EP2644850B1 - Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique - Google Patents

Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique Download PDF

Info

Publication number
EP2644850B1
EP2644850B1 EP12461509.7A EP12461509A EP2644850B1 EP 2644850 B1 EP2644850 B1 EP 2644850B1 EP 12461509 A EP12461509 A EP 12461509A EP 2644850 B1 EP2644850 B1 EP 2644850B1
Authority
EP
European Patent Office
Prior art keywords
flux
exergy
steam
destruction
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12461509.7A
Other languages
German (de)
English (en)
Other versions
EP2644850A1 (fr
Inventor
Leszek Gladek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hasbrouck Sp Z Oo
Crowley-Shindler Management LLC
Original Assignee
Hasbrouck Sp Z Oo
Crowley-Shindler Management LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasbrouck Sp Z Oo, Crowley-Shindler Management LLC filed Critical Hasbrouck Sp Z Oo
Priority to PL12461509T priority Critical patent/PL2644850T3/pl
Priority to EP12461509.7A priority patent/EP2644850B1/fr
Publication of EP2644850A1 publication Critical patent/EP2644850A1/fr
Application granted granted Critical
Publication of EP2644850B1 publication Critical patent/EP2644850B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants

Definitions

  • the present invention relates to a system for analysing the operation of power blocks and a method for analysing the operation of power blocks, especially in thermal power plants, such as fossil-fuel power plants.
  • Thermal power plants generate electricity as a result of energy transformation.
  • the main element of a thermal power plant is a steam boiler, where fuel is burned, mostly fossil fuel - coal or natural gas, biomass, biogas or waste.
  • the heat from the steam boiler is used for heating, evaporation and superheating of the steam powering a turbine.
  • the turbine in turn, generates mechanical energy to power the drive shaft of an electric generator.
  • Larger plants can be equipped with several power blocks, in which partially or fully separate energy generation processes can be conducted by means of elements generally independent from one another, such as boilers, turbines, condensers, pumps, heat exchangers, generators and the like.
  • Thermal power plants are characterized by a low overall efficiency, usually below 50%, resulting from the irreversibility of the thermal processes and from the shortcomings of the control processes and operational inefficiencies. These losses increase in time, while the typical operational time for a plant is several decades. Therefore, in thermal power plants various monitoring systems are used to observe the operation of the power plant and to generate data that can assist in optimising their operation.
  • DCS Distributed Control Systems
  • boiler management systems usually based on neural networks, and technical control systems used for observing the thermal cycles of the blocks.
  • a US patent US7840332 presents a system for steam turbine remote monitoring. The document is related to a method for determining efficiency of turbine in a way to continuously monitor mechanical efficiency. The performance of turbine is only observed and not modelled and therefore the approach is fully probabilistic.
  • Another US patent application US2001/034582 presents a method for thermal efficiency diagnostic for a combined cycle power plant block. There is proposed a cycle efficiency analysis for root-cause-analysis of ageing effects.
  • the object of the invention is a computer-implemented method for analyzing the operation of power plant blocks, in which, on the basis of collected operational data, the deterministic models of operation of individual blocks are examined and characteristics of operational parameters are created.
  • the selected operational parameters are examined by calculating for them the deviation of heat rate in time on the basis of the deterministic model and the characteristic of the parameter, destructions of exergy in various process points of the block are calculated; for various points of the process and for various power plant blocks, the calculated deviations of heat rate and the destruction of exergy are presented in a graphical form.
  • the operational data are collected from automatic measurement systems comprising sensors positioned on various elements of the power plant block.
  • the deterministic model of the block is created according to the first principle of thermodynamics in a form of a set of equations having the following form:
  • R n f h i m ⁇ i u i ⁇ i ⁇ i x i ; wherein:
  • the characteristics of the current operational parameters are created on the basis of the current data for predetermined historical time periods preceding their use in the computations.
  • the characteristics of the operational parameters comprise at least one operational parameter selected from a group comprising the following parameters: temperature of live steam after the shut-off valve; pressure of live steam after the shut-off valve; temperature of secondary steam on the turbine; pressure of secondary steam on the turbine; flux of injection water to live steam; flux of injection water to secondary steam; flux of supplementary water; vacuum of the condenser; temperature of supply water to the boiler; air to fuel ratio; concentration of oxygen in flue gas; concentration of CO 2 in flue gas; amount of unburned coal in the ash.
  • the method further comprises presenting in a graphical form the comparative plots for characteristics of a given operational parameter made for different power plant blocks.
  • the method further comprises presenting in a graphical form the comparison of the calculated deviations in heat rate for a given parameter for different power plant blocks.
  • the method further comprises presenting in a graphical form the comparison of the calculated deviations of the total heat rate for different power plant blocks.
  • the method further comprises, by using the predetermined characteristics of operational parameters, presenting in a graphical form the simulation of deviations of heat rate and/or changes of fluxes of destruction of exergy for variable values of the parameter of the characteristic.
  • Another object of the present invention is a computer-implemented system for analysis of operation of power plant blocks, in which by using data from an operational data warehouse deterministic models of operation of individual blocks are examined and characteristics of operational parameters are created.
  • the system comprises: a module for examining the operational parameters, configured to examine the selected operational parameters by calculating for them the deviation in heat rate in time based on the deterministic model and the characteristic of a given parameter; a module for calculating exergy destruction configured to calculate destruction of exergy in operational process points for the block; and an analysis module configured to present in a graphic form the calculated deviations in heat rate and the destruction of exergy in various points of the process, comparatively for various power plant blocks.
  • thermodynamic model of the block and characteristics of parameters determined on the basis of the current operational data. Therefore, it presents current, reliable information which allows to make decisions leading to more efficient operation of a given power block, so as to adapt its performance to the performance of other blocks, to which its work is compared on the presented comparative graphs.
  • the use of the thermodynamic model allows to comparatively verify different engineering computations. Presentation of both the heat rate and fluxes of destruction of exergy allows to ascertain that the computations are performed correctly and are not burdened with unexpected, unusual errors. This helps to detect analytical errors and sources of inaccuracies by analysing the operation in different points of the operational process of the block.
  • Fig. 1 shows an exemplary schematic diagram of a coal-fired block (CFB).
  • CFB coal-fired block
  • One plant may have a plurality of blocks of this type - the following example relates to an embodiment with blocks 1, 2 and 3.
  • the principles of operation of the CFB are well known to those skilled in the art.
  • the references to specific energy fluxes in the block are explained below:
  • a deterministic model describing its current process scheme can be developed in accordance with the first law of thermodynamics.
  • Equation (5) is used to verify the measurements of parameters on the condenser. This verification allows to draw conclusions regarding possible errors in measurement of particular parameters.
  • thermodynamic computations for the thermal cycle have been made on the basis of the data of this publication.
  • the characteristics are built from actual data for predetermined historical periods preceding the use of the characteristics in the model computations.
  • Monthly periods can be used, which correlate well with monthly cycles of fuel consumption and emission settlements, and therefore allow using balance data from other sources.
  • the characteristics of the parameters may relate to the following factors: temperature of live steam after the shut-off valve; pressure of live steam after the shut-off valve; temperature of secondary steam on the turbine; pressure of secondary steam on the turbine; flux of injection water to live steam; flux of injection water to secondary steam; flux of supplementary water; vacuum of the condenser; temperature of supply water to the boiler; air to fuel ratio; concentration of oxygen in flue gas; concentration of CO 2 in flue gas; amount of unburned coal in the ash.
  • Fig. 3 shows exemplary comparative characteristics for injection of water to steam, made for two blocks of the plant.
  • the characteristics convey a substantial amount of information for analysis of the current operation of blocks and allow building idealized reference functions, which allow calculating the deviations from the ideal states and the possible savings that can be achieved by reducing the heat rate.
  • One of the stages of comparing the operation of blocks in the system according to the invention should be a comparative analysis of operating parameters for different blocks. Such an analysis allows detecting possible different influences on the operation of the block or measurement of parameters. It is possible that for two similar blocks there is a significant discrepancy in the settings of operating parameters. Such dependencies have been presented for two blocks of the power plant in Fig. 4 - the temperature after the shut-off valve on the turbine in relation to the flux of supply water; and in Fig. 5 - the pressure after the shut-off valve in relation to the flux of supply water.
  • Fig. 6 shows a line of linear characteristics of the optimal setting of the temperature after the shut-off valve on the turbine in relation to the flux of supply water, for an exemplary set of measurement data for this parameter in block 2.
  • Fig. 8 shows an example of the method for calculating the heat rate 'hrt' wherein the parameter 't' is calculated from the optimal characteristics curve, created as shown in the previous paragraph.
  • the enthalpy is calculated at a point of the process where control of the parameter is desired, for example the temperature of steam after the shut-off valve from the optimal characteristics for the measured flux of steam 'm'.
  • the power output 'wnt' is calculated for the calculated enthalpy, and, if necessary, the input flux of heat 'Qin t '.
  • step 103 the power output 'wn' and the input flux of heat 'Qin' are calculated for the current operational parameters.
  • step 104 the heat rate for parameter t - 'hrt' and the heat rate for the parameters currently being measured 'hr', as well as the deviation of the heat rate for parameter t - ' ⁇ hrt', are calculated. These computations can be made for each characteristic.
  • the deviations of heat rate can be presented as a function of ' ⁇ hrt' (time), or in form of histograms for limited time periods, such as hours, days etc.
  • the computations from the simulations optimal plots show that the adjustment of procedures for the operation of the power block to the model indications can, for the analyzed power blocks, result in reduction of fuel consumption by about 100 t/day and corresponding reduction of CO 2 by about 140 t/day.
  • Fig. 8 shows the result of the computation of deviations of heat rate for a case of use of the temperature characteristic for the live steam input to the turbine.
  • the computations were made comparatively for two blocks. As can be seen, a better control of steam temperature indicated by the characteristic may result in some improvement of heat rate.
  • the computations for the other parameters may be carried out in similar manner.
  • the computations can be also made by using all the process characteristics simultaneously.
  • a histogram of the total heat rate deviation, taking into account all the optimal characteristics for the other parameters, is presented in Fig 11 .
  • the analysis of values of these deviations indicates that the greatest value impact is present for the heat rate deviation resulting from injection of water to steam.
  • the computations for destruction of exergy in the condenser may be carried out as follows:
  • Ex0 is the exergy flux of the reference state, in this case the minimum temperature of the cooling water recorded in all measurements. However, this is irrelevant as this element is cancelled in the further equations.
  • ⁇ 25 h 25 ⁇ T 0 * s 25 ⁇ Ex 0
  • ⁇ 26 h 26 ⁇ T 0 * s 26 ⁇ Ex 0
  • ⁇ 27 h 27 ⁇ T 0 * s 27 ⁇ Ex 0 ;
  • the analysis of destruction of exergy in real time can provide information which may lead to improvement of the power block operation, reduction of the value of the irreversibility of the process, and thus improve the efficiency of the process.
  • the graph in Fig. 13 shows a comparison of the flux of exergy destruction for the turbines of power blocks 2 and 3.
  • the results presented in the graph of Fig. 13 relate to the flow of the flux of exergy destruction for one selected day. The highest influence on the observed differences follows from injection of water to steam.
  • the graph of Fig. 14 shows the thermodynamic efficiency ⁇ according to the second principle of thermodynamics. As expected, block 3 has a higher efficiency - a lower irreversibility of the process and lower destruction of exergy.
  • the change of the fluxes of destruction of exergy during simulated operation can be calculated for a chosen parameter, for example, for optimal working conditions.
  • the graph of Fig. 15 shows the savings that can be obtained by not using injection of water to steam. For block 2 as much as 8MW can be saved and for block 3 as much as 5MW. It results from the fact that for block 2 significantly higher fluxes were used than for block 2, which can be seen in the graph of Fig. 17 - data for the same measurement period.
  • Fig. 16 shows the efficiency of the turbine for block 2 after eliminating injection of water to steam.
  • the analysis of the causes of deviation of heat rate and the value of changes in destruction of exergy should be made on a current basis by the engineering crew of the plant.
  • Some causes can be attributed to the specific technical conditions, such as the technical condition of the equipment, others to exploitation factors (for example, the cleanness of the condenser), and some to the actions of the operators of the blocks (for example, excessive use of injection water to control the parameters of the steam).
  • Fig. 18 shows a schematic of a system according to the invention.
  • the system contains an operational data warehouse 201, for collecting and integrating data from system sources (automatic measurement systems comprising sensors placed on different elements of the block) and non-system sources (external files and data entered manually).
  • the data warehouse can be in the form of a centralized or a distributed database, serviced by an appropriate computer system.
  • the deterministic models are created in module 202, and the characteristics of operational parameters are created in module 203.
  • the system comprises a module for examining the operational parameters 211, configured to examine the selected parameters by calculating the deviation of heat rate in time on the basis of the deterministic model and the characteristic of a given parameter.
  • the system contains a module for calculating the destruction of exergy 212, configured to calculate the destruction of exergy in points of the process to confirm computation of the deviations of heat rate, as in the above-described method.
  • the analysis module 213 is configured to show in a graphical form the calculated deviations of heat rate to allow further analysis, for example, as shown in the graphs of Figs. 9-17 .
  • the individual modules are technical means in form of computers connected with each other via a network, running appropriate software providing the functionality of particular modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Claims (11)

  1. Procédé mis en oeuvre par ordinateur permettant d'analyser le fonctionnement de blocs de centrale électrique, dans lequel, sur la base des données opérationnelles collectées (201), les modèles déterministes (202) de fonctionnement des blocs individuels sont examinés et des caractéristiques de paramètres opérationnels (203) sont créés, caractérisé en ce que
    - les paramètres opérationnels sélectionnés sont examinés en calculant pour eux l'écart de puissance thermique dans le temps sur la base du modèle déterministe (202) et de la caractéristique du paramètre (203) ;
    - les destructions d'exergie en divers points de procédé du bloc sont calculées ;
    - pour divers points du procédé et pour divers blocs de la centrale électrique, les écarts de puissance thermique calculés et la destruction d'exergie sont présentés sous forme graphique.
  2. Procédé selon la revendication 1, lesdites données opérationnelles (201) étant recueillies à partie de systèmes de mesure automatiques comprenant des capteurs placés sur divers éléments de chacun des blocs de centrale électrique.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le modèle déterministe (202) du bloc est créé selon le premier principe de thermodynamique sous la forme d'un ensemble d'équations ayant la forme suivante : R n = f h i m ˙ i u i κ i γ i x i ;
    Figure imgb0041
    dans lesquelles :
    Rn : fonction résultante, par exemple, la puissance de la turbine, le rendement du bloc, le rendement du bouilleur, la puissance thermique, les émissions de CO2, le taux de consommation de combustible par unité de puissance générée, la destruction d'exergie et similaires ;
    hi : enthalpie spécifique du milieu au noeud i ;
    mi : flux massique, par exemple de vapeur, d'eau, de condensat, d'air, de gaz ou de combustible dans le noeud i ;
    ui : fraction de l'extraction de vapeur (sur la turbine) en fonction du flux principal du milieu de travail pour l'évent i ;
    κi : fraction du flux d'injection d'eau dans la vapeur en fonction du flux principal du milieu de travail pour l'injection i ;
    γi : fraction du flux d'eau supplémentaire en fonction du procédé au point i ;
    xi : concentration de gaz de combustion ou de combustible dans le procédé utilisée pour les calculs d'équilibre.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les caractéristiques des paramètres opérationnels courants (203) sont créés sur la base des données courantes pendant des périodes de temps historiques prédéfinies précédant leur utilisation dans les calculs.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les caractéristiques des paramètres opérationnels (203) comprennent au moins un paramètre opérationnel choisi dans un groupe comprenant les paramètres suivants : la température de la vapeur vive après la vanne d'arrêt ; la température de la vapeur secondaire sur la turbine ; la pression de la vapeur secondaire sur la turbine ; le flux d'eau d'injection dans la vapeur vive ; le flux d'eau d'injection dans la vapeur secondaire ; le flux d'eau supplémentaire ; le vide du condenseur ; la température de l'eau d'alimentation vers le bouilleur ; le rapport air sur combustible ; la concentration d'oxygène dans le gaz de combustion ; la concentration de CO2 dans le gaz de combustion ; la quantité de charbon non brûlé dans les cendres.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé par la présentation sous forme graphique des tracés points par points comparatifs des caractéristiques d'un paramètre opérationnel donné réalisés pour différents blocs de centrale électrique.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé par la présentation sous forme graphique de la comparaison des écarts de puissance thermique calculés d'un paramètre donné pour différents blocs de centrale électrique.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé par la présentation sous forme graphique de la comparaison des écarts calculés de la puissance thermique totale pour différents blocs de la centrale électrique.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la destruction d'exergie en un point donné du procédé est calculé en utilisant les équations : I = Σ ε i × m i Σ ε e × m e w
    Figure imgb0042
    ε = h T 0 × s h 0 T 0 × s 0
    Figure imgb0043
    dans lesquelles :
    ε : flux d'énergie,
    h : enthalpie du procédé,
    s : entropie du procédé,
    T0 : température de référence,
    h0 : enthalpie de l'état de référence,
    s0 : entropie de l'état de référence,
    m : flux du milieu,
    w : travail effectué dans le système,
    I : valeur de la destruction d'exergie
    'I' en indice indique l'entrée,
    'e' en indice indique la sortie.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, par l'utilisation des caractéristiques prédéfinies des paramètres opérationnels (203), la présentation sous forme graphique de la simulation d'écarts de puissance thermique et/ou de changements de flux de destruction d'exergie pour des valeurs variables du paramètre de la caractéristique.
  11. Système mis en oeuvre par ordinateur permettant l'analyse du fonctionnement de blocs de centrale électrique, dans lequel, en utilisant des données provenant d'un entrepôt de données opérationnelles (201), des modèles déterministes (202) de fonctionnement de blocs individuels sont examinés et des caractéristiques de paramètres opérationnels (203) sont créées, caractérisé en ce que le système comprend :
    - un module pour examiner les paramètres opérationnels (211), conçu pour examiner les paramètres opérationnels sélectionnés en calculant pour eux l'écart de puissance thermique dans le temps sur la base du modèle déterministe et de la caractéristique d'un paramètre donné ;
    - un module pour calculer la destruction d'exergie (212) conçu pour calculer la destruction d'exergie en des points opérationnels du procédé pour l'unité ;
    - un module d'analyse (213) conçu pour présenter sous forme graphique les écarts de puissance thermique calculés et la destruction d'exergie en divers points du procédé, comparativement pour divers blocs de centrale électrique.
EP12461509.7A 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique Active EP2644850B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL12461509T PL2644850T3 (pl) 2012-03-28 2012-03-28 System do analizy pracy bloków elektrowni i sposób analizy pracy bloków elektrowni
EP12461509.7A EP2644850B1 (fr) 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12461509.7A EP2644850B1 (fr) 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique

Publications (2)

Publication Number Publication Date
EP2644850A1 EP2644850A1 (fr) 2013-10-02
EP2644850B1 true EP2644850B1 (fr) 2016-05-04

Family

ID=46320858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12461509.7A Active EP2644850B1 (fr) 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique

Country Status (2)

Country Link
EP (1) EP2644850B1 (fr)
PL (1) PL2644850T3 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113095591B (zh) * 2021-04-29 2023-03-21 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种用于火电机组运行参数自寻优的耗差分析方法
CN113394814B (zh) * 2021-06-02 2022-06-21 清华大学 计及热量品位的热电联产机组模型构建方法和装置
CN114060113B (zh) * 2021-11-19 2022-07-22 浙江大学 基于综合性能定量表征的垃圾电厂流程优化方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080208429A1 (en) * 2007-02-28 2008-08-28 Arul Saravanapriyan Systems and methods for steam turbine remote monitoring, diagnosis and benchmarking

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214451A (en) * 1978-11-13 1980-07-29 Systems Control, Inc. Energy cogeneration system
JP2907858B2 (ja) * 1989-03-20 1999-06-21 株式会社日立製作所 表示装置および方法
US5838588A (en) * 1996-12-13 1998-11-17 Siemens Corporate Research, Inc. Graphical user interface system for steam turbine operating conditions
JP3614751B2 (ja) * 2000-03-21 2005-01-26 東京電力株式会社 コンバインド発電プラントの熱効率診断方法および装置
DE102005004233A1 (de) * 2005-01-28 2006-08-17 Abb Research Ltd. System und Verfahren zur Einsatzplanung, Prozessüberwachung, Simulation und Optimierung einer kombinierten Stromerzeugungs- und Wasserentsalzungsanlage
JP2007231808A (ja) * 2006-02-28 2007-09-13 Tokyo Electric Power Co Inc:The 火力発電プラントのプラント効率算出装置及び方法
US20090178468A1 (en) * 2008-01-10 2009-07-16 General Electric Company Systems and methods for determining steam turbine operating efficiency
US8176724B2 (en) * 2008-09-18 2012-05-15 Smith Douglas W P Hybrid Brayton cycle with solid fuel firing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080208429A1 (en) * 2007-02-28 2008-08-28 Arul Saravanapriyan Systems and methods for steam turbine remote monitoring, diagnosis and benchmarking

Also Published As

Publication number Publication date
EP2644850A1 (fr) 2013-10-02
PL2644850T3 (pl) 2017-03-31

Similar Documents

Publication Publication Date Title
US8200369B2 (en) Use of statistical analysis in power plant performance monitoring
Roumeliotis et al. Industrial gas turbine health and performance assessment with field data
CN111159844B (zh) 一种电站燃气轮机排气温度的异常检测方法
US8447564B2 (en) Systems and method for power plant performance reconciliation
EP2884059B1 (fr) Commande HRSG à étages multiples dans une unité à cycle combiné
CN104090560B (zh) 一种监测供电综合环境评价指标的设备
CN105527113A (zh) 一种核电站热能效率监测与诊断系统和方法
US20160365735A1 (en) Systems and Methods for Power Plant Data Reconciliation
CN105317476A (zh) 一种基于特征通流面积的汽轮机流量曲线辨识及优化方法
EP2644850B1 (fr) Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique
Zaleta-Aguilar et al. A Reconciliation Method Based on a Module Simulator-An Approach to the Diagnosis of Energy System Malfunctions
Jansen et al. Daily Marginal CO 2 Emissions Reductions from Wind and Solar Generation
CN103728055B (zh) 一种火电机组锅炉炉膛出口烟气能量的实时估计方法
JP6554162B2 (ja) 発電プラント性能評価方法及び発電プラント性能評価プログラム
JP5618322B2 (ja) 熱効率解析方法及び熱効率解析プログラム
EP4352339B1 (fr) Procédé et système de surveillance et de détermination en ligne du pouvoir calorifique du combustible solide actuellement brûlé dans une chaudière
KR100752765B1 (ko) 복합화력 발전소의 운전제어가능 파라미터의 실시간영향산출 시스템 및 방법
CN100366876C (zh) 燃气-蒸汽联合循环发电站运行效率在线解析方法和系统
EP2806114B1 (fr) Commande d'allumage de conduit à cycle combiné
Sultanov et al. Electrical generator unit technical and economic indexes parameter study
KR102234570B1 (ko) 화력발전 플랜트의 효율예측 정확성 향상을 위한 연료의 발열량 보정방법
Hartner et al. Model-based data reconciliation to improve accuracy and reliability of performance evaluation of thermal power plants
CN101776925B (zh) 一种降低火力发电机组排烟温度的方法
Wang et al. Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis
Zheng et al. Certification of a Statistical Hybrid Predictive Emission Monitoring System in the USA and Development of a Small Gas Turbine Class Model

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140314

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 797107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012018036

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 797107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012018036

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230825

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240311

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240829

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240827

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240829

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240830

Year of fee payment: 13