EP2633568A1 - Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements - Google Patents

Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements

Info

Publication number
EP2633568A1
EP2633568A1 EP11772918.6A EP11772918A EP2633568A1 EP 2633568 A1 EP2633568 A1 EP 2633568A1 EP 11772918 A EP11772918 A EP 11772918A EP 2633568 A1 EP2633568 A1 EP 2633568A1
Authority
EP
European Patent Office
Prior art keywords
electrode
layer
dielectric layer
electronic component
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP11772918.6A
Other languages
German (de)
English (en)
French (fr)
Inventor
Daniel Steffen Setz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Oled GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP2633568A1 publication Critical patent/EP2633568A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the invention relates to an electronic component and a method for producing an electronic component.
  • OLED organic light-emitting diode
  • the electronic component may have a first electrode; an organic functional layer structure on or above the first electrode; a second electrode on or over the organic functional layer structure; a dielectric layer on or over the second
  • Electrode and a reflective layer structure on or over the dielectric layer.
  • the dielectric layer provided according to various embodiments instead of the second organic layer usually provided in a conventional coupled microcavity OLED enables a more accurate application of the dielectric layer with respect to the thickness of the dielectric layer
  • the applied dielectric layer is subject to various conditions
  • a coupled microcavity OLED is illustratively provided in which only one organic functional layer structure is provided and this is coupled to a dielectric layer, for example optically coupled, so that the
  • Coupling effect is achieved to increase the color rendering index.
  • Coupled- Microcavity OLED it is usually necessary, the formed Coupled Microcavity OLED even by additional measures, such as on the Coupled Microcavity OLED additionally applied layers, such as ALD layers (ALD: Atomlagenepitaxieabscheidung, English: Atomic Layer Deposition ) or a cavity glass encapsulation with a so-called getter to protect against oxygen and water.
  • ALD layers Atomlagenepitaxieabscheidung, English: Atomic Layer Deposition
  • getter a cavity glass encapsulation with a so-called getter to protect against oxygen and water.
  • organic functional layer structure can not be penetrated by these substances.
  • the second electrode may be configured such that the dielectric layer is optically coupled to the organic functional layer structure.
  • the second electrode may be semitransparent
  • the dielectric layer is a layer which is transparent to radiation at least in a partial wavelength range from 380 nm to 780 nm
  • the dielectric layer may be a layer that
  • CVD chemical vapor deposition method
  • PVD physical vapor deposition
  • CVD method can be used in various embodiments, a plasma-assisted chemical deposition method from the gas phase (plasma enhanced chemical vapor deposition, PE-CVD).
  • PE-CVD plasma enhanced chemical vapor deposition
  • the dielectric layer can be reduced as compared to a plasma-less CVD process.
  • This may be advantageous, for example, if the element, for example the light-emitting electronic component to be formed, is connected to a
  • the maximum temperature may be, for example, about 120 ° C in a to be formed light-emitting electronic component according to various embodiments, so that the temperature at which, for example, the dielectric layer is applied may be less than or equal to 120 ° C and, for example, less than or equal to 80 ° C. ,
  • the dielectric layer can be deposited by means of a physical vapor deposition (PVD) process, for example by sputtering, ion assisted deposition or thermal evaporation.
  • PVD physical vapor deposition
  • the dielectric is the dielectric
  • an atomic layer epitaxy layer in other words, a layer that has been applied by means of an atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • An atomic layer epitaxy method can be understood as meaning a method in which, compared with another CVD method, first a first of at least two gaseous Starting compounds is supplied to a volume in which the element on the surface of which the layer is to be applied by the ALD method is provided.
  • the first starting compound can adsorb on the surface, for example regularly or irregularly (and then without long-range order). After a complete or near
  • the starting compound may be a second of the at least two
  • the surface temperature to be provided may depend on the starting materials, in other words on the first starting compound and the second starting compound. Repetition of these processes can thus successively a plurality of monolayers are applied to each other, creating a very accurate (reproducible) setting the desired
  • Layer thickness of applied by means of an ALD method layer is made possible.
  • the dielectric layer may have a layer thickness in a range of about 50 nm to about 2 ⁇ ,
  • the dielectric layer may be a material or a material
  • the dielectric layer may be formed, for example, of a single layer of one or more materials Materials or a plurality of superimposed
  • any suitable material / materials may be used which can or may be applied with a sufficiently high accuracy in terms of the achievable layer thickness variation, or can be deposited, for example, or can.
  • Layer thickness control can be achieved when using a
  • Atomic layer epitaxy method for applying the dielectric layer for which reason, for example, any materials which can be deposited by means of an atomic layer epitaxy process can be used, which is given for the abovementioned materials.
  • the first output connection and / or the second output connection for the dielectric layer may be or may contain organometallic compounds,
  • trimethyl metal compounds and oxygen-containing compounds for example, trimethyl metal compounds and oxygen-containing compounds.
  • the dielectric layer comprising Al 2 O 3
  • Trimethylaluminum be provided as a first starting compound and water (H2O) or N2O as a second starting compound.
  • water (H2O) or N2O may be provided as the first starting compound.
  • a plasmalose ALD method As a variant of an ALD method, a plasmalose ALD method
  • the reaction of the above-mentioned starting compounds is initiated only on the temperature of the surface to be coated.
  • Embodiments be greater than or equal to 60 ° C and / or less than or equal to 120 ° C.
  • a plasma enhanced atomic layer deposition (ALD) method may be provided in which the second output connection is supplied with simultaneous generation of a plasma, whereby it is like a PECVD method it may be possible for the second starting compound to be excited.
  • ALD plasma enhanced atomic layer deposition
  • the monolayers can, for example, at a temperature of less than 120 ° C and, for example, less than or equal to 80 ° C.
  • a method is produced for producing an electronic component, for example a light-emitting electronic component,
  • the method may include forming a first electrode; forming an organic functional layer structure on or above the first electrode; forming a second electrode on or over the organic functional layer structure; a making a
  • dielectric layer on or over the second electrode; and forming a reflective layer structure on or over the dielectric layer.
  • the second electrode may be formed such that the dielectric layer with the organic functional
  • Layer structure is optically coupled. Furthermore, the second electrode may be semitransparent
  • Layer structure emitted radiation can be formed.
  • the dielectric layer may be formed as a layer which is transparent to radiation at least in a partial region of the wavelength range from 380 nm to 780 nm.
  • the dielectric layer may be formed by one of the following methods:
  • CVD chemical vapor deposition method
  • PVD physical vapor deposition
  • the dielectric layer by means of a
  • Atomic layer epitaxy process are applied.
  • the dielectric layer can be formed with a layer thickness in a range from about 50 nm to about 2 ⁇ m, for example in a range from about 70 nm to about 200 nm.
  • the dielectric layer may be formed from a material or mixture of materials or a stack of layers of materials selected from a group consisting of: Al 2 O 3; ZrC> 2; T1O2; Ta205; S1O2; ZnO; and / or HfO2.
  • Show it 1 shows a light-emitting electronic component according to an embodiment
  • Fig. 2 is a flowchart in which a method for
  • FIG. 1 shows an electronic component 100, for example a light-emitting electronic component 100, according to various embodiments.
  • the electronic component 100 may be in various aspects
  • Embodiments as an organic light emitting diode (OLED), as a
  • OPD organic photodiode
  • OSC organic solar cell
  • OPT organic thin film transistor
  • Device 100 may be part of an integrated circuit in various embodiments. Furthermore, a plurality of (for example light-emitting)
  • Device 100 may include a substrate 102.
  • the substrate 102 may be used, for example, as a support member for
  • the substrate 102 may include or be formed from glass, quartz, and / or a semiconductor material, or any other suitable material.
  • the substrate 102 may be a
  • the plastic may be one or more polyolefins (eg, high or low density polyethylene (PE) or
  • the plastic may be polyvinyl chloride (PVC), polystyrene (PS), polyester and / or polycarbonate (PC),
  • PVC polyvinyl chloride
  • PS polystyrene
  • PC polycarbonate
  • the substrate 102 may comprise, for example, a metal foil, for example an aluminum foil, a stainless steel foil, a copper foil or a combination or a stack of layers thereon.
  • the substrate 102 may include one or more of the above materials.
  • the substrate 102 may be transparent, partially transparent or even opaque.
  • the first electrode 104 (also referred to below as lower electrode 104) may consist of a
  • electrically conductive material or be formed, such as from a metal or a conductive transparent oxide (TCO) or a layer stack of multiple layers thereof or different metal or metals and / or the same or different TCOs.
  • Transparent conductive oxides are transparent, conductive materials, for example metal oxides, such as zinc oxide, tin oxide,
  • binary metal oxygen compounds such as ZnO, SnO 2 or ⁇ 2 O 3
  • ternary metal oxygen compounds such as Zn 2 SnO 4, Cd SnO 3, Zn SnO 3, Mgln 2 O 4, GalnO 3, Zn 2 ln 20S or In 4 Sn 3 O 2 or mixtures of different transparent conductive oxides also belong to the group of TCOs.
  • the TCOs do not necessarily correspond to a stoichiometric composition and may also be p-doped or n-doped.
  • the first electrode 104 can be used as an anode, ie as a hole-injecting material
  • Electrode 104 may be formed by a stack of layers of a combination of a layer of a metal on a layer of a TCO, or vice versa.
  • An example is one
  • ITO indium tin oxide
  • the first electrode 104 may include a metal (eg, Ag, Pt, Au, Mg) or a metal Metal alloy of the described materials (for example, an AgMg alloy) have.
  • a metal eg, Ag, Pt, Au, Mg
  • a metal Metal alloy of the described materials for example, an AgMg alloy
  • the first electrode 104 may comprise AlZnO or similar materials.
  • Electrode 104 have a metal which can serve, for example, as a cathode material, that is, as electron-iversdes material.
  • the cathode material may include, for example, Al, Ba, In, Ag, Au, Mg, Ca or Li and
  • Device 100 is configured as a bottom emitter, the first electrode 104, for example, a layer thickness
  • electrode 104 may have a layer thickness of greater than or equal to about 10 nm, for example one
  • the first electrode 104 may have a layer thickness in a range of about 10 nm to about 25 nm, for example a layer thickness in a range of about 10 nm to about 18 nm,
  • the first electrode 104 may, for example, have a layer thickness of greater than or equal to approximately 40 nm,
  • a layer thickness of greater than or equal to about 50 nm for example, a layer thickness of greater than or equal to about 50 nm.
  • organic functional layer structure 106 that is or will be deposited on or over the first electrode 104.
  • the organic functional layer structure 106 may include one or more emitter layers 108, for example, with
  • fluorescent and / or phosphorescent emitters and one or more hole-line layers 110.
  • Emitter layer (s) 108 may include organic or organometallic compounds such as derivatives of polyfluorene, polythiophene and polyphenylene (e.g., 2- or 2-, 5-substituted poly-p-phenylenevinylene) as well as
  • Metal complexes for example iridium complexes such as blue phosphorescent FIrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium III), green
  • the emitter materials may be suitably embedded in a matrix material.
  • electronic component 100 may for example be selected so that the electronic component 100th
  • the emitter layer (s) 108 may have a plurality of emitter materials of different colors (for example blue and yellow or blue, green and red),
  • the emitter layer (s) 108 may be constructed of multiple sublayers, such as a blue fluorescent emitter layer 108 or blue phosphorescent
  • Emitter layer 108 a green phosphorescent
  • Emitter layer 108 By mixing the different colors, the emission of light with a white
  • Color impression result it can also be provided to arrange a converter material in the beam path of the primary emission generated by these layers, which at least partially absorbs the primary radiation and a
  • the organic functional layer structure 106 may generally include one or more functional layers.
  • the one or more functional layers may or may comprise organic polymers, organic oligomers, organic monomers, organic small, non-polymeric molecules ("small molecules") or combination of these materials
  • Layer structure 106 one or more functional
  • the hole transport layer 110 for example, tertiary amines, Carbazoderivate, conductive polyaniline or Polythylendioxythiophen can be used.
  • the one or more functional layers may or may not be embodied as an electroluminescent layer.
  • Hole transport layer 110 may be deposited on or over the first electrode 104, for example, deposited, and the emitter layer 108 may be on or above the
  • Hole transport layer 110 applied for example
  • the electronic component 100 may generally comprise further organic functional layers which serve to further improve the functionality and thus the efficiency of the electronic component 100.
  • the light-emitting electronic component 100 can be embodied as a "bottom emitter” and / or “top emitter”.
  • the organic functional layer structure 106 may have a layer thickness
  • the organic functional has a maximum of about 1.5 ⁇ , for example, a layer thickness of at most about 1.2 ⁇ , for example, a layer thickness of at most about 1 ⁇ , for example, a layer thickness of about 800 nm, for example, a maximum thickness of about 500 nm, for example, a layer thickness of at most about 400 nm, for example, a layer thickness of at most about 300 nm.
  • the organic functional has a maximum of about 1.5 ⁇ , for example, a layer thickness of at most about 1.2 ⁇ , for example, a layer thickness of at most about 1 ⁇ , for example, a layer thickness of about 800 nm, for example, a maximum thickness of about 500 nm, for example, a layer thickness of at most about 400 nm, for example, a layer thickness of at most about 300 nm.
  • the organic functional for example, a layer thickness of at most about 1.2 ⁇ , for example, a layer thickness of at most about 1 ⁇ , for example, a layer thickness of
  • Layer structure 106 for example, a stack of
  • each OLED may have a layer thickness of a maximum of about 1.5 ⁇ , for example a
  • Layer thickness of a maximum of about 1.2 ⁇ for example, a layer thickness of at most about 1 ⁇ , for example, a layer thickness of about 800 nm, for example, a layer thickness of about 500 nm, for example, a layer thickness of about 400 nm, for example a maximum Layer thickness of a maximum of about 300 nm.
  • Layer structure 106 for example, have a stack of three or four directly superimposed OLEDs, in which case, for example, the organic functional layer structure 106 may have a layer thickness of at most about 3 ⁇ .
  • a second electrode 112 may be applied.
  • the second electrode 112 may be configured such that a dielectric layer 114 deposited on or above the second electrode 112 is optically coupled to the organic functional layer structure 106.
  • Electrode 112 may be semitransparent with respect to the radiation emitted by organic functional layer structure 106.
  • the second electrode 112 may have a layer thickness such that a desired compromise is selected between a sufficient coupling strength between the organic functional layer structure 106 and the dielectric layer 114 (the greater the layer thickness of the second electrode 112, the lower the coupling strength ), and the achievable efficiency and thus the color rendering index of the light-emitting device 100 (the larger the
  • the second electrode 112 may include or be formed from the same materials as the first electrode 104, with metals being particularly suitable in various embodiments.
  • electrode 112 may have a layer thickness of less than or equal to about 50 nm, for example one
  • a layer thickness of less than or equal about 40 nm for example a layer thickness of less than or equal to about 35 nm, for example a layer thickness of less than or equal to about 30 nm, for example a layer thickness of less than or equal to about 25 nm,
  • a layer thickness of less than or equal to about 20 nm for example, a layer thickness of less than or equal to about 15 nm, for example, a layer thickness of less than or equal to about 10 nm.
  • the second electrode 112 On or above the second electrode 112, the
  • Dielectric layer 114 (hereinafter also referred to as (transparent) intermediate layer) or be applied.
  • the dielectric layer 114 may be a layer that is responsible for radiation at least in a portion of the
  • Wavelength range from 380 nm to 780 nm is transparent.
  • a light-emitting monochromatic or limited in the emission spectrum is transparent.
  • the dielectric layer 114 for radiation is at least in a partial region of the wavelength range of the desired monochrome light or for the limited
  • the dielectric layer 114 is deposited by an ALD method, thereby forming the dielectric layer 114 as an atomic layer epitaxial layer.
  • the dielectric layer 114 is deposited with a layer thickness in a range of about 50 nm to about 2 ⁇ m, for example in a range of about 70 nm to about 200 nm, for example in a range of about 100 nm to about 120 nm. At these layer thicknesses an encapsulation effect is ensured and the thickness
  • the dielectric layer 114 may be a material or mixture of materials or a stack of Layers of materials such as S1O2; S13N4; SiON (these materials are deposited, for example, by a CVD method); Al2O3; Zr02; T1O2; a205; S1O2; ZnO; and / or Hf02 (these materials are
  • deposited by an ALD method for example, deposited by an ALD method; or a combination of these materials.
  • the dielectric layer 114 may be a
  • Reflective layer structure 116 may be or be applied.
  • the reflective layer structure 116 may be made of the same
  • the layer thickness can be selected such that in the event that the light-emitting electronic component 100 is configured as a top emitter, the reflective layer structure 116, for example, a layer thickness
  • nm may be less than or equal to about 25 nm, for example, a layer thickness of less than or equal to about 20 nm, for example, a layer thickness of less than or equal to about 18 nm
  • electrode 104 may have a layer thickness of greater than or equal to about 10 nm, for example one
  • the reflective layer structure 116 may have a layer thickness in one
  • Range of about 10 nm to about 25 nm for example, a layer thickness in a range of about 10 nm to about 18 nm, for example, a layer thickness in a range of about 15 nm to about 18 nm.
  • Device 100 is configured as a bottom emitter, then the reflective layer structure 116, for example, a
  • the reflective layer structure 116 may include one or more mirrors. If the reflection layer structure 116 has a plurality of mirrors, then the respective mirrors are separated from one another by means of a respective dielectric layer.
  • the light-emitting electronic component 100 shown in FIG. 1 is designed as a bottom emitter, as symbolized by light rays 118.
  • the dielectric layer 114 by means of an ALD method with a very precisely adjustable
  • the ALD method has a significantly lower layer thickness variation than a vapor deposition of organic materials, whereby according to various
  • Coupled Microcavity OLEDs is enabled.
  • this results in the possibility of layer thickness variations of the organic layers on the
  • Adjusting the layer thickness, for example, the dielectric layer 114 compensate, which the yield in
  • a lighting device or a display device can increase large-scale facilities.
  • a lighting device or a display device can increase large-scale facilities.
  • Display are provided with a plurality or
  • Lighting device or the display device may have a large area formed active luminous surface.
  • “Large area” may mean in various embodiments that the luminous area has an area greater than or equal to a few square millimeters, for example, greater than or equal to a few square centimeters, for example, greater than or equal to a few Quadratdezimetern.
  • FIG. 2 shows a flowchart 200 in which a method for producing a light-emitting electronic
  • Component is shown according to one embodiment.
  • a first electrode is formed and an organic functional layer structure is formed in 204 on or over the first electrode. Furthermore, in 206, a second electrode on or above the organic functional
  • Layer structure is formed, and in 208 becomes a
  • a reflective layer structure is formed on or over the dielectric layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
EP11772918.6A 2010-10-27 2011-10-10 Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements Ceased EP2633568A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010042982A DE102010042982A1 (de) 2010-10-27 2010-10-27 Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements
PCT/EP2011/067643 WO2012055694A1 (de) 2010-10-27 2011-10-10 Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements

Publications (1)

Publication Number Publication Date
EP2633568A1 true EP2633568A1 (de) 2013-09-04

Family

ID=45531621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11772918.6A Ceased EP2633568A1 (de) 2010-10-27 2011-10-10 Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements

Country Status (7)

Country Link
US (1) US20130270536A1 (ru)
EP (1) EP2633568A1 (ru)
JP (1) JP2013545230A (ru)
KR (1) KR20130086052A (ru)
CN (1) CN103210518A (ru)
DE (1) DE102010042982A1 (ru)
WO (1) WO2012055694A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545449A (zh) * 2012-07-10 2014-01-29 群康科技(深圳)有限公司 有机发光二极管、包含其的显示面板及显示设备
CN109427988B (zh) * 2017-08-21 2021-02-12 上海和辉光电股份有限公司 显示面板及显示装置
CN108365115B (zh) * 2017-08-29 2019-07-19 广东聚华印刷显示技术有限公司 电致发光器件、显示面板及其制作方法
JP6816780B2 (ja) * 2019-01-09 2021-01-20 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、ヘッドマウントディスプレイおよび電子機器
CN111628102A (zh) * 2020-05-18 2020-09-04 武汉华星光电半导体显示技术有限公司 一种微腔电极结构及有机电致发光器件
CN116487401A (zh) * 2022-01-17 2023-07-25 华为技术有限公司 显示面板和电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403939A1 (en) * 2002-09-30 2004-03-31 Kabushiki Kaisha Toyota Jidoshokki Light-emitting device, display and lighting unit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2277654A1 (en) * 1999-07-19 2001-01-19 Luxell Technologies Inc. Electroluminescent display packaging and method therefor
AU2003236752A1 (en) * 2002-06-11 2003-12-22 Hofstra, Peter, G. Oled display with contrast enhancing interference members
JP4155569B2 (ja) * 2003-08-27 2008-09-24 株式会社日立製作所 高効率有機発光素子
US20050093437A1 (en) * 2003-10-31 2005-05-05 Ouyang Michael X. OLED structures with strain relief, antireflection and barrier layers
TWI231723B (en) * 2004-04-16 2005-04-21 Ind Tech Res Inst Organic electroluminescence display device
JP4363365B2 (ja) * 2004-07-20 2009-11-11 株式会社デンソー カラー有機elディスプレイおよびその製造方法
US20060109397A1 (en) * 2004-11-24 2006-05-25 Organic Lighting Technologies Llc Organic light emitting diode backlight inside LCD
KR100715500B1 (ko) * 2004-11-30 2007-05-07 (주)케이디티 미세공동 유기 발광 소자와 광 여기 발광층을 이용한 광원
US20060197436A1 (en) * 2005-03-01 2006-09-07 Sharp Laboratories Of America, Inc. ZnO nanotip electrode electroluminescence device on silicon substrate
JP2008047340A (ja) * 2006-08-11 2008-02-28 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子
US7728512B2 (en) * 2007-03-02 2010-06-01 Universal Display Corporation Organic light emitting device having an external microcavity
JP5141894B2 (ja) * 2008-04-17 2013-02-13 住友金属鉱山株式会社 誘電体多層膜ミラーとその製造方法
FR2933538B1 (fr) * 2008-07-07 2012-09-21 Commissariat Energie Atomique Dispositif electroluminescent d'affichage, d'eclairage ou de signalisation, et son procede de fabrication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403939A1 (en) * 2002-09-30 2004-03-31 Kabushiki Kaisha Toyota Jidoshokki Light-emitting device, display and lighting unit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICOLA PINNA AND MATO KNEZ: "Atom Layer Deposition of Nanostructured Materials", 1 January 2012, WILEY-WCH, Singapore, pages: 1. Introduction - 5. Conclusions *
See also references of WO2012055694A1 *

Also Published As

Publication number Publication date
KR20130086052A (ko) 2013-07-30
DE102010042982A1 (de) 2012-05-03
JP2013545230A (ja) 2013-12-19
US20130270536A1 (en) 2013-10-17
WO2012055694A1 (de) 2012-05-03
CN103210518A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2013135765A1 (de) Elektronisches bauelement mit feuchtigkeit-barriereschicht
WO2013131826A1 (de) Optoelektronisches bauelement
WO2013139660A1 (de) Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
WO2013007443A1 (de) Lichtemittierende bauelemente und verfahren zum herstellen eines lichtemittierenden bauelements
WO2014048971A1 (de) Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelementes
DE102011084437A1 (de) Lichtemittierendes Bauelement und Verfahren zum Herstellen eines lichtemittierenden Bauelements
DE102011086689B4 (de) Verfahren zum Herstellen eines opto-elektronischen Bauelements
EP2633568A1 (de) Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements
WO2013007485A1 (de) Organisches lichtemittierendes bauelement und verfahren zum herstellen eines organischen lichtemittierenden bauelements
DE102014102565B4 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
EP2715824A1 (de) Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
WO2014023781A1 (de) Verfahren zum herstellen eines optoelektronischen bauelementes und verfahren zum strukturieren eines organischen, optoelektronischen bauelementes
DE102012109218B4 (de) Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
WO2015032810A1 (de) Optoelektronisches bauelement, optoelektronische bauelementevorrichtung und verfahren zum herstellen eines optoelektronischen bauelementes
WO2013007446A1 (de) Lichtemittierendes bauelement und verfahren zum herstellen eines lichtemittierenden bauelements
DE102012207229B4 (de) Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements
WO2013007444A1 (de) Lichtemittierendes bauelement und verfahren zum herstellen eines lichtemittierenden bauelements
WO2015110428A1 (de) Optoelektronische bauelemente und verfahren zum herstellen optoelektronischer bauelemente
DE102011076733B4 (de) Optoelektronisches Bauelement, Verfahren zum Herstellen eines optoelektronischen Bauelements, Verwendung einer Glasfritte zur Kantenpassivierung einer Elektrode eines optoelektronischen Bauelements, und Verwendung einer Glasfritte zur Passivierung einer oder mehrerer metallischer Busleitungen eines optoelektronischen Bauelements
DE102013106942A1 (de) Elektromagnetische Strahlung emittierendes Bauelement und Verfahren zum Herstellen eines elektromagnetische Strahlung emittierenden Bauelements
DE102013104604A1 (de) Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
WO2012084630A1 (de) Verfahren zum herstellen eines optoelektronischen bauelements und optoelektronisches bauelement
DE102014111484A1 (de) Verfahren zum Herstellen eines organisch optoelektronischen Bauelements
DE102012109142B4 (de) Verfahren zum Herstellen eines passiven elektronischen Bauelements und Verfahren zum Herstellen einer optoelektronischen Baugruppe
WO2015124729A1 (de) Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelementes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SETZ, DANIEL STEFFEN

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OLED GMBH

17Q First examination report despatched

Effective date: 20151211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190826