EP2643855A1 - Procédé de formation d'une couche fibreuse - Google Patents

Procédé de formation d'une couche fibreuse

Info

Publication number
EP2643855A1
EP2643855A1 EP11794862.0A EP11794862A EP2643855A1 EP 2643855 A1 EP2643855 A1 EP 2643855A1 EP 11794862 A EP11794862 A EP 11794862A EP 2643855 A1 EP2643855 A1 EP 2643855A1
Authority
EP
European Patent Office
Prior art keywords
mixture
silicon
silicon substrate
substrate
fibrous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11794862.0A
Other languages
German (de)
English (en)
Inventor
Jean-Paul Garandet
Armand Bettinelli
Béatrice Drevet
Etienne Pihan
Philippe Thony
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2643855A1 publication Critical patent/EP2643855A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for forming a surface of a surface of a silicon substrate, a fibrous layer having an average network pitch of less than or equal to 2 ⁇ m. This method is particularly advantageous in the context of the development of photovoltaic cells, to form in their rear face, a layer of fibrous structure capable of providing diffraction of infrared photons.
  • Photovoltaic cells are essentially made from mono- or poly-crystalline silicon.
  • these standard silicon-based industrial cells have a rear-facing electric field, also called BSF ("Back Surface Field") obtained by an aluminum-silicon (Al-Si) eutectic alloy formed by annealing of a aluminum layer deposited by screen printing on a silicon substrate. This annealing of the contacts on the rear face is carried out according to a standard technology in a passage oven.
  • BSF Back Surface Field
  • such annealing requires the assembly to a temperature of about 800 ° C for a few seconds, to form a liquid alloy between silicon and aluminum.
  • the first stages of solidification of this liquid alloy lead to the deposition of a single-phase layer of Al-saturated Si of a few microns, which forms the rear field (BSF) of the photovoltaic cells.
  • the eutectic temperature of the Al-Si system (577 ° C) once reached, the solidification becomes biphasic and leads to a structure formed of silicon lamellae in an aluminum matrix.
  • such a structure which generally has interlamellar spacings of the order of 10 to 20 microns unfortunately has a major topological disorder.
  • the structures present on the rear face of a photovoltaic cell produced from this standard method do not allow diffraction of the infrared photons not absorbed by the silicon of the cell, ie photons of wavelength less than 1 , 1 micron corresponding to the forbidden band of silicon, and which would therefore be likely to generate charge carriers.
  • the techniques of microelectronics can achieve by etching of organized reliefs, networks having a good regularity and an average pitch suitable for the diffraction of infrared photons.
  • the spacings of the resulting fibrous eutectic structure are greater than 2 microns, and are therefore not suitable for diffraction of infrared photons.
  • Fast quenching techniques can also provide structures with a reduced network pitch.
  • quenching techniques induce high levels of stress.
  • the structures obtained after quenching prove, moreover, fragile and not very manipulable, and therefore do not allow to continue the subsequent steps essential for the development of photovoltaic cells. Therefore, there remains the need to be able to achieve a significantly reduced average network pitch structure and in particular, advantageously less than or equal to 2 microns, capable of diffracting infrared photons not absorbed by silicon, by an otherwise compatible with the standard technology for developing photovoltaic cells, in particular compatible with annealing of the contacts in a passage oven.
  • the present invention aims precisely to provide a method that satisfies the aforementioned requirements.
  • the present invention relates, according to a first of its aspects, to a method of forming, on the surface of a face of a silicon substrate, a fibrous layer (22) having a mean network pitch of less than or equal to at 2 ⁇ m, comprising at least the steps of:
  • step (2) exposing at least the coated side of said substrate of step (1) to a heat treatment conducive to (a) forming a molten alloy comprising silicon, aluminum and said modifying elements, and (b) ) the subsequent solidification of said molten alloy under conditions conducive to the formation of at least one layer (22) having a two-phase eutectic structure made of silicon-based fibers in an aluminum-based matrix, with an average network pitch less than or equal to 2 ⁇ m, characterized in that said mixture of step (1) further comprises from 20 to 60% by weight, relative to its total weight, of one or more addition elements chosen from gallium, indium, tin, zinc and their mixtures.
  • a fibrous layer having an average network pitch of less than or equal to 2 ⁇ m by implementing a liquid alloy comprising, in addition to silicon, aluminum and one or more modifying elements, a significant amount of one or more metal elements selected from gallium (Ga), iridium (In), tin (Sn) and zinc (Zn).
  • a liquid alloy comprising, in addition to silicon, aluminum and one or more modifying elements, a significant amount of one or more metal elements selected from gallium (Ga), iridium (In), tin (Sn) and zinc (Zn).
  • a layer of fibrous structure having a mean network pitch of less than or equal to 2 ⁇ m, particularly suitable for the diffraction of infrared photons, especially of wavelength less than 1.1 ⁇ m. corresponding to the forbidden band of silicon.
  • a fibrous structure at the rear of a cell thus allows the "collection" of infrared photons by diffraction, and the improvement of the efficiency of the photovoltaic cell.
  • step (2) of the process according to the invention can be carried out with the industrial techniques usually employed for the production of photovoltaic cells, more precisely by the standard technology for cooking in a passage oven.
  • the process of the invention does not require significant modifications of the usual process for producing photovoltaic cells. More particularly, as developed subsequently, it is possible according to the method of the invention, to form in a single step, the rear surface field (BSF) and the diffractive fibrous layer.
  • BSF rear surface field
  • Figure 1 shows a schematic cross section of a modified silicon substrate (10) obtained at the end of step (2) of the method of the invention.
  • the present invention relates to a device, in particular a photovoltaic cell, comprising a modified silicon substrate obtained according to the method described above.
  • Groups IA and IIA mentioned above refer to the numbering retained (Roman numerals from I to VIII according to Newlands, and letters A and B according to Moseley) well known to those skilled in the art, to designate the elements in the periodic table of elements. , also called "Mendeleev's Table".
  • step (1) of the method of the invention consists in having a silicon substrate, one of whose faces is covered at least in part with the mixture considered according to the invention.
  • substrate refers to a basic structure on the face of which is applied the mixture considered according to the invemion.
  • the silicon base substrate used in step (1) of the process of the invention can be of various kinds. In particular, as developed in the following, it can be chosen with regard to the method of elaboration of the photovoltaic cell.
  • the silicon substrate used in the process of the invention must be crystalline and have a grain size of at least 1 mm, preferably 1 cm or more.
  • the silicon substrate used in the process according to the invention may be doped or undoped.
  • the silicon used in the process according to the invention may be doped, in particular by a p-type dopant such as, for example, boron, aluminum, indium and gallium or by an n-type dopant such as by phosphorus, antimony and arsenic.
  • the silicon substrate may, where appropriate, be juxtaposed on the opposite side to that coated with the mixture according to the invention, with other layers of materials.
  • the substrate may, if appropriate, undergo prior to its implementation in the method of the invention, one or more transformations dedicated, for example, to confer particular properties.
  • the silicon substrate used in step (1) of the method of the invention may be a p-type silicon plate, in particular comprising at least one pn junction on the face opposite to that coated with the mixture according to the invention, and having optionally been previously subjected to one or more anti-reflection treatment (s).
  • Such a silicon wafer can be made according to conventional techniques falling within the skills of a person skilled in the art.
  • Its thickness may, for example, vary from 100 to 300 ⁇ m, in particular from 150 to
  • the substrate modified at the end of step (2) of the method according to the invention can then form, integrally, as it is, the rear face of the photovoltaic cell already (partly) made .
  • the silicon substrate that is suitable for the treatment according to the invention may be a so-called "low cost” substrate, of the metallurgical silicon type, purified by segregation prior to its implementation in the process of the invention. .
  • Silicon substrate metallurgical silicon type means silicon substrates containing high concentrations of impurities, especially metal, of the order of 1 to 100 ppm by weight.
  • This silicon which may be monocrystalline silicon or multicrystalline silicon, that is to say silicon whose grains have a size of 1 mm 2 to several cm 3 and whose growth is columnar, generally contains impurities. such as Fe, Cr, Cu ... at much higher concentrations than electron-quality crystalline silicon.
  • impurities such as Fe, Cr, Cu ... at much higher concentrations than electron-quality crystalline silicon.
  • Such a silicon substrate may have a thickness ranging from 200 to 700 ⁇ m, in particular ranging from 300 to 500 ⁇ m,
  • the modified substrate at the end of step (2) of the process of the invention, can be used, as described later, by one or more subsequent steps, as an epitaxial substrate. adapted to the development of a cell by recrystallization of a thin layer of silicon.
  • the mixture considered in the process of the invention comprises at least:
  • one or more modifying elements chosen from the elements of columns IA and ⁇ of the periodic table, in particular strontium, sodium and their mixture;
  • the aluminum is present in the mixture of step (1) of the process of the invention in a content ranging from 40 to 80% by weight, preferably from 55 to 65% by weight. , based on the total weight of said mixture.
  • the modifying element (s) is (are) present in the mixture of step (1) in a content ranging from 0.01 to 0.1%, preferably from 0.02 to 0.06% by weight, relative to the total weight of said mixture.
  • the mixture considered according to the invention comprises from 20 to 60% by weight of said element (s) of addition.
  • the element (s) of addition is (are) present in said mixture of step (1) in a content ranging from 35 to 45% by weight, relative to the weight total of said mixture, preferably about 40%.
  • the additive element is zinc or tin.
  • the mixture of the different metallic elements may be in the form of a powder.
  • the powder mixture has a particle size D50 expressed in volume ranging from 2 to 10 microns.
  • the particle size can be measured for example by laser particle size according to a technique known to those skilled in the art.
  • the mixture in the form of a powder, considered according to the invention is formed by mixing the different metal elements, each in the form of a powder.
  • a master alloy comprising the various elements used in the composition of the mixture of the invention is produced and then consecutively reduced to powder.
  • the mixture of the invention can be made by mixing a powder obtained by grinding an aluminum parent alloy and 5% by weight of modifying element (s), with a powder obtained by mixing an aluminum powder and the addition element (s) in the form of powder (s).
  • the mixture considered according to the invention comprises, in addition to the mixture of the different powders, at least one binder.
  • a mixture is a screen printing paste, which can be easily spread on the silicon base substrate.
  • the binder makes it possible in particular to ensure the dispersion and cohesion of the powder mixture. It is generally a resin dissolved in a solvent, chosen from cellulose resins and acrylic resins. As examples, ethylcellulose dissolved in a solvent such as teipinole, n-butyl methacrylate dissolved in a glycol ether.
  • the silicon substrate coated on one of its faces of the mixture must be subjected to a drying step to evaporate the solvent and then to a debinding step, for purposes of to eliminate, prior to step (2), the binder (s).
  • the mixture may further comprise glass frits.
  • glass frits generally consist of a mixture of SiO 2 , B 2 O 3 , ZnO, PbO and Bi 2 O 3 . They advantageously make it possible to pierce the insulating layers, to facilitate the densification of the metal particles, to create an electrical contact and to create a snap on the substrate.
  • the coated surface of said silicon substrate of step (1) of the process according to the invention is exposed to a heat treatment that is conducive to:
  • the formation of the molten alloy (a) can be obtained by exposing the coated face of the substrate of step (1) to a temperature below silicon melting temperature, in particular ranging between 600 ° C and 850 ° C, preferably between 700 ° C and 750 ° C, for a period of the order of one minute.
  • the metal elements of the mixture considered according to the invention and the silicon melt to form a molten alloy by establishing the thermodynamic equilibrium.
  • the melted zone is exposed to conditions permitting the solidification of the molten alloy. These conditions require in particular a cooling of the melted zone below the melting temperature.
  • This cooling can be progressive, with several cooling rates during the same cycle, from 5 ° C / s to 50 ° C / s.
  • the fibrous layer (22) considered according to the invention having a two-phase eutectic structure consisting of silicon-based fibers in an aluminum-based matrix, and
  • step (2) of the process of the invention leads to the formation of an outer layer (23) of eutectic structure having at least three phases, said outer layer (23) comprising the majority of said element (s). ) addition.
  • step (2) of the process of the invention leads to the formation of an intermediate layer (21) between said fibrous layer (22) and said silicon substrate (20), of single-phase structure and comprising predominantly silicon.
  • FIG. 1 represents the different layers of the silicon substrate (10) obtained at the end of step (2) of the method of the invention.
  • steps (a) and (b) are carried out continuously.
  • the heat treatment may be carried out in a heating chamber into which the silicon substrate according to the invention is introduced.
  • This chamber is particularly suitable for ensuring the exposure of the face of the substrate coated with the mixture described above, to a heating under the aforementioned conditions.
  • the silicon substrate and said enclosure may be moved relative to one another so that any melted zone in step (a) is moved consecutively towards the enclosure zone, suitable for its solidification (b) by cooling.
  • the silicon substrate that is moved through the enclosure.
  • this heat treatment can be carried out according to the standard method of annealing the contacts, generally via tube furnaces, static or dynamic.
  • This heat treatment can be carried out under air or under a non-oxidizing atmosphere such as a stream of argon, helium, etc.
  • the cooling step it can be done by natural cooling after turning off the heating source or by forced cooling, for example by passing on the substrate, a flow of air.
  • step (2) is performed by introducing the silicon substrate of step (1) into a pass-through furnace, under standard operating conditions, conventionally used for the production of photovoltaic cells, and well known to those skilled in the art.
  • the fibrous layer (22) formed according to the method of the invention has a mean network pitch of less than or equal to 2 ⁇ m,
  • said fibrous layer (22) has a mean pitch ranging from 0.5 to 1.5 ⁇ m.
  • said fibrous layer (22) may have a thickness of between 1 and 20 ⁇ m, preferably between 5 and 10 ⁇ m.
  • silicon-based fibers the fact that said formed fibers mainly comprise silicon, in other words consist of more than 99.99% by weight of silicon.
  • the matrix "based on aluminum” mainly comprises aluminum, that is to say it consists of 98.5% by weight of aluminum. In fact, the maximum solubility of silicon in aluminum is about 1.5% by weight at the eutectic temperature.
  • the single-phase layer (21) contiguous with the base silicon substrate (20) can, in the case where it is p-type , play The role, within a photovoltaic cell, rear surface field, also called BSF (Back Surface Field), that is to say the role of electric field repelling minority carriers in the back of the cell .
  • BSF Back Surface Field
  • the method according to the invention can advantageously be implemented to form in a single step, both the rear surface field of a photovoltaic cell and the desired diffractive fibrous layer.
  • the upper layer (23) contiguous to the fibrous layer (22) of the invention is of three-phase structure for the case where a single addition element is used in the mixture in question according to the invention.
  • This layer (23) is of no interest for the diffraction of infrared photons, but may have the advantage of conducting electricity which is advantageous for contacting and assembly in modules.
  • the method of the invention is carried out, as mentioned above, from a p-type silicon plate, on which a pn junction has already been made, and possibly one or more treatments) anti-reflections.
  • the modified substrate obtained at the end of step (2) of the process according to the invention can then integrally form, as such, the rear face of the photovoltaic cell.
  • this photovoltaic cell will have on the rear face, the single-phase layer (21) constituting the BSF, and the fibrous layer (22) of the invention, allowing the diffraction of infrared photons not absorbed by silicon.
  • the present invention relates to a device, in particular a photovoltaic cell, formed wholly or partly of a modified silicon substrate, as obtained at the end of step (2). ) of the method described above.
  • said modified silicon substrate is obtained according to the method of the invention, from a p-type silicon wafer, comprising at least one pn junction on its other face and possibly having been previously subjected to anti-oxidation treatment. -reflets.
  • the method of the invention is implemented to form an epitaxial substrate adapted to the recrystallization of one or more thin layers of silicon.
  • the silicon substrate of step (1) may be, as specified above, a metallurgical silicon substrate, purified by segregation.
  • the method of the invention may furthermore comprise a step (3) comprising the elimination of the eutectic layer (s) (23) in at least three phases formed at the end of the process. step (2) and contiguous to the fibrous layer considered according to the invention, and the removal of the aluminum matrix from the fibrous layer.
  • This step (3) can be carried out according to techniques known to those skilled in the art, in particular by a chemical etching of the substrate obtained at the end of step (2) of the process of the invention, in particular at the using orthophosphoric acid.
  • Such pickling step (3) eliminates all the metal elements other than silicon.
  • the substrate is in the form of a fakir carpet consisting of silicon needles.
  • These needles may in particular have a height ranging from 2 .mu.m to 10 .mu.m, in particular around 5 .mu.m.
  • Such a substrate is suitable for deposition of amorphous or nanocrystalline silicon layers by a type of PVD (iii) technology without risking clogging of the spaces between the needles.
  • the fiber layer will also be, according to this embodiment, the rear face of the final cell.
  • the present invention relates to a device, formed in whole or part of a modified silicon substrate, as obtained at the end of step (3) of the described method.
  • the present invention relates to a device, in particular a photovoltaic cell, characterized in that an auxiliary silicon layer is superimposed on said modified silicon substrate, as obtained at the end of step (3) of the process of the invention.
  • An alloy containing 60% by weight of Al and 40% by weight of Zn is produced by mixing powders of micron size (D 50 of between 2 and 20 ⁇ m).
  • the Sr is added in the form of powders obtained by grinding an Al-5% by weight Sr alloy so that the Sr content in the Al-Zn-Sr alloy is 500 ppm by weight.
  • These powders are agglomerated with a binder of cellulosic type (ethylcellulose dissolved in terpineol), and possibly glass frits, to form a paste suitable for screen printing.
  • This paste is deposited on a p-type Si plate on which the p-n junction and the anti-reflection treatments have already been made.
  • the assembly is introduced into a passage furnace to reach a maximum temperature of 70 ° C., which leads to dissolve a portion of the Si of the substrate to ensure thermodynamic equilibrium.
  • the first structure deposited during the cooling is single-phase and grows epitaxially on the Si substrate, it acts as a back repellent field for the application.
  • a ternary eutectic structure is then formed with a medium composition rich in Zn.
  • An alloy containing 60% by weight of Al and 40% by weight of Sn is produced by mixing powders of micron size (Dso of between 2 and 10 ⁇ m). Sr is added in the form of powders obtained by grinding a parent alloy Al-5% by weight of Sr so that the Sr content in the Al-Sn-Sr alloy is 500 ppm by weight. These powders are agglomerated with a binder of acrylic type (n-butyl methacrylate dissolved in a glycol ether), and possibly glass frits, to form a paste suitable for screen printing.
  • a binder of acrylic type n-butyl methacrylate dissolved in a glycol ether
  • This paste is deposited on a low cost metallurgical Si substrate purified by segregation.
  • the assembly is introduced into a passage oven to reach a maximum temperature of 700 ° C, which leads to dissolve a portion of the Si substrate to ensure thermodynamic equilibrium.
  • the first structure deposited during the cooling is single-phase and grows by epitaxy on the Si of the substrate.
  • the resolidified assembly is subjected to chemical etching (for example orthophosphoric acid) to keep only the Si.
  • the substrate is in the form of a carpet of fakir consisting of Si needles from a height close to 5 microns with a spacing of the order of 1.2 microns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Abstract

La présente Invention se rapporte à un procédé de formation, en surface d'une des faces d'un substrat de silicium, d'une couche fibreuse présentant un pas moyen de réseau inférieur ou égal à 2 μm, sans nécessité d'utiliser une trempe. Elle vise en outre les dispositifs, notamment des cellules photovoltaïques, comportant un substrat de silicium obtenu à partir d'un tel procédé.

Description

Procédé de formation d'une couche fibreuse
La présente invention porte sur un procédé de formation en surface d'une des faces d'un substrat de silicium, d'une couche fibreuse présentant un pas moyen de réseau inférieur ou égal à 2 μm. Ce procédé est particulièrement avantageux dans le cadre de l 'élaboration de cellules photovoltaïques, pour former en leur face arrière, une couche de structure fibreuse, apte à assurer la diffraction des photons infrarouges.
Les cellules photovoltaïques sont pour l'essentiel fabriquées à partir de silicium mono- ou poly-cristallin. D'une manière générale, ces cellules industrielles standards à base de silicium présentent un champ électrique face arrière, encore appelé BSF (« Back Surface Field ») obtenu par un alliage eutectique Aluminium-Silicium (Al-Si) formé par recuit d'une couche en aluminium déposée par sérigraphie sur un substrat de silicium. Ce recuit des contacts en face arrière est réalisé selon une technologie standard dans un four à passage.
Plus précisément, un tel recuit requiert de porter l'ensemble à une température de l'ordre de 800 °C pendant quelques secondes, pour former un alliage liquide entre le silicium et l'aluminium. Au refroidissement, les premiers stades de solidification de cet alliage liquide conduisent au dépôt d'une couche monophasée de Si saturée en Al de quelques microns, qui forme le champ arrière (BSF) des cellules photovoltaïques. La température eutectique du système Al-Si (577 °C) une fois atteinte, la solidification devient biphasée et conduit à une structure formée de lamelles de silicium dans une matrice d'aluminium. Toutefois, une telle structure qui présente généralement des espacements inter lamellaires de l'ordre de 10 à 20 μm, possède malheureusement un désordre topologique important.
En conséquence, les structures présentes en face arrière d'une cellule photovoltaïque élaborée à partir de ce procédé standard, ne permettent pas une diffraction des photons infrarouges non absorbés par le silicium de la cellule, i.e. des photons de longueur d'onde inférieure à 1,1 μm correspondant à la bande interdite de silicium, et qui seraient donc susceptibles de générer des porteurs de charges.
Afin d'améliorer le rendement des cellules photovoltaïques, il serait donc souhaitable de pouvoir réaliser une structure en face arrière des cellules, permettant la diffraction des photons infrarouge non absorbés par le silicium, et ainsi améliorer leur "collecte" au sein de la cellule. Le problème d'absorption des photons se pose avec une acuité particulière dans le cas des méthodes basées sur la recristallisation de couches minces déposées par des technologies sous vide en phase vapeur (par exemple, par les techniques CVD (ii) et PVD (iii)). S 'agissant de couches souvent très fines (généralement inférieures à 20 μm, souvent de l'ordre du μm), la mise en œuvre de moyens permettant d'allonger le chemin optique des photons en face avant et/ou arrière des cellules est nécessaire à l'obtention de rendements de conversion énergétique intéressants pour les applications industrielles.
Pour ce faire, les techniques de la microélectronique permettent de réaliser par gravure de reliefs organisés, des réseaux présentant une bonne régularité et un pas moyen adapté à la diffraction des photons infrarouges.
Toutefois, ces techniques présentent l'inconvénient d'être particulièrement coûteuses. En particulier, elles ne sont pas compatibles avec la technologie standard de recuit en four à passage, usuellement utilisée dans l'élaboration des cellules photovoltaïques, et nécessitent dès lors d'opérer des adaptations majeures du procédé de fabrication des cellules photovoltaïques.
Egalement, il est bien connu, notamment dans le domaine de la métallurgie, de pouvoir transformer la forme lamellaire de l'eutectique Al-Si en une forme fibreuse, par ajout, à l'alliage fondu, d'un modificateur comme le sodium (Na) ou le strontium (Sr). Différentes théories ont été développées pour tenter d'expliquer l'obtention d'une telle structure fibreuse (iv).
Toutefois, comme précisé ci-dessus, dans les conditions standards de recuit en four à passage, plus particulièrement, pour une solidification de l'alliage fondu à des vitesses de l'ordre de S à 25 um/s, correspondant à des vitesses de refroidissement de l'ordre de 10 à 50°C/s caractéristiques des fours à passage, les espacements de la structure eutectique fibreuse obtenue sont supérieures à 2 μm, et ne sont donc pas adaptés pour une diffraction des photons infrarouges.
Les techniques de trempe rapide peuvent par ailleurs permettre d'obtenir des structures avec un pas de réseau réduit. Malheureusement, outre leur difficulté de mise en œuvre sur des échantillons massifs, les techniques de trempe induisent des niveaux de contrainte élevés. Les structures obtenues à l'issue de trempes, s'avèrent, en outre, fragiles et peu manipulables, et ne permettent pas, par conséquent, de poursuivre les étapes ultérieures indispensables pour l'élaboration des cellules photovoltaïques. Par conséquent, il demeure le besoin de pouvoir réaliser une structure de pas moyen de réseau significativement réduit et en particulier, avantageusement inférieur ou égal à 2 μm, apte à assurer la diffraction des photons infrarouge non absorbés par le silicium, par un procédé par ailleurs compatible avec la technologie standard d'élaboration des cellules photovoltaïques, en particulier compatible avec un recuit des contacts en four à passage.
La présente invention vise précisément à proposer un procédé donnant satisfaction aux exigences précitées.
En particulier, la présente invention concerne, selon un premier de ses aspects, un procédé de formation, en surface d'une face d'un substrat de silicium, d'une couche fibreuse (22) présentant un pas moyen de réseau inférieur ou égal à 2 μm, comprenant au moins les étapes consistant à :
(1) disposer d'un substrat de silicium dont l'une des faces est recouverte au moins en partie d'un mélange comprenant au moins de l'aluminium et au moins un élément modificateur choisi parmi les éléments des colonnes IA et HA du tableau périodique, et
(2) exposer au moins la face enduite dudit substrat de l'étape (1) à un traitement thermique propice à (a) la formation d'un alliage fondu comprenant le silicium, l'aluminium et lcsdits éléments modificateurs, et à (b) la solidification consécutive dudit alliage fondu dans des conditions propices à la formation d'au moins une couche (22) présentant une structure eutectique biphasée constituée de fibres à base de silicium dans une matrice à base d'aluminium, avec un pas moyen de réseau inférieur ou égal à 2 μm, caractérisé en ce que ledit mélange de l'étape (1) comprend en outre de 20 à 60 % en poids, par rapport à son poids total, d'un ou plusieurs éléments d'addition choisis parmi le gallium, l'indium, l'étain, le zinc et leurs mélanges.
Contre toute attente, les inventeurs ont découvert qu'il est possible ainsi d'accéder à une couche fibreuse présentant un pas moyen de réseau inférieur ou égal à 2 μm, en mettant en œuvre un alliage liquide comprenant, outre le silicium, l'aluminium et un ou plusieurs éléments modificateurs, une quantité importante d'un ou plusieurs éléments métalliques choisi(s) parmi le gallium (Ga), l'iridium (In), l'étain (Sn) et le zinc (Zn). Un tel procédé est d'autant plus surprenant que les procédés standards de réalisation des cellules photovoltaïques cherchent habituellement à éviter toute contamination préjudiciable du silicium par les éléments métalliques, connus pour jouer le rôle de centres recombinants pour les porteurs de charge minoritaires (v).
Ainsi, le procédé selon l'invention est avantageux à plusieurs titres.
Tout d'abord, il permet d'accéder à une couche de structure fibreuse présentant un pas moyen de réseau inférieur ou égal à 2 μm, particulièrement adapté à la diffraction des photons infrarouges, notamment de longueur d'onde inférieure à 1,1 μm correspondant à la bande interdite du silicium. Une telle structure fibreuse à l'arrière d'une cellule permet ainsi la "collecte" des photons infrarouges par diffraction, et l'amélioration du rendement de la cellule photovoltaïque.
En outre, l'étape (2) du procédé selon l'invention peut être réalisée avec les techniques industrielles usuellement employées pour l'élaboration des cellules photovoltaïques, plus précisément par la technologie standard de cuisson en four à passage. Ainsi, de manière avantageuse, le procédé de l'invention ne nécessite pas de modifications importantes du procédé usuel d'élaboration des cellules photovoltaïques. Plus particulièrement, comme développé par la suite, il est possible selon le procédé de l'invention, de former en une seule étape, le champ de surface arrière (BSF) et la couche fibreuse diffractante.
D'autres caractéristiques, avantages et modes d'application du procédé selon l'invention assortiront mieux à la lecture de la description qui va suivre, donnée à titre illustratif et non limitatif en référence à la figure 1 annexée.
Plus précisément, la figure 1 représente une coupe transversale schématique d'un substrat de silicium (10) modifié obtenu à l'issue de l'étape (2) du procédé de l'invention.
11 convient de noter que, pour des raisons de clarté, les différentes couches visibles sur la figure 1 sont représentées en échelle libre, les dimensions réelles des différentes parties n'étant pas respectées.
Selon un autre de ses aspects, la présente invention concerne un dispositif, notamment une cellule photovoltaïque, comportant un substrat de silicium modifié obtenu selon le procédé décrit précédemment. Les groupes IA et IIA précités font référence aux numérotations retenues (chiffres romains de I à VIII selon Newlands, et lettres A et B selon Moseley) bien connues de l'homme de l'art, pour désigner les éléments dans la classification périodique des éléments, encore appelée « table de Mendeleïev ».
Dans la suite du texte, les expressions « compris entre ... et , , . », « allant de ... à ... » et « variant de ... à ... » sont équivalentes et entendent signifier que les bornes sont incluses, sauf mention contraire.
ETAPE (1)
Comme précisé précédemment, l'étape (1) du procédé de l'invention consiste à disposer d'un substrat de silicium dont Tune des faces est recouverte au moins en partie du mélange considéré selon l'invention.
Substrat de silicium
Dans le cadre de la présente invention, le terme « substrat » fait référence à une structure de base sur la face de laquelle est appliqué le mélange considéré selon l'invemion.
Le substrat de base en silicium mis en œuvre dans l'étape (1) du procédé de l'invention peut être de diverses natures. En particulier, comme développé dans la suite, il peut être choisi au regard du mode d'élaboration de la cellule photovoltaïque.
Le substrat de silicium utilisé dans le procédé de l'invention doit être cristallin et présenter une strocture en grains de taille au moins égale à 1mm, préférentiellement à 1 cm ou plus.
Le substrat de silicium utilisé dans le procédé selon l'invention peut être dopé ou non dopé. Ainsi, le silicium utilisé dans le procédé selon l'invention peut être dopé, notamment par un dopant de type p tel que par exemple le bore, l'aluminium, l'indium et le gallium ou par un dopant de type n tel que par exemple le phosphore, l'antimoine et l'arsenic.
Le substrat de silicium peut, le cas échéant, être juxtaposé sur la face opposée à celle enduite du mélange selon l'invention, à d'autres couches de matériaux. Le substrat peut, le cas échéant, subir préalablement à sa mise en œuvre dans le procédé de l'invention, une ou plusieurs transformations dédiées, par exemple, à lui conférer des propriétés particulières. Selon une première variante de réalisation, le substrat de silicium mis en œuvre dans l'étape (1) du procédé de l'invention peut être une plaque de silicium de type p, comportant en particulier au moins une jonction p-n sur la face opposée à celle enduite du mélange selon l'invention, et ayant éventuellement été préalablement soumis à un ou plusieurs traitement(s) anti-reflets.
Une telle plaque de silicium peut être réalisée selon des techniques classiques relevant des compétences dé l'homme du métier.
Son épaisseur peut par exemple varier de 100 à 300 μm, notamment de 150 à
200 μm.
Dans le cadre de cette première variante, le substrat modifié à l'issue de l'étape (2) du procédé selon l'invention peut alors former, intégralement, tel quel, la face arrière de la cellule photovoltaïque déjà (en partie) réalisée.
Selon une seconde variante de réalisation, le substrat de silicium convenant au traitement selon l'invention, peut être un substrat dit "bas coût", de type silicium métallurgique, purifié par ségrégation préalablement à sa mise en œuvre dans le procédé de l'invention.
Par substrat en silicium de type silicium métallurgique, on entend désigner des substrats en silicium contenant des concentrations élevées en impuretés, notamment métalliques, de l'ordre de 1 à 100 ppm en poids. Ce silicium, qui peut être du silicium monocristallin ou du silicium multicristallin, c'est-à-dire du silicium dont les grains ont une taille de 1 mm2 à plusieurs cm3 et dont la croissance est colonnaire, contient de &çon générale des impuretés métalliques telles que Fe, Cr, Cu..., à des concentrations bien plus élevées que le silicium cristallin de qualité électronique. Au regard de la présence des impuretés, il est peu onéreux et particulièrement avantageux pour être transformé en substrat possédant une forte valeur ajoutée.
Un tel substrat de silicium peut présenter une épaisseur allant de 200 à 700 μm, en particulier allant de 300 à 500 μm, Selon un mode de réalisation particulier, à l'issue de l'étape (2) du procédé de l'invention, le substrat modifié peut être utilisé, comme décrit par la suite, par une ou plusieurs étapes ultérieures, comme substrat d'épitaxie adapté à l'élaboration d'une cellule par recristallisation d'une couche mince de silicium.
Le choix d'un substrat de silicium convenable tait partie des compétences de l'homme du métier, qui sélectionnera la nature du substrat de silicium de base à mettre en œuvre dans le procédé de l'invention, selon la technique d'élaboration de la cellule photovoltaïque correspondante.
Mélange
Comme précisé précédemment, le mélange considéré dans le procédé de l'invention comprend au moins :
- de l'aluminium ;
- un ou plusieurs éléments) modificateurs) choisi(s) parmi les éléments des colonnes IA et ΠΑ du tableau périodique, en particulier le strontium, le sodium et leur mélange ; et
- un ou plusieurs éléments) d'addition choisi(s) parmi le gallium, l'indium, l'étain, le zinc et leurs mélanges.
Selon un autre mode de réalisation particulier, l'aluminium est présent dans le mélange de l'étape (1) du procédé de l'invention en une teneur allant de 40 à 80 % en poids, de préférence de 55 à 65 % en poids, par rapport au poids total dudit mélange.
Selon un mode de réalisation particulier, l'(les) éléments) modificateurs) est (sont) présent(s) dans le mélange de l'étape (1) en une teneur allant de 0,01 à 0,1 %, de préférence de 0,02 à 0,06 % en poids, par rapport au poids total dudit mélange.
Comme précisé précédemment, de tels éléments sont connus pour leur capacité à modifier la structure de l'eutectique Al-Si. Lors de sa solidification, le silicium de l'eutectique Al-Si croit normalement sous forme lamellaire, encore appelée « forme aciculaire ». S'il est modifié par ajout d'un élément modificateur, il croît alors sous une forme fibreuse. Selon une caractéristique essentielle de l'Invention, le mélange considéré selon l'invention comprend de 20 à 60 % en poids dudit/desdits élément(s) d'addition.
D'une manière préférentielle, l'(les) élémerit(s) d'addition est (sont) présents) dans ledit mélange de l'étape (1) en une teneur allant de 35 à 45 % en poids, par rapport au poids total dudit mélange, de préférence d'environ 40 %.
. Selon un mode de réalisation particulier, l'élément d'addition est le zinc ou l'étain. Selon un mode de réalisation particulier de l'invention, le mélange des différents éléments métalliques peut se présenter sous forme de poudre.
Avantageusement, le mélange de poudre présente une granulométrie D50 exprimée en volume allant de 2 à 10 μm.
La granulométrie peut être mesurée par exemple par granulométrie laser selon une technique connue de l'homme du métier.
Dans une variante de réalisation, le mélange sous forme d'une poudre, considéré selon l'invention est formé en mélangeant les différents éléments métalliques, se présentant chacun sous la forme d'une poudre.
Dans une autre variante de réalisation, un alliage mère comprenant les différents éléments entrant dans la composition du mélange de l'invention est réalisé, puis consécutivement réduit en poudre.
A titre d'exemple, le mélange de l'invention peut être réalisé par mélange d'une poudre obtenue par broyage d'un alliage mère constitué d'aluminium et de 5 % en poids d'élément(s) modificateurs), avec une poudre obtenue par mélange d'une poudre d'aluminium et du(des) éléments) d'addition sous forme de poudre(s).
De manière avantageuse, le mélange considéré selon l'invention comprend, outre le mélange des différentes poudres, au moins un liant. Un tel mélange constitue une pâte de sérigraphie, pouvant être aisément étalée sur le substrat de base en silicium.
Le liant permet notamment d'assurer la dispersion et la cohésion du mélange des poudres, Il s'agit généralement d'une résine dissoute dans un solvant, choisie parmi les résines cellulosiques et les résines acryliques. On peut citer à titre d'exemples, l'éthylcellulose dissoute dans un solvant tel que le teipinéol, le méthacrylate de n-butyle dissout dans un éther de glycol.
Lorsque le mélange met en œuvre un ou plusieurs liant(s), le substrat de silicium enduit sur l'une de ses faces du mélange doit être soumis à une étape de séchage pour évaporer le solvant puis à une étape de déliantage, à des fins d'éliminer, préalablement à l'étape (2), le ou les liantes).
L'homme du métier est à même de mettre en œuvre les techniques de déliantage connues, de préférence par décomposition thermique, en étuve par exemple. Selon encore un autre mode de réalisation, le mélange peut comprendre, en outre, des frittes de verre. Ces frittes de verre sont généralement constituées d'un mélange de SiO2, B2O3, ZnO, PbO et Bi2O3. Elles permettent avantageusement de percer les couches isolantes, de faciliter la densification des particules métalliques, de créer un contact électrique et de créer un accrochage sur le substrat.
La réalisation du mélange considéré selon l'invention sous la forme d'une pâte de sérigraphie convenable fait partie des compétences de l'homme du métier, qui étalera une telle pâte de sérigraphie sur l'une des faces du substrat de silicium, par des moyens adaptés.
ETAPE (2)
Procédé de formation de la couche fibreuse
Dans une seconde étape essentielle du procédé de l'invention, la face enduite dudit substrat de silicium de l'étape (1) du procédé selon l'invention est exposée à un traitement thermique propice à :
(a) la formation d'un alliage fondu comprenant le silicium et lesdits éléments modificateurs, et
(b) la solidification consécutive dudit alliage fondu dans des conditions propices à la formation de la couche fibreuse (22) selon l'invention.
Plus particulièrement, la formation de l'alliage fondu (a) peut être obtenue en exposant la face enduite du substrat de l'étape (1) à une température inférieure à la température de fusion du silicium, en particulier variant entre 600 °C et 850 °C, de préférence entre 700 °C et 750 °C, pendant une durée de l'ordre de la minute.
A une telle température, les éléments métalliques du mélange considéré selon l'invention et le silicium fondent pour former un alliage fondu par établissement de l'équilibre thermodynamique.
L'ajustement des conditions de température et de durée font partie des compétences de l'homme du métier.
Dans un stade consécutif (b), la zone fondue est exposée à des conditions permettant la solidification de l'alliage fondu. Ces conditions requièrent en particulier un refroidissement de la zone fondue en dessous de la température de fusion.
Ce refroidissement peut être progressif, avec plusieurs vitesses de refroidissement au cours d'un même cycle, de 5 °C/s à 50 °C/s.
Au cours du refroidissement (b), apparaissent successivement, comme représenté sur la figure 1 :
• une couche monophasée (21) comprenant à base de silicium, qui croît par épitaxie sur la partie du substrat de silicium (20) restée solide ;
• la couche fibreuse (22) considérée selon l'invention, présentant une structure eutectique biphasée constituée de fibres à base de silicium dans une matrice à base d'aluminium, et
• une ou plusieurs couche(s) (23) de structure eutectique à au moins trois phases, dont la ou les compositions) moyennes) est(sont) voisine(s) de celle dudit/desdits éléments) d'addition. Ainsi, l'étape (2) du procédé de l'invention conduit à la formation d'une couche externe (23) de structure eutectique présentant au moins trois phases, ladite couche externe (23) comprenant la majorité du ou desdits élément(s) d'addition.
Par ailleurs, l'étape (2) du procédé de l'invention conduit à la formation d'une couche intermédiaire (21) entre ladite couche fibreuse (22) et ledit substrat de silicium (20), de structure monophasée et comprenant majoritairement du silicium. La figure 1 représente les différentes couches du substrat de silicium (10) obtenu à l'issue de l'étape (2) du procédé de l'invention.
Selon un mode de réalisation particulièrement préféré, les étapes (a) et (b) sont réalisées en continu.
Le traitement thermique peut être réalisé dans une enceinte chauffante dans laquelle est introduit le substrat de silicium selon l'invention.
Cette enceinte est apte en particulier à assurer l'exposition de la face du substrat enduite du mélange décrit précédemment, à un chauffage dans les conditions précitées.
Le substrat de silicium et ladite enceinte peuvent être animés d'un mouvement l'un par rapport à l'autre de manière à ce que toute zone fondue en étape (a) soit déplacée consécutivement vers la zone de l'enceinte, propice à sa solidification (b) par refroidissement.
Plus particulièrement, c'est le substrat de silicium qui est déplacé au travers de l'enceinte.
De manière avantageuse, ce traitement thermique peut être réalisé selon le procédé standard de recuit des contacts, généralement via des fours à lampes, statiques ou dynamiques. Ce traitement thermique peut être réalisé sous air uu sous atmosphère non oxydante tel qu'un flux d'argon, d'hélium, etc.
Quant à l'étape de refroidissement, elle peut s'effectuer par refroidissement naturel après avoir éteint la source de chauffage ou encore par un refroidissement forcé, par exemple par passage sur le substrat, d'un flux d'air.
De manière avantageusement, l'étape (2) est réalisée via introduction du substrat de silicium de l'étape (1) dans un four à passage, dans des conditions de fonctionnement standards, classiquement mis en œuvre pour l'élaboration des cellules photovoltaïques, et bien connues de l'homme du métier.
Caractéristiques de la couche fibreuse formée selon l'invention
Comme précisé précédemment, la couche fibreuse (22) formée selon le procédé de l'invention, présente un pas moyen de réseau inférieur ou égal à 2 μm, Avantageusement, ladite couche fibreuse (22) présente un pas moyen allant de 0,5 à 1,5 μm.
En particulier, ladite couche fibreuse (22) peut présenter une épaisseur comprise entre 1 et 20 μm, de préférence entre 5 et 10 μm.
Au sens de l'invention, on entend par fibres « à base de silicium », le fait que lesdites fibres formées comprennent majoritairement du silicium, autrement dit sont constituées à plus de 99,99 % en poids de silicium.
La matrice « à base d'aluminium » comprend majoritairement de l 'aluminium, autrement dit est constituée de 98,5 % en poids d'aluminium. De fait, la solubilité maximale de silicium dans l'aluminium est d'environ 1,5 % en poids à la température eutectique.
Quant aux autres couches formées à l'issue de l'étape (2) du procédé de l'invention, la couche monophasée (21) contigiie au substrat de silicium de base (20), peut dans le cas où il est de type p, jouer Le rôle, au sein d'une cellule photovoltaïque, de champ de surface arrière, encore appelé BSF (Back Surface Field), c'est-à-dire le rôle de champ électrique repoussant les porteurs minoritaires en face arrière de la cellule.
Le procédé selon l'invention peut avantageusement être mis en œuvre pour former en une seule étape, à la fois le champ de surface arrière d'une cellule photovoltaïque et la couche fibreuse diffractante souhaitée.
La couche supérieure (23), contigiie à la couche fibreuse (22) de l'invention est de structure triphasée pour le cas où un seul élément d'addition est utilisé dans le mélange considéré selon l'invention.
Elle est de structure à quatre phases, voire plus de quatre phases, lorsqu'au moins deux éléments d'addition sont introduits dans le mélange considéré selon l'invention.
Cette couche (23) est sans intérêt pour la diffraction des photons infrarouges, mais peut présenter l'intérêt de conduire l'électricité ce qui est avantageux pour la prise de contact et l'assemblage en modules. Selon une première variante d'élaboration d'une cellule photovoltaïque, le procédé de l'invention est réalisé, comme évoqué précédemment, à partir d'une plaque de silicium de type p, sur laquelle ont déjà été réalisés une jonction p-n, et éventuellement un ou plusieurs traitements) anti-reflets.
Le substrat modifié obtenu à l'issu de l'étape (2) du procédé selon l'invention peut alors former, intégralement, tel quel la face arrière de la cellule photovoltaïque. En particulier, cette cellule photovoltaïque présentera en face arrière, la couche monophasée (21) constituant le BSF, et la couche fibreuse (22) de l'invention, permettant la diffraction des photons infrarouges non absorbés par le silicium.
Ainsi, selon un autre de ses aspects, la présente invention a pour objet un dispositif, notamment une cellule photovoltaïque, formée en tout ou partie d'un substrat de silicium modifié, tel qu'obtenu à l'issue de l'étape (2) du procédé décrit précédemment.
En particulier, ledit substrat de silicium modifié est obtenu selon le procédé de l'invention, à partir d'une plaque de silicium de type p, comportant au moins une jonction p-n sur son autre face et ayant éventuellement été préalablement soumis à un traitement anti-reflets.
L'invention permet également avantageusement
- une réduction des contraintes thermomécaniques et la courbure des plaquettes suite à l'étape de recuit des contacts ; et
- la possibilité d'ajouter à la pâte de sérigraphie une source de bore pour augmenter le niveau de dopage du BSF.
Dans une seconde variante d'élaboration d'une cellule photovoltaïque, le procédé de l'invention est mis en œuvre pour former un substrat d'épitaxie adapté à la recristallisation d'une ou plusieurs couches minces de silicium.
Selon cette variante, le substrat de silicium de l'étape (1) peut être, comme précisé précédemment, un substrat de type silicium métallurgique, purifié par ségrégation.
Selon cette variante, le procédé de l'invention peut comprendre en outre une étape (3) comprenant l'élimination de la ou des couche(s) eutectique(s) (23) à au moins trois phases formées à l'issue de l'étape (2) et contigües à la couche fibreuse considérée selon l'invention, et l'élimination de la matrice d'aluminium de la couche fibreuse. Cette étape (3) peut être réalisée selon des techniques connues de l'homme du métier, en particulier par un décapage chimique du substrat obtenu à l'issu de l'étape (2) du procédé de l'invention, notamment à l'aide de l'acide ortho-phosphorique.
Une telle étape de décapage (3) permet d'éliminer l'ensemble des éléments métalliques autres que le silicium.
A l'issue de l'étape de décapage (3), le substrat se présente sous la forme d'un tapis de fakir constitué d'aiguilles de silicium.
Ces aiguilles peuvent notamment présenter une hauteur allant de 2 μm à 10 μm, en particulier d'environ 5 μm.
Un tel substrat est adapté au dépôt de couches de silicium amorphe ou nanocristallin par une technologie de type PVD (iii) sans risquer le bouchage des espaces entre les aiguilles.
Puis un recuit en phase solide induit une recristallisation de cette couche de silicium amorphe ou nanocristallin, à partir des aiguilles pour constituer la couche active de la cellule photovoltaïque.
La couche de fibres constituera également, selon ce mode de réalisation, la face arrière de la cellule finale.
Ainsi, selon encore un autre de ses aspects, la présente invention a pour objet un dispositif, formé en tout ou partie d'un substrat de silicium modifié, tel qu'obtenu à l'issue de l'étape (3) du procédé décrit précédemment
En particulier, la présente invention concerne un dispositif, notamment une cellule photovoltaïque, caractérisé en ce qu'une couche de silicium annexe est superposée audit substrat de silicium modifié, tel qu'obtenu à l'issue de l'étape (3) du procédé de l'invention.
L'invention va maintenant être décrite au moyen des deux exemples suivants, illustrant plus particulièrement les deux variantes de mise en œuvre du procédé de l'invention dans l'élaboration d'une cellule photovoltaïque.
Ces exemples sont bien entendu donnés à titre illustratif et non limitatif de l'invention. EXEMPLES
Exemple 1
Procédé selon l'invention mis en œuyre pour l'élaboration d'une cellule photovoltaïque par recuit de contact arrière
Un alliage contenant 60 % en poids de Al et 40 % en poids de Zn est réalisé en mélangeant des poudres de taille micronique (D50 compris entre 2 et 20 uxn). Le Sr est ajouté sous forme de poudres obtenues par broyage d'un alliage mère Al-5 % en poids de Sr de sorte que la teneur en Sr dans l'alliage Al-Zn-Sr est de 500 ppm en poids. Ces poudres sont agglomérées avec un liant de type cellulosique (éthylceliulose dissoute dans le terpinéol), et éventuellement des frittes de verre, pour former une pâte adaptée à la sérigraphie.
Cette pâte est déposée sur une plaque de Si de type p sur laquelle ont déjà été réalisés la jonction p-n et les traitements anti-reflet
L'ensemble est introduit dans un four à passage pour atteindre une température maximale de 7S0 °C, ce qui conduit à dissoudre une partie du Si du substrat pour assurer l'équilibre thermodynamique.
La première structure déposée au cours du refroidissement est monophasée et croît par épitaxie sur le Si du substrat, elle joue le rôle de champ répulsif arrière pour l'application.
Puis la température de l'eutectique biphasé atteinte, une structure constituée de fibres à base de silicium, dans une matrice à base d'aluminium, et d'espacement moyen 1,4 μm est obtenue.
Se forme ensuite une structure eutectique ternaire, avec une composition moyenne riche en Zn.
Exemple 2
Procédé selon l'invention mis en oeuyre pour la formation d'un substrat d' épitaxie adapté à la recristallisation de couches minces pour l'élaboration d'une cellule photovoltaïque
Un alliage contenant 60 % en poids de Al et 40 % en poids de Sn est réalisé en mélangeant des poudres de taille micronique (Dso compris entre 2 et 10 μm). Le Sr est ajouté sous forme de poudres obtenues par broyage d'un alliage mère Al-5 % en poids de Sr de sorte que la teneur en Sr dans l'alliage Al-Sn-Sr est de S00 ppm en poids. Ces poudres sont agglomérées avec un liant de type acrylique (méthacrylate de n-butyle dissout dans un éther de glycol), et éventuellement des frittes de verre, pour former une pâte adaptée à la sérigraphie.
Cette pâte est déposée sur un substrat bas coût de type Si métallurgique purifié par ségrégation.
L'ensemble est introduit dans un four à passage pour atteindre une température maximale, de 700 °C, ce qui conduit à dissoudre une partie du Si du substrat pour assurer l'équilibre thermodynamique.
La première structure déposée au cours du refroidissement est monophasée et croît par épitaxie sur le Si du substrat.
Puis, la température de l'eutectique biphasé atteinte, une structure constituée de fibres comprenant majoritairement du silicium, dans une matrice comprenant majoritairement de l'aluminium est obtenue.
Enfin, quand la température de l'eutectique ternaire invariant est atteinte, une structure eutectique ternaire de composition moyenne riche en Sn se forme.
L'ensemble resolidifié est soumis à décapage chimique (par exemple à l'acide ortho-phosphorique) pour ne garder que le Si. Le substrat se présente sous la forme d'un tapis de fakir constitué d'aiguilles de Si d'une hauteur voisine de 5 μm avec un espacement de l'ordre de 1,2 μm.
Références
(i) F. Huster, 20th Européen Photovoltaic Solar Energy Conférence and Exhibition, Barcelone, 6-10 June 2005, 2DV2.49 ;
(ii) S. Reber, A. Hurrle, A. Eyer, G. Wilke, "Crystalline silicon thin film solar cells - récent results at Fraunhofer ISE", Solar Energy, 77 (2004) 865-875 ;
(iii) M. Aoucher, G. Farhi, T. Mohatnmed-Brahirn, J. Non-Crystalline Solids, 227-230 (1998) 958 ;
(iv) M.M. Makhtouf, H.V Guthy, Journal of Light Metals 1 (2001) 199-218 ;
(v) J.R. Davis, Jr et al., « Impurities in silicon solar cells », IEEE transactions on Electron Devices 27 (1980) 677-687.

Claims

REVENDICATIONS
1. Procédé de formation, en surface d'une face d'un substrat de silicium, d'une couche fibreuse (22) présentant un pas moyen de réseau inférieur ou égal à 2 μm, comprenant au moins les étapes consistant à :
(1) disposer d'un substrat de silicium dont l'une des faces est recouverte au moins en partie d'un mélange comprenant au moins de l'aluminium et au moins un élément modificateur choisi parmi les éléments des colonnes IA et ΠΑ du tableau périodique, et
(2) exposer au moins la face enduite dudit substrat de l'étape (1) à un traitement thermique propice à (a) la formation d'un alliage fondu comprenant le silicium, l'aluminium et lesdits éléments modificateurs, et à (b) la solidification consécutive dudit alliage fondu dans des conditions propices à la formation d'au moins une couche (22) présentant une structure eutectique biphasée constituée de fibres à base de silicium dans une matrice à base d'aluminium, avec un pas moyen de réseau inférieur ou égal à 2 μm, caractérisé en ce que ledit mélange de l'étape (1) comprend en outre de 20 à 60 % en poids, par rapport à son poids total, d'un ou plusieurs éléments d'addition choisis parmi le gallium, l'indium, l'étain, le zinc et leurs mélanges.
2. Procédé selon la revendication 1, caractérisé en ce que ladite couche fibreuse (22) présente un pas moyen allant de 0,5 à 1 ,5 μm.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite couche fibreuse (22) présente une épaisseur allant de 1 à 20 μm, de préférence de S à 10 μm.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'(les) éléments) d'addition est(sont) présents) dans ledit mélange de l'étape (1) en une teneur allant de 35 à 45 % en poids, par rapport au poids total dudit mélange.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément modificateur est choisi parmi le strontium, le sodium et leur mélange.
6. Procédé selon l'une quelconque des revendications, caractérisé en ce que l'(les) éléments) modificateur(s) est(sont) présents) dans le mélange de l'étape (1) en une teneur allant de 0,01 à 0,1 % en poids, par rapport au poids total dudit mélange, en particulier de 0,02 à 0,06 % en poids.
7. Procédé selon l'une quelconque des revendications précédentes; caractérisé en ce que ledit mélange de l'étape (1) est sous forme d'une poudre, présentant une granulométrie DSO exprimée en volume allant de 2 à 10 μm.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit mélange de l'étape (1) comprend en outre au moins un liant, en particulier choisi parmi les résines, et plus particulièrement choisi parmi les résines cellulosiques et les résines acryliques.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le mélange de l'étape (1) comprend en outre des frittes de verre.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'alliage fondu en étape (2) est formé par exposition dudit substrat de l'étape (1) à une température allant de 600 °C à 850 °C, de préférence de 700 °C à 750 °C.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de solidification (b) de l'alliage fondu en étape (2) d'effectué à une vitesse de refroidissement allant de 5 à 50 °C/s.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape (2) conduit à la formation d'une couche intennédiaire (21) entre ladite couche fibreuse (22) et ledit substrat de silicium (20), de structure monophasée et comprenant majoritairement du silicium.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat de silicium est une plaque de silicium de type p, comportant au moins une jonction p-n sur son autre face, et ayant éventuellement été préalablement soumis à un traitement anti-reflets.
14. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comprend en outre une étape (3) comprenant l'élimination de la ou des couche(s) eutectique(s) (23) à au moins trois phases formée(s) à l'issue de l'étape (2) et l'éliinination de la matrice d'aluminium de la couche fibreuse (22).
15. Procédé selon la revendication précédente, caractérisé en ce que l'étape (3) consiste en un décapage chimique du produit obtenu à l'issu de l'étape (2), plus particulièrement à l'aide de l'acide ortho-phosphorique.
16. Procédé selon l'une quelconque des revendications 14 et 15, caractérisé en ce que le substrat de silicium est un substrat de type silicium métallurgique purifié par ségrégation.
EP11794862.0A 2010-11-24 2011-11-21 Procédé de formation d'une couche fibreuse Withdrawn EP2643855A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059661A FR2967811B1 (fr) 2010-11-24 2010-11-24 Procede de formation d'une couche fibreuse
PCT/IB2011/055212 WO2012069981A1 (fr) 2010-11-24 2011-11-21 Procédé de formation d'une couche fibreuse

Publications (1)

Publication Number Publication Date
EP2643855A1 true EP2643855A1 (fr) 2013-10-02

Family

ID=44146609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11794862.0A Withdrawn EP2643855A1 (fr) 2010-11-24 2011-11-21 Procédé de formation d'une couche fibreuse

Country Status (4)

Country Link
US (1) US20130260507A1 (fr)
EP (1) EP2643855A1 (fr)
FR (1) FR2967811B1 (fr)
WO (1) WO2012069981A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913697B2 (en) * 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
JP2008306023A (ja) * 2007-06-08 2008-12-18 Toyo Aluminium Kk ペースト組成物と太陽電池素子
WO2009129092A1 (fr) * 2008-04-15 2009-10-22 E. I. Du Pont De Nemours And Company Pâtes d’aluminium et leur utilisation dans la production de cellules solaires au silicium
US8211737B2 (en) * 2008-09-19 2012-07-03 The University Of Massachusetts Method of producing nanopatterned articles, and articles produced thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012069981A1 *

Also Published As

Publication number Publication date
US20130260507A1 (en) 2013-10-03
FR2967811B1 (fr) 2014-01-17
FR2967811A1 (fr) 2012-05-25
WO2012069981A1 (fr) 2012-05-31

Similar Documents

Publication Publication Date Title
EP1903616B1 (fr) Procédé de recuit de cellules photovoltaiques
EP1903615B1 (fr) Procédé de métallisation de cellules photovoltaïques à multiples recuits
FR2491261A1 (fr) Pile solaire et son procede de fabrication
FR2722612A1 (fr) Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif
EP2172981B1 (fr) Cellule photovoltaïque à hétérojonction à deux dopages et procédé de fabrication
EP2951855B1 (fr) Procédé de préparation de couche mince d'absorbeur à base de sulfure(s) de cuivre, zinc et étain, couche mince recuite et dispositif photovoltaïque obtenu
EP2586063B1 (fr) Substrat comprenant une couche d'oxyde transparent conducteur et son procédé de fabrication
EP2580785A1 (fr) Matériau nanocomposite et son utilisation en opto-électronique
EP2143687B1 (fr) Procédé de purification d'un substrat en silicium cristallin et procédé d'élaboration d'une cellule photovoltaïque
Ablekim et al. Exceeding 200 ns lifetimes in polycrystalline CdTe solar cells
EP2636073A1 (fr) Procede de fabrication de cellules solaires, attenuant les phenomenes de lid
Gansukh et al. Oxide route for production of Cu2ZnSnS4 solar cells by pulsed laser deposition
EP3114704B1 (fr) Procédé de préparation de couche mince d'absorbeur a base de sulfure(s) et séléniures(s) de cuivre, zinc et étain, couche mince recuite et dispositif photovoltaïque obtenus
FR3007200A1 (fr) Cellule solaire a heterojonction de silicium
LU83831A1 (fr) Procede de fabrication de dispositifs semi-conducteurs et dispositifs semi-conducteurs ainsi obtenus
JP2005203622A (ja) 光電変換装置、金属ペーストおよびそれを用いた光電変換装置の製造方法
EP3482419B1 (fr) Procédé de fabrication de photodétecteur comprenant un empilement de couches superposées
EP2643855A1 (fr) Procédé de formation d'une couche fibreuse
WO2012073205A1 (fr) Procede de preparation d'une couche de silicium cristallise a gros grains
EP2415084A2 (fr) Structure electronique a couche epitaxiee sur silicium fritte
FR3135349A1 (fr) Cellules solaires multi-jonctions à porteurs chauds
EP3005425B1 (fr) Procédé de réalisation de la jonction p-n d'une cellule photovoltaïque en couches minces et procédé d'obtention correspondant d'une cellule photovoltaïque
WO2015015367A1 (fr) Procédé de réalisation d'une jonction pn dans une cellule photovoltaïque à base de czts et cellule photovoltaïque en configuration superstrat et à base de czts
FR2981194A1 (fr) Procede de formation d'une couche de silicium cristalise en surface de plusieurs substrats
EP3176830A1 (fr) Procédé de fabrication d'un agencement pour empilement de cellule photovoltaïque en couches minces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 31/0224 20060101ALI20140319BHEP

Ipc: H01L 31/0236 20060101AFI20140319BHEP

Ipc: H01L 31/18 20060101ALI20140319BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140906