
- the two annular slots are typically centered on the same central point.
- This latter embodiment may or may not be combined with a previous mode to define another embodiment.
- the invention further relates to a slotted guide comprising a plurality of antenna elements conforming to the preceding object, arranged between them in a linear array.
- the parallelepipedal shape of the antenna elements makes it possible to easily produce a linear network by placing them in series. Serialization makes it possible to obtain a network with performances superior to that of a single antenna element.
- the invention further relates to a plane antenna comprising a plurality of slotted guides in accordance with the preceding object, arranged between them in a two-dimensional network.
- An antenna according to the invention combines a small footprint and compatible radiation performance of use with misalignment which requires a large difference between the main polarization and cross polarization beyond the main axis.
- the planar antenna comprises a means for feeding the slotted guides in parallel arranged to control the phases between the supply signals of the slot guides.
- the figure 3a is a schematic representation of an embodiment of an antenna element ElA according to the invention.
- the antenna element ElA slotted guide according to the invention comprises at least one conductive face Fs provided with at least one annular slot Fan.
- An annular slot within the meaning of the invention is a slot which has the particularity of delimiting a conducting central zone Zc and of isolating it electrically from the remainder of the upper face Fs conducting.
- the annular slot is delimited by an inner edge and an outer edge separated by a distance d.
- the depth of the slot is at least that of the thickness of the metallized layer of the upper face Fs to electrically isolate the central zone Zc from the remainder of the face Fs.
- the curves of the figure 3b represent the radiation in site of this antennal element corresponding to the figure 3a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main linear polarization radiation pattern (following x) corresponding to the DirL lines is characterized by a maximum in the direction perpendicular to the slit surface.
- the lines DirR represent the radiation in crossed linear polarization (following y).
- the figure 4a is a schematic representation of an embodiment of an antenna element ElA according to the invention in which the annular-shaped slot is offset with respect to the axis of the slot guide.
- the offset with respect to the axis of the slotted guide makes it possible to obtain a circular polarization.
- the curves of the figure 4b represent the radiation in site of this antennal element corresponding to the figure 4a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
- the DirLHCP lines represent the radiation in circular cross polarization (left).
- the curves of the figure 4b allow to illustrate the significant gain in isolation between the main and cross polarizations for angles greater than 40 ° obtained with an annular slot antenna element according to the invention compared to an antenna element of the prior art with rectangular slots whose radiation is illustrated by the Figure 2c .
- this insulation can reach levels higher than 15 dB while on the Figure 2c this insulation is at best 3dB.
- the figure 5a is a diagrammatic representation of an embodiment of an antenna element ElA according to the invention in which the distance between the inner and outer edges of the slot comprises along the periphery of the slot significant variations which delimit unobstructions at the central part metallized.
- the offsets are made on the outer contour of the slot. These offsets play the role of disrupters which allow to modify the symmetry of the annular slot and to obtain a circular polarization even if the slot is wedged on the axis of the slot guide.
- the figure 5a corresponds to the case of a circular annular slot which comprises two disruptors in the form of notches arranged symmetrically.
- the curves of the figure 5b represent the radiation in site of this antennal element corresponding to the figure 5a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main circular polarization radiation pattern (right) corresponding to DirRHCP lines is characterized by a maximum in the direction perpendicular to the surface where the slot is located.
- the DirLHCP lines represent the radiation in circular cross polarization (left).
- the choice between the embodiment with offsets and the non-off mode can be guided according to the desired operating frequency band.
- the figure 6a is a schematic representation of an embodiment of an antenna element ElA according to the invention wherein the element comprises a double annular slot which advantageously allows to obtain a dual band operation.
- the double annular slot has a circular shape.
- the two slots are typically centered on the same central point.
- the curves of the figure 6b represent the radiation in site of this antennal element corresponding to the figure 6a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the surface where the double slot is located.
- the DirLHCP lines represent the radiation in circular cross polarization (left).
- Dual-band operation is revealed by the Figure 6c ellipticity rate that has two troughs.
- the annular slot can have very variable shapes which is similar to that of a ring.
- the shape can be regular and belong to the list including circular, oval, elliptical, square, rectangular shapes.
- the figure 7 illustrates an embodiment of an antenna element according to the invention with an annular slot of elliptical shape.
- the figure 8a illustrates an embodiment of an antenna element according to the invention with an annular slot of square shape.
- the curves of the figure 8b represent the radiation in site of this antennal element corresponding to the figure 8a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main linear polarization radiation pattern (along x) corresponding to the DirR lines is characterized by a maximum in the direction perpendicular to the slit surface.
- the DirL lines represent the radiation in crossed linear polarization (following y).
- the figure 9a is a schematic representation of an embodiment of an antenna element ElA according to the invention in which the square-shaped annular slot is offset with respect to the axis of the slot guide.
- the offset with respect to the axis of the slotted guide makes it possible to obtain a circular polarization.
- the curves of the figure 9b represent the radiation in site of this antennal element corresponding to the figure 9a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
- the DirLHCP lines represent the radiation in circular cross polarization (left).
- the figure 10a is a schematic representation of an embodiment of an antenna element ElA according to the invention in which the square-shaped annular slot is offset with respect to the axis of the slot guide and is rotated to finally obtain a slot annular having the shape of a rhombus.
- the offset with respect to the axis of the slotted guide makes it possible to obtain a circular polarization.
- the curves of the figure 10b represent the radiation in site of this antennal element corresponding to the figure 10a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
- the DirLHCP lines represent the radiation in circular cross polarization (left).
- the figure 11a is a diagrammatic representation of an embodiment of an antenna element ElA according to the invention in which the distance between the inner and outer edges of the slot comprises along the periphery of the slot significant variations which delimit unobstructions at the central part metallized or in another mode on the outer contour of the slot. These offsets play the role of disrupters which allow to modify the symmetry of the annular slot and to obtain a circular polarization even if the slot is wedged on the axis of the slot guide.
- the figure 11a corresponds to the case of a square shaped annular slot which comprises two disruptors in the form of intersected inner corners arranged symmetrically.
- the curves of the figure 11b represent the radiation in site of this antennal element corresponding to the figure 11a for different planes offset by a bearing angle Phi (0 °, 45 °, 90 °, 135 °) with respect to the axis of the guide.
- the main circular polarization (right) radiation pattern corresponding to the DirRHCP lines is characterized by a maximum in the direction perpendicular to the slit surface.
- the DirLHCP lines represent the radiation in circular cross polarization (left).
- the shape of the annular slot may just as well not be regular and have a variable distance d between these edges, the shape may for example be of the potatooid type.
- the figure 12 illustrates an embodiment of an antenna element according to the invention wherein the distance d between the inner and outer edges of the annular slot is variable along the periphery of the slot.
- a particular embodiment consists in producing an annular slot with two circular and non-concentric inner and outer edges as illustrated by FIG. figure 12 .
- the annular slot defines two zones on the surface Fs: the zone lying inside the slot or central zone Zc at the slot, delimited by the inner edge of the slot, and the zone outside the slot or remainder of the face, delimited by the outer edge of the slot. These two areas that are part of the face are electrically insulated from each other by the annular slot.
- the antennal element can be obtained by implementing SIW technology.
- the SIW technology as described in [6] makes it possible to produce waveguides from planar dielectric substrates.
- This technology typically employs a conventional technique for producing a printed circuit (in the English terminology Printed Circuit Board, PCB).
- PCB Printed Circuit Board
- the two metallized faces Fs, Fi of the Sub substrate form the upper and lower sides of the guide.
- the upper side Fs is typically the side that is oriented in the direction of the transmitted or received signal.
- the vertical metal walls of the short sides of the guide are made by a series of metallized holes Tr connecting the two faces Fs, Fi metal of the substrate.
- This printed technology is advantageous because it makes it possible to produce low thickness and low cost antennas as described in [5].
- annular slot delimits a central zone and electrically isolates it from the remainder of the upper face.
- the figure 14 is a schematic representation of an embodiment of an antenna element ElA according to the invention obtained by implementing a conventional technology with a charged metal waveguide or no dielectric.
- the central portion is maintained at the lower face by means of a pin or pad Pi which can be made of dielectric and optionally metallized.
- the antennal elements according to the invention can be associated in one dimension, in the same way as the antenna elements of the prior art, to form a slotted guide. These latter slot guides can themselves be networked in the same way as the slotted guides of the prior art to form a planar antenna.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Description
La présente invention se rapporte au domaine des télécommunications. Au sein de ce domaine, l'invention se rapporte plus particulièrement aux antennes destinées à recevoir ou émettre un signal de télécommunication.The present invention relates to the field of telecommunications. Within this field, the invention relates more particularly to antennas intended to receive or transmit a telecommunication signal.
L'antenne peut être utilisée dans des systèmes variés. Sa conception basée sur la technique des guides à fentes permet une utilisation dans des systèmes embarqués, c'est-à-dire sur un support typiquement mobile tel qu'un train ou un avion, pour lesquels les contraintes d'encombrement, de poids, de consommation peuvent être extrêmement sévères. L'antenne est plus particulièrement adaptée pour des liaisons dites « haut débit » voire « très haut débit », par exemple pour des transmissions par satellite dans la bande Ka qui s'étend en émission de 27,5 à 31 GHz et en réception de 18,3 à 18,8 GHz et de 19,7 à 20,2 GHz.The antenna can be used in a variety of systems. Its design based on the technique of slot guides allows use in embedded systems, that is to say on a typically mobile support such as a train or an aircraft, for which the constraints of size, weight, consumption can be extremely severe. The antenna is more particularly suitable for so-called "high-speed" or even "very high-speed" links, for example for satellite transmissions in the Ka band which extends in transmission from 27.5 to 31 GHz and in reception of 18.3 at 18.8 GHz and 19.7 at 20.2 GHz.
L'antenne se compose d'éléments antennaires de base associés selon une dimension pour former un guide à fentes. L'antenne peut être composée de plusieurs guides à fentes associés pour former un réseau.The antenna consists of base antenna elements associated in one dimension to form a slotted guide. The antenna may be composed of several slot guides associated to form a network.
La théorie des fentes dans les guides dits guides à fente, a été initialement décrite par A.F.Stevenson dans l'article [1] dans un contexte de polarisation uniquement linéaire. Le guide d'ondes qui sert normalement au transport de l'énergie, est transformé en système rayonnant en découpant sur une des faces du guide généralement rectangulaire, des fentes fines par rapport à la longueur d'onde, judicieusement placées.The theory of slits in the so-called slot guides, was initially described by A.F.Stevenson in the article [1] in a purely linear polarization context. The waveguide which is normally used for the transport of energy, is transformed into a radiating system by cutting on one of the faces of the generally rectangular guide, thin slots with respect to the wavelength, judiciously placed.
La figure la représente schématiquement un élément antennaire de base à guide d'onde avec une fente rectangulaire découpée sur une des faces, généralement la face dite supérieure qui est orientée dans la direction de l'élément en communication avec l'antenne. La fente est excitée par la propagation du champ dans le guide d'onde. Pour améliorer les performances, les éléments antennaires de base sont associés en série selon un axe pour former un guide à fentes comme représenté
Certaines utilisations, notamment les communications avec un satellite, nécessitent un dépointage d'antenne pour que le faisceau pointe dans la direction du satellite. Un dépointage peut être obtenu de manière mécanique au moyen d'un déplacement mécanique de l'antenne, piloté manuellement ou par un moteur. Des contraintes d'encombrement, par exemple pour des systèmes embarqués (installation d'une antenne sur un train, un avion...) interdisent tout mécanisme de dépointage mécanique. Un tel dépointage doit donc être obtenu de manière électronique.Some uses, such as satellite communications, require antenna misalignment for the beam to point in the direction of the satellite. A misalignment can be obtained mechanically by means of a mechanical movement of the antenna, controlled manually or by a motor. Congestion constraints, for example for systems embedded (installation of an antenna on a train, an airplane ...) prohibit any mechanism of mechanical misalignment. Such misalignment must therefore be obtained electronically.
L'article [5] décrit comment contrôler le rayonnement d'une antenne en technologie SIW et comment dépointer le faisceau dans le plan de la mise en réseau en alimentant en parallèle chaque guide à fentes et en contrôlant la phase de chaque point d'alimentation des guides à fentes.Article [5] describes how to control the radiation of an SIW antenna and how to detach the beam in the plane of networking by feeding in parallel each slot guide and controlling the phase of each feed point slotted guides.
Compte tenu que la différence de polarisation entre le signal reçu (polarisation liée à l'antenne d'émission) et la polarisation de l'antenne de réception peut conduire à une atténuation du signal reçu, totale si les deux polarisations sont croisées, il est alors nécessaire de faire appel à une polarisation circulaire qui permet d'éviter ce phénomène d'atténuation totale pour certaines utilisations. En particulier, un tel choix est ainsi fait dans les cas où l'orientation de l'antenne de « réception » fixe ou mobile (antenne qui peut aussi servir d'antenne d'émission) doit évoluer dans le temps et suivre l'antenne «d'émission» mobile (antenne qui peut aussi servir d'antenne de réception), cas qui se rencontrent avec des satellites défilants (non géostationnaires) ou avec des systèmes embarqués destinés à communiquer avec un satellite.Given that the polarization difference between the received signal (polarization related to the transmitting antenna) and the polarization of the receiving antenna can lead to an attenuation of the received signal, total if the two polarizations are crossed, it is then necessary to use a circular polarization that avoids this phenomenon of total attenuation for certain uses. In particular, such a choice is thus made in cases where the orientation of the fixed or mobile "reception" antenna (antenna which can also serve as a transmitting antenna) must evolve over time and follow the antenna Mobile "transmitters" (antennas that can also be used as receiving antennas), cases that are encountered with moving satellites (non-geostationary) or with embedded systems intended to communicate with a satellite.
L'obtention d'une polarisation circulaire nécessite d'utiliser des guides à double fentes rectangulaires formées par :
- une croix centrée par rapport à l'axe du guide avec deux bras faiblement dissymétriques,
- une croix décalée par rapport à l'axe de guide comme décrit dans [3] et illustré par la
figure 2a ou - deux fentes décalées suivant la longueur et la largeur du guide et inclinées d'environ 45° comme décrit dans [4] et illustré par la
figure 2b .
- a cross centered with respect to the axis of the guide with two weakly asymmetrical arms,
- a cross offset from the guide axis as described in [3] and illustrated by the
figure 2a or - two slots offset along the length and width of the guide and inclined by about 45 ° as described in [4] and illustrated by the
figure 2b .
Les courbes de la
Ce niveau important de polarisation croisée limite les performances des antennes à base de guide à fentes rectangulaires lors d'une utilisation avec un dépointage de faisceau. En effet, lors du dépointage du faisceau à un angle donné, le niveau de polarisation croisée du faisceau est celui de l'élément de base. Ainsi, dans le cas de l'exemple illustré par la
L'invention propose un élément antennaire à guide d'onde à fente qui soit une alternative aux éléments antennaire connus, de performances équivalentes voire plus performants pour certaines configurations.The invention proposes an antenna element with a slotted waveguide which is an alternative to known antennal elements, of equivalent or even more efficient performance for certain configurations.
Ainsi, l'invention a pour objet un élément antennaire à guide d'onde à fente comportant au moins une face conductrice pourvue d'au moins une fente annulaire qui délimite en sa partie centrale une zone conductrice et qui isole électriquement cette zone du reste de la face.Thus, the subject of the invention is an antenna element with a slotted waveguide comprising at least one conducting surface provided with at least one annular slot which delimits at its central part a conducting zone and which electrically isolates this zone from the rest of the the face.
Un tel élément antennaire est typiquement obtenu au moyen d'une technologie SIW (Substrate Integrated Waveguide). Cette technologie permet d'obtenir par impression les fentes. La forme annulaire de la fente permet d'obtenir des performances équivalentes, voire plus intéressantes dans certaines configurations que la forme rectangulaire tout en simplifiant le procédé de fabrication en particulier dans les cas où une polarisation circulaire doit être obtenue. En effet, dans ces cas, le masque d'impression ne comporte qu'une fente annulaire alors que selon l'art antérieur au moins deux fentes rectangulaires sont nécessaires avec des contraintes de positionnement de l'une par rapport à l'autre.Such antennal element is typically obtained by means of SIW (Substrate Integrated Waveguide) technology. This technology makes it possible to print the slots by printing. The annular shape of the slot makes it possible to obtain equivalent performances, even more interesting in certain configurations than the rectangular shape, while simplifying the manufacturing process, in particular in cases where a circular polarization must be obtained. Indeed, in these cases, the printing mask has only one annular slot while according to the prior art at least two rectangular slots are required with positioning constraints of one with respect to the other.
Selon un mode de réalisation de l'invention, l'élément antennaire est tel que la fente annulaire est décalée par rapport à l'axe du guide à fente.According to one embodiment of the invention, the antenna element is such that the annular slot is offset with respect to the axis of the slot guide.
Un guide à fente a une forme qui est généralement proche de celle d'un parallélépipède, donc caractérisée au moins par une longueur. La longueur est la dimension dans l'axe du parallélépipède. Le décalage de la fente annulaire par rapport à l'axe permet avantageusement d'obtenir une polarisation circulaire. Ainsi, par rapport à l'art antérieur, seul le décalage du masque d'impression par rapport à l'axe est nécessaire pour obtenir une polarisation circulaire. Selon l'art antérieur, la fabrication d'un élément antennaire à guide à fente qui soit de polarisation rectiligne ou de polarisation circulaire nécessite un masque différent spécifique à la polarisation. En effet, pour obtenir une polarisation circulaire selon l'art antérieur une double fente rectangulaire est nécessaire avec un agencement particulier de la double fente. C'est-à-dire, soit la double fente consiste en une croix centrée par rapport à l'axe du guide avec deux bras faiblement dissymétriques, soit la double fente consiste en une croix décalée par rapport à l'axe de guide, soit la double fente consiste en deux fentes décalées suivant la longueur et la largeur du guide et inclinées d'environ 45°. Contrairement à l'art antérieur qui nécessite donc de changer de masque en fonction de la polarisation désirée, un même masque permet d'obtenir un élément antennaire selon l'invention avec soit une polarisation rectiligne, soit une polarisation circulaire et ce, uniquement en décalant le masque sur la face du substrat sur lequel doit être imprimée la fente. L'élément antennaire selon l'invention génère un rayonnement en polarisation circulaire avec une isolation entre les polarisations principales et croisées pour des angles supérieurs à 40° beaucoup plus importante que celle obtenue avec des fentes rectangulaires. Notamment, dans le plan perpendiculaire à l'axe du guide à fente, cette isolation peut atteindre des niveaux supérieurs à 15 dB alors qu'avec un élément antennaire de l'art antérieur cette isolation est quasiment imperceptible. Cette différence notable traduit le fait qu'un élément antennaire selon l'invention est particulièrement mieux adapté pour des utilisations où un dépointage est nécessaire comme dans le cas d'une transmission entre un support mobile tel un train ou un avion et un satellite que les éléments antennaires connus.A slotted guide has a shape that is generally close to that of a parallelepiped, therefore characterized by at least one length. The length is the dimension in the axis of the parallelepiped. The offset of the annular slot with respect to the axis advantageously makes it possible to obtain a circular polarization. Thus, compared to the prior art, only the offset of the print mask with respect to the axis is necessary to obtain a circular polarization. According to the prior art, the manufacture of a slit-fence antennal element which is of rectilinear polarization or circular polarization requires a different polarization-specific mask. Indeed, to obtain a circular polarization according to the prior art a double rectangular slot is necessary with a particular arrangement of the double slot. That is to say, the double slot consists of a cross centered relative to the axis of the guide with two weakly asymmetrical arms, or the double slot consists of a cross offset relative to the guide axis, or the double slot consists of two slots offset along the length and width of the guide and inclined by approximately 45 °. Unlike the prior art, which therefore requires changing the mask according to the desired polarization, the same mask makes it possible to obtain an antenna element according to the invention with either a linear polarization or a circular polarization, and this only by shifting the mask on the face of the substrate on which the slot must be printed. The antennal element according to the invention generates radiation in circular polarization with an isolation between the main and crossed polarizations for angles greater than 40 °. larger than that obtained with rectangular slots. In particular, in the plane perpendicular to the axis of the slot guide, this insulation can reach levels greater than 15 dB whereas with an antenna element of the prior art this insulation is almost imperceptible. This significant difference reflects the fact that an antenna element according to the invention is particularly well suited for uses where a misalignment is necessary as in the case of a transmission between a mobile support such as a train or an airplane and a satellite that the antennal elements known.
Selon un mode de réalisation de l'invention, l'élément antennaire est tel que la distance entre les bords intérieur et extérieur de la fente annulaire comporte le long du pourtour de la fente des variations notables qui délimitent des décochements.According to one embodiment of the invention, the antennal element is such that the distance between the inner and outer edges of the annular slot comprises along the perimeter of the slot significant variations which delimit out-breaks.
Les décochements ont typiquement la forme d'encoches dans le cas d'une fente annulaire de forme circulaire ou la forme de triangles dans le cas d'une fente annulaire de forme carrée. Ces décochements sont réalisés sur la zone centrale le long du bord intérieur de la fente ou sur la partie extérieure le long du bord extérieur de la fente, partie qui appartient au reste de la face. Ces décochements jouent le rôle de perturbateurs qui modifient la symétrie de la fente. Ainsi, même si la fente est calée sur l'axe du guide à fente, les décochements permettent d'obtenir une polarisation circulaire. Si la fente est décalée par rapport à l'axe du guide à fente, les décochements permettent de modifier le rayonnement et de limiter la bande fréquentielle par rapport à la même fente sans décochement.The offsets typically have the form of notches in the case of an annular slot of circular shape or the shape of triangles in the case of a square-shaped annular slot. These offsets are made on the central zone along the inner edge of the slot or on the outer portion along the outer edge of the slot, which part belongs to the rest of the face. These releases act as disrupters that alter the symmetry of the slot. Thus, even if the slot is wedged on the axis of the slotted guide, the offsets make it possible to obtain a circular polarization. If the slot is offset with respect to the axis of the slot guide, the offsets allow to modify the radiation and limit the frequency band with respect to the same slot without disconnection.
Les différents modes de réalisation précédents peuvent être combinés ou pas entre eux pour définir un autre mode de réalisation.The various previous embodiments can be combined or not between them to define another embodiment.
Selon un mode de réalisation de l'invention, l'élément antennaire est tel que la distance entre les bords intérieur et extérieur de la fente annulaire est variable le long du pourtour de la fente.According to one embodiment of the invention, the antenna element is such that the distance between the inner and outer edges of the annular slot is variable along the periphery of the slot.
La variation de la largeur de la fente annulaire peut résulter par exemple du fait que les bords intérieur et extérieur de la fente ne sont pas concentriques. Cette dissymétrie permet avantageusement de modifier le rayonnement de la fente par rapport au même élément avec une distance invariable entre les deux bords de la fente.The variation in the width of the annular slot may result for example because the inner and outer edges of the slot are not concentric. This asymmetry advantageously makes it possible to modify the radiation of the slot relative to the same element with an invariable distance between the two edges of the slot.
Ce dernier mode de réalisation peut être combiné ou pas avec un mode précédent pour définir un autre mode de réalisation.This latter embodiment may or may not be combined with a previous mode to define another embodiment.
Selon un mode de réalisation de l'invention, l'élément antennaire comprend une autre fente annulaire entourant la fente annulaire.According to one embodiment of the invention, the antenna element comprises another annular slot surrounding the annular slot.
La présence d'une seconde fente annulaire dont la partie centrale inclue la première fente annulaire permet d'obtenir un élément antennaire bi-bandes. L'élément antennaire est dit à double fentes annulaires. Dans le cas où les fentes annulaires sont circulaires, les deux fentes annulaires sont typiquement centrées sur un même point central.The presence of a second annular slot whose central portion includes the first annular slot provides a two-band antennal element. The antennal element is said to have double annular slits. In the case where the annular slots are circular, the two annular slots are typically centered on the same central point.
Ce dernier mode de réalisation peut être combiné ou pas avec un mode précédent pour définir un autre mode de réalisation.This latter embodiment may or may not be combined with a previous mode to define another embodiment.
L'invention a en outre pour objet un guide à fentes comprenant plusieurs éléments antennaires conformes à l'objet précédent, agencés entre eux en réseau linéaire.The invention further relates to a slotted guide comprising a plurality of antenna elements conforming to the preceding object, arranged between them in a linear array.
La forme parallélépipédique des éléments antennaires permet de réaliser facilement un réseau linéaire en les disposant en série. La mise en série permet d'obtenir un réseau avec des performances supérieures à celle d'un seul élément antennaire.The parallelepipedal shape of the antenna elements makes it possible to easily produce a linear network by placing them in series. Serialization makes it possible to obtain a network with performances superior to that of a single antenna element.
L'invention a en outre pour objet une antenne plane comprenant plusieurs guides à fentes conformes à l'objet précédent, agencés entre eux en réseau bi-dimensionnel.The invention further relates to a plane antenna comprising a plurality of slotted guides in accordance with the preceding object, arranged between them in a two-dimensional network.
Une antenne selon l'invention allie un faible encombrement et des performances de rayonnement compatibles d'une utilisation avec dépointage qui nécessite un écart important entre polarisation principale et polarisation croisée au-delà de l'axe principal.An antenna according to the invention combines a small footprint and compatible radiation performance of use with misalignment which requires a large difference between the main polarization and cross polarization beyond the main axis.
Selon un mode de réalisation de l'invention, l'antenne plane comprend un moyen d'alimentation en parallèle des guides à fente agencé pour piloter les phases entre les signaux d'alimentation des guides à fente.According to one embodiment of the invention, the planar antenna comprises a means for feeding the slotted guides in parallel arranged to control the phases between the supply signals of the slot guides.
Le contrôle des phases entre chaque point d'alimentation des guides à fente permet de contrôler leur déphasage relatif et donc de maximiser le rayonnement global avec un dépointage contrôlé.Controlling the phases between each feeding point of the slotted guides makes it possible to control their relative phase shift and thus to maximize the overall radiation with controlled misalignment.
D'autres caractéristiques et avantages de l'invention apparaîtront lors de la description qui suit faite en regard de figures annexées données à titre d'exemples non limitatifs.
- La
figure 1a représente schématiquement un élément antennaire selon l'art antérieur. - La
figure 1b représente schématiquement un guide à fente selon l'art antérieur réalisé avec un assemblage d'éléments antennaires de lafigure 1a . - La
figure 1c représente schématiquement une antenne selon l'art antérieur consistant en un réseau de guides à fente de lafigure 1b . - La
figure 2a ) est un élément antennaire de l'art antérieur à fentes rectangulaires disposées en croix décalées de l'axe du guide à fente permettant d'obtenir une polarisation circulaire. - La
figure 2b ) est un élément antennaire de l'art antérieur à fentes rectangulaires décalées suivant la longueur et la largeur du guide à fente et inclinées d'environ 45° permettant d'obtenir une polarisation circulaire. - La
figure 2c ) représente des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 9GHz de l'élément antennaire de lafigure 2b ) pour différents angles Phi de gisement. - La
figure 3a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention. - La
figure 3b rassemble des courbes de directivité en site en polarisations linéaires suivant x (DirL) et suivant y (DirR) à la fréquence de 8,55 GHz de l'élément antennaire correspondant à lafigure 3a pour différents plans décalés d'un angle Phi de gisement. - La
figure 4a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la fente de forme annulaire est décalée par rapport à l'axe du guide à fente. - La
figure 4b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 9,9 GHz de l'élément antennaire correspondant à lafigure 5a pour différents plans décalés d'un angle Phi de gisement. - La
figure 4c donne la courbe du taux d'ellipticité de l'élément antennaire de lafigure 5a . - La
figure 5a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la distance entre les bords intérieur et extérieur de la fente comporte le long du pourtour de la fente des variations notables qui délimitent des décochements à la partie centrale métallisée. - La
figure 5b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 9,8 GHz de l'élément antennaire correspondant à lafigure 5a pour différents plans décalés d'un angle Phi de gisement. - La
figure 5c donne la courbe du taux d'ellipticité de l'élément antennaire de lafigure 5a . - La
figure 5d est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la distance entre les bords intérieur et extérieur de la fente comporte le long du pourtour de la fente des variations notables qui délimitent des décochements au reste de la face (partie extérieure à la fente). - La
figure 6a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel l'élément comporte une double fente annulaire. - La
figure 6b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 8,7 GHz de l'élément antennaire correspondant à lafigure 6a pour différents plans décalés d'un angle Phi de gisement. - La
figure 6c donne la courbe du taux d'ellipticité de l'élément antennaire de lafigure 6a . - La
figure 7 illustre un mode de réalisation d'un élément antennaire selon l'invention avec une fente annulaire de forme elliptique. - La
figure 8a illustre un mode de réalisation d'un élément antennaire selon l'invention avec une fente annulaire de forme carrée. - La
figure 8b rassemble des courbes de directivité en site en polarisations linéaires suivant x (DirR) et suivant y (DirL) à la fréquence de 10 GHz de l'élément antennaire correspondant à lafigure 8a pour différents plans décalés d'un angle Phi de gisement. - La
figure 9a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la fente annulaire de forme carrée est décalée par rapport à l'axe du guide à fente. - La
figure 9b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 10 GHz de l'élément antennaire correspondant à lafigure 9a pour différents plans décalés d'un angle Phi de gisement. - La
figure 9c donne la courbe du taux d'ellipticité de l'élément antennaire de lafigure 9a . - La
figure 10a est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention dans lequel la fente annulaire de forme carrée est décalée par rapport à l'axe du guide à fente et subie une rotation pour au finale obtenir une fente annulaire ayant la forme d'un losange. - La
figure 10b rassemble des courbes de directivité en site en polarisations circulaires droite (DirRHCP) et gauche (DirLHCP) à la fréquence de 10 GHz de l'élément antennaire correspondant à lafigure 10a pour différents plans décalés d'un angle Phi de gisement. - La
figure 10c donne la courbe du taux d'ellipticité de l'élément antennaire de lafigure 10a . - La
figure 11a correspond au cas d'une fente annulaire de forme carrée qui comprend deux perturbateurs sous forme de coins intérieurs coupés disposés symétriquement. - La
figure 11b rassemble des courbes de directivité en site en polarisations circulaires droite (DirLHCP) et gauche (DirRHCP) à la fréquence de 10 GHz de l'élément antennaire correspondant à lafigure 11a pour différents plans décalés d'un angle Phi de gisement. - La
figure 11c donne la courbe du taux d'ellipticité de l'élément antennaire de lafigure 11a . - La
figure 12 illustre un mode de réalisation d'un élément antennaire selon l'invention dans lequel la distance d entre les bords intérieur et extérieur de la fente annulaire est variable le long du pourtour de la fente. - La
figure 13 illustre un substrat diélectrique plan comprenant une série de trous métallisés reliant les deux faces métalliques du substrat avant découpe sur la face supérieure d'une fente annulaire selon l'invention. - La
figure 14 est une représentation schématique d'un mode de réalisation d'un élément antennaire selon l'invention obtenu en mettant en oeuvre une technologie classique avec un guide d'onde métallique chargé ou pas de diélectrique.
- The
figure 1a schematically represents an antennal element according to the prior art. - The
figure 1b schematically represents a slot guide according to the prior art made with an assembly of antenna elements of thefigure 1a . - The
figure 1c schematically represents an antenna according to the prior art consisting of an array of slotted guides of thefigure 1b . - The
figure 2a ) is an antennal element of the prior art with rectangular slots arranged in cross staggered from the axis of the slotted guide to obtain a circular polarization. - The
figure 2b ) is a antennal element of the prior art with rectangular slots offset along the length and width of the slot guide and inclined by about 45 ° to obtain a circular polarization. - The
Figure 2c ) represents directivity curves in the right (DirRHCP) and left (DirLHCP) circular polarizations at the 9GHz frequency of the antennal element of thefigure 2b ) for different angles Phi of deposit. - The
figure 3a is a schematic representation of an embodiment of an antenna element according to the invention. - The
figure 3b gathers site orientation curves in linear polarizations along x (DirL) and following y (DirR) at the frequency of 8.55 GHz of the antennal element corresponding to thefigure 3a for different planes offset by a Phi angle of deposit. - The
figure 4a is a schematic representation of an embodiment of an antenna element according to the invention in which the annular-shaped slot is offset with respect to the axis of the slot guide. - The
figure 4b gathers directivity curves in the right (DirRHCP) and left (DirLHCP) circular polarizations at the 9.9 GHz frequency of the antenna element corresponding to thefigure 5a for different planes offset by a Phi angle of deposit. - The
figure 4c gives the curve of the ellipticity rate of the antennal element of thefigure 5a . - The
figure 5a is a schematic representation of an embodiment of an antenna element according to the invention in which the distance between the inner and outer edges of the slot comprises along the perimeter of the slot significant variations which delimit out of the parts metallized central. - The
figure 5b gathers directivity curves in the right circular (DirRHCP) and left (DirLHCP) circular polarizations at the frequency of 9.8 GHz of the antennal element corresponding to thefigure 5a for different planes offset by a Phi angle of deposit. - The
figure 5c gives the curve of the ellipticity rate of the antennal element of thefigure 5a . - The
figure 5d is a diagrammatic representation of an embodiment of an antenna element according to the invention in which the distance between the inner and outer edges of the slot comprises along the periphery of the slot significant variations which delimit out of the rest of the slot. the face (outer part to the slot). - The
figure 6a is a schematic representation of an embodiment of an antenna element according to the invention wherein the element comprises a double annular slot. - The
figure 6b gathers directivity curves in the right circular (DirRHCP) and left (DirLHCP) circular polarizations at the 8.7 GHz frequency of the antennal element corresponding to thefigure 6a for different planes offset by a Phi angle of deposit. - The
Figure 6c gives the curve of the ellipticity rate of the antennal element of thefigure 6a . - The
figure 7 illustrates an embodiment of an antenna element according to the invention with an annular slot of elliptical shape. - The
figure 8a illustrates an embodiment of an antenna element according to the invention with an annular slot of square shape. - The
figure 8b gathers site orientation curves in linear polarizations along x (DirR) and following y (DirL) at the frequency of 10 GHz of the antennal element corresponding to thefigure 8a for different planes offset by a Phi angle of deposit. - The
figure 9a is a schematic representation of an embodiment of an antenna element according to the invention in which the square-shaped annular slot is offset with respect to the axis of the slot guide. - The
figure 9b gathers directivity curves in the right (DirRHCP) and left (DirLHCP) circular polarizations at the 10 GHz frequency of the antennal element corresponding to thefigure 9a for different planes offset by a Phi angle of deposit. - The
Figure 9c gives the curve of the ellipticity rate of the antennal element of thefigure 9a . - The
figure 10a is a schematic representation of an embodiment of an antenna element according to the invention in which the square-shaped annular slot is offset with respect to the axis of the slot guide and is rotated to finally obtain an annular slot having the shape of a diamond. - The
figure 10b gathers directivity curves in the right (DirRHCP) and left (DirLHCP) circular polarizations at the 10 GHz frequency of the antennal element corresponding to thefigure 10a for different planes offset by a Phi angle of deposit. - The
figure 10c gives the curve of the ellipticity rate of the antennal element of thefigure 10a . - The
figure 11a corresponds to the case of a square shaped annular slot which comprises two disruptors in the form of intersected inner corners arranged symmetrically. - The
figure 11b gathers directivity curves in the right circular (DirLHCP) and left (DirRHCP) circular polarizations at the frequency of 10 GHz of the antennal element corresponding to thefigure 11a for different planes offset by a Phi angle of deposit. - The
figure 11c gives the curve of the ellipticity rate of the antennal element of thefigure 11a . - The
figure 12 illustrates an embodiment of an antenna element according to the invention wherein the distance d between the inner and outer edges of the annular slot is variable along the periphery of the slot. - The
figure 13 illustrates a planar dielectric substrate comprising a series of metallized holes connecting the two metal faces of the substrate before cutting on the upper face of an annular slot according to the invention. - The
figure 14 is a schematic representation of an embodiment of an antenna element according to the invention obtained by implementing a conventional technology with a charged metal waveguide or no dielectric.
La
La fente annulaire est délimitée par un bord intérieur et un bord extérieur séparés par une distance d. La profondeur de la fente est au moins celle de l'épaisseur de la couche métallisé de la face supérieure Fs pour isoler électriquement la zone centrale Zc du reste de la face Fs.The annular slot is delimited by an inner edge and an outer edge separated by a distance d. The depth of the slot is at least that of the thickness of the metallized layer of the upper face Fs to electrically isolate the central zone Zc from the remainder of the face Fs.
Les courbes de la
La
Les courbes de la
Les courbes de la
Cette amélioration notable permet l'utilisation de l'élément antennaire selon l'invention pour des utilisations qui nécessite un certain dépointage.This notable improvement allows the use of the antennal element according to the invention for uses which requires a certain misalignment.
Le décalage de la fente annulaire par rapport à l'axe du guide permet de générer une polarisation circulaire droite si la fente est à gauche suivant la propagation du champ et inversement.The offset of the annular slot with respect to the axis of the guide makes it possible to generate a right circular polarization if the slot is on the left following the propagation of the field and vice versa.
La
Les courbes de la
La
Les courbes de la
Le fonctionnement bi-bandes est révélé par la
La fente annulaire peut avoir des formes très variables qui s'apparente à celle d'un anneau. La forme peut être régulière et appartenir à la liste comprenant les formes circulaires, ovales, elliptiques, carrées, rectangulaires.The annular slot can have very variable shapes which is similar to that of a ring. The shape can be regular and belong to the list including circular, oval, elliptical, square, rectangular shapes.
La
La
Les courbes de la
La
Les courbes de la
La
Les courbes de la
La
Les courbes de la
La forme de la fente annulaire peut tout aussi bien ne pas être régulière et présenter une distance d variable entre ces bords, la forme peut par exemple être de type patatoïde.The shape of the annular slot may just as well not be regular and have a variable distance d between these edges, the shape may for example be of the potatooid type.
La
Quelle que soit la forme de la fente annulaire, son épaisseur ou profondeur est telle que la couche métallisée de la surface Fs sur laquelle est imprimée la fente est retirée sur l'espace occupé par la fente Fan. En d'autres termes, la fente rompt la continuité électrique qui existait sur la face Fs accueillant la fente. Ainsi, la fente annulaire délimite deux zones sur la surface Fs : la zone comprise à l'intérieure de la fente ou zone centrale Zc à la fente, délimitée par le bord intérieur de la fente, et la zone à l'extérieure de la fente ou reste de la face, délimitée par le bord extérieur de la fente. Ces deux zones qui font partie de la face sont isolées électriquement l'une de l'autre par la fente annulaire.Whatever the shape of the annular slot, its thickness or depth is such that the metallized layer of the surface Fs on which the slot is printed is removed on the space occupied by the slot Fan. In other words, the slot breaks the electrical continuity that existed on the face Fs hosting the slot. Thus, the annular slot defines two zones on the surface Fs: the zone lying inside the slot or central zone Zc at the slot, delimited by the inner edge of the slot, and the zone outside the slot or remainder of the face, delimited by the outer edge of the slot. These two areas that are part of the face are electrically insulated from each other by the annular slot.
L'élément antennaire peut être obtenu en mettant en oeuvre une technologie SIW. La technologie SIW comme décrit dans [6] permet de réaliser des guides d'ondes à partir de substrats diélectriques plans. Cette technologie met typiquement en oeuvre une technique classique de réalisation de circuit imprimée (selon la terminologie anglosaxonne Printed Circuit Board, PCB). Comme illustré par la
Une telle technologie est particulièrement bien adaptée pour l'obtention d'un élément antennaire avec fente annulaire conforme à l'invention car elle permet de réaliser des fentes annulaires en imprimant leur motif sur une face de l'élément antennaire. Une telle technique d'impression est bien connue de l'homme du métier, connue par exemple sous la dénomination anglo-saxonne PCB, et n'est donc pas décrite. A l'issue du procédé PCB, la fente annulaire délimite une zone centrale et l'isole électriquement du reste de la face supérieure.Such a technology is particularly well suited for obtaining an antenna element with annular slot according to the invention because it allows for annular slots by printing their pattern on one side of the antennal element. Such a printing technique is well known to those skilled in the art, known for example under the name Anglo-Saxon PCB, and is therefore not described. At the end of the PCB process, the annular slot delimits a central zone and electrically isolates it from the remainder of the upper face.
La
Les éléments antennaires selon l'invention peuvent être associés selon une dimension, de la même manière que les éléments antennaires de l'art antérieur, pour former un guide à fentes. Ces derniers guides à fentes peuvent eux-mêmes être associés en réseau, de la même manière que les guides à fentes de l'art antérieur, pour former une antenne plane.The antennal elements according to the invention can be associated in one dimension, in the same way as the antenna elements of the prior art, to form a slotted guide. These latter slot guides can themselves be networked in the same way as the slotted guides of the prior art to form a planar antenna.
L'antenne peut être associée à un moyen d'alimentation en parallèle des guides à fentes. Le pilotage des phases relatives entre les points d'alimentation des guides à fentes permet de maximiser le rayonnement global et donc de contrôler le dépointage de l'antenne.
- [1]
A.F.Stevenson, « Theory of slots in rectangular waveguides », Journal of applied Physics, vol.19, pp 24-28, Jan.1948 - [2]
R.S. Elliot, L.A. Kurtz, "The design of small Slot Arrays", IEEE trans. AP, vol. 26, n° 2, pp214-219, March 1978 - [3]
A.J. Simmons, "Circularly Polarized Slot Radiaors" IRE trans AP, Vol. 5, n° 1, PP31-36, Jan. 1957 - [4]
G. Montisci" M. Musa, G. Mazzarella, "Waveguide Slot Antennas for Circularly Polarized Radiated Field", IEEE trans. AP, vol. 52, n° 2, pp 619-623, Feb. 2004 - [5]
Y.J. Cheng, W. Hong, K? Wu, Z. Q. Kuai, C. Yu, J.X. Chen, J. Y. Zhou, H. J. Tang, Substrate Integrated Waveguide (SIW) Rotman Lens and Its Ka-Band Multibeam Array Antenna Applications", IEEE trans. AP, vol. 56, n° 8, pp 2504-2513, Aug. 2008 - [6]
K. Wu, D. Deslandes, Y. Cassivi, "The Substrate Integrated Circuit - A New Concept for High-Frequency Electronics and Optoelectronics" Proc. 6th Int. Conf. Telecomm. Modern Satellite, Cable and Boadcasting Service, Vol. 1, pp3-5, Oct. 2003
- [1]
AFStevenson, "Theory of slots in rectangular waveguides," Journal of Applied Physics, vol.19, pp 24-28, Jan.1948 - [2]
RS Elliot, LA Kurtz, "The Design of Small Slot Arrays", IEEE trans. AP, vol. 26, No. 2, pp214-219, March 1978 - [3]
AJ Simmons, "Circularly Polarized Slot Radiaors" IRE trans AP, Vol. 5, No. 1, PP31-36, Jan. 1957 - [4]
G. Montisci "M. Musa, G. Mazzarella," Waveguide Slot Antennas for Circularly Polarized Radiated Field, "IEEE Trans., AP, 52, 2, pp 619-623, Feb. 2004 - [5]
YJ Cheng, W. Hong, K? Wu, ZQ Kuai, C. Yu, Chen JX, JY Zhou, HJ Tang, Integrated Waveguide Substrate (SIW) Rotman Lens and Its Ka-Band Multibeam Array Antenna Applications, "IEEE Trans., AP, Vol 56, No. 8, pp 2504-2513, Aug. 2008 - [6]
K. Wu, D. Deslandes, Y. Cassivi, "The Substrate Integrated Circuit - A New Concept for High-Frequency Electronics and Optoelectronics" Proc. 6th Int. Conf. Telecomm. Modern Satellite, Cable and Boadcasting Service, Vol. 1, pp3-5, Oct. 2003
Claims (8)
- Slotted waveguide antennal element (ElA) of generally parallelepipedal shape comprising several conductive surfaces , of which one of the conductive surfaces (Fs) is provided with at least one slot excited by the propagation of the electromagnetic field of the wave in the waveguide along the axis of the latter, the slot delimiting in its central part a conductive region (Zc) and electrically insulating this region (Zc) from the rest of the surface (Fs), characterized in that the slot (Fan) is annular.
- Antennal element (ElA) according to Claim 1, in which the annular slot is offset with respect to the axis of the waveguide.
- Antennal element (ElA) according to either of Claims 1 and 2, in which the distance between the inner and outer edges of the annular slot is variable along the perimeter of the slot.
- Antennal element (ElA) according to Claim 3, in which the perimeter of the slot comprises variations which delimit stubs.
- Antennal element (ElA) according to one of Claims 1 to 4, containing at least one other annular slot surrounding the annular slot.
- Slotted guide comprising several antennal elements in accordance with one of the preceding claims, arranged together in a linear array.
- Planar antenna comprising several slotted guides in accordance with the preceding claim, arranged together in a two-dimensional array.
- Planar antenna according to the preceding claim, comprising a means for feeding the slotted guides in parallel, which means is arranged for steering the phases between the feed signals of the slotted guides.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1151122A FR2971631A1 (en) | 2011-02-11 | 2011-02-11 | ANTENNA BASED ON ANNULAR SLOT GUIDES |
PCT/FR2012/050311 WO2012107705A1 (en) | 2011-02-11 | 2012-02-13 | Waveguide antenna having annular slots |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2673842A1 EP2673842A1 (en) | 2013-12-18 |
EP2673842B1 true EP2673842B1 (en) | 2017-08-09 |
Family
ID=45833465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12708914.2A Active EP2673842B1 (en) | 2011-02-11 | 2012-02-13 | Waveguide antenna having annular slots |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130321227A1 (en) |
EP (1) | EP2673842B1 (en) |
FR (1) | FR2971631A1 (en) |
WO (1) | WO2012107705A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10205240B2 (en) | 2015-09-30 | 2019-02-12 | The Mitre Corporation | Shorted annular patch antenna with shunted stubs |
US9991601B2 (en) | 2015-09-30 | 2018-06-05 | The Mitre Corporation | Coplanar waveguide transition for multi-band impedance matching |
US10050336B2 (en) | 2016-05-31 | 2018-08-14 | Honeywell International Inc. | Integrated digital active phased array antenna and wingtip collision avoidance system |
US10613216B2 (en) | 2016-05-31 | 2020-04-07 | Honeywell International Inc. | Integrated digital active phased array antenna and wingtip collision avoidance system |
US10627503B2 (en) | 2017-03-30 | 2020-04-21 | Honeywell International Inc. | Combined degraded visual environment vision system with wide field of regard hazardous fire detection system |
JP6989320B2 (en) * | 2017-08-21 | 2022-01-05 | 株式会社Soken | Antenna device |
CN108417993A (en) * | 2018-01-25 | 2018-08-17 | 瑞声科技(南京)有限公司 | Antenna system and communicating terminal |
US11011815B2 (en) * | 2018-04-25 | 2021-05-18 | Texas Instruments Incorporated | Circularly-polarized dielectric waveguide launch for millimeter-wave data communication |
CN112436294B (en) * | 2020-12-02 | 2022-03-01 | 东南大学 | Millimeter wave dual-frequency dual-polarization common-aperture antenna with high isolation and low profile |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2908001A (en) * | 1957-07-01 | 1959-10-06 | Hughes Aircraft Co | Wave energy radiator |
GB1392452A (en) * | 1971-08-02 | 1975-04-30 | Nat Res Dev | Waveguides |
US3971125A (en) * | 1975-03-03 | 1976-07-27 | Raytheon Company | Method of making an antenna array using printed circuit techniques |
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
CA1136267A (en) * | 1979-07-25 | 1982-11-23 | Bahman Azarbar | Array of annular slots excited by radial waveguide modes |
US4994817A (en) * | 1989-07-24 | 1991-02-19 | Ball Corporation | Annular slot antenna |
FR2651926B1 (en) * | 1989-09-11 | 1991-12-13 | Alcatel Espace | FLAT ANTENNA. |
FR2672438B1 (en) * | 1991-02-01 | 1993-09-17 | Alcatel Espace | NETWORK ANTENNA IN PARTICULAR FOR SPATIAL APPLICATION. |
FR2692404B1 (en) * | 1992-06-16 | 1994-09-16 | Aerospatiale | Elementary broadband antenna pattern and array antenna comprising it. |
US5394163A (en) * | 1992-08-26 | 1995-02-28 | Hughes Missile Systems Company | Annular slot patch excited array |
US5892487A (en) * | 1993-02-28 | 1999-04-06 | Thomson Multimedia S.A. | Antenna system |
EP0632523B1 (en) * | 1993-07-01 | 1999-03-17 | Commonwealth Scientific And Industrial Research Organisation | A planar antenna |
CN100466380C (en) * | 2002-02-21 | 2009-03-04 | 松下电器产业株式会社 | Traveling-wave combining array antenna apparatus |
US6693605B1 (en) * | 2002-08-30 | 2004-02-17 | Raytheon Company | Variable quasioptical wave plate system and methods of making and using |
JP4296282B2 (en) * | 2005-11-24 | 2009-07-15 | 国立大学法人埼玉大学 | Multi-frequency microstrip antenna |
US7808439B2 (en) * | 2007-09-07 | 2010-10-05 | University Of Tennessee Reserch Foundation | Substrate integrated waveguide antenna array |
TWI352455B (en) * | 2008-04-09 | 2011-11-11 | Univ Nat Taiwan | Dual-band coupling device |
JP5486382B2 (en) * | 2010-04-09 | 2014-05-07 | 古野電気株式会社 | Two-dimensional slot array antenna, feeding waveguide, and radar apparatus |
-
2011
- 2011-02-11 FR FR1151122A patent/FR2971631A1/en not_active Withdrawn
-
2012
- 2012-02-13 WO PCT/FR2012/050311 patent/WO2012107705A1/en active Application Filing
- 2012-02-13 EP EP12708914.2A patent/EP2673842B1/en active Active
- 2012-02-13 US US13/985,013 patent/US20130321227A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2673842A1 (en) | 2013-12-18 |
WO2012107705A1 (en) | 2012-08-16 |
US20130321227A1 (en) | 2013-12-05 |
FR2971631A1 (en) | 2012-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2673842B1 (en) | Waveguide antenna having annular slots | |
EP3392959B1 (en) | Elementary cell of a transmitter network for a reconfigurable antenna | |
EP3125362B1 (en) | Elementary cell of a transmitter network for a reconfigurable antenna | |
EP2532050B1 (en) | On-board directional flat-plate antenna, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
EP2571098B1 (en) | Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips | |
WO2011095384A1 (en) | Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle | |
EP0542595A1 (en) | Microstrip antenna device especially for satellite telephone transmissions | |
EP3843202B1 (en) | Horn for ka dual-band satellite antenna with circular polarisation | |
EP0497702A1 (en) | Radiating element structure for a plate antenna | |
CA2460820C (en) | Broadband or multiband antenna | |
EP2637254B1 (en) | Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna | |
EP0520908B1 (en) | Linear antenna array | |
EP3840115A1 (en) | Antenna with compact resonant cavity | |
EP3840116B1 (en) | Reconfigurable antenna with transmitter network with monolithic integration of elementary cells | |
FR2724491A1 (en) | MINIATURIZED, DOUBLE-POLARIZED, VERY WIDE BAND PLATED ANTENNA | |
FR2705167A1 (en) | Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device | |
EP2889955B1 (en) | Compact antenna structure for satellite telecommunication | |
FR2943464A1 (en) | Radiating element for use on electronically-scanned active antenna of e.g. radar, has slot line and notch formed by absence of metallization surfaces, where element and another element are formed on single multilayer radiofrequency circuit | |
EP4092831A1 (en) | Antenna with lacunary distribution network | |
EP3075031A2 (en) | Arrangement of antenna structures for satellite telecommunications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130911 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170306 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 917760 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012035601 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 917760 Country of ref document: AT Kind code of ref document: T Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171110 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012035601 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180213 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240123 Year of fee payment: 13 Ref country code: GB Payment date: 20240123 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240123 Year of fee payment: 13 |