EP2635892B1 - Spectroscopic finger-printing of raw material - Google Patents

Spectroscopic finger-printing of raw material Download PDF

Info

Publication number
EP2635892B1
EP2635892B1 EP11778872.9A EP11778872A EP2635892B1 EP 2635892 B1 EP2635892 B1 EP 2635892B1 EP 11778872 A EP11778872 A EP 11778872A EP 2635892 B1 EP2635892 B1 EP 2635892B1
Authority
EP
European Patent Office
Prior art keywords
spectra
cultivation
different
lots
lot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11778872.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2635892A1 (en
Inventor
José CARDOSO-MENEZES
Christian Hakemeyer
Gledson Emidio Jose
Ulrike Strauss
Silke Werz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Priority to EP11778872.9A priority Critical patent/EP2635892B1/en
Publication of EP2635892A1 publication Critical patent/EP2635892A1/en
Application granted granted Critical
Publication of EP2635892B1 publication Critical patent/EP2635892B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/087Structure determination of a chemical compound, e.g. of a biomolecule such as a protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6423Spectral mapping, video display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods
    • G01N2201/1293Using chemometrical methods resolving multicomponent spectra

Definitions

  • Table 3 Analogously the influence of rice protein hydrolyzate on process performance can be evaluated (Table 3).
  • Table 3 batch soy protein hydrolyzate lot No. chemically defined basic medium lot No .
  • the three analyzed cultivation media components show significant lot-to-lot variability in granularity and humidity content, as can be seen by the NIR spectra obtained. NIR is very sensitive to both these factors. Additionally both these factors dominate over smaller but still significant chemical composition differences that might be present. Prior to PCA analysis physical information has to be removed by spectra pre-processing.
  • fluorescence excitation-emission spectra preferably acquired of different water soluble fermentation raw-materials.
  • a three-way data array, with excitation wavelengths along the x-axis, emission wavelengths along the y-axis, and intensity along the z-axis can be established.
  • Figure 8 a fluorescence EEM landscape of a soy protein hydrolyzate lot samples is shown.
  • a typical EEM spectrum can be influenced by Rayleigh and Raman scattering effects, which affect the information content of the fluorescence landscape. To overcome the Rayleigh effect several strategies and techniques can be used:
  • This region (200 nm to 225 nm) was excluded from the spectra, as well the non-informative emission wavelengths (200 nm to 315 nm and 596 nm to 600 nm) and excitation wavelengths (580 nm to 600 nm).
  • the resulting spectrum is shown in Figure 9 .
  • a PCA of the unfolded fluorescence data array can be carried out for each component raw material.
  • the unfolding procedure can be applied in any of the three modes of a three-way array.
  • the unfolding preserving information of the first mode can be employed. In this way, the fluorescence landscapes can be unfolded into a row of emission spectra one after the other ( Figure 10 ).
  • the dimensions of the soy protein hydrolyzate array are 19x138x70 (lot x emission wavelength x excitation wavelength). After the unfolding strategy, a two-way matrix of size 19x9,960 can be obtained. Figure 11 shows a small part of the resulting spectra for three different lots of soy protein hydrolyzate. Noise in the extreme excitation wavelengths can be seen.
  • FIG. 14 shows the score plot of PC1 x PC2 of a PCA using two principal components covering more than 92 % of the total variance in the unfolded EEM spectra. As before with NIR spectra for the same media components it was found that lots giving higher yields are separated from lots giving lower yields in the PCA score plots of EEM unfolded spectra.
  • the obtained model was made up of only two LVs but a non-significant R 2 of 0.139 was obtained.
  • the measured vs. cross-validation predicted plot is presented in Figure 15 .
  • a PLS model correlating NIR spectra of different lots of the chemically defined basic medium and product yield can be built using the calibration dataset as presented in Table 8.
  • Table 8. batch chemically defined basic medium F/ZF lot No. product at 330h [mg/l] D45KD11 1 1314 D52KD13 2 1458 D61KD12 3 1134 D73KD21 4 1147 D79KD22 5 1162
  • the obtained model was made up of only two LVs but again a non significant R 2 of 0.04 was obtained ( Figure 16 ).
  • a combination strategy can be used between same spectroscopic/different media components and also between different spectroscopic/different media components.
  • the method as reported herein is directed to the combination of spectra of different nature (fluorescence spectra and IR spectra), which intrinsically have different dimensions (two (2D) and one (1D), respectively), and that requires the operations of first compressing each spectrum to principal component analysis scores and second producing linear combinations of each spectrum scores.
  • the spectra of different nature are combined by means of a dimensional reduction and a linear combination of those reduced transformed variables (PCA scores obtained by compressing each spectrum).
  • spectra of different dimensions and nature are used to capture in a mixture of two different fermentation raw materials the components responsible for fermentation performance of said raw materials and to make predictions of fermentation yields for a specific combination of lots.
  • NIR NIR emerges in 1960s into the analytical world, with the work of Karl Norris of the US Department of Agriculture (Siesler et al, 2002). In the electromagnetic spectrum, the NIR region is located in between Mid-Infrared and Visible. In a range of wavenumber 4,000-14,000 cm -1 (respectively wavelength 700-2,500 nm), the absorption radiation of overtone and combination bands of covalent bonds such as N-H, O-H and C-H of organic molecules ( Figure 21 ).
  • Fluorescence spectroscopy uses irradiation at a certain wavelength to excite molecules, which will then emit radiation of a different wavelength. This technique is often used for studying the structure and function of macromolecules, especially protein interactions. Tentative assignment of fluorescence characteristics of chromophores found in proteins and nucleic acids is presented in the following Table.
  • the major problems are related to the Raman and Rayleigh scattering, which are caused by deviations of the light that are not related to the fluorescence properties of the sample. Since the wavelength regions affected by scattering are known, the intensities measured in such particular regions can be removed replacing it by interpolated points.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
EP11778872.9A 2010-11-05 2011-11-03 Spectroscopic finger-printing of raw material Active EP2635892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11778872.9A EP2635892B1 (en) 2010-11-05 2011-11-03 Spectroscopic finger-printing of raw material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10190193 2010-11-05
PCT/EP2011/069267 WO2012059520A1 (en) 2010-11-05 2011-11-03 Spectroscopic finger-printing of raw materials
EP11778872.9A EP2635892B1 (en) 2010-11-05 2011-11-03 Spectroscopic finger-printing of raw material

Publications (2)

Publication Number Publication Date
EP2635892A1 EP2635892A1 (en) 2013-09-11
EP2635892B1 true EP2635892B1 (en) 2014-08-27

Family

ID=43734824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11778872.9A Active EP2635892B1 (en) 2010-11-05 2011-11-03 Spectroscopic finger-printing of raw material

Country Status (12)

Country Link
US (2) US20140032127A1 (ja)
EP (1) EP2635892B1 (ja)
JP (1) JP5683713B2 (ja)
KR (1) KR101507252B1 (ja)
CN (1) CN103201616B (ja)
BR (1) BR112013010993B1 (ja)
CA (1) CA2815612C (ja)
ES (1) ES2506390T3 (ja)
HK (1) HK1187110A1 (ja)
MX (1) MX341795B (ja)
RU (1) RU2593005C2 (ja)
WO (1) WO2012059520A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998294B (zh) * 2012-12-20 2014-10-22 中国环境科学研究院 一种三维光谱数据校正方法
CN103499552A (zh) * 2013-10-23 2014-01-08 天津工业大学 一种快速、智能的废旧塑料分类方法
KR20160103075A (ko) * 2013-12-27 2016-08-31 에프. 호프만-라 로슈 아게 합성 멀티컴포넌트 생명공학적 및 화학적 프로세스 샘플들을 준비하기 위한 방법 및 시스템
SG11201605146VA (en) * 2013-12-30 2016-07-28 Baxalta GmbH A method of predicting a performance characteristic of a plant or yeast hydrolysate and its use
CN105917722B (zh) * 2014-01-22 2019-12-13 瑞典爱立信有限公司 无线通信网络中扩展信令的方法和装置
CN105424634A (zh) * 2015-10-29 2016-03-23 中国计量学院 一种基于光纤耦合紫外光源的水质cod检测器及其预测模型优化系统
US10854313B2 (en) * 2016-01-21 2020-12-01 Protein Dynamic Solutions, Inc. Method and system for spectral data analysis
CN107941745A (zh) * 2017-11-16 2018-04-20 赣州市检验检疫科学技术研究院 基于近红外光谱鉴别染色橙的方法
CN108120696A (zh) * 2017-12-18 2018-06-05 福建中医药大学 一种不同栽培方式的大圆叶金线莲的鉴别方法
CN108169167A (zh) * 2017-12-18 2018-06-15 福建中医药大学 一种不同栽培方式的台湾金线莲的鉴别方法
CN108132224A (zh) * 2017-12-18 2018-06-08 福建中医药大学 一种不同栽培方式的金线莲的鉴别方法
CN108169166A (zh) * 2017-12-18 2018-06-15 福建中医药大学 一种不同栽培方式的尖叶金线莲的鉴别方法
CN108152245A (zh) * 2017-12-18 2018-06-12 福建中医药大学 一种金线莲及其混伪品的鉴别方法
CN108132223A (zh) * 2017-12-18 2018-06-08 福建中医药大学 一种不同栽培方式的红霞金线莲的鉴别方法
GB201806752D0 (en) * 2018-04-25 2018-06-06 Ge Healthcare Bioprocess R&D Ab Method in bioprocess system
JP7190103B2 (ja) * 2018-09-03 2022-12-15 株式会社サタケ 米の産地判別方法
KR20210022319A (ko) 2019-08-20 2021-03-03 삼성전자주식회사 생체정보 추정 장치 및 방법
WO2021049044A1 (ja) * 2019-09-13 2021-03-18 エピストラ株式会社 培地製造方法、培地製造パラメータ決定方法、培地、およびプログラム
FR3103900B1 (fr) * 2019-11-29 2024-07-19 Univ Du Mans Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission
JP6977977B1 (ja) * 2020-06-24 2021-12-08 エピストラ株式会社 培地の異常検知装置及び異常検知方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498875A (en) * 1994-08-17 1996-03-12 Beckman Instruments, Inc. Signal processing for chemical analysis of samples
US7715002B2 (en) 2007-01-23 2010-05-11 Bionorica Ag Method for classifying scientific materials such as silicate materials, polymer materials and/or nanomaterials
WO2008146056A1 (en) 2007-05-30 2008-12-04 Ruder Boskovic Institute A method for determining importance of fractions of biological mixtures separated by a chromatographic method for discrimination of cell or tissue physiological conditions
WO2009061326A1 (en) 2007-11-09 2009-05-14 Wyeth Evaluation of chromatographic materials
JP2011508320A (ja) 2007-12-21 2011-03-10 エム ケー エス インストルメンツ インコーポレーテッド 部分的最小二乗分析(pls−ツリー)を用いたデータの階層編成
EP2128599A1 (en) 2008-05-28 2009-12-02 Université de Liège Analysing spectral data for the selection of a calibration model
US7983874B2 (en) * 2008-06-10 2011-07-19 National University Of Ireland, Galway Similarity index: a rapid classification method for multivariate data arrays
MX2011004106A (es) * 2008-10-31 2011-08-15 Bio Merieux Inc Métodos para la separación, caracterización, y/o identificación de microorganismos usando espectroscopia raman.
EP2364447B1 (en) * 2008-10-31 2019-06-12 Biomerieux, Inc Method for the identification of microorganisms
CN101846617A (zh) * 2009-12-29 2010-09-29 中国科学院地球化学研究所 一种基于光谱分析的培养基中蔗糖含量的无菌检测方法

Also Published As

Publication number Publication date
CN103201616B (zh) 2015-11-25
MX2013004882A (es) 2013-07-02
JP5683713B2 (ja) 2015-03-11
CA2815612A1 (en) 2012-05-10
EP2635892A1 (en) 2013-09-11
US20140032127A1 (en) 2014-01-30
RU2013123903A (ru) 2014-12-10
MX341795B (es) 2016-09-02
US10816477B2 (en) 2020-10-27
ES2506390T3 (es) 2014-10-13
KR101507252B1 (ko) 2015-03-30
US20180202938A1 (en) 2018-07-19
RU2593005C2 (ru) 2016-07-27
BR112013010993A2 (pt) 2016-08-23
JP2013544353A (ja) 2013-12-12
WO2012059520A1 (en) 2012-05-10
CA2815612C (en) 2019-01-08
BR112013010993B1 (pt) 2020-02-18
HK1187110A1 (zh) 2014-03-28
CN103201616A (zh) 2013-07-10
KR20130079571A (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
US10816477B2 (en) Infrared and fluorescence spectroscopic finger-printing of raw materials for use in the cultivation of a mammalian cell expressing a protein of interest
Rowland‐Jones et al. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors
Scarff et al. Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends
Jiang et al. Comparison of algorithms for wavelength variables selection from near-infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations
Jose et al. Predicting Mab product yields from cultivation media components, using near‐infrared and 2D‐fluorescence spectroscopies
McGovern et al. Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production
Xiaobo et al. Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves
Guo et al. Extended multiplicative signal correction based model transfer for Raman spectroscopy in biological applications
Abu-Absi et al. Application of spectroscopic methods for monitoring of bioprocesses and the implications for the manufacture of biologics
Jiang et al. Monitoring alcohol concentration and residual glucose in solid state fermentation of ethanol using FT-NIR spectroscopy and L1-PLS regression
Hakemeyer et al. Near‐infrared and two‐dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: aged media decreases cell growth
Lin et al. Rice freshness identification based on visible near-infrared spectroscopy and colorimetric sensor array
McGovern et al. Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to α2-interferon production
Yan et al. Qualitative and quantitative analysis of Lanmaoa asiatica in different storage years based on FT-NIR combined with chemometrics
Wang et al. Intelligent detection of hard seeds of snap bean based on hyperspectral imaging
Li et al. A feasibility study on quantitative analysis of low concentration methanol by FT-NIR spectroscopy and aquaphotomics
Tamburini et al. Quantitative determination of Fusarium proliferatum concentration in intact garlic cloves using near-infrared spectroscopy
Banerjee et al. NIR spectroscopy—CNN‐enabled chemometrics for multianalyte monitoring in microbial fermentation
Huang et al. Nondestructive Detection of Sunflower Seed Vigor and Moisture Content Based on Hyperspectral Imaging and Chemometrics
Li et al. Screening soy hydrolysates for the production of a recombinant therapeutic protein in commercial cell line by combined approach of near-infrared spectroscopy and chemometrics
Lu et al. Prediction performance optimization of different resolution and spectral band ranges for characterizing coco-peat substrate available nitrogen
Wang et al. The combination of near-infrared spectroscopy with chemometrics in achieving rapid and accurate determination of rice mildew
Foroozani et al. Classification of wheat varieties by PLS-DA and LDA models and investigation of the spatial distribution of protein content using NIR spectroscopy.
Sampaio et al. Comparative analysis of different transformed Saccharomyces cerevisiae strains based on high-throughput Fourier transform infrared spectroscopy
Huang Calibration Transfer Methods

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/64 20060101ALI20140207BHEP

Ipc: G01N 21/35 20140101AFI20140207BHEP

INTG Intention to grant announced

Effective date: 20140320

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WERZ, SILKE

Inventor name: HAKEMEYER, CHRISTIAN

Inventor name: CARDOSO-MENEZES, JOSE

Inventor name: STRAUSS, ULRIKE

Inventor name: JOSE, GLEDSON EMIDIO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 684748

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011009509

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2506390

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 684748

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140827

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011009509

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150528

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111103

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211102

Year of fee payment: 11

Ref country code: ES

Payment date: 20211210

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211115

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231020

Year of fee payment: 13

Ref country code: DE

Payment date: 20231019

Year of fee payment: 13

Ref country code: CH

Payment date: 20231201

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103