EP2636516A1 - System zur Platzierung von kleinem flachem Verbundwerkstoff - Google Patents
System zur Platzierung von kleinem flachem Verbundwerkstoff Download PDFInfo
- Publication number
- EP2636516A1 EP2636516A1 EP13158291.8A EP13158291A EP2636516A1 EP 2636516 A1 EP2636516 A1 EP 2636516A1 EP 13158291 A EP13158291 A EP 13158291A EP 2636516 A1 EP2636516 A1 EP 2636516A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tool
- axis
- composite
- head
- composite placement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims description 55
- 230000033001 locomotion Effects 0.000 claims description 18
- 238000005056 compaction Methods 0.000 claims description 7
- 239000000835 fiber Substances 0.000 abstract description 22
- 239000000463 material Substances 0.000 description 8
- 239000002657 fibrous material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/0046—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/38—Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/12—Surface bonding means and/or assembly means with cutting, punching, piercing, severing or tearing
- Y10T156/1348—Work traversing type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/17—Surface bonding means and/or assemblymeans with work feeding or handling means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/17—Surface bonding means and/or assemblymeans with work feeding or handling means
- Y10T156/1788—Work traversing type and/or means applying work to wall or static structure
Definitions
- the device relates to a substantially stationary fiber placement head and material delivery system for producing small flat laminates in which the material is not being manipulated by the machine as it is being dispensed and relative motion between the head and the tool is achieved by movement of the tool relative to the stationary head.
- Composite placement machines for forming high strength low weight articles from high strength fiber or tape and a resin binder are well known in the art.
- Such machines normally comprise a composites placement head supported by an overhead gantry mechanism, or mounted on the end of a manipulator such as a robot arm. The head is maneuvered on the end of its support to apply composite material to the tool as required.
- the tool may also be non-stationary during material application as in the case of a cylindrical form or tool that is rotated around its center axis.
- Such machines are large and expensive, and the use of a gantry or robot based machine to fabricate a small flat part is not an efficient use of resources.
- Large composite layup machines are used to produce aircraft skins made of composite material, for example, tape laying machines for parts like wings and stabilizers, and fiber placement machines for fuselages, nacelles, and similar contoured parts.
- tape laying machines for parts like wings and stabilizers
- fiber placement machines for fuselages, nacelles, and similar contoured parts.
- a common method for manufacturing these small composite parts is to use a large machine to create a flat laminate that is cut to size and draped over a tool to form the small part's final shape.
- a flat laminate is made much larger than the single small part and multiple flat laminates are cut out from the single large laminate, creating a large amount of waste material for the portions that are not useable.
- FIG 1 is a perspective view of a composite machine generally designated by the reference numeral 10 for producing small flat parts.
- the machine comprises a creel 12 that is mounted on a base 14 that rests on the floor.
- the creel 12 holds a number of spools 16 of material that will be used to make a part. Although it is anticipated that the material will comprise fiber in the form of slit tape or tow, tape could also be used.
- the creel 12 holds twelve spools of fiber material on one side, and the creel may hold twelve additional spools of fiber material on the opposite side. Twenty four spools will allow the head to lay down twenty four lanes of material at a time.
- the creel may also be designed to hold twelve or sixteen spools, or more than twenty four spools.
- the composite material may comprise slit tape having a width of one-half inch, or other widths as desired. Positioning the spools 16 on both sides of the creel 12 reduces the footprint of the creel compared to a creel on which an equal number of spools are all supported on one side of the creel.
- Fiber material 15 from the spools 16 is threaded upwards to first redirect rollers 18 mounted on top of the creel that direct the fiber to the center of the creel, and to second redirect rollers 20 that direct the fiber to a Z-axis redirect roller 22 mounted on the top of a fiber placement head 24.
- Guides 26 may be positioned along the fiber path as required to guide or support the fiber 15 between the redirect rollers on the creel and the Z-axis redirect roller 22.
- the creel 12 has a front wall 30 and a vertical slide 34 is mounted on the front wall 30.
- a bracket 32 is coupled to the vertical slide 34, and the head 24 is mounted on the bracket 32.
- the vertical slide 34 driven by a linear actuator 36 that allows the head 24 to raise or lower a small amount in the Z-axis relative to the creel 12.
- the amount of vertical movement allowed by the vertical slide 34 may be 10 inches or less, and preferably is 2 inches or less.
- Motion of the head 24 in the Z-axis can be performed with a relatively small actuator 36 since the moving mass of the head 24 does not include a heavy wrist mechanism. There is only a small spool rewind requirement to accommodate the short vertical axis movement of the head in the Z-axis relative to the tool.
- a tool 40 that receives fiber composite material may be positioned on a rotary C-axis table 42 that is next to the creel and beneath the head 24.
- Motion of the head 24 in the Z-axis is only performed at the beginning or end of a course in order to lower or raise the compaction roller or shoe 46 at the lower end of the head 24 onto or off of the layup surface or laminate as required.
- Motion of the head in the Z-axis is also performed in order to initially position a tool under the head for a layup operation, and to remove a complete layup part from the C-axis table.
- Figure 1 shows the roller or shoe 46 in a raised position in solid, and in a lowered position in phantom.
- the head 24 contains an internal compactor slide (not shown) that is used to raise and lower the compaction roller or shoe 46 relative to the tool 40.
- the mounting of the head on the creel 12 does not allow movement of the head 24 in the X-axis or the Y-axis.
- the bracket 32 may be provided with a horizontal Y-axis pivot 44 that allows the head 24 to swivel about the pivot 44 for cleaning or servicing purposes. Pivoting movement of the head 24 about the Y-axis is not performed while the head is applying composite material to a tool 40.
- composite material is always applied to the tool 40 in a direction that is at right angles to the width dimension of the compaction roller or shoe 46.
- Figure 2 shows the possible motions of the X, Y, and Z-axis tables.
- the rotary motion of the C-axis table 42 is around the vertical axis 45 of the table, parallel to the Z-axis of the machine 10.
- the C-axis table 42 has a center axis 45 and is mounted on a Y-axis table 48, and the Y-axis table is mounted on an X-axis table 50.
- the X, Y, and Z-axis tables are servo driven, and are mounted on a base 52 that is supported on the floor.
- the rotary table 42 is positioned at a convenient height relative to an operator 55, allowing for manual placement and removal of a tool 40 on the table 42 if desired.
- the rotary table 42 may be placed at a height of less than six feet from the floor, and in one embodiment, the rotary table is placed at a height of no more than four feet from the floor.
- An operator station including a control panel 56 for controlling the operation of the machine 10 may be provided next to the machine.
- the head 24 is raised a small amount such as a few inches in order to allow a tool 40 to be placed on the rotary table 42.
- the tool may be in the form of a film that is held in place by a vacuum that is applied by the table. The vacuum will hold the film in place during lamination, and will be turned off to allow the film and the laminate to be removed at the completion of the lamination.
- the X, Y, and Z-axis tables are actuated to orient the tool relative to the head, and the head 24 is then lowered to place the compaction shoe or roller in contact with the tool 40. The head is then moved along the X-axis to pass the tool under the head in order to apply composite material to the tool in the desired pattern.
- the relative motion between the head and the tool is achieved by movement of the tool relative to the head once the head is positioned at the correct level over the tool. Since the tool 40 is flat, movement of the head 24 in the vertical direction is not required during the composite material placement process. Conventional cutters (not shown) in the head 24 cut the composite material 15 as the head reaches the end of a course, and the head 24 may be raised a small amount by the linear actuator 36 or the internal compactor slide to allow the X, Y, and C-axis tables to reposition the tool 40 in order for the head to lay the next course.
- the head 24 is then lowered to place the compaction roller or shoe 46 in contact with the tool 40, and the next course is laid by moving the tables that support the tool 40 relative to the head. Movement of the tool 40 to different positions in the X and Y-axes allows the stationary head 24 to apply composite material to different areas of the tool along the X and Y-axes. Rotation of the table around the C-axis allows the stationary head to apply composite material at various angles on the tool.
- the device is used to produce small flat laminates.
- the tool may be less than twenty-five square feet, or less than sixteen square feet, or less than ten square feet, or less than three square feet. Because the position of the head 24 is fixed relative to the creel 12 during application of fiber to the tool 40, the fiber delivery path length from the creel to the head is constant, and the path itself is simple and direct. Because the head 24 does not have to change its position during application of fiber to the head, a complicated wrist mechanism between the creel and the head is not needed.
- the compact creel 12 and relatively simple table system for supporting the tool provides a complete fiber placement system with a small footprint.
- the moving tables 42, 48, and 50 have a small mass compared to the normal moving parts of a fiber placement system, machine axes speeds and acceleration are high, and smaller motors than those used to maneuver a robot or gantry fiber placement system can be used for moving the tables relative to the head.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Moulding By Coating Moulds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261608440P | 2012-03-08 | 2012-03-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2636516A1 true EP2636516A1 (de) | 2013-09-11 |
EP2636516B1 EP2636516B1 (de) | 2014-09-03 |
Family
ID=47900681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13158291.8A Active EP2636516B1 (de) | 2012-03-08 | 2013-03-08 | System zur Platzierung von kleinem flachem Verbundwerkstoff |
Country Status (3)
Country | Link |
---|---|
US (1) | US8919410B2 (de) |
EP (1) | EP2636516B1 (de) |
ES (1) | ES2513017T3 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103640229A (zh) * | 2013-12-30 | 2014-03-19 | 中国科学院自动化研究所 | 单驱动的复合材料铺丝头一体化装置 |
FR3044580A1 (fr) * | 2015-12-08 | 2017-06-09 | Coriolis Composites | Machine d'application de fibres particuliere et procede de realisation de pieces mettant en oeuvre une telle machine |
WO2017127276A1 (en) | 2016-01-18 | 2017-07-27 | Fives Machining Systems, Inc. | Small 4-axis fiber placement machine |
FR3141877A1 (fr) * | 2022-11-15 | 2024-05-17 | Coriolis Group | Machine de placement de fibres |
Families Citing this family (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9511543B2 (en) | 2012-08-29 | 2016-12-06 | Cc3D Llc | Method and apparatus for continuous composite three-dimensional printing |
US10682844B2 (en) | 2013-03-22 | 2020-06-16 | Markforged, Inc. | Embedding 3D printed fiber reinforcement in molded articles |
US9539762B2 (en) | 2013-03-22 | 2017-01-10 | Markforged, Inc. | 3D printing with kinematic coupling |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9815268B2 (en) | 2013-03-22 | 2017-11-14 | Markforged, Inc. | Multiaxis fiber reinforcement for 3D printing |
US9126367B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US9694544B2 (en) | 2013-03-22 | 2017-07-04 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9186846B1 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US9370896B2 (en) | 2013-06-05 | 2016-06-21 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US11237542B2 (en) | 2013-03-22 | 2022-02-01 | Markforged, Inc. | Composite filament 3D printing using complementary reinforcement formations |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
US9688028B2 (en) | 2013-03-22 | 2017-06-27 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9579851B2 (en) | 2013-03-22 | 2017-02-28 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US10259160B2 (en) | 2013-03-22 | 2019-04-16 | Markforged, Inc. | Wear resistance in 3D printing of composites |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US10953609B1 (en) | 2013-03-22 | 2021-03-23 | Markforged, Inc. | Scanning print bed and part height in 3D printing |
US11981069B2 (en) | 2013-03-22 | 2024-05-14 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9956725B2 (en) | 2013-03-22 | 2018-05-01 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
CA2907492C (en) | 2013-03-22 | 2022-03-29 | Gregory Thomas Mark | Three dimensional printing |
DE102014201060A1 (de) * | 2014-01-22 | 2015-07-23 | Broetje-Automation Gmbh | Faserlegemaschine und Verfahren zur Herstellung von Fasergelegen |
US9808991B2 (en) | 2014-07-29 | 2017-11-07 | Cc3D Llc. | Method and apparatus for additive mechanical growth of tubular structures |
US11097440B2 (en) | 2015-11-05 | 2021-08-24 | United States Of America As Represented By The Administrator Of Nasa | Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof |
US10513080B2 (en) | 2015-11-06 | 2019-12-24 | United States Of America As Represented By The Administrator Of Nasa | Method for the free form fabrication of articles out of electrically conductive filaments using localized heating |
US10500836B2 (en) | 2015-11-06 | 2019-12-10 | United States Of America As Represented By The Administrator Of Nasa | Adhesion test station in an extrusion apparatus and methods for using the same |
US10894353B2 (en) | 2015-11-09 | 2021-01-19 | United States Of America As Represented By The Administrator Of Nasa | Devices and methods for additive manufacturing using flexible filaments |
US10105910B2 (en) | 2016-04-15 | 2018-10-23 | Cc3D Llc | Method for continuously manufacturing composite hollow structure |
US10232551B2 (en) | 2016-04-15 | 2019-03-19 | Cc3D Llc | Head and system for continuously manufacturing composite hollow structure |
US20180065317A1 (en) | 2016-09-06 | 2018-03-08 | Cc3D Llc | Additive manufacturing system having in-situ fiber splicing |
US10543640B2 (en) | 2016-09-06 | 2020-01-28 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber teasing |
US20180065307A1 (en) | 2016-09-06 | 2018-03-08 | Cc3D Llc | Systems and methods for controlling additive manufacturing |
US10759113B2 (en) | 2016-09-06 | 2020-09-01 | Continuous Composites Inc. | Additive manufacturing system having trailing cure mechanism |
US10625467B2 (en) | 2016-09-06 | 2020-04-21 | Continuous Composites Inc. | Additive manufacturing system having adjustable curing |
US10766594B2 (en) | 2016-11-03 | 2020-09-08 | Continuous Composites Inc. | Composite vehicle body |
US10953598B2 (en) | 2016-11-04 | 2021-03-23 | Continuous Composites Inc. | Additive manufacturing system having vibrating nozzle |
US20210094230A9 (en) | 2016-11-04 | 2021-04-01 | Continuous Composites Inc. | System for additive manufacturing |
US10857726B2 (en) | 2017-01-24 | 2020-12-08 | Continuous Composites Inc. | Additive manufacturing system implementing anchor curing |
US10040240B1 (en) | 2017-01-24 | 2018-08-07 | Cc3D Llc | Additive manufacturing system having fiber-cutting mechanism |
US20180229092A1 (en) | 2017-02-13 | 2018-08-16 | Cc3D Llc | Composite sporting equipment |
US10798783B2 (en) | 2017-02-15 | 2020-10-06 | Continuous Composites Inc. | Additively manufactured composite heater |
US10906240B2 (en) | 2017-06-29 | 2021-02-02 | Continuous Composites Inc. | Print head for additive manufacturing system |
US10814569B2 (en) | 2017-06-29 | 2020-10-27 | Continuous Composites Inc. | Method and material for additive manufacturing |
CN207233765U (zh) * | 2017-10-20 | 2018-04-13 | 米亚索乐装备集成(福建)有限公司 | 一种柔性光伏组件边缘密封胶带的敷设装置 |
US10319499B1 (en) | 2017-11-30 | 2019-06-11 | Cc3D Llc | System and method for additively manufacturing composite wiring harness |
US10131088B1 (en) | 2017-12-19 | 2018-11-20 | Cc3D Llc | Additive manufacturing method for discharging interlocking continuous reinforcement |
US10081129B1 (en) | 2017-12-29 | 2018-09-25 | Cc3D Llc | Additive manufacturing system implementing hardener pre-impregnation |
US10759114B2 (en) | 2017-12-29 | 2020-09-01 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US10919222B2 (en) | 2017-12-29 | 2021-02-16 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US11167495B2 (en) | 2017-12-29 | 2021-11-09 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10857729B2 (en) | 2017-12-29 | 2020-12-08 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US11161300B2 (en) | 2018-04-11 | 2021-11-02 | Continuous Composites Inc. | System and print head for additive manufacturing system |
US11110654B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US11110656B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11052603B2 (en) | 2018-06-07 | 2021-07-06 | Continuous Composites Inc. | Additive manufacturing system having stowable cutting mechanism |
DE102018115392B4 (de) * | 2018-06-26 | 2022-09-22 | Azl Aachen Gmbh | Verfahren und Vorrichtung zur Produktion von Faserverbundwerkstoff aufweisenden Werkstücken |
US20200086563A1 (en) | 2018-09-13 | 2020-03-19 | Cc3D Llc | System and head for continuously manufacturing composite structure |
US11235522B2 (en) | 2018-10-04 | 2022-02-01 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11511480B2 (en) | 2018-10-26 | 2022-11-29 | Continuous Composites Inc. | System for additive manufacturing |
US11420390B2 (en) | 2018-11-19 | 2022-08-23 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11358331B2 (en) | 2018-11-19 | 2022-06-14 | Continuous Composites Inc. | System and head for continuously manufacturing composite structure |
AU2019390895A1 (en) | 2018-11-30 | 2021-06-17 | Toray Industries, Inc. | Sheet-shaped reinforced-fiber base material and manufacturing method therefor |
US20200238603A1 (en) | 2019-01-25 | 2020-07-30 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11312083B2 (en) | 2019-05-28 | 2022-04-26 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11840022B2 (en) | 2019-12-30 | 2023-12-12 | Continuous Composites Inc. | System and method for additive manufacturing |
US11904534B2 (en) | 2020-02-25 | 2024-02-20 | Continuous Composites Inc. | Additive manufacturing system |
US11926100B2 (en) | 2020-06-23 | 2024-03-12 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11465348B2 (en) | 2020-09-11 | 2022-10-11 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11926099B2 (en) | 2021-04-27 | 2024-03-12 | Continuous Composites Inc. | Additive manufacturing system |
US20230118530A1 (en) | 2021-10-20 | 2023-04-20 | Continuous Composites Inc. | Systems and methods for additive manufacturing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5936861A (en) * | 1997-08-15 | 1999-08-10 | Nanotek Instruments, Inc. | Apparatus and process for producing fiber reinforced composite objects |
WO2009042225A2 (en) * | 2007-09-26 | 2009-04-02 | Fiberforge Corporation | System and method for the rapid, automated creation of advanced composite tailored blanks |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3574040A (en) * | 1967-06-29 | 1971-04-06 | Gen Dynamics Corp | Apparatus for making laminated structural shapes by the controlled detrusive placement and polymerization of tectonic filamentous tapes |
US4292108A (en) * | 1979-12-10 | 1981-09-29 | General Dynamics Corporation | Composite tape laying apparatus including means for plural longitudinal and transverse cuts |
US4351688A (en) | 1979-12-10 | 1982-09-28 | General Dynamics Corporation | Composite tape laying machine |
DE3046127C2 (de) | 1979-12-14 | 1984-05-30 | Micropore International Ltd., Droitwich, Worcestershire | Verfahren zum Behandeln der Oberfläche von Blöcken aus mikroporösem thermisch isolierenden Material |
US4560433A (en) | 1983-01-14 | 1985-12-24 | The Boeing Company | Bi-directional applicator head with dual tape supply |
US4943338A (en) | 1988-09-26 | 1990-07-24 | Cincinnati Milacron Inc. | Multi-tow fiber placement machine with full band width clamp, cut, and restart capability |
US5213646A (en) | 1988-12-28 | 1993-05-25 | Andrew M. Zsolnay | Precision method for placing filaments |
US5580413A (en) | 1993-10-01 | 1996-12-03 | J. R. Automation Technologies, Inc. | Taping apparatus and method and article manufacturing therewith |
US6798970B1 (en) | 2001-02-26 | 2004-09-28 | Zygo Corporation | Automated placement of optical fibers |
US6799619B2 (en) | 2002-02-06 | 2004-10-05 | The Boeing Company | Composite material collation machine and associated method for high rate collation of composite materials |
ES2212878B1 (es) * | 2002-03-05 | 2005-07-16 | Manuel Torres Martinez | Cabezal multiaplicador de tiras de fibra. |
US7137182B2 (en) | 2002-11-22 | 2006-11-21 | The Boeing Company | Parallel configuration composite material fabricator |
FR2853914B1 (fr) | 2003-04-17 | 2005-11-25 | Hexcel Fabrics | Procede et installation de fabrication d'une preforme de renfort |
US20090301648A1 (en) | 2008-06-05 | 2009-12-10 | Merrill Wilson Hogg | Tight constellation composite tape-laying machine |
US8758538B2 (en) * | 2010-05-12 | 2014-06-24 | Fives Machining Systems, Inc. | Robotic based fiber placement cell with stationary dispensing head and creel |
-
2013
- 2013-03-07 US US13/787,872 patent/US8919410B2/en active Active
- 2013-03-08 ES ES13158291.8T patent/ES2513017T3/es active Active
- 2013-03-08 EP EP13158291.8A patent/EP2636516B1/de active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5936861A (en) * | 1997-08-15 | 1999-08-10 | Nanotek Instruments, Inc. | Apparatus and process for producing fiber reinforced composite objects |
WO2009042225A2 (en) * | 2007-09-26 | 2009-04-02 | Fiberforge Corporation | System and method for the rapid, automated creation of advanced composite tailored blanks |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103640229A (zh) * | 2013-12-30 | 2014-03-19 | 中国科学院自动化研究所 | 单驱动的复合材料铺丝头一体化装置 |
CN103640229B (zh) * | 2013-12-30 | 2015-09-23 | 中国科学院自动化研究所 | 单驱动的复合材料铺丝头一体化装置 |
FR3044580A1 (fr) * | 2015-12-08 | 2017-06-09 | Coriolis Composites | Machine d'application de fibres particuliere et procede de realisation de pieces mettant en oeuvre une telle machine |
WO2017098093A1 (fr) * | 2015-12-08 | 2017-06-15 | Coriolis Composites | Machine d'application de fibres particulières et procédé de réalisation de pièces mettant en œuvre une telle machine |
WO2017127276A1 (en) | 2016-01-18 | 2017-07-27 | Fives Machining Systems, Inc. | Small 4-axis fiber placement machine |
EP3405331A4 (de) * | 2016-01-18 | 2021-01-13 | Fives Machining Systems, Inc. | Kleine 4-achsige faserauflegemaschine |
FR3141877A1 (fr) * | 2022-11-15 | 2024-05-17 | Coriolis Group | Machine de placement de fibres |
WO2024105310A1 (fr) * | 2022-11-15 | 2024-05-23 | Coriolis Group | Machine et procédé de placement de fibres |
Also Published As
Publication number | Publication date |
---|---|
US8919410B2 (en) | 2014-12-30 |
ES2513017T3 (es) | 2014-10-24 |
EP2636516B1 (de) | 2014-09-03 |
US20130233471A1 (en) | 2013-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8919410B2 (en) | Small flat composite placement system | |
US5022952A (en) | Fiber placement machine | |
US8641847B2 (en) | Composite lamination using array of parallel material dispensing heads | |
US9162434B2 (en) | System and method for making advanced composite laminates | |
US4208238A (en) | Gantry for use in the manufacture of laminar structures | |
US4133711A (en) | Automated integrated composite lamination system | |
US8168029B2 (en) | System and method for the rapid, automated creation of advanced composite tailored blanks | |
JP5550851B2 (ja) | 大型バレル部構成部品の製作のためのマルチヘッド自動化複合材料積層機 | |
US4735672A (en) | Automated fiber lay-up machine | |
EP1035963B1 (de) | Zuführsteuerungssystem für faserauflegevorrichtungen | |
CN103687716A (zh) | 层合复合件的方法和设备 | |
US11565485B2 (en) | System, method, and apparatus for use in ply compaction in forming a composite structure | |
JP5822696B2 (ja) | 固定式分配器を使用する繊維配置のための方法およびシステム | |
US20210107182A1 (en) | System, method, and apparatus for use in forming a composite structure | |
EP0355308B1 (de) | Auflegevorrichtung für Fasern | |
CA1222188A (en) | Automated fiber lay-up machine | |
JP2023512717A (ja) | テープ積層機械のスクラップ収集組立体 | |
CN207933795U (zh) | 一种用于柔道服生产的裁剪装置 | |
JP2023512716A (ja) | テープ積層機械の切断組立体 | |
US20220347944A1 (en) | W-axis fiber placement head | |
CN118721791A (zh) | 一种非纺织材料自动缠绕设备及工艺 | |
JPS6151064B2 (de) | ||
JPH07166454A (ja) | ブレイダー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FIVES MACHINING SYSTEMS, INC. |
|
17P | Request for examination filed |
Effective date: 20140221 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B29C 70/38 20060101AFI20140314BHEP Ipc: B32B 37/00 20060101ALI20140314BHEP |
|
INTG | Intention to grant announced |
Effective date: 20140409 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 685316 Country of ref document: AT Kind code of ref document: T Effective date: 20140915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013000218 Country of ref document: DE Effective date: 20141016 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2513017 Country of ref document: ES Kind code of ref document: T3 Effective date: 20141024 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 685316 Country of ref document: AT Kind code of ref document: T Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141204 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150105 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150103 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013000218 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
26N | No opposition filed |
Effective date: 20150604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150308 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130308 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170308 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240220 Year of fee payment: 12 Ref country code: FR Payment date: 20240220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240402 Year of fee payment: 12 |