EP2625300A2 - Alliage de cuivre - Google Patents

Alliage de cuivre

Info

Publication number
EP2625300A2
EP2625300A2 EP11817508.2A EP11817508A EP2625300A2 EP 2625300 A2 EP2625300 A2 EP 2625300A2 EP 11817508 A EP11817508 A EP 11817508A EP 2625300 A2 EP2625300 A2 EP 2625300A2
Authority
EP
European Patent Office
Prior art keywords
copper
weight
alloy according
based alloy
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11817508.2A
Other languages
German (de)
English (en)
Other versions
EP2625300B1 (fr
Inventor
Thomas Helmenkamp
Dirk Rode
Uwe Quadfasel
Hark Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME Special Products GmbH and Co KG
Original Assignee
KME Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KME Germany GmbH filed Critical KME Germany GmbH
Priority to PL11817508T priority Critical patent/PL2625300T3/pl
Publication of EP2625300A2 publication Critical patent/EP2625300A2/fr
Application granted granted Critical
Publication of EP2625300B1 publication Critical patent/EP2625300B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent

Definitions

  • the invention relates to a copper alloy, in particular a lead and tellur990 copper alloy, as well as semi-finished products of such a copper alloy.
  • copper Due to its natural qualities, copper is an indispensable material in many areas of industry and technology. Particularly where materials of the highest electrical and thermal conductivity are required, copper and copper alloys are of great importance. However, the use of pure copper is difficult then if parts are to be machined. The high toughness of copper, which is particularly valued in chipless shaping, proves to be a disadvantageous material property here. Essential for this is the long chip formation, which inhibits the workflow during drilling and turning and leads to heavy wear of the tool cutting. On CNC-controlled, but also on conventional automatic lathes, pure copper can normally only be processed or processed with uneconomically high expenditure of time, personnel and tools.
  • lead and bismuth act in metallic form, while sulfur and tellurium act as intermetallic phase in the form of copper sulfide ⁇ CU 2 S) or copper telluride (Cu 2 e).
  • copper sulfide ⁇ CU 2 S copper sulfide
  • Cu 2 e copper telluride
  • the low melting points of lead and bismuth limit hot workability, e.g. B. by extrusion, considerably, so that an economic processability on conventional manufacturing facilities not, or is given only limited.
  • the invention is therefore based on the prior art, based on the object to show a copper alloy, which has at least the same or better machinability and cold and hot workability over the known copper alloys CuTeP and CuSP.
  • a first solution to this problem is according to the invention in a copper alloy according to claim 1.
  • a copper alloy based on copper with additions of manganese and sulfur as well as accompanying elements which does not require lead or tellurium but has good machinability is proposed.
  • the copper alloy is made of copper containing, as alloying components, 0.05 to 0.80 wt.% Manganese (Mn), 0.10 to 0.80 wt.% Sulfur (S), optionally one or more elements derived from Selected from the group consisting of 0.002 to 0.05% by weight of phosphorus (P), 0.01 to 0.5% by weight of chromium (Cr), 0.01 to 0.5% by weight of aluminum (Al ), 0.01 to 0.5% by weight of magnesium (Mg), together with unavoidable impurities.
  • Mn Manganese
  • S S
  • P phosphorus
  • Cr chromium
  • Al aluminum
  • Mg magnesium
  • the chip breaker in the CuSMn alloy according to the invention is a mixed phase consisting of copper suicide (Cu 2 S) and manganese sulfide (MnS).
  • the manganese content is particularly preferably 0.10 to 0.20% by weight. Also preferred is a sulfur content which is between 0.20 to 0.60 wt .-%.
  • a copper-based alloy according to claim 4. It consists of 0.30 to 1.50% by weight of calcium (Ca), optionally one or more elements selected from the group consisting of 0.005 to 0.05% by weight of manganese (Mn), 0.005 to 0.05% by weight of sulfur (S), 0.002 to 0.05% by weight of phosphorus (P), 0.01 to 0.5% by weight of chromium (Cr), 0.01 to 0.5% by weight % Of aluminum (AI), 0.01 to 0.5% by weight of magnesium (Mg) and the remainder copper (Cu) and unavoidable impurities.
  • Ca calcium
  • Mn manganese
  • S sulfur
  • P 0.002 to 0.05% by weight of phosphorus
  • Cr chromium
  • AI 0.01 to 0.5% by weight of aluminum
  • Mg magnesium
  • Cu copper
  • the calcium content in the aforementioned copper alloy is between 0.5 to 1, 0 wt .-%.
  • Phosphorus serves as a deoxidizer, which binds to the dissolved in the melt free oxygen and thus prevents gas bubbles (hydrogen disease) and oxidation of alloying constituents. Furthermore, phosphorus is added to improve the flow properties of the copper alloy during casting. Manganese refines the grain and improves its machinability in combination with sulfur.
  • Aluminum increases hardness and mating limit without reducing toughness.
  • Aluminum is an element that improves strength, machinability, and wear resistance as well as oxidation resistance at high temperatures.
  • Chromium and magnesium are used to improve the oxidation resistance at high temperatures. Particularly good results are achieved when mixed with aluminum to achieve a synergistic effect.
  • the inventively proposed two copper materials CuSMn and CuCa have a machinability that is equal to or better than CuSP.
  • a machinability index of 90% for CuSMn, 86% for CuCa and 76 and 79% for the reference materials CuTeP and CuSP was determined.
  • the materials have an electrical conductivity of between 35 to 55 MS / m, in particular in a range of 48 to 53 MS / m.
  • inventively proposed copper alloys are free of toxic alloying elements and cost, since the alloying elements are available at low cost. It should also be emphasized that the scraps are reusable.
  • a particular criterion of the two proposed copper alloys is that a processability with conventional manufacturing and processing machines is possible, in particular, the alloys have both a sufficient cold workability and a very good hot workability.
  • CuSMn, CuCa and the reference materials CuTeP and CuSP were melted in a crucible induction furnace and cast into billets in the continuous casting process.
  • the composition of the materials is shown in Table 1.
  • the composition of CuSMn complies with claims 1, 2 and 3
  • CuCa complies with claims 4 and 5.
  • the composition of the reference materials meets the requirements of the EN and ASTM standards for the materials CuTeP and CuSP.
  • the extruded round bolts were extruded without problems to press rods in an extrusion process with a heating temperature> 850 ° C and then pulled with a cross-sectional decrease of 10 to 15% to the final dimension of ⁇ j> 35 mm.
  • Comparative machinability tests were performed in the form of drilling tests on the bars listed in Table 2. Preference has been given to machining by drilling, because the production of small holes (e.g., in burner nozzles) is the most difficult machining shape. If a material shows positive results here, turning or tapping is no problem either.
  • Drilling tool 2 mm ⁇ solid carbide drill with internal cooling
  • Drilling strategy Introduce 45 holes into rod sections at the front:
  • the individual ratings have been added, with a maximum of 80 points are achievable.
  • This overall assessment of machinability should be defined here as a machinability index, with 80 points corresponding to a maximum achievable machinability index of 100%.
  • the new materials CuCa and CuSMn according to the invention achieve the following machinability indices in comparison to the reference materials:
  • the alloying elements aluminum (AI), calcium (Ca), cobalt (Co), chromium (Cr), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni) were investigated in each case.
  • the proven materials CuSP and CuTeP served as comparison samples for the machinability tests. Qualitatively, the chip shape was measured when drilling 3 mm holes and the occurrence of drill breaks.
  • the desired material properties or property combinations were achieved by the addition of manganese, to a proportion of 0.05 to 0.80 wt .-%, preferably 0.10 to 0.30 wt .-%, in particular 0.10 to 0.20% by weight and sulfur in a proportion of 0.10 to 0.80% by weight, in particular 0.20 to 0.60% by weight.
  • the desired material properties are achieved with a copper-based alloy containing calcium as the alloying constituent in a proportion of 0.30 to 1.50% by weight, preferably between 0.5 and 1.0% by weight. contains%.
  • the two copper materials CuSMn and CuCa shown have the aforementioned independent chip-breaking phases, namely the mixed phase comprising Cu 2 S and MnS or the electropatic phase CusCa.
  • the copper alloy CuSMn has a CuTeP-comparable or even slightly better hot and cold formability with the copper alloy CuSP or the copper alloy.
  • composition of the materials according to the invention CuSMn, CuCa and the reference materials CuTeP and CuSP

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Forging (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

L'invention concerne des alliages à base de cuivre contenant des additifs manganèse et soufre et/ou calcium ainsi que des sous-produits. Les alliages de cuivre sont exempts de tellure et de plomb et se caractérisent par une grande conductivité électrique et une bonne usinabilité.
EP11817508.2A 2010-10-08 2011-08-16 Alliage de cuivre Active EP2625300B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11817508T PL2625300T3 (pl) 2010-10-08 2011-08-16 Stop miedzi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010038060 DE102010038060A1 (de) 2010-10-08 2010-10-08 Kupferlegierung
PCT/DE2011/001598 WO2012062248A2 (fr) 2010-10-08 2011-08-16 Alliage de cuivre

Publications (2)

Publication Number Publication Date
EP2625300A2 true EP2625300A2 (fr) 2013-08-14
EP2625300B1 EP2625300B1 (fr) 2016-12-21

Family

ID=45606890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11817508.2A Active EP2625300B1 (fr) 2010-10-08 2011-08-16 Alliage de cuivre

Country Status (8)

Country Link
US (1) US20130183194A1 (fr)
EP (1) EP2625300B1 (fr)
JP (1) JP2013544962A (fr)
BR (1) BR112013008521A2 (fr)
DE (1) DE102010038060A1 (fr)
MX (1) MX2012011929A (fr)
PL (1) PL2625300T3 (fr)
WO (1) WO2012062248A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1450094A1 (sv) 2014-01-30 2015-07-31 Arsenikfri mässing med förbättrad avzinkningshärdighet och skärbarhet
CN115786753B (zh) * 2023-02-02 2023-05-30 泰州泰锦合金材料有限公司 一种含稀土金属的碲铜合金材料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1959509A (en) 1930-06-14 1934-05-22 Lucius Pitkin Inc Copper base alloy
US2027807A (en) 1932-05-13 1936-01-14 Chase Companies Inc Copper base alloy
DE1558707A1 (de) * 1967-09-12 1970-04-23 Ver Deutsche Metallwerke Ag Aus dem Schmelzfluss oder durch Sintern hergestellte Kupferlegierungen mit 0,005 bis 2% Schwefel
JPS5344136B2 (fr) * 1974-12-23 1978-11-27
JPS5675541A (en) * 1979-11-22 1981-06-22 Sumitomo Light Metal Ind Ltd Copper alloy for water or hot water supply piping material and heat exchanger tube material
JPS5760043A (en) * 1980-09-30 1982-04-10 Furukawa Electric Co Ltd:The Electrically conductive copper alloy with corrosion and heat resistance
JPS5852453A (ja) * 1981-09-21 1983-03-28 Furukawa Electric Co Ltd:The 自動車用ラジエ−タ−のフイン用銅合金
JPH06184672A (ja) * 1992-12-18 1994-07-05 Mitsubishi Materials Corp 給水給湯用耐孔食性銅合金配管
US20040115089A1 (en) * 1999-07-02 2004-06-17 Berkenhoff Gmbh. Weld-solder filler
JP2005171311A (ja) * 2003-12-11 2005-06-30 Nissan Motor Co Ltd 熱間鍛造用非調質クランクシャフト鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012062248A2 *

Also Published As

Publication number Publication date
MX2012011929A (es) 2013-02-07
BR112013008521A2 (pt) 2016-07-12
PL2625300T3 (pl) 2017-04-28
EP2625300B1 (fr) 2016-12-21
WO2012062248A2 (fr) 2012-05-18
US20130183194A1 (en) 2013-07-18
JP2013544962A (ja) 2013-12-19
WO2012062248A3 (fr) 2013-07-25
DE102010038060A1 (de) 2012-04-12
WO2012062248A8 (fr) 2012-11-29

Similar Documents

Publication Publication Date Title
EP2761042B1 (fr) Alliage de décolletage en cuivre sans plomb
EP1538232A1 (fr) Acier austenitique résistant à la corrosion
US20230151457A1 (en) Lead-Free Brass Alloy
US20100303667A1 (en) Novel lead-free brass alloy
DE60310316T2 (de) Gegen Schwefelsäure und Nassverfahrensphosphorsäure resistente Ni-Cr-Mo-Cu-Legierungen
WO2014154191A1 (fr) Alliage de cuivre
DE102013014502A1 (de) Kupferlegierung
EP2625300B1 (fr) Alliage de cuivre
DE19539498B4 (de) Verschleißfester Synchronring aus einer Kupferlegierung
DE60201984T2 (de) Werkzeugstahl von hoher zähigkeit, verfahren zum herstellen von teilen aus diesem stahl und so hergestellte teile
WO2021180448A1 (fr) Alliage de coulée continue cuivre-étain-bronze
DE102022002927B4 (de) Knetwerkstoff aus einer Kupfer-Zink- Legierung, Halbzeug aus einemKnetwerkstoff und Verfahren zur Herstellung von solchem Halbzeug
DE3626435A1 (de) Kupfer-zink-legierung
EP1279748B1 (fr) Bronze à l'aluminium avec une résistance à l'usure élevée
WO2023099734A1 (fr) Alliage de coulée continue de cuivre-étain, ébauche ou composant machine usiné ou composant d'engrenage fabriqué à partir de l'alliage de coulée continue
WO2022223672A1 (fr) Alliage de coulée continue à base de cuivre et d'étain
EP4326916A1 (fr) Alliage de coulée continue cuivre-étain
WO2022223687A1 (fr) Alliage de coulée continue à base de cuivre et d'étain
EP4271847A1 (fr) Alliage de coulée continue à base de cuivre et d'étain
WO2021180449A1 (fr) Alliage de coulée continue cuivre-étain
WO2015027976A2 (fr) Alliage de cuivre
EP1584698A1 (fr) Alliage de coulée à base de zinc à résistance mécanique élevée et bonnes propriétés de coulage
WO2018024745A1 (fr) Procédé de fabrication d'un alliage d'acier et alliage d'acier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130508

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20130725

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011011399

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0009000000

Ipc: C22C0009010000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 9/00 20060101ALI20160719BHEP

Ipc: C22C 9/01 20060101AFI20160719BHEP

Ipc: C22C 9/05 20060101ALI20160719BHEP

INTG Intention to grant announced

Effective date: 20160811

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 855594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011399

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170421

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170421

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011399

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011399

Country of ref document: DE

Owner name: CUNOVA GMBH, DE

Free format text: FORMER OWNER: KME GERMANY GMBH & CO. KG, 49074 OSNABRUECK, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011399

Country of ref document: DE

Owner name: KME SPECIAL PRODUCTS & SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: KME GERMANY GMBH & CO. KG, 49074 OSNABRUECK, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011399

Country of ref document: DE

Owner name: CUNOVA GMBH, DE

Free format text: FORMER OWNER: KME SPECIAL PRODUCTS GMBH & CO. KG, 49074 OSNABRUECK, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011399

Country of ref document: DE

Owner name: KME SPECIAL PRODUCTS & SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: KME SPECIAL PRODUCTS GMBH & CO. KG, 49074 OSNABRUECK, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011399

Country of ref document: DE

Owner name: CUNOVA GMBH, DE

Free format text: FORMER OWNER: KME SPECIAL PRODUCTS & SOLUTIONS GMBH, 49074 OSNABRUECK, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230825

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230802

Year of fee payment: 13

Ref country code: IT

Payment date: 20230822

Year of fee payment: 13

Ref country code: FI

Payment date: 20230828

Year of fee payment: 13

Ref country code: CZ

Payment date: 20230816

Year of fee payment: 13

Ref country code: BG

Payment date: 20230824

Year of fee payment: 13

Ref country code: AT

Payment date: 20230818

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230816

Year of fee payment: 13

Ref country code: FR

Payment date: 20230824

Year of fee payment: 13

Ref country code: DE

Payment date: 20230828

Year of fee payment: 13

Ref country code: BE

Payment date: 20230825

Year of fee payment: 13