EP2649467A1 - Method and device for calibrating and adjusting a vehicle environment sensor - Google Patents

Method and device for calibrating and adjusting a vehicle environment sensor

Info

Publication number
EP2649467A1
EP2649467A1 EP11802310.0A EP11802310A EP2649467A1 EP 2649467 A1 EP2649467 A1 EP 2649467A1 EP 11802310 A EP11802310 A EP 11802310A EP 2649467 A1 EP2649467 A1 EP 2649467A1
Authority
EP
European Patent Office
Prior art keywords
calibration
vehicle
target
orientation
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11802310.0A
Other languages
German (de)
French (fr)
Inventor
Stefan Schommer
Christian Wagmann
Axel Wendt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2649467A1 publication Critical patent/EP2649467A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4086Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder in a calibrating environment, e.g. anechoic chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Definitions

  • the invention relates to a method and a device for aligning a calibration and adjusting means, as used for calibrating or adjusting of optoelectronic environment sensors in vehicles, especially motor vehicles.
  • Driver assistant functions e.g., for a lane departure warning, object detection, or other
  • Driver assistant functions e.g., for a lane departure warning, object detection, or other
  • Radar sensors for automatic cruise control e.g. ACC ("Adaptive Cruise Control")
  • ACC Adaptive Cruise Control
  • Lane departure warning system check and calibration (“lane departure warning")
  • wheel clamps 28, 30 are mounted on wheels 12, 14 of a vehicle 7, to which turn wheel plates (targets) 20, 22 are fastened with photogrammetric measuring marks.
  • a measuring head 32, 46 is arranged in each case.
  • Each measuring head 32, 46 contains two stereo camera systems each with two cameras 36, 38, 40, 42, 50, 52 54, 56 and a reference system 44, 58.
  • the geometry of the cameras 36, 38, 40, 42, 50, 52 54, 56 of the two stereo camera systems of a measuring head 32, 46 is calibrated both intrinsically and extrinsically with regard to their relative orientation to one another.
  • the calibration allows the 3 D coordinates of the measuring marks on the wheel measuring panels 20, 22 in the coordinate system X v (front) or X H (rear) of the respective measuring head 32, 46 in a common measuring head coordinate system X L (left) or X R determine (right).
  • the wheel measuring tables 20, 22 used do not have to be highly accurate control point tables with measuring points measured in advance.
  • the 3-D position of the wheel axle 13 can be continuously measured in all four stereo camera systems 36, 38; 40, 42; 50, 52; 54, 56 are determined. Furthermore, the reference systems 44, 58 continuously measure the toe angle between the measuring heads 32, 46 and the tilting of the measuring heads 32, 46 in space. This makes it possible to calculate the chassis sizes, such as the track and camber angle, as well as other sizes of the chassis, such as the steering geometry with spread and caster angle.
  • the geometric Anlagenkoordina- tens system X is finally defined by the vehicle longitudinal axis 64, which is determined by the now measured track of the rear wheels 12, 14.
  • the aim of the calibration is the determination of the position and orientation of the camera of an environment sensor 15 in the coordinate system X M of the vehicle 7.
  • Vehicle 7 positioned at the point X T "FiX .
  • the calibration / adjustment means 62 is observed by the camera of the surroundings sensor 15 of the driver assistance system.
  • the image coordinates of measurement marks on the calibration / adjustment means 62 are measured by the driver assistance system.
  • a spatial backward cut determines the absolute orientation X c of the camera with respect to the calibration / adjustment means X T'RX .
  • This optical measuring step is performed by the control unit 17 of the driver assistance system in the vehicle 7.
  • the calibration step is started via the diagnostic interface of the control unit 17 in the vehicle 7.
  • the position of the calibration / adjustment means X T "RX in the coordinate system X M of the vehicle 7 must be present to the control unit 17 in the vehicle 7
  • the software in the control unit 17 presupposes that the calibration / adjustment means 62 is located at the firmly defined position X T "RX known to the control unit 17. Only if this is the case, determined by the control unit 17 installation angle.
  • a method according to the invention comprises the steps:
  • step b3) determining the position of the calibration panel with respect to the vehicle from the captured image of the calibration panel target and the position and orientation of the vehicle in space determined in step a3);
  • step d) determining the position and orientation of the environmental sensor with respect to the vehicle from the position and orientation of the environmental sensor with respect to the calibration panel determined in step c2) and the position of the calibration panel relative to the vehicle determined in step b3).
  • At least one wheel target wherein the wheel target is adapted to be mounted on a wheel of the vehicle; at least one calibration panel having at least one calibration panel target; at least one measuring unit adapted to receive at least one image of the wheel / calibration target and to determine the spatial positions of the wheel / calibration target from the at least one captured image; and
  • a controller connected to the environment sensor and configured to
  • Determining the position of the calibration panel preferably also includes determining the orientation of the calibration panel in space.
  • the spatial orientation of the environmental sensor is determined can be determined with high accuracy with respect to the vehicle without requiring exact manual alignment of the calibration board to a predetermined position.
  • the procedure can be performed quickly, eliminating the need for time-consuming, exact manual alignment of the calibration board.
  • the method has a high accuracy, since errors resulting from an inaccurate alignment of the calibration board are reliably avoided.
  • the manual alignment of the calibration table is usually not completely eliminated.
  • the calibration panel only needs to be aligned approximately with the vehicle type in the field of view of the cameras of the environmental sensor and the measuring units.
  • the position of the calibration board determined by the measuring unit is transmitted to the control unit.
  • the transmission can be wireless or wired, ie via a cable done. Wireless transmission is particularly convenient as no cables need to be laid and the mechanic's freedom of movement is not restricted by cables during the calibration process.
  • the transmission of the spatial position of the calibration board via a cable is particularly simple, inexpensive and reliable.
  • the controller By transferring the position of the calibration panel to the controller, the controller knows the exact position of the calibration panel and the controller can accurately determine the spatial orientation of the environmental sensor relative to the vehicle.
  • the calibration panel is moved to a predetermined position by at least one mechanical adjusting means controlled by the measuring unit.
  • the calibration panel is thereby aligned in a predetermined orientation.
  • control unit Since the control unit knows the predetermined position and, if necessary, alignment, the control unit can determine the spatial position and orientation of the environment sensor with respect to the vehicle without the necessity of transmitting the measurement unit determined position of the calibration panel to the control unit.
  • the control unit does not require a receiving device in this embodiment in order to receive the signals emitted by the measuring units, and is therefore cost-effective to implement.
  • At least one of the adjusting means is designed as a compressed air, hydraulic or electric motor.
  • Such motors are particularly suitable for reliably and accurately aligning the calibration board to the desired position.
  • Hydraulic and pneumatic actuators are particularly suitable because the heavy components of the drive, such as the compressor, can be placed outside the calibration table and a frame supporting the calibration panel. When moving the calibration board, therefore, only a small mass is to be moved, so that only a small force is required to move the calibration board and positioning inaccuracies, which may result from inertia, are minimized.
  • Electric motors are easy to control and allow a particularly simple and inexpensive to implement mechanical movement of the calibration board.
  • geometric patterns on the calibration panel and / or the targets, e.g. B. have a number of points provided. Calibration charts and targets having such patterns have been found to be particularly suitable for accurate detection by optical sensors and for determining their position.
  • the controller issues instructions for manual positioning of the calibration panel by the operator (automotive mechanic).
  • the calibration board can thus be moved particularly quickly and reliably to a position predetermined by the control unit without the need for a mechanical adjustment means in order to move the calibration panel.
  • At least one measuring device is provided on each of the two sides of the vehicle.
  • image acquisition and measurement on both sides of the vehicle i.
  • the position and orientation of the vehicle and the calibration board can be determined with high accuracy, so that the position and orientation of the environmental sensor with respect to the vehicle can be accurately determined.
  • FIG. 1 shows a schematic diagram of an adjustment / calibration arrangement for a vehicle surroundings sensor according to an embodiment of the invention
  • FIG. 2 shows a perspective view of an adjustment / calibration arrangement for a vehicle surroundings sensor according to a first exemplary embodiment of the invention
  • FIG. 3 shows a perspective view of an adjustment / calibration arrangement for a vehicle surroundings sensor according to a second exemplary embodiment of the invention
  • the adjusting or calibrating arrangement for a vehicle surroundings sensor shown in FIG. 1 in a schematic plan view comprises a vehicle 7, which is stationary on rails 4, 6 of a measuring station 2, with a chassis measuring device. To simplify the illustration, only the wheels 8, 10, 12 and 14 of the motor vehicle 7 are shown, and the dimensions of the body of
  • Vehicle 7 are indicated by a dashed outline.
  • the front axle 1 1 and the rear axle 13 of the vehicle 7 are shown by dashed transverse lines.
  • the geometric vehicle longitudinal axis 64 is shown as a dashed arrow, which runs from the center of the rear axle 1 1 to the center of the front axle 13.
  • the vehicle 7 has approximately in the middle of its front side a vehicle surroundings sensor 15, which is adjusted or calibrated by means of an adjustment / calibration arrangement according to the invention for a vehicle surroundings sensor.
  • the chassis measuring device comprises wheel targets 20 and 22, which are fastened by means of quick-release units 28 and 30 to the rear wheels 12 and 14 of the motor vehicle 7, and a left-hand measuring unit 32 and a right-hand measuring unit 46 which are approximately centered by means of fastening adapters 34 and 48 are attached to the longitudinal extent of the rails 4 and 6 on the rails 4 and 6 and extend outwardly therefrom.
  • Wheel targets 20, 22 are e.g. disc-shaped and directed outwards.
  • the main extension direction of the wheel targets 20, 22 extends in a vertical plane through the axis of rotation of the wheels 12 and 14.
  • the left measuring unit 32 has an outer forward facing measuring camera 36, via an inner forward facing measuring camera 38, on an outer
  • the right-hand measuring unit 46 comprises an inner forward-facing measuring camera 50, an outer forward-facing measuring camera 52, an inner rear-facing measuring camera
  • Each two measuring cameras 36, 38, 40, 42, 50, 52, 54, 56 thus form a forward or rearward-facing stereo camera system.
  • the field of view of the rear-facing measuring cameras 40, 42, 54, 56 is in each case dimensioned such that the left-wheel target 20 and the right-wheel target 22 lie completely therein.
  • the measuring units 32, 46 shown in FIG. 1 are preferably mobile measuring units 32, 46 which are suspended by means of fastening adapters on the running rails 4 and 6 or are screwed to the running rails 4 and 6; Magnetic adaptation is also possible.
  • the measuring units 32 and 46 can be connected to the rails 4 and 6 in any suitable manner. Releasable connections offer the advantage that the measuring units 32 and 46 can be easily removed and used at other workstations.
  • the measuring units 32 and 46 have a transverse referencing, which is carried out in the figure by transverse reference cameras 44 and 58, which are aligned in the vehicle transverse direction and optical features 34, 48 on the respectively opposite rails or measuring units 32, 46th capture, so as to determine the relative position of the measuring units 32, 46 to each other.
  • these optical features 34, 48 may be formed as LEDs or reflective measuring point marks.
  • the transverse reference cameras 44, 58 are so above or below the rails 4, 6, but in any case below the bottom of the vehicle 7 arranged that there is an unobstructed cross-visual connection.
  • the transverse line-of-sight connection for transverse referencing between the transverse reference cameras 44 and 58 is shown in FIG. 1 by a dotted transverse line 59.
  • the measuring units 32, 46 may still have tilt sensors, not shown in FIG. 1, by means of which the tilting of the measuring units 32, 46 can be determined.
  • a frame 60 is arranged, which is aligned substantially transverse to the vehicle longitudinal axis 64 and extends from a width position to the left of the left running rail 4 to a width position to the right of the right running rail 6.
  • receptacles are arranged in the figure for targets to be attached thereto, in each of which a target 16,18 is attached.
  • a calibration board 62 is arranged, which is approximately from a width position corresponding to the right end of the left running rail 4 to a width position corresponding to the left end of the right running rail 6 corresponds, extends.
  • the focal length of the front-facing measuring cameras 36, 38 of the left-hand measuring unit 32 and the focal length of the front-facing measuring cameras 50, 52 of the right-hand measuring unit 46 are each set so that the targets 16, 18 arranged on the lateral receptacles of the rack 60 are completely immersed their field of view, as shown in Figure 1 by dotted lines.
  • the vehicle surroundings sensor 15 is connected to a control and signal conditioning device 17, which receives and evaluates the signals of the vehicle surroundings sensor 15 in order to determine the parameters relevant for the calibration and adjustment of the vehicle surroundings sensor 15 from the signals of the vehicle surroundings sensor 15.
  • the control and evaluation device 17 is connected via a wireless connection, e.g. is formed as a radio or infrared connection, or a cable connection, not shown in the figure, connected to the measuring units 32 and 46, so that the determined by the measuring units 32 and 46 positions of the targets 16, 18, 20, 22 to the control and signal conditioning instrument 17 are transferable.
  • the measuring units 32 and 46 may be equipped with an external evaluation unit, not shown in Figure 1, e.g. a personal computer, which evaluates the images of the measuring cameras 36, 38, 40, 42, 50, 52, 54, 56 in order to determine the spatial position of the targets 16, 18, 20, 22.
  • the evaluation unit is designed to transmit the determined positions of the targets 16, 18, 20, 22 to the control and signal conditioning device 17.
  • This formula shows the reference of the camera coordinate system X c to the coordinate system X M of the vehicle 7, taking into consideration any orientation of the calibration board 62.
  • FIG. 2 shows a perspective view of a vehicle 7 with an environmental sensor 15, which is positioned in front of a calibration panel 62.
  • the calibration panel 62 on which a pattern 63 is formed of a number of dots, is attached to a rack 60, which also has a calibration panel target
  • the dot pattern 19 of the calibration board 62 is detected by a camera of the environmental sensor 15 disposed inside the vehicle 7, and the image taken by the camera is connected to that associated with the surroundings sensor 15
  • Control unit 17 is transmitted and evaluated by this to determine the position of the calibration panel 62 with respect to the environment sensor 15 in the coordinate system X c of the environmental sensor 15.
  • the dot pattern 63 of the calibration board target 16 is detected and evaluated by the cameras 36, 38 of at least one measuring unit 32 (not shown in FIG. 2) arranged laterally next to the vehicle 7 in relation to the position of the calibration board target 16 to determine the measuring unit 32. Since the position of the calibration board 62 relative to the calibration board target 16 is fixed and known by the frame 60, the position of the calibration board 62 in FIG.
  • Reference to the measuring unit 32 can be determined exactly. Since the measuring unit 32, as shown in FIG. 1, also detects a wheel target 20, which is not visible in FIG. 2, attached to the rear axle of the vehicle 7, it is possible to determine the exact position X T "X of the calibration board 62 with respect to the vehicle 7 in the coordinate system X M of the vehicle 7.
  • the so determined position of the calibration board 62 in the coordinate system X M of the vehicle 7 is transmitted via a wireless or not shown in the figure 2 wired connection to the controller 17 in the vehicle 7, which with the help of this information and the known position of the calibration board
  • Fig. 3 shows a perspective view of an alternative embodiment of a device according to the invention.
  • the second embodiment shown in FIG. 3 differs from the embodiment shown in FIG. 2 in that the calibration board 62 is movably mounted on the frame 60.
  • the frame 60 is provided with a vertical rail 65 and with a horizontal rail 66, along which the calibration board 62 is movable in the vertical or horizontal direction.
  • the rails 65, 66 may for example be formed with tooth rails, engage with the gears and roll when moving the calibration board 62 along the tooth rails.
  • Actuators 70 are additionally provided on the frame 60, which are controllable in order to move the calibration plate 62 along the rails 65, 66 into a desired position.
  • the actuators 70 may be configured to drive gears that engage tooth rails to move the calibration board 62 relative to the frame 60.
  • a control unit 68 connected to the measuring units 32, 46 controls the actuators 70 in such a way that that the calibration board to a desired, predetermined position X T 62 "is moved RX. the current position of the calibration plate 62 can thereby be continuously detected by the measuring units 32, 46 and monitored so that the desired, predetermined position X T" RX of the calibration board 62 is very precisely adjustable.
  • the actuators 70 may be electric motors or hydraulically or pneumatically driven actuators 70.
  • the connection for transmitting the measured data from the measuring units 32, 46 to the control and regulation unit 68 or from the control and regulation unit 68 to the actuators 70 can be connected via cable connections or via wireless connections, for. B. a radio or infrared connection, be realized.
  • a receiving unit 72 is provided, which receives the position data wirelessly transmitted by the measuring unit 32 and forwards via the data cable 74 to the control and regulating unit 68.
  • the number of movable axes (degrees of freedom) of the calibration board 62 may be designed differently depending on the needs. In the embodiment shown in FIG. 3, the calibration board 62 has two degrees of freedom with respect to the frame 60 (displacement in the x and y directions).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention relates to a method for adjusting and/or calibrating an environment sensor (15) in a vehicle (7), comprising the steps of: a1) attaching at least one wheel target (20, 22) to at least one wheel (12, 14) of the vehicle (7); a2) recording at least one image of the wheel target (20, 22) by means of at least one measurement unit (32, 46); a3) determining the spatial orientation of the vehicle (7) from the image of the wheel target (20, 22) recorded by the measurement unit (32, 46); b1) placing at least one calibration plate (62) with at least one calibration plate target (16, 18) within the field of view of the at least one measurement unit (32, 46); b2) recording at least one image of the calibration plate target (16, 18) with the measurement unit (32, 46); b3) determining the position of the calibration plate (62) from the recorded image of the calibration plate target (16, 18); c1) recording at least one image of the calibration plate (62) with the environment sensor (15) of the vehicle (7); c2) determining the spatial orientation of the environment sensor (15) in relation to the calibration plate (62) from the image of the calibration plate (62) recorded with the environment sensor (15); d) determining the spatial orientation of the environment sensor (15) in relation to the vehicle (7) from the orientation of the environment sensor (15) in relation to the calibration plate (62) determined in step c2) and the orientation of the calibration plate (62) in relation to the vehicle (7) determined in step a3).

Description

Beschreibung Titel Verfahren und Vorrichtung zum Kalibrieren und Justieren eines Fahrzeug- Description Title Method and device for calibrating and adjusting a vehicle
Umfeldsensors. Ambient sensor.
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ausrichten eines Kalibrier- und Justiermittels, wie es zum Kalibrieren bzw. Justieren von optisch- elektronischen Umfeldsensoren in Fahrzeugen, insbesondere Kraftfahrzeugen, verwendet wird. The invention relates to a method and a device for aligning a calibration and adjusting means, as used for calibrating or adjusting of optoelectronic environment sensors in vehicles, especially motor vehicles.
Stand der Technik Das Kalibrieren und Justieren von Sensoren zur Fahrerassistenz in einem (Kraftfahrzeug umfasst in der Regel das Bestimmen der Lage eines Umfeldsensors in Bezug auf die Fahrwerksgeometrie bzw. ein definiertes Fahrzeugkoordinatensystem. In der Werkstatt ist zum Beispiel die Lage einer Videokamera zum Einsatz vonPRIOR ART The calibration and adjustment of sensors for driver assistance in one vehicle usually involves determining the position of an environmental sensor with respect to the chassis geometry or a defined vehicle coordinate system
Fahrerassistenzfunktionalitäten (z.B. für eine Warnung beim Verlassen der Fahrspur, Objektdetektion oder weiteres) bezogen auf die Fahrwerksgeometrie nach dem Einbau der Kamera oder groben Veränderungen am Fahrwerk neu zu kalibrieren. Radarsensoren zur automatischen Geschwindigkeitsregelung, z.B. ACC ("Adaptive Cruise Control"), müssen wegen ihres geringen Öffnungswinkels häufig mechanisch auf die Fahrwerksgeometrie justiert werden. Driver assistant functions (e.g., for a lane departure warning, object detection, or other) relative to the chassis geometry after camera installation or gross changes to the chassis should be recalibrated. Radar sensors for automatic cruise control, e.g. ACC ("Adaptive Cruise Control"), because of their small opening angle often have to be mechanically adjusted to the chassis geometry.
Beispiele für die Kalibrierung und Justage von Sensoren zur Fahrerassistenz sind: Examples of calibration and adjustment of driver assistance sensors are:
· Prüfung und Justage radarbasierter Abstandssensoren ("Adaptive Cruise· Testing and adjustment of radar-based distance sensors ("Adaptive Cruise
Control") Control ")
• Prüfung und Justage infrarotbasierter Abstandssensoren ("Lidar")  • Inspection and adjustment of infrared-based distance sensors ("Lidar")
• Prüfung und Kalibrierung Rückfahrkamerasystem ("Rearview")  • Check and calibration of rear view camera system ("Rearview")
• Prüfung und Kalibrierung Fahrspurhaltekamerasystem ("Lane departure war- ning")  • Lane departure warning system check and calibration ("lane departure warning")
• Prüfung und Kalibrierung Fahrspurwechselassistent ("Blind spot detection") • Testing and calibration of lane change assistant ("blind spot detection")
• Infrarot-Nachtsichtkamera ("Nightview") • Infrared night vision camera ("Nightview")
• Abstandswarner im Nahbereich, Parksensorik • Umfeldkamerasysteme ("Sideview", "Topview") • distance warning in close range, parking sensors • Surrounding camera systems ("Sideview", "Topview")
Für das Kalibrieren und Justieren von Sensoren zur Fahrerassistenz sind folgende Voraussetzungen zu schaffen: For calibrating and adjusting sensors for driver assistance, the following requirements must be met:
• Bekannte Fahrwerksgeometrie zur Definition des Fahrzeugkoordinatensystems • Known suspension geometry for defining the vehicle coordinate system
• Ausrichtung eines Kalibrier-/Justiermittels im Sichtbereich des zu kalibrierenden/justierenden Sensors an einer vorgegebenen Position in Bezug auf das Fahrwerkskoordinatensystem • Orientation of a calibration / adjustment device in the field of view of the sensor to be calibrated / adjusted at a specified position relative to the chassis coordinate system
Zur Sicherstellung einer bekannten Fahrwerksgeometrie und um Kosten und Aufwand zu reduzieren, werden oftmals Kalibrier- und Justiervorrichtungen als Ergänzung zu Messgeräten für die Fahrwerksvermessung angeboten. To ensure a well-known suspension geometry and to reduce costs and effort, calibration and adjustment devices are often offered as a supplement to measuring devices for the chassis measurement.
Im Folgenden wird unter Bezugnahme auf die Figur 1 exemplarisch ein Verfahren zum Kalibrieren eines Videokamerasensors beschrieben, wie es z.B. aus DE 10 2008 042 018 A1 bekannt ist. Dabei wird der Bezug zwischen den noch zu erläuternden Koordinatensystemen zur Bestimmung der Fahrwerksgeometrie durch optische 3D-Messtechnik realisiert, wie es von Steffen Abraham, Axel Wendt, Günter Nobis, Volker Uffenkamp und Stefan Schommer in: Optische SD- Messtechnik zur Fahrwerksvermessung in der Kfz-Werkstatt, Oldenburger 3D- Tage, Wichmann Verlag, 2010, beschrieben worden ist. In the following, a method for calibrating a video camera sensor is described by way of example with reference to FIG. from DE 10 2008 042 018 A1 is known. The relationship between the coordinate systems for the determination of the chassis geometry to be explained by optical 3D measuring technology is realized, as described by Steffen Abraham, Axel Wendt, Günter Nobis, Volker Uffenkamp and Stefan Schommer in: Optical SD measurement technology for chassis measurement in motor vehicles. Workshop, Oldenburg 3D Days, Wichmann Verlag, 2010, has been described.
Für die Fahrwerksvermessung werden an Rädern 12, 14 eines Fahrzeuges 7 Radklammern 28, 30 montiert, an denen wiederum Radmesstafeln (Targets) 20, 22 mit photogrammetrischen Messmarken befestigt werden. Auf der linken und rechten Seite des Fahrzeugs 7 ist jeweils ein Messkopf 32, 46 angeordnet. Jeder Messkopf 32, 46 enthält zwei Stereo-Kamerasysteme mit jeweils zwei Kameras 36, 38, 40, 42, 50, 52 54, 56 und ein Referenzsystem 44, 58. For wheel alignment, wheel clamps 28, 30 are mounted on wheels 12, 14 of a vehicle 7, to which turn wheel plates (targets) 20, 22 are fastened with photogrammetric measuring marks. On the left and right side of the vehicle 7, a measuring head 32, 46 is arranged in each case. Each measuring head 32, 46 contains two stereo camera systems each with two cameras 36, 38, 40, 42, 50, 52 54, 56 and a reference system 44, 58.
Die Geometrie der Kameras 36, 38, 40, 42, 50, 52 54, 56 der beiden Stereo- Kamerasysteme eines Messkopfes 32, 46 ist sowohl intrinsisch als auch extrin- sisch hinsichtlich ihrer relativen Orientierung zueinander kalibriert. Durch die Kalibrierung lassen sich die 3 D-Koordinaten der Messmarken auf den Radmesstafeln 20, 22 im Koordinatensystem Xv (vorne) bzw. XH (hinten) des jeweiligen Messkopfes 32, 46 in einem gemeinsamen Messkopfkoordinatensystem XL (links) oder XR (rechts) bestimmen. Dabei müssen die verwendeten Radmesstafeln 20, 22 keine hochgenauen Passpunkttafeln mit vorab vermessenen Messpunkten sein. Unter der Voraussetzung, dass die Radmesstafeln 20, 22 mechanisch stabil an den Rädern 12, 14 befestigt sind, kann die 3 D-Lage der Radachse 13 fortlaufend in allen vier Stereo-Kamerasystemen 36, 38; 40, 42; 50, 52; 54, 56 bestimmt werden. Weiter messen die Referenzsysteme 44, 58 fortlaufend den Spurwinkel zwischen den Messköpfen 32, 46 und die Verkippung der Messköpfe 32, 46 im Raum. Dies ermöglicht es, die Fahrwerksgrößen, wie z.B. den Spur- und Sturzwinkel, sowie weitere Größen des Fahrwerkes, wie z.B. die Lenkgeometrie mit Spreiz- und Nachlaufwinkel, zu berechnen. Das geometrische Fahrzeugkoordina- tensystem X wird abschließend durch die Fahrzeuglängsachse 64, die durch die nun vermessene Spur der Hinterräder 12, 14 vorgegeben ist, definiert. The geometry of the cameras 36, 38, 40, 42, 50, 52 54, 56 of the two stereo camera systems of a measuring head 32, 46 is calibrated both intrinsically and extrinsically with regard to their relative orientation to one another. The calibration allows the 3 D coordinates of the measuring marks on the wheel measuring panels 20, 22 in the coordinate system X v (front) or X H (rear) of the respective measuring head 32, 46 in a common measuring head coordinate system X L (left) or X R determine (right). In this case, the wheel measuring tables 20, 22 used do not have to be highly accurate control point tables with measuring points measured in advance. Assuming that the wheel panels 20, 22 are mechanically stably fixed to the wheels 12, 14, the 3-D position of the wheel axle 13 can be continuously measured in all four stereo camera systems 36, 38; 40, 42; 50, 52; 54, 56 are determined. Furthermore, the reference systems 44, 58 continuously measure the toe angle between the measuring heads 32, 46 and the tilting of the measuring heads 32, 46 in space. This makes it possible to calculate the chassis sizes, such as the track and camber angle, as well as other sizes of the chassis, such as the steering geometry with spread and caster angle. The geometric Fahrzeugkoordina- tens system X is finally defined by the vehicle longitudinal axis 64, which is determined by the now measured track of the rear wheels 12, 14.
Ziel der Kalibrierung ist die Bestimmung der Lage und Orientierung der Kamera eines Umfeldsensors 15 im Koordinatensystem XM des Fahrzeugs 7. Hierzu wird ein Kalibrier-/Justiermittel 62 mit bekannten Messmarkenpositionen vor demThe aim of the calibration is the determination of the position and orientation of the camera of an environment sensor 15 in the coordinate system X M of the vehicle 7. For this purpose, a calibration / adjustment means 62 with known measurement mark positions before
Fahrzeug 7 an der Stelle XT"FiX positioniert. Vehicle 7 positioned at the point X T "FiX .
Für den Kalibriervorgang wird das Kalibrier-/Justiermittel 62 von der Kamera des Umfeldsensors 15 des Fahrerassistenzsystems beobachtet. Die Bildkoordinaten von Messmarken auf dem Kalibrier-/Justiermittel 62 werden vom Fahrerassistenzsystem gemessen. Durch einen räumlichen Rückwärtsschnitt wird die absolute Orientierung Xc der Kamera in Bezug zum Kalibrier-/ Justiermittel XT'RX bestimmt. Dieser optische Messschritt wird vom Steuergerät 17 des Fahrerassistenzsystems im Fahrzeug 7 durchgeführt. Der Kalibrierungsschritt wird über die Diagnoseschnittstelle des Steuergeräts 17 im Fahrzeug 7 gestartet. For the calibration process, the calibration / adjustment means 62 is observed by the camera of the surroundings sensor 15 of the driver assistance system. The image coordinates of measurement marks on the calibration / adjustment means 62 are measured by the driver assistance system. A spatial backward cut determines the absolute orientation X c of the camera with respect to the calibration / adjustment means X T'RX . This optical measuring step is performed by the control unit 17 of the driver assistance system in the vehicle 7. The calibration step is started via the diagnostic interface of the control unit 17 in the vehicle 7.
Um die Einbauwinkel (Nick-, Gier- und Wankwinkel) und weitere Parameter der Kamera bezogen auf die Fahrwerksgeometrie bestimmen zu können, muss dem Steuergerät 17 im Fahrzeug 7 die Lage des Kalibrier-/Justiermittels XT"RX im Koordinatensystem XM des Fahrzeugs 7 bekannt sein. Die Software im Steuergerät 17 setzt voraus, dass sich das Kalibrier-/Justiermittel 62 an der fest definierten, dem Steuergerät 17 bekannten Position XT"RX befindet. Nur wenn dies der Fall ist, stimmen die vom Steuergerät 17 ermittelten Einbauwinkel. In order to be able to determine the installation angles (pitch, yaw and roll angles) and other parameters of the camera relative to the chassis geometry, the position of the calibration / adjustment means X T "RX in the coordinate system X M of the vehicle 7 must be present to the control unit 17 in the vehicle 7 The software in the control unit 17 presupposes that the calibration / adjustment means 62 is located at the firmly defined position X T "RX known to the control unit 17. Only if this is the case, determined by the control unit 17 installation angle.
Das manuelle Ausrichten des Kalibrier-/Justiermittels 62 auf die Position XT"RX ist mit einigem Zeitaufwand verbunden und erfordert umfangreiche Kenntnisse des Kfz-Mechanikers für den Kalibriervorgang. Ein ungenau ausgerichtetes Kalibrier-/ Justiermittel 62 hat Genauigkeitseinbußen beim Kalibrieren und Justieren der Kamera bzw. des Umfeldsensors 15 zur Folge. The manual alignment of the calibration / adjustment means 62 to the position X T "RX requires considerable time and requires extensive knowledge of the car mechanic for the calibration procedure. Adjustment means 62 results in reduced accuracy when calibrating and adjusting the camera or environmental sensor 15.
Offenbarung der Erfindung Disclosure of the invention
Es ist daher eine Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zum einfachen und zuverlässigen Justieren und/oder Kalibrieren eines Umfeldsensors in einem Fahrzeug bereitzustellen. It is therefore an object of the invention to provide a method and apparatus for easy and reliable adjustment and / or calibration of an environmental sensor in a vehicle.
Ein erfindungsgemäßes Verfahren umfasst die Schritte: A method according to the invention comprises the steps:
a1 ) Anbringen wenigstens eines Rad-Targets an wenigsten einem der Räder einer Achse des Fahrzeugs; a1) attaching at least one wheel target to at least one of the wheels of an axle of the vehicle;
a2) Aufnehmen wenigstens eines Bildes des Rad-Targets durch wenigstens eine Messeinheit; a2) taking at least one image of the wheel target by at least one measuring unit;
a3) Bestimmen der Position und Ausrichtung des Fahrzeugs im Raum aus dem aufgenommenen Bild des Rad-Targets; a3) determining the position and orientation of the vehicle in space from the captured image of the wheel target;
b1 ) Platzieren wenigstens einer Kalibriertafel mit wenigstens einem Kalibriertafel-Target im Blickfeld der wenigstens einen Messeinheit; b1) placing at least one calibration panel with at least one calibration panel target in the field of vision of the at least one measurement unit;
b2) Aufnehmen wenigstens eines Bildes des Kalibriertafel-Targets mit der Messeinheit; b2) capturing at least one image of the calibration panel target with the measurement unit;
b3) Bestimmen der Position der Kalibriertafel in Bezug auf das Fahrzeug aus dem aufgenommenen Bild des Kalibriertafel-Targets und der im Schritt a3) bestimmten Position und Ausrichtung des Fahrzeugs im Raum; b3) determining the position of the calibration panel with respect to the vehicle from the captured image of the calibration panel target and the position and orientation of the vehicle in space determined in step a3);
c1 ) Aufnehmen wenigstens eines Bildes der Kalibriertafel mit dem Umfeldsensor des Fahrzeugs; c1) taking at least one image of the calibration panel with the environment sensor of the vehicle;
c2) Bestimmen der Position und Ausrichtung des Umfeldsensors in Bezug auf die Kalibriertafel aus dem mit dem Umfeldsensor aufgenommenen Bild der Kalibriertafel; c2) determining the position and orientation of the environmental sensor relative to the calibration panel from the image of the calibration panel taken with the environmental sensor;
d) Bestimmen der Position und Ausrichtung des Umfeldsensors in Bezug auf das Fahrzeug aus der im Schritt c2) bestimmten Position und Ausrichtung des Umfeldsensors in Bezug auf die Kalibriertafel und der in Schritt b3) bestimmten Position der Kalibriertafel in Bezug auf das Fahrzeug. d) determining the position and orientation of the environmental sensor with respect to the vehicle from the position and orientation of the environmental sensor with respect to the calibration panel determined in step c2) and the position of the calibration panel relative to the vehicle determined in step b3).
Eine erfindungsgemäße Vorrichtung zum Justieren und/oder Kalibrieren eines Umfeldsensors in einem Fahrzeug umfasst: A device according to the invention for adjusting and / or calibrating an environment sensor in a vehicle comprises:
wenigstens ein Rad-Target, wobei das Rad-Target zur Montage an einem Rad des Fahrzeugs ausgebildet ist; wenigstens eine Kalibriertafel, die wenigstens ein Kalibriertafel-Target aufweist; wenigstens eine Messeinheit, die zur Aufnahme wenigstens eines Bildes des/der Rad-/Kalibriertafel-Targets und zur Bestimmung der räumlichen Positionen des/der Rad-/Kalibriertafel-Targets aus dem wenigstens einen aufgenommenen Bild ausgebildet ist; und at least one wheel target, wherein the wheel target is adapted to be mounted on a wheel of the vehicle; at least one calibration panel having at least one calibration panel target; at least one measuring unit adapted to receive at least one image of the wheel / calibration target and to determine the spatial positions of the wheel / calibration target from the at least one captured image; and
ein Steuergerät, das mit dem Umfeldsensor verbunden und ausgebildet ist, um a controller connected to the environment sensor and configured to
(a) die Position und Ausrichtung des Umfeldsensors in Bezug auf die Kalibriertafel aus einem von dem Umfeldsensor aufgenommenen Bild der Kalibriertafel zu bestimmen, und (a) determine the position and orientation of the environmental sensor relative to the calibration panel from an image of the calibration panel taken by the environmental sensor, and
(b) die Position und Ausrichtung des Umfeldsensors in Bezug auf das Fahrzeug aus der zuvor bestimmten Position und Ausrichtung des Umfeldsensors in Bezug auf die Kalibriertafel und der durch die Messeinheit bestimmten Position und Ausrichtung der Kalibriertafel und des Fahrzeugs zu bestimmen.  (b) determine the position and orientation of the environmental sensor with respect to the vehicle from the previously determined position and orientation of the environmental sensor with respect to the calibration panel and the position and orientation of the calibration panel and the vehicle determined by the measurement unit.
Das Bestimmen der Position der Kalibriertafel umfasst vorzugsweise auch das Bestimmen der Ausrichtung der Kalibriertafel im Raum. Determining the position of the calibration panel preferably also includes determining the orientation of the calibration panel in space.
Durch das Bestimmen der Position und Ausrichtung (Orientierung) des Umfeldsensors in Bezug auf das Fahrzeug aus der zuvor bestimmten Orientierung des Umfeldsensors in Bezug auf die Kalibriertafel und der durch die Messeinheit zuvor bestimmten Orientierung der Kalibriertafel in Bezug auf das Fahrzeug ist die räumliche Orientierung des Umfeldsensors in Bezug auf das Fahrzeug mit hoher Genauigkeit bestimmbar, ohne dass eine exakte manuelle Ausrichtung der Kalibriertafel an eine zuvor festgelegte Position notwendig ist. By determining the position and orientation of the environmental sensor with respect to the vehicle from the previously determined orientation of the environmental sensor with respect to the calibration panel and the orientation of the calibration panel relative to the vehicle previously determined by the measurement unit, the spatial orientation of the environmental sensor is determined can be determined with high accuracy with respect to the vehicle without requiring exact manual alignment of the calibration board to a predetermined position.
Das Verfahren kann schnell durchgeführt werden, da eine zeitaufwendige exakte manuelle Ausrichtung der Kalibriertafel entfällt. Das Verfahren hat eine hohe Genauigkeit, da Fehler, die sich aus einer ungenauen Ausrichtung der Kalibriertafel ergeben, zuverlässig vermieden werden. The procedure can be performed quickly, eliminating the need for time-consuming, exact manual alignment of the calibration board. The method has a high accuracy, since errors resulting from an inaccurate alignment of the calibration board are reliably avoided.
Das manuelle Ausrichten der Kalibriertafel fällt dabei in der Regel nicht vollständig weg. Die Kalibriertafel muss aber nur näherungsweise dem Fahrzeugtyp entsprechend im Sichtfeld der Kameras des Umfeldsensors und der Messeinheiten ausgerichtet werden. The manual alignment of the calibration table is usually not completely eliminated. However, the calibration panel only needs to be aligned approximately with the vehicle type in the field of view of the cameras of the environmental sensor and the measuring units.
In einer Ausführungsform wird die von der Messeinheit bestimmte Position der Kalibriertafel an das Steuergerät übertragen. Die Übertragung kann drahtlos oder drahtgebunden, d.h. über ein Kabel, erfolgen. Eine drahtlose Übertragung ist besonders bequem, da keine Kabel verlegt werden müssen und die Bewegungsfreiheit des Mechanikers während des Kalibriervorgangs nicht durch Kabel eingeschränkt wird. Die Übertragung der räumlichen Position der Kalibriertafel über ein Kabel ist besonders einfach, kostengünstig und zuverlässig. In one embodiment, the position of the calibration board determined by the measuring unit is transmitted to the control unit. The transmission can be wireless or wired, ie via a cable done. Wireless transmission is particularly convenient as no cables need to be laid and the mechanic's freedom of movement is not restricted by cables during the calibration process. The transmission of the spatial position of the calibration board via a cable is particularly simple, inexpensive and reliable.
Durch das Übertragen der Position der Kalibriertafel an das Steuergerät ist dem Steuergerät die exakte Position der Kalibriertafel bekannt und das Steuergerät kann die räumliche Orientierung des Umfeldsensors in Bezug auf das Fahrzeug exakt bestimmen. By transferring the position of the calibration panel to the controller, the controller knows the exact position of the calibration panel and the controller can accurately determine the spatial orientation of the environmental sensor relative to the vehicle.
In einer Ausführungsform wird die Kalibriertafel, nachdem ihrer Position durch wenigstens eine der Messeinheiten bestimmt worden ist, durch wenigstens ein mechanisches, von der Messeinheit angesteuertes Stellmittel an eine vorgegebene Position bewegt. Vorzugsweise wird die Kalibriertafel dabei in einer vorgegebenen Ausrichtung ausgerichtet. In one embodiment, after its position has been determined by at least one of the measuring units, the calibration panel is moved to a predetermined position by at least one mechanical adjusting means controlled by the measuring unit. Preferably, the calibration panel is thereby aligned in a predetermined orientation.
Da dem Steuergerät die vorgegebene Position und ggf. Ausrichtung bekannt ist, kann das Steuergerät die räumliche Position und Ausrichtung des Umfeldsensors in Bezug auf das Fahrzeug exakt bestimmen, ohne dass eine Übertragung der von Messeinheiten bestimmten Position der Kalibriertafel an das Steuergerät notwendig ist. Das Steuergerät benötigt in dieser Ausführungsform keine Empfangsvorrichtung, um die von den Messeinheiten ausgesendeten Signale zu empfangen, und ist daher kostengünstig realisierbar. Since the control unit knows the predetermined position and, if necessary, alignment, the control unit can determine the spatial position and orientation of the environment sensor with respect to the vehicle without the necessity of transmitting the measurement unit determined position of the calibration panel to the control unit. The control unit does not require a receiving device in this embodiment in order to receive the signals emitted by the measuring units, and is therefore cost-effective to implement.
In einer Ausführungsform ist wenigstens eines der Stellmittel als Druckluft-, Hydraulik- oder Elektromotor ausgebildet. Derartige Motoren sind besonders geeignet, um die Kalibriertafel zuverlässig und mit hoher Genauigkeit auf die gewünschte Position auszurichten. Hydraulische und Druckluftantriebe sind besonders geeignet, da die schweren Bestandteile des Antriebs, wie z.B. der Kompressor, außerhalb der Kalibriertafel und eines die Kalibriertafel tragenden Gestells angeordnet werden können. Beim Bewegen der Kalibriertafel ist daher nur eine kleine Masse zu bewegen, so dass nur eine geringe Kraft zum Bewegen der Kalibriertafel notwendig ist und Ungenauigkeiten bei der Positionierung, die sich aus der Masseträgheit ergeben können, minimiert werden. Elektromotoren sind einfach ansteuerbar und ermöglichen eine besonders einfach und kostengünstig zu realisierende mechanische Bewegung der Kalibriertafel. In einer Ausführungsform sind auf der Kalibriertafel und/oder den Targets geometrische Muster, die z. B. eine Anzahl von Punkten aufweisen, vorgesehen. Kalibriertafeln und Targets, die derartige Muster aufweisen, haben sich als besonders geeignet zur genauen Erfassung durch optische Sensoren und zur Bestim- mung ihrer Position erwiesen. In one embodiment, at least one of the adjusting means is designed as a compressed air, hydraulic or electric motor. Such motors are particularly suitable for reliably and accurately aligning the calibration board to the desired position. Hydraulic and pneumatic actuators are particularly suitable because the heavy components of the drive, such as the compressor, can be placed outside the calibration table and a frame supporting the calibration panel. When moving the calibration board, therefore, only a small mass is to be moved, so that only a small force is required to move the calibration board and positioning inaccuracies, which may result from inertia, are minimized. Electric motors are easy to control and allow a particularly simple and inexpensive to implement mechanical movement of the calibration board. In one embodiment, geometric patterns on the calibration panel and / or the targets, e.g. B. have a number of points provided. Calibration charts and targets having such patterns have been found to be particularly suitable for accurate detection by optical sensors and for determining their position.
In einer Ausführungsform gibt das Steuergerät Anweisungen zur manuellen Positionierung der Kalibriertafel durch den Bediener (Kfz-Mechaniker) aus. Die Kalibriertafel kann so besonders schnell und zuverlässige an eine von dem Steuerge- rät vorgegebene Position bewegt werden, ohne dass ein mechanisches Stellmittel notwendig ist, um die Kalibriertafel zu bewegen. In one embodiment, the controller issues instructions for manual positioning of the calibration panel by the operator (automotive mechanic). The calibration board can thus be moved particularly quickly and reliably to a position predetermined by the control unit without the need for a mechanical adjustment means in order to move the calibration panel.
In einer Ausführungsform ist jeweils wenigstens eine Messvorrichtung auf jeder der beiden Seiten des Fahrzeugs vorgesehen. Durch Bildaufnahme und Vermes- sung auf beiden Seiten des Fahrzeuges, d.h. links und rechts des Fahrzeugs, können die Position und Ausrichtung des Fahrzeugs und der Kalibriertafel mit hoher Genauigkeit bestimmt werden, so dass die Position und Ausrichtung des Umfeldsensors in Bezug auf das Fahrzeug exakt bestimmbar sind. Insbesondere ist es in diesem Fall nicht notwendig, die Kalibriertafel in einem exakten rechten Winkel zur Fahrzeuglängsachse auszurichten, da eine von einem rechten Winkel abweichende räumliche Ausrichtung der Kalibriertafel mit Hilfe der Messeinheiten bestimmt und bei der Auswertung berücksichtigt werden kann. In one embodiment, at least one measuring device is provided on each of the two sides of the vehicle. By image acquisition and measurement on both sides of the vehicle, i. To the left and right of the vehicle, the position and orientation of the vehicle and the calibration board can be determined with high accuracy, so that the position and orientation of the environmental sensor with respect to the vehicle can be accurately determined. In particular, it is not necessary in this case to align the calibration panel at an exact right angle to the vehicle longitudinal axis, since a deviating from a right angle spatial orientation of the calibration board using the measuring units can be determined and taken into account in the evaluation.
Die vorliegende Erfindung wird im Folgenden anhand von Ausführungsbeispielen mit Bezug auf die beiliegenden Figuren näher erläutert. The present invention will be explained in more detail below with reference to embodiments with reference to the accompanying figures.
Figur 1 zeigt eine Prinzipskizze einer Justier-/Kalibrieranordnung für einen Fahrzeugumfeldsensor gemäß einem Ausführungsbeispiel der Erfindung; FIG. 1 shows a schematic diagram of an adjustment / calibration arrangement for a vehicle surroundings sensor according to an embodiment of the invention;
Figur 2 zeigt eine perspektivische Ansicht einer Justier-/Kalibrieranordnung für einen Fahrzeugumfeldsensor gemäß einem ersten Ausführungsbeispiel der Erfindung; FIG. 2 shows a perspective view of an adjustment / calibration arrangement for a vehicle surroundings sensor according to a first exemplary embodiment of the invention;
Figur 3 zeigt eine perspektivische Ansicht einer Justier-/Kalibrieranordnung für einen Fahrzeugumfeldsensor gemäß einem zweiten Ausführungsbeispiel der Erfindung; Die in der Figur 1 in einer schematischen Draufsicht dargestellte Justier- oder Kalibrier-Anordnung für einen Fahrzeugumfeldsensor umfasst ein auf Fahrschienen 4, 6 eines Messplatzes 2 stehendes Fahrzeug 7 mit einer Fahrwerksvermes- sungseinrichtung. Zur Vereinfachung der Darstellung sind nur die Räder 8, 10, 12 und 14 des Kraftfahrzeugs 7 gezeigt, und die Abmessungen der Karosserie desFIG. 3 shows a perspective view of an adjustment / calibration arrangement for a vehicle surroundings sensor according to a second exemplary embodiment of the invention; The adjusting or calibrating arrangement for a vehicle surroundings sensor shown in FIG. 1 in a schematic plan view comprises a vehicle 7, which is stationary on rails 4, 6 of a measuring station 2, with a chassis measuring device. To simplify the illustration, only the wheels 8, 10, 12 and 14 of the motor vehicle 7 are shown, and the dimensions of the body of
Fahrzeugs 7 sind durch einen gestrichelt gezeichneten Umriss angedeutet. Die Vorderachse 1 1 und die Hinterachse 13 des Fahrzeugs 7 sind durch gestrichelte Querlinien dargestellt. Die geometrische Fahrzeuglängsachse 64 ist als gestrichelter Pfeil, der von dem Mittelpunkt der Hinterachse 1 1 zum Mittelpunkt der Vorderachse 13 verläuft, dargestellt. Das Fahrzeug 7 weist etwa in der Mitte seiner Vorderseite einen Fahrzeugumfeldsensor 15 auf, der mittels einer erfindungsgemäßen Justier-/Kalibrier-Anordnung für einen Fahrzeugumfeldsensor justiert bzw. kalibriert wird. Die Fahrwerksvermessungseinrichtung umfasst Rad-Targets 20 und 22, die mittels Schnellspanneinheiten 28 und 30 an den Hinterrädern 12 und 14 des Kraftfahrzeugs 7 befestigt sind, sowie eine linke Messeinheit 32 und eine rechte Messeinheit 46, die mittels Befestigungsadaptern 34 und 48 etwa in mittlerer Position bezogen auf die Längserstreckung der Fahrschienen 4 und 6 an den Fahr- schienen 4 und 6 befestigt sind und sich von diesen nach außen erstrecken. DieVehicle 7 are indicated by a dashed outline. The front axle 1 1 and the rear axle 13 of the vehicle 7 are shown by dashed transverse lines. The geometric vehicle longitudinal axis 64 is shown as a dashed arrow, which runs from the center of the rear axle 1 1 to the center of the front axle 13. The vehicle 7 has approximately in the middle of its front side a vehicle surroundings sensor 15, which is adjusted or calibrated by means of an adjustment / calibration arrangement according to the invention for a vehicle surroundings sensor. The chassis measuring device comprises wheel targets 20 and 22, which are fastened by means of quick-release units 28 and 30 to the rear wheels 12 and 14 of the motor vehicle 7, and a left-hand measuring unit 32 and a right-hand measuring unit 46 which are approximately centered by means of fastening adapters 34 and 48 are attached to the longitudinal extent of the rails 4 and 6 on the rails 4 and 6 and extend outwardly therefrom. The
Rad-Targets 20, 22 sind z.B. scheibenförmig ausgebildet und nach außen gerichtet. Die Haupterstreckungsrichtung der Rad-Targets 20, 22 verläuft in einer senkrechten Ebene durch die Drehachse der Räder 12 und 14. Die linke Messeinheit 32 verfügt über eine äußere nach vorn gerichtete Messkamera 36, über eine innere nach vorn gerichtete Messkamera 38, über eine äußere nach hinten gerichtete Messkamera 40 und über eine innere nach hinten gerichtete Messkamera 42. In entsprechender Weise umfasst die rechte Messeinheit 46 eine innere nach vorn gerichtete Messkamera 50, eine äußere nach vor- ne gerichtete Messkamera 52, eine innere nach hinten gerichtete MesskameraWheel targets 20, 22 are e.g. disc-shaped and directed outwards. The main extension direction of the wheel targets 20, 22 extends in a vertical plane through the axis of rotation of the wheels 12 and 14. The left measuring unit 32 has an outer forward facing measuring camera 36, via an inner forward facing measuring camera 38, on an outer Correspondingly, the right-hand measuring unit 46 comprises an inner forward-facing measuring camera 50, an outer forward-facing measuring camera 52, an inner rear-facing measuring camera
54 und eine äußere nach hinten gerichtete Messkamera 56. Jeweils zwei Messkameras 36, 38, 40, 42, 50, 52, 54, 56 bilden so ein nach vorne bzw. hinten ausgerichtetes Stereo-Kamerasystem. 54 and an outer rear-facing measuring camera 56. Each two measuring cameras 36, 38, 40, 42, 50, 52, 54, 56 thus form a forward or rearward-facing stereo camera system.
Das Blickfeld der nach hinten gerichteten Messkameras 40, 42, 54, 56 ist jeweils so bemessen, dass das linke Rad -Target 20 bzw. das rechte Rad-Target 22 vollständig darin liegen. Bei den in der Figur 1 gezeigten Messeinheiten 32, 46 handelt es sich vorzugsweise um mobile Messeinheiten 32, 46, die mittels Befestigungsadaptern an den Fahrschienen 4 und 6 eingehängt oder mit den Fahrschienen 4 und 6 verschraubt sind; auch eine Magnetadaption ist möglich. Prinzipiell können die Messeinheiten 32 und 46 auf jede geeignete Weise mit den Fahrschienen 4 und 6 verbunden werden. Lösbare Verbindungen bieten den Vorteil, dass die Messeinheiten 32 und 46 leicht abgenommen und auch an anderen Arbeitsplätzen eingesetzt werden können. The field of view of the rear-facing measuring cameras 40, 42, 54, 56 is in each case dimensioned such that the left-wheel target 20 and the right-wheel target 22 lie completely therein. The measuring units 32, 46 shown in FIG. 1 are preferably mobile measuring units 32, 46 which are suspended by means of fastening adapters on the running rails 4 and 6 or are screwed to the running rails 4 and 6; Magnetic adaptation is also possible. In principle, the measuring units 32 and 46 can be connected to the rails 4 and 6 in any suitable manner. Releasable connections offer the advantage that the measuring units 32 and 46 can be easily removed and used at other workstations.
Die Messeinheiten 32 und 46 verfügen über eine Quer-Referenzierung, die in der Figur durch Quer-Referenzkameras 44 und 58 ausgeführt ist, die in Fahrzeug- Querrichtung ausgerichtet sind und optische Merkmale 34, 48 auf den jeweils gegenüber liegenden Fahrschienen oder Messeinheiten 32, 46 erfassen, um so die relative Position der Messeinheiten 32, 46 zueinander zu ermitteln. Beispielsweise können diese optischen Merkmale 34, 48 als LEDs oder reflektierende Messpunktmarken ausgebildet sein. Die Quer-Referenzkameras 44, 58 sind dabei so oberhalb oder unterhalb der Fahrschienen 4, 6, jedoch auf jeden Fall unterhalb des Bodens des Fahrzeugs 7 angeordnet, dass eine ungehinderte Quer-Sichtverbindung besteht. Die Quer-Sichtverbindung zur Quer-Referenzierung zwischen den Quer-Referenzkameras 44 und 58 ist in Figur 1 durch eine gepunktete Querlinie 59 dargestellt. The measuring units 32 and 46 have a transverse referencing, which is carried out in the figure by transverse reference cameras 44 and 58, which are aligned in the vehicle transverse direction and optical features 34, 48 on the respectively opposite rails or measuring units 32, 46th capture, so as to determine the relative position of the measuring units 32, 46 to each other. For example, these optical features 34, 48 may be formed as LEDs or reflective measuring point marks. The transverse reference cameras 44, 58 are so above or below the rails 4, 6, but in any case below the bottom of the vehicle 7 arranged that there is an unobstructed cross-visual connection. The transverse line-of-sight connection for transverse referencing between the transverse reference cameras 44 and 58 is shown in FIG. 1 by a dotted transverse line 59.
Des Weiteren können die Messeinheiten 32, 46 noch über in der Figur 1 nicht gezeigte Neigungsgeber verfügen, mittels derer sich die Verkippung der Messeinheiten 32, 46 bestimmbar ist. Furthermore, the measuring units 32, 46 may still have tilt sensors, not shown in FIG. 1, by means of which the tilting of the measuring units 32, 46 can be determined.
Vor dem Fahrzeug 7 ist ein Gestell 60 angeordnet, das im Wesentlichen quer zur Fahrzeuglängsachse 64 ausgerichtet ist und sich von einer Breitenposition links der linken Fahrschiene 4 bis zu einer Breitenposition rechts der rechten Fahrschiene 6 erstreckt. An den seitlichen Enden des Gestells 60 sind in der Figur 1 nicht gezeigte Aufnahmen für daran anzubringende Targets angeordnet, in denen jeweils ein Target 16,18 befestigt ist. In front of the vehicle 7, a frame 60 is arranged, which is aligned substantially transverse to the vehicle longitudinal axis 64 and extends from a width position to the left of the left running rail 4 to a width position to the right of the right running rail 6. At the lateral ends of the frame 60 receptacles, not shown, are arranged in the figure for targets to be attached thereto, in each of which a target 16,18 is attached.
An der in Richtung auf das Fahrzeug 7 ausgerichteten Seite des Gestells 60 ist eine Kalibriertafel 62 angeordnet, die sich in etwa von einer Breitenposition, die dem rechten Ende der linken Fahrschiene 4 entspricht, bis zu einer Breitenposition, die dem linken Ende der rechten Fahrschiene 6 entspricht, erstreckt. Die Brennweite der nach vorne gerichteten Messkameras 36, 38 der linken Messeinheit 32 und die Brennweite der nach vorne gerichteten Messkameras 50, 52 der rechten Messeinheit 46 sind jeweils so eingestellt, dass die an den seitlichen Aufnahmen des Gestells 60 angeordneten Targets 16, 18 vollständig in de- ren Blickfeld liegen, wie dies in der Figur 1 durch gepunktete Linien dargestellt ist. On the side of the frame 60 oriented toward the vehicle 7, a calibration board 62 is arranged, which is approximately from a width position corresponding to the right end of the left running rail 4 to a width position corresponding to the left end of the right running rail 6 corresponds, extends. The focal length of the front-facing measuring cameras 36, 38 of the left-hand measuring unit 32 and the focal length of the front-facing measuring cameras 50, 52 of the right-hand measuring unit 46 are each set so that the targets 16, 18 arranged on the lateral receptacles of the rack 60 are completely immersed their field of view, as shown in Figure 1 by dotted lines.
Der Fahrzeugumfeldsensor 15 ist mit einem Steuer- und Auswertgerät 17 verbunden, welches die Signale des Fahrzeugumfeldsensors 15 erhält und auswer- tet, um aus den Signalen des Fahrzeugumfeldsensors 15 die für das Kalibrieren und Justieren des Fahrzeugumfeldsensors 15 relevanten Parameter zu bestimmen. The vehicle surroundings sensor 15 is connected to a control and signal conditioning device 17, which receives and evaluates the signals of the vehicle surroundings sensor 15 in order to determine the parameters relevant for the calibration and adjustment of the vehicle surroundings sensor 15 from the signals of the vehicle surroundings sensor 15.
Das Steuer- und Auswertgerät 17 ist über eine drahtlose Verbindung, die z.B. als Funk- oder Infrarotverbindung ausgebildet ist, oder eine in der Figur nicht gezeigte Kabelverbindung mit den Messeinheiten 32 und 46 verbunden, so dass die von den Messeinheiten 32 und 46 ermittelten Positionen der Targets 16, 18, 20, 22 an das Steuer- und Auswertgerät 17 übertragbar sind. Alternativ können die Messeinheiten 32 und 46 mit einer in der Figur 1 nicht gezeigten externen Auswerteinheit, z.B. einem Personalcomputer, verbunden sein, welche die Bilder der Messkameras 36, 38, 40, 42, 50, 52, 54, 56 auswertet, um die räumliche Position der Targets 16, 18, 20, 22 zu bestimmen. In diesem Fall ist die Auswerteinheit ausgebildet, um die ermittelten Positionen der Targets 16, 18, 20, 22 an das Steuer- und Auswertgerät 17 zu übertragen. The control and evaluation device 17 is connected via a wireless connection, e.g. is formed as a radio or infrared connection, or a cable connection, not shown in the figure, connected to the measuring units 32 and 46, so that the determined by the measuring units 32 and 46 positions of the targets 16, 18, 20, 22 to the control and signal conditioning instrument 17 are transferable. Alternatively, the measuring units 32 and 46 may be equipped with an external evaluation unit, not shown in Figure 1, e.g. a personal computer, which evaluates the images of the measuring cameras 36, 38, 40, 42, 50, 52, 54, 56 in order to determine the spatial position of the targets 16, 18, 20, 22. In this case, the evaluation unit is designed to transmit the determined positions of the targets 16, 18, 20, 22 to the control and signal conditioning device 17.
Um die Einbauwinkel (Nick-, Gier- und Wankwinkel) und weitere Parameter der Kamera bezogen auf die Fahrwerksgeometrie, die sich auf eine bekannte Position der Kalibriertafel 62 beziehen, bestimmen zu können, muss die Lage der Ka- libriertafel 62 in Bezug auf das Koordinatensystem XM des Fahrzeugs 7 berücksichtigt werden. In order to be able to determine the installation angles (pitch, yaw and roll angle) and other parameters of the camera relative to the chassis geometry, which relate to a known position of the calibration panel 62, the position of the calibration panel 62 with respect to the coordinate system X M of the vehicle 7 are taken into account.
Die zu berücksichtigenden 3 D-Transformationen, welche exemplarisch für die Transformation eines Punktes vom Kamerakoordinatensystem XC in das Koordinatensystem XM des Fahrzeugs 7 formuliert sind, lauten wie folgt: The 3 D transformations to be considered, which are formulated by way of example for the transformation of a point from the camera coordinate system X C into the coordinate system X M of the vehicle 7, are as follows:
PM = TT M + RT M ( TT M + RT M PC) wobei PM = T T M + R T M (T T M + R T M PC) in which
Pc: Punkt im Koordinatensystem Xc der Kamera P c : point in the coordinate system X c of the camera
P : Punkt im Koordinatensystem XM des Fahrzeugs P: point in the coordinate system X M of the vehicle
RT M, RT MRotationsmatrix zwischen den jeweiligen Koordinatensystemen R T M , R T M Rotation matrix between the respective coordinate systems
TT M, TT M Translationsvektor zwischen den jeweiligen Koordinatensystemen T T M , T T M Translation vector between the respective coordinate systems
Durch diese Formel ist der Bezug des Kamerakoordinatensystems Xc zum Koordinatensystem XM des Fahrzeugs 7 unter Berücksichtigung einer beliebigen Ausrichtung der Kalibriertafel 62 gezeigt. This formula shows the reference of the camera coordinate system X c to the coordinate system X M of the vehicle 7, taking into consideration any orientation of the calibration board 62.
Weiter ist der Punkt PM mit Hilfe der definierten Ausrichtungsposition xT"FIX wie folgt in diese Sollposition zu überführen: Further, the point P M is to be transferred to this target position using the defined alignment position x T "FIX as follows:
3 _ T-FIX , D T-F1X 3 _ T-FIX, D T-F1X
T-FiX - I + I M.1 wobei T-FiX - I + I M.1 where
PT-FIX: Punkt in der Sollposition XT~RX der Kalibriertafel PT-F I X: Point in the set position X T ~ RX of the calibration table
PM: Punkt im Koordinatensystem XM des Fahrzeugs P M : point in the coordinate system X M of the vehicle
RM T"FIX: Rotationsmatrix, zwischen dem Koordinatensystem XM des R M T "FIX : rotation matrix, between the coordinate system X M of the
Fahrzeugs und der Sollposition XT"FiX der Kalibriertafel Vehicle and the setpoint position X T "FiX of the calibration table
TMT"rx: Translationsvektor, zwischen dem Koordinatensystem XM des TM T "rx : translation vector, between the coordinate system X M of the
Fahrzeugs und der Sollposition XT"F!X der Kalibriertafel Vehicle and the setpoint position X T "F! X of the calibration table
Da in dieser Sollposition X die Einbauwinkel (Nick-, Gier- und Wankwinkel) und weitere Parameter der Kamera definiert sind, ist die Machbarkeit der Kalibrierung bei einer beliebigen Ausrichtung der Kalibriertafel 62 gezeigt. Since the installation angles (pitch, yaw and roll angle) and further parameters of the camera are defined in this nominal position X, the feasibility of the calibration is shown with any orientation of the calibration panel 62.
Fig. 2 zeigt eine perspektivische Ansicht eines Fahrzeugs 7 mit einem Umfeldsensor 15, welches vor einer Kalibriertafel 62 positioniert ist. FIG. 2 shows a perspective view of a vehicle 7 with an environmental sensor 15, which is positioned in front of a calibration panel 62.
Die Kalibriertafel 62, auf der ein Muster 63 aus einer Anzahl von Punkten ausge- bildet ist, ist an einem Gestell 60 befestigt, an dem auch ein Kalibriertafel-TargetThe calibration panel 62, on which a pattern 63 is formed of a number of dots, is attached to a rack 60, which also has a calibration panel target
16, welches ebenfalls ein Punktmuster 19 aufweist, angebracht ist. 16, which also has a dot pattern 19, is attached.
Das Punktmuster 19 der Kalibriertafel 62 wird von einer Kamera des Umfeldsensors 15, der innerhalb des Fahrzeugs 7 angeordnet ist, erfasst, und das von der Kamera aufgenommene Bild wird an das mit dem Umfeldsensor 15 verbundeneThe dot pattern 19 of the calibration board 62 is detected by a camera of the environmental sensor 15 disposed inside the vehicle 7, and the image taken by the camera is connected to that associated with the surroundings sensor 15
Steuergerät 17 übertragen und von diesem ausgewertet, um die Position der Kalibriertafel 62 in Bezug auf den Umfeldsensor 15 im Koordinatensystem Xc des Umfeldsensors 15 zu bestimmen. Das Punktmuster 63 des Kalibriertafel-Targets 16 wird von den Kameras 36, 38 wenigstens einer in der Fig. 2 nicht gezeigten Messeinheit 32, die seitlich neben dem Fahrzeug 7 angeordnet ist, erfasst und ausgewertet, um die Position des Kalibriertafel-Targets 16 in Bezug auf die Messeinheit 32 zu bestimmen. Da die Position der Kalibriertafel 62 im Bezug auf das Kalibriertafel-Target 16 durch das Gestell 60 festgelegt und bekannt ist, kann so die Position der Kalibriertafel 62 inControl unit 17 is transmitted and evaluated by this to determine the position of the calibration panel 62 with respect to the environment sensor 15 in the coordinate system X c of the environmental sensor 15. The dot pattern 63 of the calibration board target 16 is detected and evaluated by the cameras 36, 38 of at least one measuring unit 32 (not shown in FIG. 2) arranged laterally next to the vehicle 7 in relation to the position of the calibration board target 16 to determine the measuring unit 32. Since the position of the calibration board 62 relative to the calibration board target 16 is fixed and known by the frame 60, the position of the calibration board 62 in FIG
Bezug auf die Messeinheit 32 exakt bestimmt werden. Da die Messeinheit 32, wie in der Fig. 1 gezeigt, auch ein an der hinteren Achse des Fahrzeugs 7 befestigtes, in der Figur 2 nicht sichtbares Rad-Target 20 erfasst, ist es möglich, die exakte Position XT" X der Kalibriertafel 62 in Bezug auf das Fahrzeug 7 im Koor- dinatensystem XM des Fahrzeugs 7 zu bestimmen. Reference to the measuring unit 32 can be determined exactly. Since the measuring unit 32, as shown in FIG. 1, also detects a wheel target 20, which is not visible in FIG. 2, attached to the rear axle of the vehicle 7, it is possible to determine the exact position X T "X of the calibration board 62 with respect to the vehicle 7 in the coordinate system X M of the vehicle 7.
Die so bestimmte Position der Kalibriertafel 62 im Koordinatensystem XM des Fahrzeugs 7 wird über eine drahtlose oder eine in der Figur 2 nicht gezeigte drahtgebundene Verbindung an das Steuergerät 17 im Fahrzeug 7 übertragen, welches mit Hilfe dieser Information und der bekannten Position der KalibriertafelThe so determined position of the calibration board 62 in the coordinate system X M of the vehicle 7 is transmitted via a wireless or not shown in the figure 2 wired connection to the controller 17 in the vehicle 7, which with the help of this information and the known position of the calibration board
62 in Bezug auf den Umfeldsensor 15 in der Lage ist, die Position der Kalibriertafel 62 im Koordinatensystem XM des Fahrzeugs 7 zu bestimmen, um den Umfeldsensor 15 in Bezug auf das Koordinatensystem XM des Fahrzeugs 7 zu justieren bzw. zu kalibrieren. Fig. 3 zeigt eine perspektivische Ansicht eines alternativen Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung. 62 with respect to the environment sensor 15 is capable of determining the position of the calibration board 62 in the coordinate system X M of the vehicle 7 to calibrate the environment sensor 15 with respect to the coordinate system X M of the vehicle 7. Fig. 3 shows a perspective view of an alternative embodiment of a device according to the invention.
Die Merkmale, die den bereits in den Fig. 1 und 2 gezeigten Merkmalen entspre- chen, sind mit den gleichen Bezugszeichen versehen, und werden nicht erneut im Detail beschrieben. The features which correspond to the features already shown in FIGS. 1 and 2 are given the same reference numerals and will not be described again in detail.
Das zweite, in der Fig. 3 gezeigte, Ausführungsbeispiel unterscheidet sich von dem in der Fig. 2 gezeigten Ausführungsbeispiel dadurch, dass die Kalibriertafel 62 beweglich an dem Gestell 60 angebracht ist. Insbesondere ist das Gestell 60 mit einer vertikalen Schiene 65 und mit einer horizontalen Schiene 66 ausgestattet, entlang derer die Kalibriertafel 62 in vertikaler bzw. horizontaler Richtung bewegbar ist. Die Schienen 65, 66 können beispielsweise mit Zahnschienen ausgebildet sein, in die Zahnräder eingreifen und beim Bewegen der Kalibriertafel 62 entlang der Zahnschienen abrollen. The second embodiment shown in FIG. 3 differs from the embodiment shown in FIG. 2 in that the calibration board 62 is movably mounted on the frame 60. In particular, the frame 60 is provided with a vertical rail 65 and with a horizontal rail 66, along which the calibration board 62 is movable in the vertical or horizontal direction. The rails 65, 66 may for example be formed with tooth rails, engage with the gears and roll when moving the calibration board 62 along the tooth rails.
An dem Gestell 60 sind zusätzlich Stellglieder 70 vorgesehen, die ansteuerbar sind, um die Kalibriertafel 62 entlang der Schienen 65, 66 in eine gewünschte Position zu bewegen. Beispielsweise können die Stellglieder 70 so ausgebildet sein, dass sie Zahnräder, die in Zahnschienen eingreifen, antreiben, um die Kalibriertafel 62 gegenüber dem Gestell 60 zu bewegen. Actuators 70 are additionally provided on the frame 60, which are controllable in order to move the calibration plate 62 along the rails 65, 66 into a desired position. For example, the actuators 70 may be configured to drive gears that engage tooth rails to move the calibration board 62 relative to the frame 60.
Nachdem die Messeinheit 32 wenigstens ein Bild des Kalibriertafel-Targets 16 erfasst und daraus die räumliche Position der Kalibriertafel 62 in Bezug auf die Messeinheit 32 bestimmt hat, steuert eine mit den Messeinheiten 32, 46 verbundene Steuer- und Regelungseinheit 68 die Stellglieder 70 derart an, dass die Kalibriertafel 62 an eine gewünschte, vorgegebene Position XT"RX bewegt wird. Die aktuelle Position der Kalibriertafel 62 kann dabei fortlaufend von den Messeinheiten 32, 46 erfasst und überwacht werden, so dass die gewünschte, vorgegebene Position XT"RX der Kalibriertafel 62 sehr genau einstellbar ist. After the measuring unit 32 detects at least one image of the calibration panel target 16 and determines therefrom the spatial position of the calibration panel 62 with respect to the measuring unit 32, a control unit 68 connected to the measuring units 32, 46 controls the actuators 70 in such a way that that the calibration board to a desired, predetermined position X T 62 "is moved RX. the current position of the calibration plate 62 can thereby be continuously detected by the measuring units 32, 46 and monitored so that the desired, predetermined position X T" RX of the calibration board 62 is very precisely adjustable.
Die Stellglieder 70 können Elektromotoren oder hydraulisch bzw. pneumatisch angetriebene Stellglieder 70 sein. Die Verbindung zur Übertragung der Messdaten von den Messeinheiten 32, 46 an die Steuer- und Regelungseinheit 68 bzw. von der Steuer- und Regelungseinheit 68 an die Stellglieder 70 kann über Kabelverbindungen oder über drahtlose Verbindungen, z. B. eine Funk- oder Infrarotverbindung, realisiert sein. In dem in der Figur 3 gezeigten Ausführungsbeispiel ist eine Empfangseinheit 72 vorgesehen, welche die von der Messeinheit 32 drahtlos übertragenen Positionsdaten empfängt und über das Datenkabel 74 an die Steuer- und Regelungseinheit 68 weiterleitet. The actuators 70 may be electric motors or hydraulically or pneumatically driven actuators 70. The connection for transmitting the measured data from the measuring units 32, 46 to the control and regulation unit 68 or from the control and regulation unit 68 to the actuators 70 can be connected via cable connections or via wireless connections, for. B. a radio or infrared connection, be realized. In the in 3, a receiving unit 72 is provided, which receives the position data wirelessly transmitted by the measuring unit 32 and forwards via the data cable 74 to the control and regulating unit 68.
Die Anzahl der beweglichen Achsen (Freiheitsgrade) der Kalibriertafel 62 kann je nach Bedarf unterschiedlich ausgelegt sein. In dem in der Fig. 3 gezeigten Ausführungsbeispiel weist die Kalibriertafel 62 in Bezug auf das Gestell 60 zwei Freiheitsgrade (Verschiebung in x- und y-Richtung) auf. The number of movable axes (degrees of freedom) of the calibration board 62 may be designed differently depending on the needs. In the embodiment shown in FIG. 3, the calibration board 62 has two degrees of freedom with respect to the frame 60 (displacement in the x and y directions).
Es sind auch Ausführungen mit zusätzlichen Freiheitsgraden, wie z. B. einer Verschiebung in z-Richtung und Rotationen um eine oder mehrere der drei Raumachsen möglich. Dadurch kann die Genauigkeit der Kalibrierung und Justage des Umfeldsensors 15 weiter erhöht und die Bequemlichkeit für den Bediener verbessert werden, da eine größere Freiheit in der anfänglichen Position und Orientierung des Gestells 60 und der Kalibriertafel 62 am Messplatz 2 besteht. There are also versions with additional degrees of freedom, such. B. a shift in the z direction and rotations about one or more of the three spatial axes possible. Thereby, the accuracy of the calibration and adjustment of the environmental sensor 15 can be further increased and the convenience for the operator can be improved, as there is greater freedom in the initial position and orientation of the rack 60 and the calibration board 62 at the measuring station 2.

Claims

PATENTANSPRÜCHE
1 . Verfahren des Justierens und/oder Kalibrierens eines Umfeldsensors (15) in einem Fahrzeug (7) mit den folgenden Schritten: a1 ) Anbringen wenigstens eines Rad-Targets (20, 22) an wenigstens einem Rad (12, 14) des Fahrzeugs (7); 1 . Method of adjusting and / or calibrating an environment sensor (15) in a vehicle (7) comprising the following steps: a1) attaching at least one wheel target (20, 22) to at least one wheel (12, 14) of the vehicle (7) ;
a2) Aufnehmen wenigstens eines Bildes des Rad -Targets (20, 22) durch wenigstens eine Messeinheit (32, 46); a2) taking at least one image of the wheel target (20, 22) through at least one measuring unit (32, 46);
a3) Bestimmen der Position und Ausrichtung des Fahrzeugs (7) im Raum aus dem von der Messeinheit (32, 46) aufgenommenen Bild des Rad-Targets (20, 22); b1 ) Platzieren wenigstens einer Kalibriertafel (62) mit wenigstens einem Ka- libriertafel-Target (16, 18) im Blickfeld der wenigstens einen Messeinheit (32, 46); b2) Aufnehmen wenigstens eines Bildes des/der Kalibriertafel-Targets (16, 18) mit der Messeinheit (32, 46); a3) determining the position and orientation of the vehicle (7) in space from the image of the wheel target (20, 22) taken by the measuring unit (32, 46); b1) placing at least one calibration board (62) with at least one calibration board target (16, 18) in the field of view of the at least one measuring unit (32, 46); b2) capturing at least one image of the calibration target (16, 18) with the measurement unit (32, 46);
b3) Bestimmen der Position der Kalibriertafel (62) in Bezug auf das Fahrzeug (7) aus dem aufgenommenen Bild des Kalibriertafel-Targets (16, 18) und der aus a3) bekannten Position und Ausrichtung des Fahrzeugs (7); c1 ) Aufnehmen wenigstens eines Bildes der Kalibriertafel (62) mit dem Umfeldsensor (15) des Fahrzeugs (7); b3) determining the position of the calibration panel (62) relative to the vehicle (7) from the captured image of the calibration panel target (16, 18) and the position and orientation of the vehicle (7) known from a3); c1) taking at least one image of the calibration panel (62) with the environment sensor (15) of the vehicle (7);
c2) Bestimmen der Position und Ausrichtung des Umfeldsensors (15) in Be- zug auf die Kalibriertafel (62) aus dem mit dem Umfeldsensor (15) aufgenommenen Bild der Kalibriertafel (62); d) Bestimmen von Position und Ausrichtung des Umfeldsensors (15) in Bezug auf das Fahrzeug (7) aus der im Schritt c2) bestimmten Position und Aus- richtung des Umfeldsensors (15) in Bezug auf die Kalibriertafel (62) und der inc2) determining the position and orientation of the environmental sensor (15) with respect to the calibration panel (62) from the image of the calibration panel (62) taken with the environmental sensor (15); d) determining the position and orientation of the environmental sensor (15) with respect to the vehicle (7) from the position and orientation of the environmental sensor (15) determined in step c2) with respect to the calibration panel (62) and in
Schritt a3) bestimmten Position der Kalibriertafel (62) in Bezug auf das FahrzeugStep a3) determined position of the calibration board (62) with respect to the vehicle
(7). (7).
2. Verfahren nach Anspruch 1 , welches zusätzlich umfasst, die im Schritt b3) bestimmte Position der Kalibriertafel (62) an das Steuergerät zu übertragen. 2. The method of claim 1, further comprising, in step b3) certain position of the calibration board (62) to be transmitted to the control unit.
3. Verfahren nach Anspruch 2, wobei das Übertragen der Position der Kalibriertafel (62) an das Steuergerät (17) über wenigstens ein Kabel (74) oder drahtlos erfolgt. 3. The method of claim 2, wherein transmitting the position of the calibration panel (62) to the controller (17) via at least one cable (74) or wireless.
4. Verfahren nach einem der Ansprüche 2 oder 3, wobei das Steuergerät4. The method according to any one of claims 2 or 3, wherein the control device
(17) nach dem Übertragen der Position der Kalibriertafel (62) Anweisungen zur Positionierung der Kalibriertafel (62) ausgibt. (17), after transmitting the position of the calibration board (62), issues instructions for positioning the calibration board (62).
5. Verfahren nach einem der Ansprüche 1 bis 4, welches zusätzlich um- fasst, wenigstens ein auf die Kalibriertafel (62) einwirkendes Stellmittel (70) derart anzusteuern, dass die Kalibriertafel (62) an eine vorgegebene Position XT"RX und/oder in eine vorgegebene räumliche Ausrichtung bewegt wird. 5. The method according to any one of claims 1 to 4, which in addition to summarizes at least one acting on the calibration panel (62) actuating means (70) to control such that the calibration panel (62) to a predetermined position X T "RX and / or is moved in a given spatial orientation.
6. Vorrichtung zum Justieren und/oder Kalibrieren eines Umfeldsensors (15) in einem Fahrzeug (7) mit: 6. Device for adjusting and / or calibrating an environmental sensor (15) in a vehicle (7) with:
wenigstens einem Rad -Target (20), wobei das Rad-Target (16, 18) zur Montage an einem Rad (12, 14) des Fahrzeugs (7) ausgebildet ist;  at least one wheel target (20), the wheel target (16, 18) being adapted to be mounted on a wheel (12, 14) of the vehicle (7);
wenigstens einer Kalibriertafel (62), die wenigstens ein Kalibriertafel-Target (16, 18) aufweist;  at least one calibration panel (62) having at least one calibration panel target (16, 18);
wenigstens einer Messeinheit (32, 46), die zur Aufnahme wenigstens eines Bildes des Rad-/Kalibriertafel-Targets (16, 18, 20, 22) und zur Bestimmung der räumliche Position des Rad-/Kalibriertafel-Targets (16, 18, 20, 22) aus dem aufgenommenen Bild ausgebildet ist;  at least one measuring unit (32, 46) arranged to receive at least one image of the wheel / calibration board target (16, 18, 20, 22) and to determine the spatial position of the wheel / calibration board target (16, 18, 20 , 22) is formed from the recorded image;
einem Steuergerät (17), das mit dem Umfeldsensor (15) verbunden und ausge- bildet ist, um  a control unit (17), which is connected to the environment sensor (15) and formed to
(a) die räumliche Position der Kalibriertafel (62) in Bezug auf den Umfeldsensor (15) aus einem von dem Umfeldsensor (15) aufgenommenen Bild der Kalibriertafel (62) zu bestimmen, und  (a) determine the spatial position of the calibration panel (62) relative to the environmental sensor (15) from an image of the calibration panel (62) taken by the environmental sensor (15), and
(b) die Position und Ausrichtung des Umfeldsensors (15) in Bezug auf das Fahrzeug (7) aus der Position und Ausrichtung des Umfeldsensors (15) in Bezug auf die Kalibriertafel (62) und der durch die Messeinheit (32, 46) bestimmten Position der Kalibriertafel (62) in Bezug auf das Fahrzeug (7) zu bestimmen.  (b) the position and orientation of the environmental sensor (15) relative to the vehicle (7) from the position and orientation of the environmental sensor (15) with respect to the calibration panel (62) and the position determined by the measuring unit (32, 46) the calibration board (62) with respect to the vehicle (7) to determine.
7. Vorrichtung nach Anspruch 6, wobei die wenigstens eine Messeinheit (32, 46) und das Steuergerät (17) zur Übertragung der von der Messeinheit (32,7. Apparatus according to claim 6, wherein the at least one measuring unit (32, 46) and the control unit (17) for the transmission of the measuring unit (32, 46),
46) bestimmten Position des aufgenommenen Kalibriertafel-Targets (20, 22) an das Steuergerät (17) ausgebildet sind. 46) certain position of the recorded calibration target (20, 22) are formed on the control unit (17).
8. Vorrichtung nach Anspruch 6 oder 7 mit wenigstens einem Stellmittel (70), das derart mit der Kalibriertafel (62) verbunden ist, dass die Position und/oder die Ausrichtung der Kalibriertafel (62) durch Antreiben des Stellmittels (70) veränderbar sind. 8. Apparatus according to claim 6 or 7, comprising at least one adjusting means (70) connected to the calibration board (62) such that the position and / or orientation of the calibration board (62) is variable by driving the actuating means (70).
9. Vorrichtung nach Anspruch 8, wobei wenigstens eine Messeinheit (32, 46) mit dem Stellmittel (70) gekoppelt und ausgebildet ist, um das Stellmittel (70) derart anzusteuern, dass die Kalibriertafel (62) durch Antreiben des Stellmittels (70) an eine vorgegebene räumliche Position und/oder in eine vorgegebene räumliche Ausrichtung bewegbar ist. 9. The apparatus of claim 8, wherein at least one measuring unit (32, 46) coupled to the adjusting means (70) and adapted to control the adjusting means (70) such that the calibration board (62) by driving the actuating means (70) a predetermined spatial position and / or in a predetermined spatial orientation is movable.
10. Vorrichtung nach einem der Ansprüche 6 bis 9, wobei auf beiden Seiten des Fahrzeugs (7) jeweils wenigstens eine Messvorrichtung (32, 46) vorgesehen ist. 10. Device according to one of claims 6 to 9, wherein on both sides of the vehicle (7) in each case at least one measuring device (32, 46) is provided.
EP11802310.0A 2010-12-09 2011-12-05 Method and device for calibrating and adjusting a vehicle environment sensor Withdrawn EP2649467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010062696A DE102010062696A1 (en) 2010-12-09 2010-12-09 Method and device for calibrating and adjusting a vehicle environment sensor.
PCT/EP2011/071749 WO2012076468A1 (en) 2010-12-09 2011-12-05 Method and device for calibrating and adjusting a vehicle environment sensor

Publications (1)

Publication Number Publication Date
EP2649467A1 true EP2649467A1 (en) 2013-10-16

Family

ID=45420582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11802310.0A Withdrawn EP2649467A1 (en) 2010-12-09 2011-12-05 Method and device for calibrating and adjusting a vehicle environment sensor

Country Status (5)

Country Link
US (1) US9279670B2 (en)
EP (1) EP2649467A1 (en)
CN (1) CN103250069B (en)
DE (1) DE102010062696A1 (en)
WO (1) WO2012076468A1 (en)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013002375A1 (en) 2013-02-09 2014-08-14 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Method for calibrating camera of motor car in parking aid, involves detecting reference object in image using camera, and processing image, in order to recognize parameter stored in reference pattern of camera
SE538340C2 (en) * 2013-02-28 2016-05-24 Scania Cv Ab Measuring Systems
DE102013211210B4 (en) 2013-06-14 2021-07-15 Beissbarth Gmbh Machine-readable measuring board for wheel alignment
KR101510336B1 (en) * 2013-11-14 2015-04-07 현대자동차 주식회사 Device for inspecting driver assistance system of vehicle
KR101510338B1 (en) * 2013-11-22 2015-04-07 현대자동차 주식회사 Device for inspecting lane departure warning system of vehicle
DE102013225371A1 (en) 2013-12-10 2015-06-11 Robert Bosch Gmbh energy storage
DE102014200364A1 (en) 2014-01-10 2015-07-16 Robert Bosch Gmbh Hydropneumatic storage
KR20150104287A (en) 2014-03-05 2015-09-15 주식회사 만도 Fixed unit for car sensor calibration and calibration device using the same
DE102014209906A1 (en) 2014-05-23 2015-11-26 Robert Bosch Gmbh Holding device for an energy store
DE102015203933A1 (en) 2014-05-23 2015-11-26 Robert Bosch Gmbh memory array
DE102014217034A1 (en) 2014-08-27 2016-03-03 Robert Bosch Gmbh Hydropneumatic storage system
KR101655587B1 (en) * 2014-12-01 2016-09-07 현대자동차주식회사 Integrative method and system for controlling blind spot detection system and lane keeping assist system
WO2016129355A1 (en) * 2015-02-13 2016-08-18 株式会社リコー Measurement tool, calibration method, calibration device, and program
US10054534B1 (en) 2015-07-08 2018-08-21 Airviz Inc. Group calibration of environmental sensors
DE102015213175A1 (en) 2015-07-14 2017-01-19 Robert Bosch Gmbh Hydropneumatic storage
DE202015008954U1 (en) 2015-07-29 2016-04-26 Hella Gutmann Solutions GmbH Device for calibrating vehicle assistance systems
DE102015112368A1 (en) 2015-07-29 2017-02-02 Hella Gutmann Solutions GmbH Method and device for calibrating vehicle assistance systems
DE102016104917B4 (en) * 2016-03-16 2024-05-08 Chromasens Gmbh Device and system for calibrating a camera
US10365355B1 (en) 2016-04-21 2019-07-30 Hunter Engineering Company Method for collective calibration of multiple vehicle safety system sensors
DE202016103584U1 (en) 2016-05-19 2016-08-16 Hella Gutmann Solutions GmbH Device for calibrating an environmental sensor integrated into the windshield of a vehicle
DE102016117444A1 (en) 2016-09-16 2018-03-22 Dürr Assembly Products GmbH Vehicle test bench for calibrating and / or testing systems of a vehicle, comprising at least one camera and methods for performing the calibration and / or testing of systems of a vehicle comprising at least one camera
FR3056171B1 (en) * 2016-09-20 2020-05-08 Renault S.A.S METHOD OF INSTALLING A GEOMETRIC REFERENTIAL ON A FLOOR FOR THE CALIBRATION OF ELECTRIC OR ELECTRONIC COMPONENTS OF A MOTOR VEHICLE AND ADAPTED EQUIPMENT.
US10323936B2 (en) * 2016-12-30 2019-06-18 Bosch Automotive Service Solutions Inc. Calibration system for sensors and cameras on vehicles
CN106740872A (en) * 2017-01-13 2017-05-31 驭势科技(北京)有限公司 Intelligent automobile sensor self-checking system and method, accessory system and intelligent automobile
WO2018154328A1 (en) * 2017-02-24 2018-08-30 Pilkington Group Limited Universal target stand for adas static calibration, method of using the same, target plate for the same and use of a mat for the same
DE102017203155A1 (en) * 2017-02-27 2018-08-30 Robert Bosch Gmbh Apparatus and method for calibrating vehicle assistance systems
DE102017002195A1 (en) * 2017-03-07 2018-09-13 Man Truck & Bus Ag Calibration method for calibrating environmental sensors of a vehicle ambient sensor system in vehicle production and test system and vehicle for carrying out the method
IT201700028708A1 (en) 2017-03-15 2018-09-15 Texa Spa MULTIFUNCTIONAL UNIT FOR ANALYSIS AND CALIBRATION OF DEVICES AND COMPONENTS OF A VEHICLE
CN113822939A (en) 2017-07-06 2021-12-21 华为技术有限公司 Method and device for calibrating external parameters of vehicle-mounted sensor
DE102017212289A1 (en) * 2017-07-18 2019-01-24 Robert Bosch Gmbh Calibration device and method for calibrating automotive environment sensors
DE102017213421A1 (en) * 2017-08-02 2019-02-07 Robert Bosch Gmbh Method and apparatus for calibrating a reference target
DE102017118454A1 (en) * 2017-08-14 2019-02-14 Wms Wagner Gmbh Method and device for aligning a calibration board in front of a vehicle
US10775488B2 (en) * 2017-08-17 2020-09-15 Uatc, Llc Calibration for an autonomous vehicle LIDAR module
US11009586B2 (en) * 2017-08-31 2021-05-18 Bosch Automotive Service Solutions Inc. Mobile calibration apparatus for vehicle sensors
IL259605B2 (en) * 2017-09-29 2023-02-01 Ideal Eng Cc Apparatus and method for installing a driver assistance device
US10823554B2 (en) 2017-09-29 2020-11-03 Bosch Automotive Service Solutions Inc. Wheel clamp alignment apparatus
CN107856649B (en) * 2017-10-20 2020-11-10 深圳市道通科技股份有限公司 Vehicle body center line calibration equipment and method
CN107672594A (en) * 2017-10-20 2018-02-09 深圳市道通科技股份有限公司 A kind of calibration facility of Lane Keeping System
CN111257843B (en) * 2017-10-20 2022-08-02 深圳市道通科技股份有限公司 Car blind area radar calibration equipment
CN111433560B (en) * 2017-12-01 2022-02-08 沃尔沃卡车集团 Method for vehicle maintenance
WO2019121396A1 (en) 2017-12-20 2019-06-27 Robert Bosch Gmbh Portable apparatus for vehicle sensor calibration
USD954577S1 (en) * 2017-12-25 2022-06-14 Autel Intelligent Technology Corp., Ltd. Upright device with slotted aperture
US11415683B2 (en) * 2017-12-28 2022-08-16 Lyft, Inc. Mobile sensor calibration
US10852731B1 (en) * 2017-12-28 2020-12-01 Waymo Llc Method and system for calibrating a plurality of detection systems in a vehicle
CN108318870B (en) * 2018-03-07 2024-01-30 深圳市道通科技股份有限公司 Vehicle-mounted radar calibration equipment
DE102018106464A1 (en) * 2018-03-20 2019-09-26 Dürr Assembly Products GmbH Method for determining the position and orientation of the coordinate system of at least one camera in a vehicle relative to the coordinate system of the vehicle
US10942045B1 (en) 2018-04-03 2021-03-09 Waymo Llc Portable sensor calibration target for autonomous vehicle
DE102018205322A1 (en) * 2018-04-10 2019-10-10 Audi Ag Method and control device for detecting a malfunction of at least one environmental sensor of a motor vehicle
CN108581982A (en) * 2018-04-20 2018-09-28 深圳市道通科技股份有限公司 A kind of carriage and automobile calibration facility
EP3770631B1 (en) 2018-04-20 2024-06-05 Autel Intelligent Technology Corp., Ltd. Vehicle calibration apparatus
US11243074B2 (en) * 2018-04-30 2022-02-08 BPG Sales and Technology Investments, LLC Vehicle alignment and sensor calibration system
EP4325250A3 (en) 2018-04-30 2024-04-24 BPG Sales and Technology Investments, LLC Vehicular alignment for sensor calibration
US11835646B2 (en) 2018-04-30 2023-12-05 BPG Sales and Technology Investments, LLC Target alignment for vehicle sensor calibration
US11781860B2 (en) * 2018-04-30 2023-10-10 BPG Sales and Technology Investments, LLC Mobile vehicular alignment for sensor calibration
US11597091B2 (en) 2018-04-30 2023-03-07 BPG Sales and Technology Investments, LLC Robotic target alignment for vehicle sensor calibration
DE102018111776B4 (en) * 2018-05-16 2024-01-25 Motherson Innovations Company Limited Calibration device, method for determining calibration data, device for carrying out the method, motor vehicle comprising such a device and use of the calibration device for the method and the motor vehicle
ES2941712T3 (en) 2018-06-21 2023-05-25 Mahle Aftermarket Italy S R L System and method of calibrating an optical sensor mounted on board a vehicle
DE102018215167A1 (en) * 2018-09-06 2020-03-12 Robert Bosch Gmbh Sensor calibration device with special vertical adjustment means
CN109584306B (en) * 2018-09-07 2020-06-30 深圳市东智科技发展有限公司 Advanced driving auxiliary calibration system and method based on vehicle positioning
DE102018215311A1 (en) * 2018-09-10 2020-03-12 Robert Bosch Gmbh Calibration system and calibration method for a vehicle detection device
JP7057261B2 (en) * 2018-09-25 2022-04-19 本田技研工業株式会社 Vehicle inspection system and vehicle inspection method
ES2968764T3 (en) 2018-09-28 2024-05-13 Nexion Spa Calibrating a vehicle camera
US11313946B2 (en) * 2018-11-12 2022-04-26 Hunter Engineering Company Method and apparatus for identification of calibration targets during vehicle radar system service procedures
DE102018219796A1 (en) * 2018-11-19 2020-05-20 Robert Bosch Gmbh Calibration system and calibration method for a detection device of a vehicle
EP3903063A4 (en) * 2018-12-27 2022-09-28 BPG Sales and Technology Investments, LLC Mobile vehicular alignment for sensor calibration
CN111380703A (en) * 2018-12-27 2020-07-07 深圳市道通科技股份有限公司 Method for aligning calibration device to vehicle based on wheel aligner and calibration system
CN111413111A (en) * 2019-01-07 2020-07-14 深圳市道通科技股份有限公司 Method for aligning calibration device to vehicle based on wheel aligner
IT201900001167A1 (en) 2019-01-25 2020-07-25 Nexion Spa APPARATUS FOR CALIBRATING A SENSOR OF AN ADVANCED ASSISTANCE SYSTEM DRIVING A VEHICLE
DE102019102228A1 (en) * 2019-01-29 2020-07-30 Beissbarth Gmbh Sample board
EP3800484A4 (en) * 2019-02-01 2021-09-22 Autel Intelligent Technology Corp. Ltd. Calibration system and calibration rack therefor
CN210000241U (en) * 2019-02-01 2020-01-31 深圳市道通科技股份有限公司 calibration system and calibration support thereof
US11681030B2 (en) 2019-03-05 2023-06-20 Waymo Llc Range calibration of light detectors
WO2020213955A1 (en) * 2019-04-16 2020-10-22 주식회사 유진로봇 Method and system for initialization diagnosis of mobile robot
WO2020225759A1 (en) * 2019-05-08 2020-11-12 Nexion S.P.A. Method, computer program and apparatus for calibrating an adas sensor of an advanced driver assistance system of a vehicle
BE1027090B1 (en) * 2019-05-20 2021-08-03 Duerr Assembly Products Gmbh Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
US20210003712A1 (en) * 2019-07-05 2021-01-07 DeepMap Inc. Lidar-to-camera transformation during sensor calibration for autonomous vehicles
KR20220032093A (en) * 2019-07-11 2022-03-15 비피지 세일즈 앤드 테크놀로지 인베스트먼츠, 엘엘씨 Vehicle alignment and sensor calibration system
CN110320506B (en) * 2019-08-06 2023-05-02 深圳市海梁科技有限公司 Automatic calibration device and method for automotive laser radar
US11747453B1 (en) 2019-11-04 2023-09-05 Waymo Llc Calibration system for light detection and ranging (lidar) devices
DE102019220049A1 (en) * 2019-12-18 2021-06-24 Robert Bosch Gmbh Method and device for calibrating at least one sensor
DE102020105215A1 (en) * 2020-02-27 2021-09-02 Jungheinrich Aktiengesellschaft Method for calibrating a sensor unit of an industrial truck
IT202000004699A1 (en) * 2020-03-05 2021-09-05 Texa Spa DEVICE FOR POSITIONING THE PANELS FOR THE CALIBRATION OF THE ADAS COMPONENTS OF A VEHICLE
DE102020108872A1 (en) 2020-03-31 2021-09-30 Beissbarth Gmbh CALIBRATION BOARD AND CALIBRATION DEVICE FOR VEHICLE ENVIRONMENTAL SENSORS
IT202000001495U1 (en) 2020-04-07 2021-10-07 Texa Spa ANCHORING SYSTEM FOR ALIGNMENT SENSORS OF A VEHICLE COMPARED TO A PANEL FOR CALIBRATING THE ADAS COMPONENTS
SE2050647A1 (en) * 2020-06-04 2021-04-26 Scania Cv Ab Method, control arrangement and reference object for calibration of sensors
US11279327B1 (en) * 2020-09-04 2022-03-22 Richard L. Jackson, JR. Vehicle sensor calibration target alignment system
DE102020212279B3 (en) 2020-09-29 2021-10-28 Myestro Interactive Gmbh Device for calibrating a spatial position of a center of an entrance pupil of a camera, calibration method for this, and a system for determining the relative position of centers of entrance pupils of at least two cameras, which are mounted on a common support frame, to one another, and determination methods for this
DE102021103364B9 (en) 2021-02-12 2022-09-29 Tkr Spezialwerkzeuge Gmbh Calibration unit for aligning vehicle surroundings detection units of a motor vehicle
IT202100004388A1 (en) * 2021-02-25 2022-08-25 Texa Spa VEHICLE SERVICE SYSTEM AND ITS METHOD OF OPERATION
DE102021201923A1 (en) 2021-03-01 2022-09-01 Robert Bosch Gesellschaft mit beschränkter Haftung Method and system for calibrating at least one vehicle sensor arranged in a vehicle
DE102021203348A1 (en) 2021-04-01 2022-10-06 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for calibrating at least one sensor
DE102021111014A1 (en) 2021-04-29 2022-11-03 Valeo Schalter Und Sensoren Gmbh Determination of a vertical position of a calibration object with a LiDAR-based environment sensor and calibration of a LiDAR-based environment sensor with a scan plane
DE102021111013A1 (en) 2021-04-29 2022-11-03 Valeo Schalter Und Sensoren Gmbh Calibration object and method for determining a position of an individual object in a scan plane of a LiDAR-based environmental sensor
TWI761203B (en) * 2021-05-06 2022-04-11 同致電子企業股份有限公司 Vehicle radar auxiliary fixture, vehicle radar installation method and vehicle radar test method
CN113324496A (en) * 2021-05-24 2021-08-31 深圳市东智科技发展有限公司 Centering equipment and centering method
USD1026695S1 (en) * 2021-11-12 2024-05-14 Autel Intelligent Technology Corp., Ltd. Accessory for calibrator
DE102022104880B4 (en) 2022-03-02 2023-09-21 Avl Software And Functions Gmbh Method for calibrating a portable reference sensor system, portable reference sensor system and use of the portable reference sensor system
DE102022204254A1 (en) 2022-04-29 2023-11-02 Robert Bosch Gesellschaft mit beschränkter Haftung Calibration device for calibrating a driver assistance system
DE102022118260B3 (en) 2022-07-21 2023-10-05 Dürr Assembly Products GmbH Method for calibrating and/or adjusting the intrinsic coordinate system of a vehicle unit relative to a coordinate system of the vehicle and vehicle test bench for carrying out the method
DE102022210038A1 (en) 2022-09-23 2024-03-28 Zf Friedrichshafen Ag Calibration of a vehicle sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100238291A1 (en) * 2009-03-23 2010-09-23 Pavlov Pavel Method as well as device for determining the position and alignment of a camera of a driver-assistance system of a vehicle relative to the vehicle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962997B4 (en) * 1999-12-24 2010-06-02 Robert Bosch Gmbh Method for calibrating a sensor system
AU2001245834A1 (en) * 2000-03-23 2001-10-03 Snap-On Technologies, Inc. Self-calibrating, multi-camera machine vision measuring system
DE10124909A1 (en) * 2001-05-22 2002-12-19 Bosch Gmbh Robert Method and device for operating a radar sensor arrangement
DE10229336A1 (en) * 2002-06-29 2004-01-15 Robert Bosch Gmbh Method and device for calibrating image sensor systems
DE10229334B4 (en) * 2002-06-29 2010-09-23 Robert Bosch Gmbh Method and device for calibrating sensors in motor vehicles by means of a calibration object with triple mirror as a reference feature
DE10246067B4 (en) * 2002-10-02 2008-01-03 Robert Bosch Gmbh Method and device for calibrating an image sensor system in a motor vehicle
CN100373129C (en) * 2003-05-09 2008-03-05 施耐宝公司 Camera technique for adaptive cruise control (ACC) sensor adjustment
CN101059351B (en) 2006-04-19 2011-07-06 财团法人车辆研究测试中心 Vehicle backing track assistant device
DE102008000833A1 (en) * 2008-03-26 2009-10-01 Robert Bosch Gmbh Measuring head for a chassis measuring system, chassis measuring system and method for determining the position parameters of measuring heads of a chassis measuring system
DE102008042024A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method and device for optical wheel alignment of motor vehicles
DE102008042018A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method for adjusting or calibrating a vehicle surroundings sensor and vehicle surroundings sensor adjustment or calibration arrangement
US8918302B2 (en) * 2008-09-19 2014-12-23 Caterpillar Inc. Machine sensor calibration system
DE102009028261A1 (en) * 2009-08-05 2011-02-10 Robert Bosch Gmbh Method and control for calibrating an automatically steering parking aid
DE102010002258A1 (en) * 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 Method and device for determining distances on a vehicle
DE102010040549A1 (en) * 2010-09-10 2012-03-15 Robert Bosch Gmbh Motor vehicle test device and motor vehicle test method
DE102010040626A1 (en) * 2010-09-13 2012-03-15 Robert Bosch Gmbh Method for calibrating a measuring station for vehicle measurement
DE102011004207A1 (en) * 2011-02-16 2012-08-16 Robert Bosch Gmbh Mobile communication interface, system with mobile communication interface and method for identifying, diagnosing, maintaining and repairing a vehicle
DE102013218812A1 (en) * 2013-09-19 2015-03-19 Robert Bosch Gmbh Driver assistance system for a motor vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100238291A1 (en) * 2009-03-23 2010-09-23 Pavlov Pavel Method as well as device for determining the position and alignment of a camera of a driver-assistance system of a vehicle relative to the vehicle

Also Published As

Publication number Publication date
WO2012076468A1 (en) 2012-06-14
CN103250069B (en) 2016-01-20
CN103250069A (en) 2013-08-14
US9279670B2 (en) 2016-03-08
US20130325252A1 (en) 2013-12-05
DE102010062696A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
WO2012076468A1 (en) Method and device for calibrating and adjusting a vehicle environment sensor
EP1376051B1 (en) Calibration of an image sensing system on a vehicle with a calibration object and a relative position sensor
EP3586080B1 (en) Device and method for calibrating vehicle assistance systems
EP1520184B1 (en) Method and device for calibrating sensors in a motor vehicle
EP1818748B1 (en) Device for the testing and setting of driver assistance systems of motor vehicles on the band end
EP3655796B1 (en) Calibration device and method for calibrating motor vehicle environment sensors
EP2233365A2 (en) Method and device for determining the position and alignment of a driver assistance camera of a vehicle to the vehicle
EP3736555B1 (en) Vehicle calibration tool
EP1953520B1 (en) Method and device for aligning a vehicle surroundings sensor or headlamp
DE102006057610A1 (en) Image-supported docking method for load-based ranking, involves determining vehicle height, consulting difference to vehicle height for docking in target object for vehicle treble control, and determining space and height data with sensor
EP3045998A1 (en) Marking vehicle and method
WO2020001963A1 (en) Method and system for ascertaining a relative position between a target object and a vehicle
DE102019113441A1 (en) Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
WO2019228885A1 (en) Method and device for determining vehicle parameters
WO2007077063A1 (en) Method and apparatus for contactlessly measuring the axle geometry
DE102009028606B4 (en) Method for calibrating a driver assistance system camera of a motor vehicle and calibration device for such a driver assistance system camera
DE10210472B4 (en) Method for adjusting the alignment of a sensor unit and apparatus for carrying out the method
BE1027090B1 (en) Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
EP1550983A1 (en) Device for calibrating an image sensor system
DE60312725T2 (en) ORIENTATION FOR A RADAR ANTENNA ON A VEHICLE
EP1550982B1 (en) Device for calibrating an image sensor system
WO2022078835A1 (en) Measuring arrangement and measuring method
DE102016000252B4 (en) Method for determining an orientation of a motor vehicle
DE102021203348A1 (en) Method and device for calibrating at least one sensor
EP3373040A1 (en) Calibration method for calibrating environment sensors of a vehicle environment sensor system in vehicle production and inspection system and vehicle for performing the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180703