EP2644850B1 - System zur Analyse des Betriebs von Kraftwerkseinheiten und Verfahren zur Analyse des Betriebs von Kraftwerkseinheiten - Google Patents
System zur Analyse des Betriebs von Kraftwerkseinheiten und Verfahren zur Analyse des Betriebs von Kraftwerkseinheiten Download PDFInfo
- Publication number
- EP2644850B1 EP2644850B1 EP12461509.7A EP12461509A EP2644850B1 EP 2644850 B1 EP2644850 B1 EP 2644850B1 EP 12461509 A EP12461509 A EP 12461509A EP 2644850 B1 EP2644850 B1 EP 2644850B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flux
- exergy
- steam
- destruction
- power plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 70
- 230000004907 flux Effects 0.000 claims description 96
- 230000008569 process Effects 0.000 claims description 45
- 230000006378 damage Effects 0.000 claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- 238000002347 injection Methods 0.000 claims description 27
- 239000007924 injection Substances 0.000 claims description 27
- 238000004458 analytical method Methods 0.000 claims description 23
- 239000000446 fuel Substances 0.000 claims description 17
- 239000008400 supply water Substances 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 9
- 239000003546 flue gas Substances 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 7
- 230000000052 comparative effect Effects 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 5
- 239000003570 air Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000003245 coal Substances 0.000 claims description 3
- -1 condensate Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 241000196324 Embryophyta Species 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 239000000498 cooling water Substances 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 238000010835 comparative analysis Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000008236 heating water Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 235000010624 Medicago sativa Nutrition 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000037211 monthly cycles Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
Definitions
- the present invention relates to a system for analysing the operation of power blocks and a method for analysing the operation of power blocks, especially in thermal power plants, such as fossil-fuel power plants.
- Thermal power plants generate electricity as a result of energy transformation.
- the main element of a thermal power plant is a steam boiler, where fuel is burned, mostly fossil fuel - coal or natural gas, biomass, biogas or waste.
- the heat from the steam boiler is used for heating, evaporation and superheating of the steam powering a turbine.
- the turbine in turn, generates mechanical energy to power the drive shaft of an electric generator.
- Larger plants can be equipped with several power blocks, in which partially or fully separate energy generation processes can be conducted by means of elements generally independent from one another, such as boilers, turbines, condensers, pumps, heat exchangers, generators and the like.
- Thermal power plants are characterized by a low overall efficiency, usually below 50%, resulting from the irreversibility of the thermal processes and from the shortcomings of the control processes and operational inefficiencies. These losses increase in time, while the typical operational time for a plant is several decades. Therefore, in thermal power plants various monitoring systems are used to observe the operation of the power plant and to generate data that can assist in optimising their operation.
- DCS Distributed Control Systems
- boiler management systems usually based on neural networks, and technical control systems used for observing the thermal cycles of the blocks.
- a US patent US7840332 presents a system for steam turbine remote monitoring. The document is related to a method for determining efficiency of turbine in a way to continuously monitor mechanical efficiency. The performance of turbine is only observed and not modelled and therefore the approach is fully probabilistic.
- Another US patent application US2001/034582 presents a method for thermal efficiency diagnostic for a combined cycle power plant block. There is proposed a cycle efficiency analysis for root-cause-analysis of ageing effects.
- the object of the invention is a computer-implemented method for analyzing the operation of power plant blocks, in which, on the basis of collected operational data, the deterministic models of operation of individual blocks are examined and characteristics of operational parameters are created.
- the selected operational parameters are examined by calculating for them the deviation of heat rate in time on the basis of the deterministic model and the characteristic of the parameter, destructions of exergy in various process points of the block are calculated; for various points of the process and for various power plant blocks, the calculated deviations of heat rate and the destruction of exergy are presented in a graphical form.
- the operational data are collected from automatic measurement systems comprising sensors positioned on various elements of the power plant block.
- the deterministic model of the block is created according to the first principle of thermodynamics in a form of a set of equations having the following form:
- R n f h i m ⁇ i u i ⁇ i ⁇ i x i ; wherein:
- the characteristics of the current operational parameters are created on the basis of the current data for predetermined historical time periods preceding their use in the computations.
- the characteristics of the operational parameters comprise at least one operational parameter selected from a group comprising the following parameters: temperature of live steam after the shut-off valve; pressure of live steam after the shut-off valve; temperature of secondary steam on the turbine; pressure of secondary steam on the turbine; flux of injection water to live steam; flux of injection water to secondary steam; flux of supplementary water; vacuum of the condenser; temperature of supply water to the boiler; air to fuel ratio; concentration of oxygen in flue gas; concentration of CO 2 in flue gas; amount of unburned coal in the ash.
- the method further comprises presenting in a graphical form the comparative plots for characteristics of a given operational parameter made for different power plant blocks.
- the method further comprises presenting in a graphical form the comparison of the calculated deviations in heat rate for a given parameter for different power plant blocks.
- the method further comprises presenting in a graphical form the comparison of the calculated deviations of the total heat rate for different power plant blocks.
- the method further comprises, by using the predetermined characteristics of operational parameters, presenting in a graphical form the simulation of deviations of heat rate and/or changes of fluxes of destruction of exergy for variable values of the parameter of the characteristic.
- Another object of the present invention is a computer-implemented system for analysis of operation of power plant blocks, in which by using data from an operational data warehouse deterministic models of operation of individual blocks are examined and characteristics of operational parameters are created.
- the system comprises: a module for examining the operational parameters, configured to examine the selected operational parameters by calculating for them the deviation in heat rate in time based on the deterministic model and the characteristic of a given parameter; a module for calculating exergy destruction configured to calculate destruction of exergy in operational process points for the block; and an analysis module configured to present in a graphic form the calculated deviations in heat rate and the destruction of exergy in various points of the process, comparatively for various power plant blocks.
- thermodynamic model of the block and characteristics of parameters determined on the basis of the current operational data. Therefore, it presents current, reliable information which allows to make decisions leading to more efficient operation of a given power block, so as to adapt its performance to the performance of other blocks, to which its work is compared on the presented comparative graphs.
- the use of the thermodynamic model allows to comparatively verify different engineering computations. Presentation of both the heat rate and fluxes of destruction of exergy allows to ascertain that the computations are performed correctly and are not burdened with unexpected, unusual errors. This helps to detect analytical errors and sources of inaccuracies by analysing the operation in different points of the operational process of the block.
- Fig. 1 shows an exemplary schematic diagram of a coal-fired block (CFB).
- CFB coal-fired block
- One plant may have a plurality of blocks of this type - the following example relates to an embodiment with blocks 1, 2 and 3.
- the principles of operation of the CFB are well known to those skilled in the art.
- the references to specific energy fluxes in the block are explained below:
- a deterministic model describing its current process scheme can be developed in accordance with the first law of thermodynamics.
- Equation (5) is used to verify the measurements of parameters on the condenser. This verification allows to draw conclusions regarding possible errors in measurement of particular parameters.
- thermodynamic computations for the thermal cycle have been made on the basis of the data of this publication.
- the characteristics are built from actual data for predetermined historical periods preceding the use of the characteristics in the model computations.
- Monthly periods can be used, which correlate well with monthly cycles of fuel consumption and emission settlements, and therefore allow using balance data from other sources.
- the characteristics of the parameters may relate to the following factors: temperature of live steam after the shut-off valve; pressure of live steam after the shut-off valve; temperature of secondary steam on the turbine; pressure of secondary steam on the turbine; flux of injection water to live steam; flux of injection water to secondary steam; flux of supplementary water; vacuum of the condenser; temperature of supply water to the boiler; air to fuel ratio; concentration of oxygen in flue gas; concentration of CO 2 in flue gas; amount of unburned coal in the ash.
- Fig. 3 shows exemplary comparative characteristics for injection of water to steam, made for two blocks of the plant.
- the characteristics convey a substantial amount of information for analysis of the current operation of blocks and allow building idealized reference functions, which allow calculating the deviations from the ideal states and the possible savings that can be achieved by reducing the heat rate.
- One of the stages of comparing the operation of blocks in the system according to the invention should be a comparative analysis of operating parameters for different blocks. Such an analysis allows detecting possible different influences on the operation of the block or measurement of parameters. It is possible that for two similar blocks there is a significant discrepancy in the settings of operating parameters. Such dependencies have been presented for two blocks of the power plant in Fig. 4 - the temperature after the shut-off valve on the turbine in relation to the flux of supply water; and in Fig. 5 - the pressure after the shut-off valve in relation to the flux of supply water.
- Fig. 6 shows a line of linear characteristics of the optimal setting of the temperature after the shut-off valve on the turbine in relation to the flux of supply water, for an exemplary set of measurement data for this parameter in block 2.
- Fig. 8 shows an example of the method for calculating the heat rate 'hrt' wherein the parameter 't' is calculated from the optimal characteristics curve, created as shown in the previous paragraph.
- the enthalpy is calculated at a point of the process where control of the parameter is desired, for example the temperature of steam after the shut-off valve from the optimal characteristics for the measured flux of steam 'm'.
- the power output 'wnt' is calculated for the calculated enthalpy, and, if necessary, the input flux of heat 'Qin t '.
- step 103 the power output 'wn' and the input flux of heat 'Qin' are calculated for the current operational parameters.
- step 104 the heat rate for parameter t - 'hrt' and the heat rate for the parameters currently being measured 'hr', as well as the deviation of the heat rate for parameter t - ' ⁇ hrt', are calculated. These computations can be made for each characteristic.
- the deviations of heat rate can be presented as a function of ' ⁇ hrt' (time), or in form of histograms for limited time periods, such as hours, days etc.
- the computations from the simulations optimal plots show that the adjustment of procedures for the operation of the power block to the model indications can, for the analyzed power blocks, result in reduction of fuel consumption by about 100 t/day and corresponding reduction of CO 2 by about 140 t/day.
- Fig. 8 shows the result of the computation of deviations of heat rate for a case of use of the temperature characteristic for the live steam input to the turbine.
- the computations were made comparatively for two blocks. As can be seen, a better control of steam temperature indicated by the characteristic may result in some improvement of heat rate.
- the computations for the other parameters may be carried out in similar manner.
- the computations can be also made by using all the process characteristics simultaneously.
- a histogram of the total heat rate deviation, taking into account all the optimal characteristics for the other parameters, is presented in Fig 11 .
- the analysis of values of these deviations indicates that the greatest value impact is present for the heat rate deviation resulting from injection of water to steam.
- the computations for destruction of exergy in the condenser may be carried out as follows:
- Ex0 is the exergy flux of the reference state, in this case the minimum temperature of the cooling water recorded in all measurements. However, this is irrelevant as this element is cancelled in the further equations.
- ⁇ 25 h 25 ⁇ T 0 * s 25 ⁇ Ex 0
- ⁇ 26 h 26 ⁇ T 0 * s 26 ⁇ Ex 0
- ⁇ 27 h 27 ⁇ T 0 * s 27 ⁇ Ex 0 ;
- the analysis of destruction of exergy in real time can provide information which may lead to improvement of the power block operation, reduction of the value of the irreversibility of the process, and thus improve the efficiency of the process.
- the graph in Fig. 13 shows a comparison of the flux of exergy destruction for the turbines of power blocks 2 and 3.
- the results presented in the graph of Fig. 13 relate to the flow of the flux of exergy destruction for one selected day. The highest influence on the observed differences follows from injection of water to steam.
- the graph of Fig. 14 shows the thermodynamic efficiency ⁇ according to the second principle of thermodynamics. As expected, block 3 has a higher efficiency - a lower irreversibility of the process and lower destruction of exergy.
- the change of the fluxes of destruction of exergy during simulated operation can be calculated for a chosen parameter, for example, for optimal working conditions.
- the graph of Fig. 15 shows the savings that can be obtained by not using injection of water to steam. For block 2 as much as 8MW can be saved and for block 3 as much as 5MW. It results from the fact that for block 2 significantly higher fluxes were used than for block 2, which can be seen in the graph of Fig. 17 - data for the same measurement period.
- Fig. 16 shows the efficiency of the turbine for block 2 after eliminating injection of water to steam.
- the analysis of the causes of deviation of heat rate and the value of changes in destruction of exergy should be made on a current basis by the engineering crew of the plant.
- Some causes can be attributed to the specific technical conditions, such as the technical condition of the equipment, others to exploitation factors (for example, the cleanness of the condenser), and some to the actions of the operators of the blocks (for example, excessive use of injection water to control the parameters of the steam).
- Fig. 18 shows a schematic of a system according to the invention.
- the system contains an operational data warehouse 201, for collecting and integrating data from system sources (automatic measurement systems comprising sensors placed on different elements of the block) and non-system sources (external files and data entered manually).
- the data warehouse can be in the form of a centralized or a distributed database, serviced by an appropriate computer system.
- the deterministic models are created in module 202, and the characteristics of operational parameters are created in module 203.
- the system comprises a module for examining the operational parameters 211, configured to examine the selected parameters by calculating the deviation of heat rate in time on the basis of the deterministic model and the characteristic of a given parameter.
- the system contains a module for calculating the destruction of exergy 212, configured to calculate the destruction of exergy in points of the process to confirm computation of the deviations of heat rate, as in the above-described method.
- the analysis module 213 is configured to show in a graphical form the calculated deviations of heat rate to allow further analysis, for example, as shown in the graphs of Figs. 9-17 .
- the individual modules are technical means in form of computers connected with each other via a network, running appropriate software providing the functionality of particular modules.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Claims (11)
- Computerimplementiertes Verfahren zur Analyse des Betriebs von Kraftwerksblöcken, wobei, auf der Grundlage gesammelter Betriebsdaten (201), die deterministischen Modelle (202) des Betriebs einzelner Blöcke überprüft und Merkmale von Betriebsparametern (203) erstellt werden, dadurch gekennzeichnet, dass- die ausgewählten Betriebsparameter durch die diesbezügliche Berechnung der zeitlichen Abweichung der Wärmerate auf Grundlage des deterministischen Modells (202) und dem Merkmal des Parameters (203) überprüft werden,- die Vernichtung von Exergie an verschiedenen Prozesspunkten des Blocks berechnet wird;- für verschiedene Punkte des Prozesses und für verschiedene Kraftwerksblöcke die berechnete Abweichung der Wärmerate und die Vernichtung von Exergie in einer grafischen Form dargestellt werden.
- Verfahren nach Anspruch 1, wobei die Betriebsdaten (201) aus automatischen Messsystemen, umfassend Sensoren, die an verschiedenen Elementen von jedem der Kraftwerksblöcke positioniert sind, gesammelt werden.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das deterministische Modell (202) des Blocks gemäß dem ersten Prinzip der Thermodynamik in einer Form eines Satzes von Gleichungen erstellt wird, welche die folgende Form aufweisen:Rn - resultierende Funktion, zum Beispiel: die Leistung der Turbine, die Effizienz des Blocks, die Effizienz des Kessels, Wärmerate, CO2-Ausstoß, Anteil des Kraftstoffverbrauchs pro Einheit erzeugter Leistung, Vernichtung von Exergie und Ähnliches;hi - spezifische Enthalpie des Mediums am Knoten i;ṁi - Massenfluss, zum Beispiel von Dampf, Wasser, Kondensat, Luft, Gas oder Kraftstoff an dem Knoten i;ui - Anteil der Extraktion von Dampf (an der Turbine) in Bezug auf das Hauptflussbetriebsmedium für Lüftung 'i';κi - Anteil des Flusses von Wassereinspritzung zu Dampf in Bezug auf den Hauptfluss des Betriebsmediums für die Einspritzung i;γi - Anteil des zusätzlichen Wasserflusses in Bezug auf den Prozess an dem Punkt i;xi - Konzentration von Abgas oder Kraftstoff in dem Prozess, verwendet für die Ausgleichsberechnungen.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Merkmale der aktuellen Betriebsparameter (203) auf der Grundlage der aktuellen Daten für vorher festgelegte verlaufstechnische Zeitspannen erstellt werden, die ihrer Verwendung in den Berechnungen vorausgehen.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Merkmale der Betriebsparameter (203) mindestens einen Betriebsparameter umfassen, ausgewählt aus einer Gruppe, umfassend die folgenden Parameter: Temperatur von Frischdampf hinter dem Absperrventil; Druck von Frischdampf hinter dem Absperrventil; Temperatur von Sekundärdampf an der Turbine; Druck von Sekundärdampf an der Turbine; Fluss von Einspritzwasser zu Frischdampf; Fluss von Einspritzwasser zu Sekundärdampf; Fluss von zusätzlichem Wasser; Vakuum des Kondensators; Temperatur von Zufuhrwasser zu dem Kessel; Luft-Kraftstoffverhältnis; Konzentration von Sauerstoff im Abgas; Konzentration von CO2 im Abgas; Menge von unverbrannter Kohle in der Asche.
- Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch das Darstellen der Vergleichsdarstellungen für Merkmale eines gegebenen Betriebsparameters, angefertigt für unterschiedliche Kraftwerksblöcke, in grafischer Form.
- Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch das Darstellen des Vergleichs der berechneten Abweichung hinsichtlich der Wärmerate für einen gegebenen Parameter für unterschiedliche Kraftwerksblöcke in grafischer Form.
- Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch das Darstellen des Vergleichs der berechneten Abweichung der Gesamtwärmerate für unterschiedliche Kraftwerksblöcke in grafischer Form.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vernichtung von Exergie an einem gegebenen Punkt des Prozesses unter Verwendung der folgenden Gleichungen berechnet wird:ε - Exergiefluss,h - Enthalpie des Prozesses,s - Entropie des Prozesses,T0 - Referenztemperatur,h0 - Enthalpie des Referenzzustands,s0 - Entropie des Referenzzustands,m - Fluss des Mediums,w - verrichtete Arbeit im System,I - Wert der Vernichtung von Exergiedas tiefgestellte Zeichen 'I' kennzeichnet den Eingang,das tiefgestellt Zeichen 'e' kennzeichnet den Ausgang.
- Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch das Verwenden der vorher festgelegten Merkmale von Betriebsparametern (203), das Darstellen der Simulation der Abweichung der Wärmerate und/oder Veränderungen des Flusses der Vernichtung von Exergie für verschiedene Werte des Parameters des Merkmals in grafischer Form.
- Computerimplementiertes System zur Analyse des Betriebs von Kraftwerksblöcken, wobei durch die Verwendung von Daten von einem Betriebsdatenlagerort (201) deterministische Modelle (202) des Betriebs einzelner Blöcke überprüft und Merkmale von Betriebsparametern (203) erstellt werden, dadurch gekennzeichnet, dass das System Folgendes umfasst:- ein Modul zum Überprüfen der Betriebsparameter (211), konfiguriert, um die ausgewählten Betriebsparameter durch die diesbezügliche Berechnung der zeitlichen Abweichung der Wärmerate auf Grundlage des deterministischen Modells und dem Merkmal eines gegebenen Parameters zu überprüfen;- ein Modul zum Berechnen der Exergievernichtung (212), konfiguriert, um die Vernichtung von Exergie an Betriebsprozesspunkten für den Block zu berechnen;- ein Analysemodul (213), konfiguriert, um die berechnete Abweichung der Wärmerate und die Vernichtung von Exergie an verschiedenen Punkten des Prozesses vergleichsweise für verschiedene Kraftwerksblöcke in grafischer Form darzustellen.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12461509T PL2644850T3 (pl) | 2012-03-28 | 2012-03-28 | System do analizy pracy bloków elektrowni i sposób analizy pracy bloków elektrowni |
EP12461509.7A EP2644850B1 (de) | 2012-03-28 | 2012-03-28 | System zur Analyse des Betriebs von Kraftwerkseinheiten und Verfahren zur Analyse des Betriebs von Kraftwerkseinheiten |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12461509.7A EP2644850B1 (de) | 2012-03-28 | 2012-03-28 | System zur Analyse des Betriebs von Kraftwerkseinheiten und Verfahren zur Analyse des Betriebs von Kraftwerkseinheiten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2644850A1 EP2644850A1 (de) | 2013-10-02 |
EP2644850B1 true EP2644850B1 (de) | 2016-05-04 |
Family
ID=46320858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12461509.7A Active EP2644850B1 (de) | 2012-03-28 | 2012-03-28 | System zur Analyse des Betriebs von Kraftwerkseinheiten und Verfahren zur Analyse des Betriebs von Kraftwerkseinheiten |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2644850B1 (de) |
PL (1) | PL2644850T3 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113095591B (zh) * | 2021-04-29 | 2023-03-21 | 中国大唐集团科学技术研究院有限公司中南电力试验研究院 | 一种用于火电机组运行参数自寻优的耗差分析方法 |
CN113394814B (zh) * | 2021-06-02 | 2022-06-21 | 清华大学 | 计及热量品位的热电联产机组模型构建方法和装置 |
CN114060113B (zh) * | 2021-11-19 | 2022-07-22 | 浙江大学 | 基于综合性能定量表征的垃圾电厂流程优化方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080208429A1 (en) * | 2007-02-28 | 2008-08-28 | Arul Saravanapriyan | Systems and methods for steam turbine remote monitoring, diagnosis and benchmarking |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4214451A (en) * | 1978-11-13 | 1980-07-29 | Systems Control, Inc. | Energy cogeneration system |
JP2907858B2 (ja) * | 1989-03-20 | 1999-06-21 | 株式会社日立製作所 | 表示装置および方法 |
US5838588A (en) * | 1996-12-13 | 1998-11-17 | Siemens Corporate Research, Inc. | Graphical user interface system for steam turbine operating conditions |
JP3614751B2 (ja) * | 2000-03-21 | 2005-01-26 | 東京電力株式会社 | コンバインド発電プラントの熱効率診断方法および装置 |
DE102005004233A1 (de) * | 2005-01-28 | 2006-08-17 | Abb Research Ltd. | System und Verfahren zur Einsatzplanung, Prozessüberwachung, Simulation und Optimierung einer kombinierten Stromerzeugungs- und Wasserentsalzungsanlage |
JP2007231808A (ja) * | 2006-02-28 | 2007-09-13 | Tokyo Electric Power Co Inc:The | 火力発電プラントのプラント効率算出装置及び方法 |
US20090178468A1 (en) * | 2008-01-10 | 2009-07-16 | General Electric Company | Systems and methods for determining steam turbine operating efficiency |
US8176724B2 (en) * | 2008-09-18 | 2012-05-15 | Smith Douglas W P | Hybrid Brayton cycle with solid fuel firing |
-
2012
- 2012-03-28 PL PL12461509T patent/PL2644850T3/pl unknown
- 2012-03-28 EP EP12461509.7A patent/EP2644850B1/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080208429A1 (en) * | 2007-02-28 | 2008-08-28 | Arul Saravanapriyan | Systems and methods for steam turbine remote monitoring, diagnosis and benchmarking |
Also Published As
Publication number | Publication date |
---|---|
EP2644850A1 (de) | 2013-10-02 |
PL2644850T3 (pl) | 2017-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090012653A1 (en) | Use of statistical analysis in power plant performance monitoring | |
CN111159844B (zh) | 一种电站燃气轮机排气温度的异常检测方法 | |
Roumeliotis et al. | Industrial gas turbine health and performance assessment with field data | |
US8447564B2 (en) | Systems and method for power plant performance reconciliation | |
EP2884059B1 (de) | Mehrstufige Abhitzekessel-Steuerung in einem Kombikraftwerk | |
CN104090560B (zh) | 一种监测供电综合环境评价指标的设备 | |
CN105527113A (zh) | 一种核电站热能效率监测与诊断系统和方法 | |
US20160365735A1 (en) | Systems and Methods for Power Plant Data Reconciliation | |
CN105317476A (zh) | 一种基于特征通流面积的汽轮机流量曲线辨识及优化方法 | |
EP2644850B1 (de) | System zur Analyse des Betriebs von Kraftwerkseinheiten und Verfahren zur Analyse des Betriebs von Kraftwerkseinheiten | |
Zaleta-Aguilar et al. | A Reconciliation Method Based on a Module Simulator-An Approach to the Diagnosis of Energy System Malfunctions | |
Jansen et al. | Daily Marginal CO 2 Emissions Reductions from Wind and Solar Generation | |
CN103728055B (zh) | 一种火电机组锅炉炉膛出口烟气能量的实时估计方法 | |
JP6554162B2 (ja) | 発電プラント性能評価方法及び発電プラント性能評価プログラム | |
JP5618322B2 (ja) | 熱効率解析方法及び熱効率解析プログラム | |
EP4352339B1 (de) | Verfahren und system zur on-line-überwachung und -bestimmung des heizwertes eines festbrennstoffes, der derzeit in einem kessel verbrennt wird | |
KR100752765B1 (ko) | 복합화력 발전소의 운전제어가능 파라미터의 실시간영향산출 시스템 및 방법 | |
Zaccaria et al. | Adaptive control of micro gas turbine for engine degradation compensation | |
CN100366876C (zh) | 燃气-蒸汽联合循环发电站运行效率在线解析方法和系统 | |
EP2806114B1 (de) | Kombinierte Zyklus-Kanalfeuerungssteuerung | |
CN111079070B (zh) | 一种热力参数分析方法及装置 | |
Sultanov et al. | Electrical generator unit technical and economic indexes parameter study | |
KR102234570B1 (ko) | 화력발전 플랜트의 효율예측 정확성 향상을 위한 연료의 발열량 보정방법 | |
Hartner et al. | Model-based data reconciliation to improve accuracy and reliability of performance evaluation of thermal power plants | |
CN101776925B (zh) | 一种降低火力发电机组排烟温度的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20140314 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151123 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 797107 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012018036 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160804 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 797107 Country of ref document: AT Kind code of ref document: T Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160805 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160905 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012018036 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170328 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160904 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230825 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240311 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240829 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240827 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240829 Year of fee payment: 13 |