EP2644850A1 - Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique - Google Patents

Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique Download PDF

Info

Publication number
EP2644850A1
EP2644850A1 EP12461509.7A EP12461509A EP2644850A1 EP 2644850 A1 EP2644850 A1 EP 2644850A1 EP 12461509 A EP12461509 A EP 12461509A EP 2644850 A1 EP2644850 A1 EP 2644850A1
Authority
EP
European Patent Office
Prior art keywords
flux
exergy
steam
destruction
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12461509.7A
Other languages
German (de)
English (en)
Other versions
EP2644850B1 (fr
Inventor
Leszek Gladek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hasbrouck Sp Z Oo
Crowley-Shindler Management LLC
Original Assignee
Hasbrouck Sp Z Oo
Crowley-Shindler Management LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasbrouck Sp Z Oo, Crowley-Shindler Management LLC filed Critical Hasbrouck Sp Z Oo
Priority to PL12461509T priority Critical patent/PL2644850T3/pl
Priority to EP12461509.7A priority patent/EP2644850B1/fr
Publication of EP2644850A1 publication Critical patent/EP2644850A1/fr
Application granted granted Critical
Publication of EP2644850B1 publication Critical patent/EP2644850B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants

Definitions

  • the deterministic model of the block is created according to the first principle of thermodynamics in a form of a set of equations having the following form:
  • R n f h i ⁇ m i ⁇ u i ⁇ ⁇ i ⁇ ⁇ i ⁇ x i ; wherein:
  • the characteristics of the current operational parameters are created on the basis of the current data for predetermined historical time periods preceding their use in the computations.
  • the method further comprises presenting in a graphical form the comparative plots for characteristics of a given operational parameter made for different power plant blocks.
  • the method further comprises presenting in a graphical form the comparison of the calculated deviations of the total heat rate for different power plant blocks.
  • the method further comprises, by using the predetermined characteristics of operational parameters, presenting in a graphical form the simulation of deviations of heat rate and/or changes of fluxes of destruction of exergy for variable values of the parameter of the characteristic.
  • Another object of the present invention is a computer-implemented system for analysis of operation of power plant blocks, in which by using data from an operational data warehouse deterministic models of operation of individual blocks are examined and characteristics of operational parameters are created.
  • the system comprises: a module for examining the operational parameters, configured to examine the selected operational parameters by calculating for them the deviation in heat rate in time based on the deterministic model and the characteristic of a given parameter; a module for calculating exergy destruction configured to calculate destruction of exergy in operational process points for the block; and an analysis module configured to present in a graphic form the calculated deviations in heat rate and the destruction of exergy in various points of the process, comparatively for various power plant blocks.
  • thermodynamic model of the block and characteristics of parameters determined on the basis of the current operational data. Therefore, it presents current, reliable information which allows to make decisions leading to more efficient operation of a given power block, so as to adapt its performance to the performance of other blocks, to which its work is compared on the presented comparative graphs.
  • the use of the thermodynamic model allows to comparatively verify different engineering computations. Presentation of both the heat rate and fluxes of destruction of exergy allows to ascertain that the computations are performed correctly and are not burdened with unexpected, unusual errors. This helps to detect analytical errors and sources of inaccuracies by analysing the operation in different points of the operational process of the block.
  • Fig. 1 shows an exemplary schematic diagram of a coal-fired block (CFB).
  • CFB coal-fired block
  • One plant may have a plurality of blocks of this type - the following example relates to an embodiment with blocks 1, 2 and 3.
  • the principles of operation of the CFB are well known to those skilled in the art.
  • the references to specific energy fluxes in the block are explained below:
  • a deterministic model describing its current process scheme can be developed in accordance with the first law of thermodynamics.
  • the characteristics are built from actual data for predetermined historical periods preceding the use of the characteristics in the model computations.
  • Monthly periods can be used, which correlate well with monthly cycles of fuel consumption and emission settlements, and therefore allow using balance data from other sources.
  • the characteristics of the parameters may relate to the following factors: temperature of live steam after the shut-off valve; pressure of live steam after the shut-off valve; temperature of secondary steam on the turbine; pressure of secondary steam on the turbine; flux of injection water to live steam; flux of injection water to secondary steam; flux of supplementary water; vacuum of the condenser; temperature of supply water to the boiler; air to fuel ratio; concentration of oxygen in flue gas; concentration of CO 2 in flue gas; amount of unburned coal in the ash.
  • Fig. 3 shows exemplary comparative characteristics for injection of water to steam, made for two blocks of the plant.
  • the characteristics convey a substantial amount of information for analysis of the current operation of blocks and allow building idealized reference functions, which allow calculating the deviations from the ideal states and the possible savings that can be achieved by reducing the heat rate.
  • One of the stages of comparing the operation of blocks in the system according to the invention should be a comparative analysis of operating parameters for different blocks. Such an analysis allows detecting possible different influences on the operation of the block or measurement of parameters. It is possible that for two similar blocks there is a significant discrepancy in the settings of operating parameters. Such dependencies have been presented for two blocks of the power plant in Fig. 4 - the temperature after the shut-off valve on the turbine in relation to the flux of supply water; and in Fig. 5 - the pressure after the shut-off valve in relation to the flux of supply water.
  • Fig. 6 shows a line of linear characteristics of the optimal setting of the temperature after the shut-off valve on the turbine in relation to the flux of supply water, for an exemplary set of measurement data for this parameter in block 2.
  • Fig. 8 shows an example of the method for calculating the heat rate 'hrt' wherein the parameter 't' is calculated from the optimal characteristics curve, created as shown in the previous paragraph.
  • the enthalpy is calculated at a point of the process where control of the parameter is desired, for example the temperature of steam after the shut-off valve from the optimal characteristics for the measured flux of steam 'm'.
  • the power output 'wn t ' is calculated for the calculated enthalpy, and, if necessary, the input flux of heat 'Qin t '.
  • step 103 the power output 'wn' and the input flux of heat 'Qin' are calculated for the current operational parameters.
  • step 104 the heat rate for parameter t ⁇ 'hrt' and the heat rate for the parameters currently being measured 'hr', as well as the deviation of the heat rate for parameter t ⁇ ' ⁇ hrt', are calculated. These computations can be made for each characteristic.
  • the deviations of heat rate can be presented as a function of ' ⁇ hrt' (time), or in form of histograms for limited time periods, such as hours, days etc.
  • the computations from the simulations optimal plots show that the adjustment of procedures for the operation of the power block to the model indications can, for the analyzed power blocks, result in reduction of fuel consumption by about 100 t/day and corresponding reduction of CO 2 by about 140 t/day.
  • Fig. 8 shows the result of the computation of deviations of heat rate for a case of use of the temperature characteristic for the live steam input to the turbine.
  • the computations were made comparatively for two blocks. As can be seen, a better control of steam temperature indicated by the characteristic may result in some improvement of heat rate.
  • the computations for the other parameters may be carried out in similar manner.
  • the computations for destruction of exergy in the condenser may be carried out as follows:
  • Ex0 is the exergy flux of the reference state, in this case the minimum temperature of the cooling water recorded in all measurements. However, this is irrelevant as this element is cancelled in the further equations.
  • ⁇ 25 h ⁇ 25 - T ⁇ 0 * s ⁇ 25 - Ex ⁇ 0 ;
  • ⁇ 26 h ⁇ 26 - T ⁇ 0 * s ⁇ 26 - Ex ⁇ 0 ;
  • ⁇ 27 h ⁇ 27 - T ⁇ 0 * s ⁇ 27 - Ex ⁇ 0 ;
  • the analysis of destruction of exergy in real time can provide information which may lead to improvement of the power block operation, reduction of the value of the irreversibility of the process, and thus improve the efficiency of the process.
  • the graph of Fig. 14 shows the thermodynamic efficiency ⁇ according to the second principle of thermodynamics. As expected, block 3 has a higher efficiency - a lower irreversibility of the process and lower destruction of exergy.
  • the change of the fluxes of destruction of exergy during simulated operation can be calculated for a chosen parameter, for example, for optimal working conditions.
  • the graph of Fig. 15 shows the savings that can be obtained by not using injection of water to steam. For block 2 as much as 8MW can be saved and for block 3 as much as 5MW. It results from the fact that for block 2 significantly higher fluxes were used than for block 2, which can be seen in the graph of Fig. 17 - data for the same measurement period.
  • Fig. 16 shows the efficiency of the turbine for block 2 after eliminating injection of water to steam.
  • the analysis of the causes of deviation of heat rate and the value of changes in destruction of exergy should be made on a current basis by the engineering crew of the plant.
  • Some causes can be attributed to the specific technical conditions, such as the technical condition of the equipment, others to exploitation factors (for example, the cleanness of the condenser), and some to the actions of the operators of the blocks (for example, excessive use of injection water to control the parameters of the steam).
  • Fig. 18 shows a schematic of a system according to the invention.
  • the system contains an operational data warehouse 201, for collecting and integrating data from system sources (automatic measurement systems comprising sensors placed on different elements of the block) and non-system sources (external files and data entered manually).
  • the data warehouse can be in the form of a centralized or a distributed database, serviced by an appropriate computer system.
  • the deterministic models are created in module 202, and the characteristics of operational parameters are created in module 203.
  • the system comprises a module for examining the operational parameters 211, configured to examine the selected parameters by calculating the deviation of heat rate in time on the basis of the deterministic model and the characteristic of a given parameter.
  • the system contains a module for calculating the destruction of exergy 212, configured to calculate the destruction of exergy in points of the process to confirm computation of the deviations of heat rate, as in the above-described method.
  • the analysis module 213 is configured to show in a graphical form the calculated deviations of heat rate to allow further analysis, for example, as shown in the graphs of Figs. 9-17 .
  • the individual modules are technical means in form of computers connected with each other via a network, running appropriate software providing the functionality of particular modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
EP12461509.7A 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique Active EP2644850B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL12461509T PL2644850T3 (pl) 2012-03-28 2012-03-28 System do analizy pracy bloków elektrowni i sposób analizy pracy bloków elektrowni
EP12461509.7A EP2644850B1 (fr) 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12461509.7A EP2644850B1 (fr) 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique

Publications (2)

Publication Number Publication Date
EP2644850A1 true EP2644850A1 (fr) 2013-10-02
EP2644850B1 EP2644850B1 (fr) 2016-05-04

Family

ID=46320858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12461509.7A Active EP2644850B1 (fr) 2012-03-28 2012-03-28 Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique

Country Status (2)

Country Link
EP (1) EP2644850B1 (fr)
PL (1) PL2644850T3 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113095591A (zh) * 2021-04-29 2021-07-09 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种用于火电机组运行参数自寻优的耗差分析方法
CN113394814A (zh) * 2021-06-02 2021-09-14 清华大学 计及热量品位的热电联产机组模型构建方法和装置
CN114060113A (zh) * 2021-11-19 2022-02-18 浙江大学 基于综合性能定量表征的垃圾电厂流程优化方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214451A (en) * 1978-11-13 1980-07-29 Systems Control, Inc. Energy cogeneration system
EP0389132A2 (fr) * 1989-03-20 1990-09-26 Hitachi, Ltd. Système de surveillance pour une installation industrielle, dispositif d'affichage pour un tel système de surveillance et procédé pour surveiller une installation industrielle
WO1998026160A1 (fr) * 1996-12-13 1998-06-18 Siemens Corporate Research, Inc. Systeme d'interface graphique homme-machine pour la surveillance des conditions de fonctionnement d'une turbine a vapeur
US20010034582A1 (en) * 2000-03-21 2001-10-25 The Tokyo Electric Power Co. Inc. Thermal efficiency diagnostic method and apparatus of a combined power generation plant
JP2007231808A (ja) * 2006-02-28 2007-09-13 Tokyo Electric Power Co Inc:The 火力発電プラントのプラント効率算出装置及び方法
US20090043406A1 (en) * 2005-01-28 2009-02-12 Abb Research Ltd. System and Method for Planning the Operation of, Monitoring Processes in, Simulating, and Optimizing a Combined Power Generation and Water Desalination Plant
DE102009004255A1 (de) * 2008-01-10 2009-07-16 General Electric Company Systeme und Verfahren zum Bestimmen des Betriebswirkungsgrades einer Dampfturbine
US20100064688A1 (en) * 2008-09-18 2010-03-18 Smith Douglas W P Hybrid brayton cycle with solid fuel firing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840332B2 (en) * 2007-02-28 2010-11-23 General Electric Company Systems and methods for steam turbine remote monitoring, diagnosis and benchmarking

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214451A (en) * 1978-11-13 1980-07-29 Systems Control, Inc. Energy cogeneration system
EP0389132A2 (fr) * 1989-03-20 1990-09-26 Hitachi, Ltd. Système de surveillance pour une installation industrielle, dispositif d'affichage pour un tel système de surveillance et procédé pour surveiller une installation industrielle
WO1998026160A1 (fr) * 1996-12-13 1998-06-18 Siemens Corporate Research, Inc. Systeme d'interface graphique homme-machine pour la surveillance des conditions de fonctionnement d'une turbine a vapeur
US20010034582A1 (en) * 2000-03-21 2001-10-25 The Tokyo Electric Power Co. Inc. Thermal efficiency diagnostic method and apparatus of a combined power generation plant
US20090043406A1 (en) * 2005-01-28 2009-02-12 Abb Research Ltd. System and Method for Planning the Operation of, Monitoring Processes in, Simulating, and Optimizing a Combined Power Generation and Water Desalination Plant
JP2007231808A (ja) * 2006-02-28 2007-09-13 Tokyo Electric Power Co Inc:The 火力発電プラントのプラント効率算出装置及び方法
DE102009004255A1 (de) * 2008-01-10 2009-07-16 General Electric Company Systeme und Verfahren zum Bestimmen des Betriebswirkungsgrades einer Dampfturbine
US20100064688A1 (en) * 2008-09-18 2010-03-18 Smith Douglas W P Hybrid brayton cycle with solid fuel firing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The International Association for the Properties of Water and Steam", 2007, LUCERNE, article "Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam"

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113095591A (zh) * 2021-04-29 2021-07-09 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种用于火电机组运行参数自寻优的耗差分析方法
CN113394814A (zh) * 2021-06-02 2021-09-14 清华大学 计及热量品位的热电联产机组模型构建方法和装置
CN113394814B (zh) * 2021-06-02 2022-06-21 清华大学 计及热量品位的热电联产机组模型构建方法和装置
CN114060113A (zh) * 2021-11-19 2022-02-18 浙江大学 基于综合性能定量表征的垃圾电厂流程优化方法及装置
CN114060113B (zh) * 2021-11-19 2022-07-22 浙江大学 基于综合性能定量表征的垃圾电厂流程优化方法及装置

Also Published As

Publication number Publication date
PL2644850T3 (pl) 2017-03-31
EP2644850B1 (fr) 2016-05-04

Similar Documents

Publication Publication Date Title
US8200369B2 (en) Use of statistical analysis in power plant performance monitoring
US10094297B2 (en) Power generation system and power generation method
CN111159844B (zh) 一种电站燃气轮机排气温度的异常检测方法
US8447564B2 (en) Systems and method for power plant performance reconciliation
Roumeliotis et al. Industrial gas turbine health and performance assessment with field data
CN104090560B (zh) 一种监测供电综合环境评价指标的设备
EP2884059A1 (fr) Commande HRSG à étages multiples dans une unité à cycle combiné
CN105527113A (zh) 一种核电站热能效率监测与诊断系统和方法
US20160365735A1 (en) Systems and Methods for Power Plant Data Reconciliation
EP2644850B1 (fr) Système pour analyser le fonctionnement d'unités de centrale électrique et procédé pour analyser le fonctionnement d'unités de centrale électrique
CN105317476A (zh) 一种基于特征通流面积的汽轮机流量曲线辨识及优化方法
EP3366893B1 (fr) Système et procédé permettant de prédire et d'améliorer le temps de démarrage d'une centrale électrique
Zaleta-Aguilar et al. A Reconciliation Method Based on a Module Simulator-An Approach to the Diagnosis of Energy System Malfunctions
CN103728055B (zh) 一种火电机组锅炉炉膛出口烟气能量的实时估计方法
Jansen et al. Daily Marginal CO 2 Emissions Reductions from Wind and Solar Generation
JP6554162B2 (ja) 発電プラント性能評価方法及び発電プラント性能評価プログラム
JP5618322B2 (ja) 熱効率解析方法及び熱効率解析プログラム
CN100366876C (zh) 燃气-蒸汽联合循环发电站运行效率在线解析方法和系统
EP4352339A1 (fr) Procédé et système de surveillance et de détermination en ligne de valeur calorifique de combustible solide en cours de combustion dans une chaudière
EP2806114B1 (fr) Commande d'allumage de conduit à cycle combiné
Zaccaria et al. Adaptive control of micro gas turbine for engine degradation compensation
Sultanov et al. Electrical generator unit technical and economic indexes parameter study
Hartner et al. Model-based data reconciliation to improve accuracy and reliability of performance evaluation of thermal power plants
Boksteen et al. Performance modeling of a modern gas turbine for dispatch optimization
RU2783863C1 (ru) Способ комплексной оптимизации параметров энергоблока

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140314

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 797107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012018036

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 797107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012018036

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230823

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230825

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240311

Year of fee payment: 13