EP2623732A1 - Anlage und Verfahren zur Dämpfung akustischer Schwingungen bei einer entsprechenden Anlage - Google Patents
Anlage und Verfahren zur Dämpfung akustischer Schwingungen bei einer entsprechenden Anlage Download PDFInfo
- Publication number
- EP2623732A1 EP2623732A1 EP12153621.3A EP12153621A EP2623732A1 EP 2623732 A1 EP2623732 A1 EP 2623732A1 EP 12153621 A EP12153621 A EP 12153621A EP 2623732 A1 EP2623732 A1 EP 2623732A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plant
- resonance
- steam turbine
- pipeline
- resonance absorber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/04—Antivibration arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K27/00—Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/96—Preventing, counteracting or reducing vibration or noise
- F05D2260/963—Preventing, counteracting or reducing vibration or noise by Helmholtz resonators
Definitions
- the invention relates to a system, in particular a power plant, comprising a steam turbine and a diverter for bypassing a working medium for the steam turbine around the steam turbine as needed.
- the invention further relates to a method for damping acoustic vibrations in a corresponding system.
- a bypass station is also typically provided for the diversion of a working medium for the steam turbine around the steam turbine as required.
- a bypass station comprises a pipeline, with the aid of which the working medium is passed directly into a condenser instead of through the steam turbine.
- the pressurized working fluid in the pipeline often generates low-frequency sound with a frequency between 125 Hz and 8 kHz, which is transmitted via the pipeline into the condenser.
- the condenser acts like a loudspeaker, which emits the sound to the environment. This can not only lead to the annoyance of adjacent residential areas, but in the worst case to exceeding the permissible limits, which precludes issuing the operating permit of the power plant.
- the present invention seeks to provide a simpler solution for reducing the noise emission of power plants.
- the plant is in particular a power plant for the generation of electrical energy or an assembly of a corresponding power plant.
- the plant comprises a steam turbine and a bypass station for the diversion of a working medium for the steam turbine around the steam turbine as required, at least one resonance absorber being provided for the bypass station.
- Resonance absorbers as they are known in principle to those skilled in the art, are used primarily when it is expected that a sound emission with individual discrete frequencies or a few narrow frequency bands.
- resonance absorbers are suitable for use in such installations with relative simple technical means to attenuate the noise emission frequency selective, so that the characteristic of the sound absorber modified by the modified sound emission is changed so far that on the one hand, the prescribed limits are exceeded and on the other hand noise pollution adjacent residential areas is avoided.
- the resonance absorber is designed as a Helmholtz resonator.
- Corresponding Helmholtz resonators are well known to those skilled in the art and are used in various technical fields for manipulating the sound emission of devices or the acoustics in rooms. Accordingly, extensive data and empirical values are available, based on which an adaptation of such a Helmholtz resonator to the conditions of the system can be realized with reduced technical effort.
- the structure of the assembly of pipe and resonance absorber is thus substantially cylindrically symmetrical, the manufacturing cost of a corresponding assembly is kept low.
- bypass station comprises a pipeline and in which the resonance absorber is essentially formed by a chamber positioned next to the pipeline, which is conductively connected to the pipeline via a resonator neck.
- This variant can be realized with a relatively low technical effort.
- an embodiment of the system is advantageous in which the Helmholtz resonator is designed as a controllable Helmholtz resonator, wherein the resonance frequency of the Helmholtz resonator is adjustable.
- the adjustment of the resonant frequency is preferably carried out by varying the volume of a resonator of the Helmholtz resonator, for example, by a piston is displaced in a cylinder.
- the resonance absorber in the installed state on the system in which it is installed vote, so that according to the common parts principle for different systems, a single resonance absorber type can be used.
- an embodiment of the system is expedient in which a plurality of resonance absorbers are provided for damping one frequency or one narrow frequency band.
- the resonance absorbers are additionally coupled with absorption silencers, so that a specific damping behavior which is particularly well tuned to the respective installation is provided.
- the absorption silencers are typically formed by an absorption material such as mineral wool or stainless steel wool, which is introduced into at least one resonance body of at least one resonance absorber.
- the resonance absorber is positioned between a coolant injection and a condenser, since experience has shown that sound generation takes place in this region.
- the resonance absorber is preferably arranged at the location of the highest sound pressure.
- Another advantage is a variant of the system in which the resonance absorber has a resonator and wherein a tempering system is provided for the resonant body, with a substantially uniform temperature for the entire resonator is specified. Due to the temperature of the resonator body given for this uniform boundary conditions and consequently also given by the geometry of the resonator body natural frequency spectrum. In exactly this frequency spectrum then takes place the attenuation of the sound emission by the resonance absorber.
- the resonance body to specify the uniform temperature is flowed through an additional supply line from the working fluid.
- the working medium used to specify the uniform temperature for the resonant body is preferably taken from a position in the piping system for the working medium before the cooling medium injection. The removal takes place here in particular with the help of a simple spur line, so that the effort to realize the tempering system is at a very low level.
- the resonance body for draining condensate has drainage openings.
- This variant is particularly advantageous if water vapor is used as the working medium, since in this case it can be assumed that otherwise condensate would accumulate in the resonance bodies, whereby the damping characteristic of the resonance absorber would gradually deteriorate.
- the plant 2 is part of a power plant for generating electrical energy and includes for this purpose a steam generator 4, a condenser 6, a steam turbine 8, a bypass station 10 and a substantially constructed of piping line system 12, which the individual aforementioned assemblies connects and which is used for the management of a working medium, here water and water vapor.
- a working medium here water and water vapor.
- conduit system 12 for the water or water vapor, wherein in a load operation, the steam is passed through the steam turbine 8 and wherein in a no-load operation, the steam is passed through the bypass station 10.
- FIG. 2 A very expedient design variant of the diverter station 10 is in FIG. 2 shown in the manner of a block diagram.
- the diversion station 10 is constructed from a conduit 14, which is connected to the conduit system 12 via a controllable diverter valve 16.
- Downstream of the diverter valve 16 is a water injection 18, which is used if necessary for cooling the water vapor flowing through the conduit 14.
- the steam is introduced into the condenser 6 and brought there for condensation. Finally, the water thus returned to the condenser 6 is subsequently returned to the steam generator 4 by means of a water pump.
- a resonance absorber 20 is integrated into the bypass station 10, which, as in FIG. 3 indicated by way of example of three along the conduit 14 juxtaposed Helmholtz resonators 22 is constructed.
- Each Helmholtz resonator 22 is formed by a hollow cylindrical resonance body or an at least partially circumferential resonant chamber, which is conductively connected to the conduit 14 via a plurality of elongated holes 24 distributed over the circumference of the conduit 14.
- at least one drainage opening 26 is provided, via which a condensate accumulating in the resonance chamber can flow with gravity support.
- FIG. 4 An alternative embodiment of the resonance absorber 20 is shown in FIG. 4 shown.
- a single Helmholtz resonator 22 is provided with a single cylindrical resonance chamber, which is positioned between the water injection 18 and the condenser 6, as viewed in the flow direction of the steam, and is arranged next to the conduit 14.
- the Helmholtz resonator 22 is in this embodiment via a single acting as a resonator neck 28 opening conductively connected to the conduit 14 sound conducting.
- the Helmholtz resonator 22, as in FIG. 4 indicated designed as a controllable Helmholtz resonator 22, in which the resonant frequency or rather the resonant frequency spectrum is adjustable.
- the volume of the resonance chamber is varied by a change in position of a punch 30 with the aid of a controlled electric motor 32.
- the resonance absorber 20 can on the other hand fine tune the structural conditions of Appendix 2 on the one hand and the current operating conditions.
- water vapor if necessary with the aid of a controllable pump 34, is introduced into the resonance chamber of the Helmholtz resonator 22, wherein the corresponding water vapor is taken from the conduit 14 via a branch line 36 at a position in front of the water injection 18.
- the walls of the Helmholtz resonator 22 are tempered with relatively little technical effort such that a uniform temperature for the entire Helmholtz resonator 22 is given and the penetration of steam / water mixture or steam with possibly changing temperature is prevented in the resonator.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
Abstract
Die Erfindung betrifft eine Anlage (2), insbesondere ein Kraftwerk (2), umfassend eine Dampfturbine (8) und eine Umleitstation (10) zur bedarfsweisen Umleitung eines Arbeitsmediums für die Dampfturbine (8) um die Dampfturbine (8) herum, wobei für die Umleitstation (10) zumindest ein Resonanzabsorber (20) vorgesehen ist.
Description
- Die Erfindung betrifft eine Anlage, insbesondere ein Kraftwerk, umfassend eine Dampfturbine und eine Umleitstation zur bedarfsweisen Umleitung eines Arbeitsmediums für die Dampfturbine um die Dampfturbine herum. Die Erfindung betrifft weiter ein Verfahren zur Dämpfung akustischer Schwingungen bei einer entsprechenden Anlage.
- Bei Kraftwerken besteht häufig die Notwendigkeit, Maßnahmen zur Reduzierung der Schallemission des Kraftwerks zu ergreifen, um die zulässigen Grenzwerte für die Schallemission nicht zu überschreiten.
- Werden in einem entsprechenden Kraftwerk beispielsweise Dampfturbinen eingesetzt, so ist typischerweise auch eine Umleitstation zur bedarfsweisen Umleitung eines Arbeitsmediums für die Dampfturbine um die Dampfturbine herum vorgesehen. Eine derartige Umleitstation umfasst dabei in der Regel eine Rohrleitung, mit deren Hilfe das Arbeitsmedium statt durch die Dampfturbine direkt in einen Kondensator geleitet wird. Dabei erzeugt das unter Druck stehende Arbeitsmedium in der Rohrleitung häufig niederfrequenten Schall mit einer Frequenz zwischen 125 Hz und 8 kHz, der über die Rohrleitung in den Kondensator übertragen wird. Der Kondensator wirkt hierbei wie ein Lautsprecher, der den Schall an die Umgebung abgibt. Dadurch kann es nicht nur zu einer Belästigung angrenzender Wohngebiete kommen, sondern im schlimmsten Fall zu einer Überschreitung der zulässigen Grenzwerte, was einer Erteilung der Betriebserlaubnis des Kraftwerkes entgegensteht.
- Zur Reduzierung der Schallemission ist es derzeit üblich, aufwändig konstruierte Drossel-Systeme, beispielsweise aufgebaut aus verschiedenen Lochblechen, innerhalb der Rohrleitung zu platzieren.
- Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, eine einfachere Lösung zur Reduzierung der Schallemission von Kraftwerken anzugeben.
- Diese Aufgabe wird erfindungsgemäß durch eine Anlage mit den Merkmalen des Anspruchs 1 gelöst. Die rückbezogenen Ansprüche beinhalten teilweise vorteilhafte und teilweise für sich selbst erfinderische Weiterbildungen dieser Erfindung. Außerdem wird die Aufgabe erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 12 gelöst.
- Bei der Anlage handelt es sich insbesondere um ein Kraftwerk zur Generierung von elektrischer Energie oder um eine Baugruppe eines entsprechenden Kraftwerks. Die Anlage umfasst dabei eine Dampfturbine und eine Umleitstation zur bedarfsweisen Umleitung eines Arbeitsmediums für die Dampfturbine um die Dampfturbine herum, wobei für die Umleitstation zumindest ein Resonanzabsorber vorgesehen ist. Resonanzabsorber, wie sie dem Fachmann prinzipiell bekannt sind, werden vor allem dann eingesetzt, wenn eine Schallemission mit einzelnen diskreten Frequenzen oder wenigen schmalen Frequenzbändern zu erwarten ist. Da bei einer Anlage mit einer Umleitstation der eingangs genannten Art typischerweise ein Frequenzspektrum der Schallemission gegeben ist, welches von einzelnen Frequenzen oder wenigen schmalen Frequenzbändern im Bereich kleiner 500 Hz, teilweise auch höher, dominiert wird, eignen sich Resonanzabsorber, um bei derartigen Anlagen mit relativ einfachen technischen Mitteln die Schallemission frequenzselektiv zu dämpfen, so dass die Charakteristik der mittels der Resonanzabsorber modifizierten Schallemission soweit verändert wird, dass einerseits die vorgeschriebenen Grenzwerte unterschritten werden und andererseits eine Lärmbelästigung angrenzender Wohngebiete vermieden wird.
- In vorteilhafter Weiterbildung ist der Resonanzabsorber als Helmholtzresonator ausgeführt. Entsprechende Helmholtzresonatoren sind dem Fachmann wohl bekannt und werden in den verschiedensten technischen Gebieten zur Manipulation der Schallemission von Vorrichtungen oder der Akustik in Räumen eingesetzt. Dementsprechend sind umfangreiche Daten und Erfahrungswerte verfügbar, auf deren Basis eine Anpassung eines derartigen Helmholtzresonators an die Gegebenheiten der Anlage mit verringertem technischem Aufwand realisierbar ist.
- Zweckmäßig ist weiter eine Ausführung der Anlage, bei der die Umleitstation eine Rohrleitung umfasst und bei der der Resonanzabsorber im Wesentlichen durch eine zumindest teilweise um die Rohrleitung umlaufende Kammer gebildet wird, die vorzugsweise über mehrere vorzugsweise gleichmäßig auf den Umfang der Rohrleitung verteilte Durchbruchs-Öffnungen mit der Rohrleitung schallleitend verbunden ist. Der Aufbau der Baugruppe aus Rohrleitung und Resonanzabsorber ist somit im Wesentlichen zylindersymmetrisch, wobei der Fertigungsaufwand für eine entsprechende Baugruppe gering gehalten wird.
- Alternativ hierzu ist eine Variante der Anlage vorgesehen, bei der die Umleitstation eine Rohrleitung umfasst und bei der der Resonanzabsorber im Wesentlichen durch eine neben der Rohrleitung positionierte Kammer gebildet wird, die über einen Resonatorhals mit der Rohrleitung schallleitend verbunden ist. Auch diese Variante lässt sich mit einem verhältnismäßig geringen technischen Aufwand realisieren.
- Zudem ist eine Ausführung der Anlage von Vorteil, bei der der Helmholtzresonator als steuerbarer Helmholtzresonator ausgeführt ist, wobei die Resonanzfrequenz des Helmholtzresonators einstellbar ist. Die Einstellung der Resonanzfrequenz erfolgt dabei vorzugsweise durch Variation des Volumens eines Resonanzkörpers des Helmholtzresonators, indem beispielsweise ein Kolben in einem Zylinder verschoben wird. Auf diese Weise lässt sich der Resonanzabsorber im eingebauten Zustand auf die Anlage, in der dieser verbaut ist, abstimmen, so dass nach dem Gleichteile-Prinzip für verschiedene Anlagen ein einziger Resonanzabsorber-Typ eingesetzt werden kann.
- Zweckmäßig ist darüber hinaus eine Ausführung der Anlage, bei der mehrere Resonanzabsorber zur Dämpfung jeweils einer Frequenz oder eines schmalen Frequenzbandes vorgesehen sind. Außerdem werden die Resonanzabsorber je nach Ausführungsvariante zusätzlich mit Absorptionsschalldämpfern gekoppelt, so dass ein spezifisches und auf die jeweilige Anlage besonders gut abgestimmtes Dämpfungsverhalten gegeben ist. Gebildet werden die Absorptionsschalldämpfer dabei typischerweise durch ein Absorptionsmaterial wie Mineralwolle oder Edelstahlwolle, welches in zumindest einen Resonanzkörper zumindest eines Resonanzabsorbers eingebracht ist.
- Zweckmäßig ist weiter eine Variante der Anlage, bei der der Resonanzabsorber zwischen einer Kühlmediums-Einspritzung und einem Kondensator positioniert ist, da gerade in diesem Bereich erfahrungsgemäß die Schallerzeugung erfolgt. Allgemein wird der Resonanzabsorber bevorzugt am Ort des höchsten Schalldrucks angeordnet.
- Von Vorteil ist außerdem eine Variante der Anlage, bei der der Resonanzabsorber einen Resonanzkörper aufweist und wobei für den Resonanzkörper eine Temperier-Anlage vorgesehen ist, mit der eine im Wesentlichen einheitliche Temperatur für den gesamten Resonanzkörper vorgegeben wird. Durch die Temperierung des Resonanzkörpers werden für diesen einheitliche Randbedingungen und infolgedessen auch ein durch die Geometrie des Resonanzkörpers gegebenes Eigenfrequenzspektrum vorgegeben. In genau diesem Frequenzspektrum erfolgt dann die Dämpfung der Schallemission durch den Resonanzabsorber.
- In vorteilhafter Weiterbildung wird der Resonanzkörper zur Vorgabe der einheitlichen Temperatur über eine zusätzliche Zuleitung vom Arbeitsmedium durchströmt. Dabei wird das zur Vorgabe der einheitlichen Temperatur für den Resonanzkörper genutzte Arbeitsmedium bevorzugt an einer Position im Leitungssystem für das Arbeitsmedium vor der Kühlmediums-Einspritzung entnommen. Die Entnahme erfolgt hierbei insbesondere mit Hilfe einer einfachen Stichleitung, so dass der Aufwand zur Realisierung der Temperier-Anlage auf einem sehr niedrigen Niveau liegt.
- Darüber hinaus ist es von Vorteil, wenn der Resonanzkörper zur Abführung von Kondensat Entwässerungs-Öffnungen aufweist. Diese Variante ist vor allem dann von Vorteil, wenn als Arbeitsmedium Wasserdampf zum Einsatz kommt, da in diesem Fall davon auszugehen ist, dass sich ansonsten Kondensat in den Resonanzkörpern sammeln würde, wodurch sich die Dämpfungscharakteristik des Resonanzabsorbers allmählich verschlechtern würde.
- Ausführungsbeispiele der Erfindung werden nachfolgend anhand einer schematischen Zeichnung näher erläutert. Darin zeigen:
- FIG 1
- in einer Blockschaltbilddarstellung eine Umleitstation mit einem Resonanzabsorber,
- FIG 2
- in einer Schnittdarstellung der Aufbau des Resonanzabsorbers und
- FIG 3
- in einer Schnittdarstellung eine alternative Umleitstation mit einem alternativen Resonanzabsorber.
- Einander entsprechende Teile sind in allen Figuren jeweils mit den gleichen Bezugszeichen versehen.
- Im nachfolgend beschriebenen Ausführungsbeispiel ist die Anlage 2 Teil eines Kraftwerks zur Erzeugung von elektrischer Energie und umfasst hierzu einen Dampferzeuger 4, einen Kondensator 6, eine Dampfturbine 8, eine Umleitstation 10 sowie ein im Wesentlichen aus Rohrleitungen aufgebautes Leitungssystem 12, welches die einzelnen zuvor genannten Baugruppen miteinander verbindet und welches zur Leitung eines Arbeitsmediums, hier Wasser und Wasserdampf, genutzt wird.
- Wie in
FIG 1 dargestellt, sind für das Wasser bzw. den Wasserdampf zwei mögliche Wegstrecken durch das Leitungssystem 12 gegeben, wobei in einem Lastbetrieb der Wasserdampf durch die Dampfturbine 8 geleitet wird und wobei in einem lastfreien Betrieb der Wasserdampf durch die Umleitstation 10 geleitet wird. - Eine sehr zweckmäßige Ausgestaltungsvariante der Umleitstation 10 ist in
FIG 2 nach Art eines Blockschaltbildes dargestellt. Aufgebaut ist die Umleitstation 10 aus einem Leitungsrohr 14, welches über ein steuerbares Umleitventil 16 mit dem Leitungssystem 12 verbunden ist. Durch eine entsprechende Ansteuerung des Umleitventils 16 lässt sich ein Wechsel zwischen den beiden hier relevanten Betriebsmodi der Anlage 2, also Lastbetrieb und lastfreien Betrieb, vornehmen, sodass bei Bedarf der in dem Dampferzeuger 4 erzeugte Wasserdampf anstatt durch die Dampfturbine 8 durch die Umleitstation 10 und somit durch das Leitungsrohr 14 geleitet wird. Dem Umleitventil 16 nachgeschaltet ist eine Wassereinspritzung 18, die bei Bedarf zur Kühlung des durch das Leitungsrohr 14 strömenden Wasserdampfes genutzt wird. Nach dem Durchströmen der Umleitstation 10 oder aber der Dampfturbine 8 wird der Wasserdampf in den Kondensator 6 eingeleitet und dort zur Kondensation gebracht. Schließlich wird das so in den Kondensator 6 zurückgeführte Wasser nachfolgend mittels einer Wasser-Pumpe wieder dem Dampferzeuger 4 zugeführt. - Zur Reduzierung der Schallemission der Anlage 2 ist in die Umleitstation 10 ein Resonanzabsorber 20 integriert, der wie in
FIG 3 angedeutet exemplarisch aus drei entlang des Leitungsrohres 14 aneinandergereihter Helmholtzresonatoren 22 aufgebaut ist. Gebildet wird ein jeder Helmholtzresonator 22 durch einen hohlzylinderförmigen Resonanzkörper oder eine zumindest teilweise umlaufende Resonanz-Kammer, welche über mehrere über den Umfang des Leitungsrohres 14 verteilte Langlöcher 24 schallleitend mit dem Leitungsrohr 14 verbunden ist. Zusätzlich ist für eine jede Resonatorkammer des entsprechenden Helmholzresonators 22 zumindest eine Entwässerungs-Öffnung 26 vorgesehen, über welche ein in der Resonanz-Kammer anfallendes Kondensat schwerkraftunterstützt abfließen kann. - Eine alternative Ausgestaltung des Resonanzabsorbers 20 ist in
FIG 4 gezeigt. Hier ist ein einzelner Helmholtzresonator 22 mit einer einzigen zylinderförmigen Resonanz-Kammer vorgesehen, der in Strömungsrichtung des Wasserdampfes gesehen zwischen der Wassereinspritzung 18 und dem Kondensator 6 positioniert und neben dem Leitungsrohr 14 angeordnet ist. Der Helmholtzresonator 22 ist in diesem Ausführungsbeispiel über eine einzige als Resonatorhals 28 wirkende Öffnung mit dem Leitungsrohr 14 schallleitend verbunden. Weiter ist der Helmholtzresonator 22, wie inFIG 4 angedeutet, als steuerbarer Helmholtzresonator 22 ausgeführt, bei dem die Resonanzfrequenz oder vielmehr das Resonanzfrequenz-Spektrum einstellbar ist. Hierzu wird das Volumen der Resonanz-Kammer durch eine Lageänderung eines Stempels 30 mit Hilfe eines angesteuerten Elektromotors 32 variiert. Auf diese Weise lässt sich der Resonanzabsorber 20 auf die konstruktiven Gegebenheiten der Anlage 2 einerseits und den aktuellen Betriebsbedingungen andererseits feinabstimmen. - Zudem wird bei Bedarf Wasserdampf, ggf. unter Zuhilfenahme einer ansteuerbaren Pumpe 34, in die Resonanzkammer des Helmholtzresonators 22 eingeleitet, wobei der entsprechende Wasserdampf über eine Stichleitung 36 an einer Position vor der Wassereinspritzung 18 aus dem Leitungsrohr 14 entnommen wird. Hierdurch werden die Wandungen des Helmholtzresonators 22 mit verhältnismäßig geringem technischen Aufwand derart temperiert, dass eine einheitliche Temperatur für den gesamten Helmholtzresonator 22 gegeben ist und das Eindringen von Dampf-/Wassergemisch bzw. Dampf mit evtl. wechselnder Temperatur in den Resonator verhindert wird.
- Die Erfindung ist nicht auf das vorstehend beschriebene Ausführungsbeispiel beschränkt. Vielmehr können auch andere Varianten der Erfindung von dem Fachmann hieraus abgeleitet werden, ohne den Gegenstand der Erfindung zu verlassen. Insbesondere sind ferner alle im Zusammenhang mit dem Ausführungsbeispiel beschriebenen Einzelmerkmale auch auf andere Weise miteinander kombinierbar, ohne den Gegenstand der Erfindung zu verlassen.
Claims (12)
- Anlage (2),
insbesondere Kraftwerk (2),
umfassend eine Dampfturbine (8) und eine Umleitstation (10) zur bedarfsweisen Umleitung eines Arbeitsmediums für die Dampfturbine (8) um die Dampfturbine (8) herum,
dadurch gekennzeichnet, dass
für die Umleitstation (10) zumindest ein Resonanzabsorber (20) vorgesehen ist. - Anlage (2) nach Anspruch 1,
dadurch gekennzeichnet, dass
der Resonanzabsorber (20) als Helmholtzresonator (22) ausgeführt ist. - Anlage (2) nach Anspruch 2,
dadurch gekennzeichnet, dass
die Umleitstation (10) eine Rohrleitung (14) umfasst und dass der Resonanzabsorber (20) im Wesentlichen durch eine zumindest teilweise um die Rohrleitung (14) umlaufende Kammer (22) gebildet wird, die über mehrere auf den Umfang der Rohrleitung (14) verteilte Durchbruchs-Öffnungen (24) mit der Rohrleitung (14) schallleitend verbunden ist. - Anlage (2) nach Anspruch 2,
dadurch gekennzeichnet, dass
die Umleitstation (10) eine Rohrleitung (14) umfasst und dass der Resonanzabsorber (20) im Wesentlichen durch eine neben der Rohrleitung (14) positionierte Kammer (22) gebildet wird, die über einen Resonatorhals (28) mit der Rohrleitung (14) schallleitend verbunden ist. - Anlage (2) nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
der Helmholtzresonator (22) als steuerbarer Helmholtzresonator (22,30,32) aufgeführt ist, bei dem die Resonanzfrequenz einstellbar ist. - Anlage (2) nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
mehrere Resonanzabsorber (20) zur Dämpfung jeweils eines schmalen Frequenzbandes vorgesehen sind. - Anlage (2) nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
der Resonanzabsorber (20) zwischen einer Kühlmediums-Einspritzung (18) und einem Kondensator (6) positioniert ist. - Anlage (2) nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
der Resonanzabsorber (20) einen Resonanzkörper (22) aufweist,
wobei für den Resonanzkörper (22) eine Temperier-Anlage (34,36) vorgesehen ist, mit der eine im Wesentlichen einheitliche Temperatur für den gesamten Resonanzkörper (22) vorgegeben wird. - Anlage (2) nach Anspruch 8,
dadurch gekennzeichnet, dass
der Resonanzkörper (22) zur Vorgabe einer einheitlichen Temperatur über eine zusätzliche Zuleitung (36) vom Arbeitsmedium durchströmt wird. - Anlage (2) nach Anspruch 8 und 9,
dadurch gekennzeichnet, dass
das zur Vorgabe der einheitlichen Temperatur für den Resonanzkörper (22) genutzte Arbeitsmedium an einer Position im Leitungssystem (12) für das Arbeitsmedium vor der Kühlmediums-Einspritzung (18) entnommen wird. - Anlage (2) nach Anspruch 8,
dadurch gekennzeichnet, dass
der Resonanzkörper (22) zur Abführung von Kondensat Entwässerungs-Öffnungen (26) aufweist. - Verfahren zur Dämpfung akustischer Schwingungen bei Anlagen (2) mit einer Dampfturbine (8) und mit einer Umleitstation (10) zur bedarfsweisen Umleitung eines Arbeitsmediums für die Dampfturbine (8) um die Dampfturbine (8) herum, dadurch gekennzeichnet, dass
zur Dämpfung zumindest ein in die Umleitstation (10) integrierter Resonanzabsorber (20) genutzt wird.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12153621.3A EP2623732A1 (de) | 2012-02-02 | 2012-02-02 | Anlage und Verfahren zur Dämpfung akustischer Schwingungen bei einer entsprechenden Anlage |
CN201280069012.9A CN104093943B (zh) | 2012-02-02 | 2012-11-07 | 设施和用于衰减相应的设施中的声振动的方法 |
PCT/EP2012/071999 WO2013113417A2 (de) | 2012-02-02 | 2012-11-07 | Anlage und verfahren zur dämpfung akustischer schwingungen bei einer entsprechenden anlage |
US14/373,663 US20150016951A1 (en) | 2012-02-02 | 2012-11-07 | Plant and method for damping acoustic vibrations in a corresponding plant |
EP12786933.7A EP2795074A2 (de) | 2012-02-02 | 2012-11-07 | Anlage und verfahren zur dämpfung akustischer schwingungen bei einer entsprechenden anlage |
JP2014555099A JP5911975B2 (ja) | 2012-02-02 | 2012-11-07 | 対応するプラント内で音響振動を減衰させるためのプラント及び方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12153621.3A EP2623732A1 (de) | 2012-02-02 | 2012-02-02 | Anlage und Verfahren zur Dämpfung akustischer Schwingungen bei einer entsprechenden Anlage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2623732A1 true EP2623732A1 (de) | 2013-08-07 |
Family
ID=47178657
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12153621.3A Withdrawn EP2623732A1 (de) | 2012-02-02 | 2012-02-02 | Anlage und Verfahren zur Dämpfung akustischer Schwingungen bei einer entsprechenden Anlage |
EP12786933.7A Withdrawn EP2795074A2 (de) | 2012-02-02 | 2012-11-07 | Anlage und verfahren zur dämpfung akustischer schwingungen bei einer entsprechenden anlage |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12786933.7A Withdrawn EP2795074A2 (de) | 2012-02-02 | 2012-11-07 | Anlage und verfahren zur dämpfung akustischer schwingungen bei einer entsprechenden anlage |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150016951A1 (de) |
EP (2) | EP2623732A1 (de) |
JP (1) | JP5911975B2 (de) |
CN (1) | CN104093943B (de) |
WO (1) | WO2013113417A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2924245A1 (de) * | 2014-03-24 | 2015-09-30 | Alstom Technology Ltd | Dampfturbine mit Resonanzkammer |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7429488B2 (ja) | 2020-05-19 | 2024-02-08 | ダイハツ工業株式会社 | 車両のルーフ構造 |
CN113776724B (zh) * | 2021-08-12 | 2024-05-14 | 中国船舶重工集团公司第七一九研究所 | 压力测量装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101713387A (zh) * | 2008-10-07 | 2010-05-26 | 赵玉天 | 麦克斯韦妖热源与制冷与空调新概念 |
US20110005237A1 (en) * | 2007-07-27 | 2011-01-13 | Utc Power Corporation | Oil removal from a turbine of an organic rankine cycle (orc) system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4979587A (en) * | 1989-08-01 | 1990-12-25 | The Boeing Company | Jet engine noise suppressor |
JPH0724595Y2 (ja) * | 1990-04-25 | 1995-06-05 | 三菱重工業株式会社 | 複合プラントのバイパス煙突 |
JPH0710460U (ja) * | 1993-07-22 | 1995-02-14 | 愛知機械工業株式会社 | レゾネータ構造 |
DE4414232A1 (de) * | 1994-04-23 | 1995-10-26 | Abb Management Ag | Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer |
JPH0861605A (ja) * | 1994-08-26 | 1996-03-08 | Mitsubishi Heavy Ind Ltd | タービンバイパス蒸気温度制御装置 |
JP3209889B2 (ja) * | 1995-07-04 | 2001-09-17 | 川崎重工業株式会社 | ガスタービンシステムの排ガス逆流防止装置および排ガス逆流防止方法 |
JP4115021B2 (ja) * | 1999-01-13 | 2008-07-09 | 株式会社大気社 | 消音装置 |
DE10026121A1 (de) * | 2000-05-26 | 2001-11-29 | Alstom Power Nv | Vorrichtung zur Dämpfung akustischer Schwingungen in einer Brennkammer |
EP1213538B1 (de) * | 2000-12-08 | 2006-09-06 | Alstom Technology Ltd | Abgassystem mit Helmholtz-Resonator |
US7055324B2 (en) * | 2003-03-12 | 2006-06-06 | Fisher Controls International Llc | Noise abatement device and method for air-cooled condensing systems |
US7337875B2 (en) * | 2004-06-28 | 2008-03-04 | United Technologies Corporation | High admittance acoustic liner |
JP2006188996A (ja) * | 2005-01-06 | 2006-07-20 | Mitsubishi Heavy Ind Ltd | 蒸気タービン施設の騒音低減装置 |
JP4469346B2 (ja) * | 2006-02-28 | 2010-05-26 | 日立Geニュークリア・エナジー株式会社 | 沸騰水型原子炉 |
US8061961B2 (en) * | 2009-01-23 | 2011-11-22 | Dresser-Rand Company | Fluid expansion device and method with noise attenuation |
GEP20105105B (en) * | 2009-04-01 | 2010-10-25 | Device for protection against water hammer | |
FR2950112B1 (fr) * | 2009-09-11 | 2011-10-07 | Hutchinson | Dispositif d'attenuation acoustique pour ligne d'admission d'un moteur thermique, et ligne d'admission l'incorporant |
-
2012
- 2012-02-02 EP EP12153621.3A patent/EP2623732A1/de not_active Withdrawn
- 2012-11-07 WO PCT/EP2012/071999 patent/WO2013113417A2/de active Application Filing
- 2012-11-07 EP EP12786933.7A patent/EP2795074A2/de not_active Withdrawn
- 2012-11-07 JP JP2014555099A patent/JP5911975B2/ja not_active Expired - Fee Related
- 2012-11-07 CN CN201280069012.9A patent/CN104093943B/zh not_active Expired - Fee Related
- 2012-11-07 US US14/373,663 patent/US20150016951A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110005237A1 (en) * | 2007-07-27 | 2011-01-13 | Utc Power Corporation | Oil removal from a turbine of an organic rankine cycle (orc) system |
CN101713387A (zh) * | 2008-10-07 | 2010-05-26 | 赵玉天 | 麦克斯韦妖热源与制冷与空调新概念 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2924245A1 (de) * | 2014-03-24 | 2015-09-30 | Alstom Technology Ltd | Dampfturbine mit Resonanzkammer |
US9920628B2 (en) | 2014-03-24 | 2018-03-20 | General Electric Technology Gmbh | Steam turbine with resonance chamber |
Also Published As
Publication number | Publication date |
---|---|
CN104093943B (zh) | 2016-06-15 |
EP2795074A2 (de) | 2014-10-29 |
WO2013113417A2 (de) | 2013-08-08 |
WO2013113417A3 (de) | 2014-03-20 |
JP5911975B2 (ja) | 2016-04-27 |
US20150016951A1 (en) | 2015-01-15 |
CN104093943A (zh) | 2014-10-08 |
JP2015505589A (ja) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1738112B1 (de) | Raketentriebwerk mit dämpfung von schwingungen der brennkammer durch resonatoren | |
DE102009000645B3 (de) | Schalldämpfer mit mindestens einem mittels helikaler Einbauten aufgebauten Helmholtz-Resonator | |
DE102011005025A1 (de) | Resonatorschalldämpfer für eine radiale Strömungsmaschine, insbesondere für einen Radialverdichter | |
WO2016112947A1 (de) | Dämpfungsvorrichtung | |
DE102005059253A1 (de) | Maschinengehäusekomponente mit einem Gitter aus akustischem Medium und Verfahren zur Dämpfung von Maschinengeräusch | |
EP2623732A1 (de) | Anlage und Verfahren zur Dämpfung akustischer Schwingungen bei einer entsprechenden Anlage | |
DE102012013946A1 (de) | Flexibles Leitungselement mit Dämpfung | |
DE102015113008A1 (de) | Schalldämpfungs- und Kühlungsanordnung mit einem Fasermedium | |
DE102015222587A1 (de) | Adaptiver Schwingungsdämpfer | |
DE10121582A1 (de) | Luftversorgungs-Aggregat für Fahrzeuge mit einem Kompressor und einem Schalldämpfer | |
CH712704A2 (de) | Turbolader. | |
DE102012207176A1 (de) | Schalldämpfer für Abdampfkanäle bei Dampfkraftwerken mit Luftkondensatoren | |
EP2673522B1 (de) | Dämpfungseinrichtung | |
EP1624251B1 (de) | Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in Brennkammern mit veränderbarer Resonanzfrequenz | |
DE102012211715A1 (de) | Verkleidungsvorrichtung sowie eine medizinische Bildgebungsvorrichtung mit der Verkleidungsvorrichtung | |
DE102011114705A1 (de) | Schalldämpfer für ein Hilfstriebwerk eines Flugzeugs | |
DE102004006031B4 (de) | Verfahren und Vorrichtung zur Reduzierung von Druckpulsationen in Flüssigkeiten führenden Leitungssystemen | |
DE102019101418A1 (de) | Schalldämpfer | |
DE102009049244A1 (de) | Dämpfungseinrichtung | |
DE102011010357A1 (de) | Druckgasprüfvorrichtung | |
EP1559874A1 (de) | Diffusor und Turbine | |
EP4281663B1 (de) | Hydraulische maschine vom typ francis | |
DE102015111512A1 (de) | Schalldämpfer | |
DE102017222920A1 (de) | Reduzierung von Tonalitäten | |
DE102011075582A1 (de) | Dampfkraftanlage, Verwendung eines akustischen Resonators für eine Dampfkraftanlage, und Verfahren zum Anschluss eines akustischen Resonators bei einer Dampfkraftanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140208 |