EP2622614B1 - Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer - Google Patents

Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer Download PDF

Info

Publication number
EP2622614B1
EP2622614B1 EP10760331.8A EP10760331A EP2622614B1 EP 2622614 B1 EP2622614 B1 EP 2622614B1 EP 10760331 A EP10760331 A EP 10760331A EP 2622614 B1 EP2622614 B1 EP 2622614B1
Authority
EP
European Patent Office
Prior art keywords
current
switching unit
compensation winding
transformer
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10760331.8A
Other languages
German (de)
French (fr)
Other versions
EP2622614A1 (en
Inventor
Peter Hamberger
Albert Leikermoser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2622614A1 publication Critical patent/EP2622614A1/en
Application granted granted Critical
Publication of EP2622614B1 publication Critical patent/EP2622614B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F7/00Regulating magnetic variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias

Definitions

  • the invention relates to an apparatus and a method for reducing a magnetic DC component in the core of a transformer, with a measuring device which provides a sensor signal corresponding to the magnetic DC component, with a compensation winding which is magnetically coupled to the core of the transformer with a switching unit which is electrically arranged in a current path in series with the compensation winding for feeding into the compensation winding a current whose effect is opposite to the DC component, the switching unit being controllable by means of a manipulated variable provided by a control device; Furthermore, the present invention relates to a method for converting a transformer.
  • DC supply hereinafter also referred to as DC component
  • GIC Garnier Induced Currents
  • a DC component in the core of the transformer results in a DC component, which is superimposed on the AC flux.
  • Even a DC of a few amps can cause a local heating in the transformer, which can affect the life of the winding insulation.
  • Another undesirable effect is an increased noise emission during operation of the transformer. This is especially troublesome when the transformer is installed near a living area.
  • a semiconductor switching unit by means of which in a compensation winding of a transformer for the purpose of DC minimization, a compensation current is fed.
  • a control device with independent power source From a control device with independent power source, a controllable frequency for the current flow duration of the semiconductor switch (MOSFET) is specified.
  • the electrical energy for generating the compensation current is taken from a capacitor which is charged cyclically via the freewheeling circuit of the MOSFET.
  • a capacitor is not desirable as energy storage for reasons of reliability and because of the desired low-maintenance long-term operation.
  • the invention is based on the idea to use the voltage induced in the compensation winding voltage and to use for the compensation of the disturbing magnetic DC component.
  • a compensation current is generated by means of an electronic switching unit, wherein the switching-on of the switching unit is synchronized with the network and according to a predetermined switching strategy.
  • the switch-on time is triggered by the phase of the voltage induced in the compensation winding, and the switch-on time depends on a sensor signal provided by a measuring device. In this way, a sinusoidally pulsating direct current is fed into the compensation winding whose size is limited by a current-limiting device.
  • An energy source that is a battery or a capacitor, is not required for the generation of this pulsating direct current.
  • the current flow duration of this pulsating direct current can be set in a simple manner and very precisely in accordance with the supplied sensor signal, which predetermines the direction and magnitude of the DC component to be compensated.
  • the device can be realized with comparatively simple means. Both discrete and or programmable devices can be used and are commercially available.
  • the control device consists essentially of two function blocks, a phase detector and a timer.
  • the phase detector detects the zero crossing of the voltage induced in the compensation winding and supplies the trigger signal for the switch-on time of the time interval whose duration is predetermined in accordance with the sensor signal.
  • Another protective measure for protecting the switching device against inductive voltage peaks may be that an overvoltage protection is provided in parallel with the series connection of inductance and switching unit in a parallel circuit branch.
  • the switching unit is formed from at least one thyristor.
  • the advantage of using a thyristor is first that a thyristor with a current pulse "ignited", that can be brought into the conductive state. During the positive half-wave of the mains voltage, the thyristor has the property of a diode until the next current zero crossing. The end of the current flow time is effected by the thyristor itself by the holding current is exceeded and the thyristor automatically "clears", that is, goes into the non-conductive state.
  • GTO gallium arse
  • IGBT transistors IGBT transistors
  • the switching unit and the control device are arranged outside the boiler of a transformer.
  • the entire electronic circuit is thus accessible from the outside for inspection and maintenance.
  • a very particularly preferred embodiment of the invention can consist in that the measuring device for detecting the magnetic DC component comprises a magnetic shunt part with a sensor coil.
  • the shunt part is connected to the core of the transformer e.g. is disposed adjacent to a leg or yoke to bypass a portion of the magnetic flux. From this, guided in the shunt magnetic flux can be obtained by means of a sensor coil very easily a long-term stable sensor signal, which if necessary after a signal processing the DC component shares very well.
  • the measurement result is largely free of drift and for long-term stability. Since this detector consists essentially of the shunt part and the sensor coil arranged thereon, it has a high reliability.
  • the object stated in the introduction is also achieved by a method which is characterized in that the switch-on time of the switching unit is synchronous with the voltage induced in the compensation winding and in accordance with a sensor signal, wherein the sensor signal from a measuring device for detecting the magnetic DC component of the Control device is supplied.
  • the method can be implemented very simply with a few components.
  • the switching unit is controlled with a manipulated variable which is predetermined by a timer present in the control device, the timer being triggered by a phase detector which detects the phase of the voltage induced in the compensation winding.
  • the timer may be a discrete device, or part of a digital circuit. It may be advantageous if the manipulated variable is the result of an arithmetic operation of a microprocessor.
  • the microprocessor can be used at the same time for signal processing of the sensor signal.
  • the switching unit is driven so that in the compensation winding, a pulsating direct current is fed.
  • a pulsating direct current is fed.
  • a method for converting a transformer is given to achieve the above object.
  • the device according to the invention, or the method according to the invention can also be used advantageously in already operating transformers.
  • the effort is very low.
  • a conversion is particularly easy if a already arranged in the transformer tank compensation winding according to the present invention can be used. In this case, the transformer tank does not need to be opened, but the device according to the invention can only be connected to the already led out terminals of the compensation winding.
  • the FIG. 1 shows a device 1 according to an embodiment of the invention in a simplified representation.
  • the device 1 consists essentially of a circuit arrangement which is connected via the terminals K1 and K2 to a compensation winding arrangement K.
  • the Compensation winding assembly K is housed in the transformer tank 12 and magnetically coupled to the core 4 of the transformer. It usually consists only of a winding with few turns, which is wound for example around a leg or a yoke part of the transformer. From the compensation winding K in the transformer tank 12, the terminals at the terminals K1 and K2 are led out into the outer space 13.
  • an electrical voltage is induced in the compensation winding K, which is used according to the invention to combat the disturbing DC component of the magnetic flux in the core 4. This is done by network-controlled switching a switching unit T.
  • the terminals K1 and K2 of the compensation winding K are connected to a control device 2.
  • the control device 2 consists essentially of a phase detector P and a timer TS.
  • the phase detector P for example a zero-crossing detector, derives from the induced voltage a trigger signal 8, which is fed to a timer TS.
  • the control device 2 on the output side a manipulated variable 9 ready, which is fed to an electronic switching unit T.
  • the switching unit T is in a current path 3 in series with the compensation winding K and in series with an inductance L.
  • the inductance L is so dimensioned that when switching the switching unit T flowing in a current direction, sinusoidally pulsating current waveform in the compensation winding K is fed.
  • a fuse Si is provided for the purpose of current limitation.
  • This fuse Si is in FIG. 1 placed between the terminal K1 and a switch S.
  • the switch S serves to close or disconnect the current path 3.
  • the switching of the electronic switching unit T is carried out in phase synchronism with the voltage in the compensation winding K and according to a predetermined switching strategy. That is, depending on the size and direction of the compensation current to be introduced, the switch-on time is controlled by means of the controlled by the phase detector P timer TS according to a functional relationship explained in more detail below such that the resulting arithmetic mean of the pulsating current in the compensation winding K by its effect the disturbing DC Reduced share or this fully compensated.
  • the information regarding size and direction of the DC field component to be compensated in the core 4 is obtained by the control device 2 from a measuring device 7 for measuring the DC component.
  • This provides the sensor signal 6, which is supplied to the control device 2.
  • the measuring device 7 operates according to the above-quoted measuring principle of the magnetic bypass ( PCT / EP2010 / 054857 ). That is, it consists essentially of a magnetic shunt portion disposed on the core to conduct a portion of the magnetic flux in a bypass, from which then, for example, a sensor coil arranged at the shunt portion in connection with signal conditioning the DC component can be determined.
  • Thyristors are particularly suitable as a switch for the switching unit T, as they inherently go on reaching the de-energized state, more precisely, when falling below the so-called holding current, by itself again in the non-conductive state.
  • the switching-on time is predetermined by the signal 9 and takes place synchronously to the network, and by turning off the switching unit T is performed at zero crossing of the current, the arithmetic mean of the compensation current I GL is very precisely adjusted by the manipulated variable x and the manipulated variable signal 9.
  • FIG. 2 shows the time course of the voltage induced in the compensation winding K 10 and the predetermined by the switching strategy according to the invention pulsating DC 11 (compensation current I GL ).
  • the compensation current I GL has the form of juxtaposed sinusoidal half-waves 18 which are interrupted by current gaps 17, each half-wave 18 being symmetrical to half the period T / 2 of the induced voltage 10.
  • the switch-on 14 is set as described above in synchronism with the network and in accordance with the manipulated variable 9. The synchronization point for switching on is in FIG.
  • the inductance L By appropriate choice of the inductance L follows after switching through the switching unit T, the current in current path 3 the integral of the electrical voltage 10, that is, it has at the zero crossing of the electrical voltage 10 its maximum value and then stops again , When the compensation current 11 is almost zero, the switching unit T, eg a thyristor, transitions to the non-conductive state.
  • the current flow time 16 is determined by the manipulated variable 9 or by the deletion of the thyristor.
  • Each half-waves 18 follows a current gaps 17th
  • a compensation current I GL in both directions is in FIG. 1 in a broken line, a second switching unit T 'indicated.
  • the two switching units T and T ' can be, for example, two anti-parallel connected thyristors.
  • FIG. 3 There is a non-linear relationship between the generated compensation current I GL and the manipulated variable x FIG. 3 is shown graphically and explained in more detail below:
  • I GL I MAX ⁇ T ⁇ sin 2 ⁇ ⁇ ⁇ t T - 2 ⁇ ⁇ ⁇ t ⁇ cos 2 ⁇ ⁇ ⁇ t T ⁇ , T
  • I GW I MAX ⁇ T ⁇ sin 4 ⁇ ⁇ ⁇ t T - 4 ⁇ ⁇ ⁇ t 2 ⁇ ⁇ T ⁇ 2
  • I OW I MAX ⁇ cos k ⁇ ⁇ ⁇ 1 + k ⁇ sin 2 ⁇ ⁇ ⁇ t ⁇ k - 1 T - k - 1 ⁇ sin 2 ⁇ ⁇ ⁇ t ⁇ k + 1 T k ⁇ k 2 - 1 ⁇ ⁇ ⁇ 2
  • FIG. 3 shows the functional relationship between the compensation current I GL (based on the maximum achievable compensation current I MAX at 100 percent) as a function of the manipulated variable according to equation (4).
  • the control device determines according to the above illustration or the in FIG FIG. 3 shown relationship, the manipulated variable x required for compensation (signal 9).
  • the thermal load of the winding and the disturbing emission be reduced by noises.
  • the above-described electronic circuit can be constructed floating. As a result, no insulation problems occur even in the application of high mains voltages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Protection Of Transformers (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Verringern eines magnetischen Gleichfluss-Anteils im Kern eines Transformators, mit einer Messeinrichtung, welche ein dem magnetischen Gleichfluss-Anteil entsprechendes Sensorsignal bereitstellt, mit einer Kompensationswicklung, welche magnetisch mit dem Kern des Transformators gekoppelt ist, mit einer Schalteinheit, welche elektrisch in einem Strompfad in Reihe mit der Kompensationswicklung angeordnet ist, um in die Kompensationswicklung einen Strom einzuspeisen, dessen Wirkung dem Gleichfluss-Anteil entgegengerichtet ist, wobei die Schalteinheit mittels einer von einer Steuereinrichtung bereitgestellten Stellgröße steuerbar ist; ferner betrifft die vorliegende Erfindung ein Verfahren zum Umrüsten eines Transformators.The invention relates to an apparatus and a method for reducing a magnetic DC component in the core of a transformer, with a measuring device which provides a sensor signal corresponding to the magnetic DC component, with a compensation winding which is magnetically coupled to the core of the transformer with a switching unit which is electrically arranged in a current path in series with the compensation winding for feeding into the compensation winding a current whose effect is opposite to the DC component, the switching unit being controllable by means of a manipulated variable provided by a control device; Furthermore, the present invention relates to a method for converting a transformer.

Stand der TechnikState of the art

Bei elektrischen Transformatoren, wie sie in Energie-Verteilungsnetzen eingesetzt werden, kann es zu einer unerwünschten Einspeisung eines Gleichstroms in die Primärwicklung oder Sekundärwicklung kommen. Eine solche Gleichstromeinspeisung, im Folgenden auch als DC-Anteil bezeichnet, kann beispielsweise von elektronischen Baukomponenten herrühren, wie sie heutzutage bei der Ansteuerung von elektrischen Antrieben oder auch bei der Blindleistungskompensation verwendet werden. Eine andere Ursache können so genannte "Geomagnetically Induced Currents" (GIC) sein.In electrical transformers, as used in energy distribution networks, there may be an undesirable feed of a direct current into the primary winding or secondary winding. Such DC supply, hereinafter also referred to as DC component, may for example come from electronic components, such as those used today in the control of electrical drives or in the reactive power compensation. Another cause may be so-called "Geomagnetically Induced Currents" (GIC).

Ein DC-Anteil hat im Kern des Transformators einen Gleichfluss-Anteil zur Folge, der sich dem Wechselfluss überlagert. Dies führt zu einer unsymmetrischen Aussteuerung des magnetischen Werkstoffs im Kern und bringt eine Reihe von Nachteilen mit sich. Bereits ein Gleichstrom von wenigen Ampere kann eine lokale Erwärmung im Transformator verursachen, was die Lebensdauer der Wicklungsisolation beeinträchtigen kann. Ein weiterer unerwünschter Effekt ist eine erhöhte Geräuschemission bei Betrieb des Transformators. Dies wird insbesondere dann als störend empfunden, wenn der Transformator in der Nähe eines Wohnbereichs installiert ist.A DC component in the core of the transformer results in a DC component, which is superimposed on the AC flux. This leads to an asymmetric modulation of the magnetic material in the core and brings a number of disadvantages. Even a DC of a few amps can cause a local heating in the transformer, which can affect the life of the winding insulation. Another undesirable effect is an increased noise emission during operation of the transformer. This is especially troublesome when the transformer is installed near a living area.

Zur Verringerung des Betriebsgeräusches eines Transformators sind verschiedene aktiv und passiv wirkende Einrichtungen bekannt. In der DE 40 21 860 C2 wird beispielsweise vorgeschlagen, der Geräuschemission bereits in seiner Entstehungsursache entgegenzutreten, nämlich die magnetische Wirkung des eingespeisten DC-Anteils direkt zu bekämpfen. Hierzu wird am Transformator eine zusätzliche Wicklung angebracht, eine so genannte Kompensationswicklung. In diese Kompensationswicklung, die üblicherweise nur einige Windungen aufweist, wird ein Kompensationsstrom eingespeist, welcher in seiner magnetischen Wirkung so gerichtet ist, dass er im Kern des Transformators dem magnetischen Fluss des störenden DC-Anteils entgegengerichtet ist. Die Einstellung des eingespeisten Gleichstroms erfolgt nach Maßgabe eines Einstellers oder eines Steuergeräts in Verbindung mit einem zugeordneten Messfühler, z.B. einem Mikrophon. Eine solche Messeinrichtung erfüllt aber nicht die Anforderungen an die Zuverlässigkeit und dem angestrebten möglichst geringen Wartungsaufwand, wie sie für Transformatoren in einem Energie-Verteilungsnetz heutzutage gestellt werden.To reduce the operating noise of a transformer, various active and passive devices are known. In the DE 40 21 860 C2 For example, it is proposed to counteract the noise emission already in its origin, namely to directly combat the magnetic effect of the injected DC component. For this purpose, an additional winding is attached to the transformer, a so-called compensation winding. In this compensation winding, which usually has only a few turns, a compensation current is fed, which is directed in its magnetic action so that it is directed in the core of the transformer to the magnetic flux of the interfering DC component. The adjustment of the injected direct current takes place in accordance with an adjuster or a control device in conjunction with an associated measuring sensor, eg a microphone. However, such a measuring device does not meet the requirements for reliability and the lowest possible maintenance required, as they are made for transformers in an energy distribution network today.

Um den Gleichfluss-Anteil im Kern eines Transformators möglichst zuverlässig zu erfassen, wird in der unveröffentlichten PCT/EP2010/054857 eine Sensoreinrichtung vorgeschlagen, welche nach Art eines "magnetischen Bypass" arbeitet: mittels eines ferromagnetischen Nebenschluss-Teils wird ein Teil des magnetischen Hauptflusses am Transformatorkern abgezweigt und stromabwärts wieder zugeführt. Aus diesem abgezweigten und im Nebenschluss zum Kern geführten Flussanteil wird entweder direkt, oder indirekt aus einer davon abgeleiteten physikalischen Größe, die magnetische Feldstärke in dem vom Nebenschlusszweig überbrückten Kernabschnitt ermittelt. Diese Erfassung der magnetischen Feldstärke, beziehungsweise der magnetischen Erregung, ist zuverlässiger und für den Langzeiteinsatz besser geeignet.In order to capture the DC component in the core of a transformer as reliable as possible, is in the unpublished PCT / EP2010 / 054857 proposed a sensor device which in the manner of a "magnetic bypass" works: by means of a ferromagnetic shunt part of a part of the main magnetic flux is branched off at the transformer core and fed back downstream. From this branched and guided in the shunt to the core flux fraction is determined either directly, or indirectly from a derived physical variable, the magnetic field strength in the bridged by the shunt branch core section. This detection of the magnetic field strength, or the magnetic excitation, is more reliable and more suitable for long-term use.

Auch aus der WO 2004/013951 A2 ist eine Halbleiter-Schalteinheit bekannt, mittels derer in eine Kompensationswicklung eines Transformators zum Zwecke der DC-Minimierung ein Kompensationsstrom eingespeist wird. Von einer Steuereinrichtung mit eigenständiger Stromquelle wird eine regelbare Frequenz für die Stromflussdauer der Halbleiterschalter (MOSFET) vorgegeben. Die elektrische Energie zum Erzeugen des Kompensationsstroms wird dabei einem Kondensator entnommen, der zyklisch über den Freilaufkreis der MOSFET aufgeladen wird. Bei Transformatoren, wie sie in einem Energie-Verteilungsnetz eingesetzt werden, ist aber ein Kondensator als Energiespeicher aus Gründen der Zuverlässigkeit und wegen dem angestrebten wartungsarmen Langzeitbetrieb nicht erwünscht.Also from the WO 2004/013951 A2 For example, a semiconductor switching unit is known, by means of which in a compensation winding of a transformer for the purpose of DC minimization, a compensation current is fed. From a control device with independent power source, a controllable frequency for the current flow duration of the semiconductor switch (MOSFET) is specified. The electrical energy for generating the compensation current is taken from a capacitor which is charged cyclically via the freewheeling circuit of the MOSFET. For transformers, as used in an energy distribution network, but a capacitor is not desirable as energy storage for reasons of reliability and because of the desired low-maintenance long-term operation.

Darstellung der ErfindungPresentation of the invention

Es ist eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren zur Verringerung eines Gleich Flussanteils eines magnetischen Flusses in einem kern eines Transformators anzugeben, welche im praktischen Einsatz für Transformatoren in einem Energie-Verteilungsnetz besser geeignet sind. Weiterhin betrifft die Erfindung ein Verfahren zum Umrüsten eines Transformators.It is an object of the present invention to provide an apparatus and a method for reducing a direct flux component of a magnetic flux in a core of a transformer, which are more suitable in practical use for transformers in an energy distribution network. Furthermore, the invention relates to a method for converting a transformer.

Diese Aufgabe wird bezüglich einer Vorrichtung mit den Merkmalen des Patentanspruchs 1 und bezüglich eines Verfahrens mit den Merkmalen des Patentanspruchs 9 gelöst. Weiterhin wird die Aufgabe durch ein Verfahren zum Umrüsten eines Transformators mit den Merkmalen des Patentanspruchs 16 gelöst. Vorteilhafte Ausgestaltungen, Aspekte und Einzelheiten der Erfindung ergeben sich aus den abhängigen Ansprüchen, der Beschreibung und der beigefügten Zeichnungen.This object is achieved with respect to a device having the features of patent claim 1 and with respect to a method having the features of patent claim 9. Furthermore, the object is achieved by a method for converting a transformer having the features of claim 16. Advantageous embodiments, aspects and details of the invention will become apparent from the dependent claims, the description and the accompanying drawings.

Die Erfindung geht von dem Gedanken aus, die in der Kompensationswicklung induzierte elektrische Spannung zu nutzen und für die Kompensation des störenden magnetischen Gleichfluss-Anteils heranzuziehen. Erfindungsgemäß wird mittels einer elektronischen Schalteinheit ein Kompensationsstrom erzeugt, wobei das Einschalten der Schalteinheit netzsynchron und nach einer vorgegebenen Schaltstrategie erfolgt. Erfindungsgemäß wird der Einschaltzeitpunkt von der Phase der in der Kompensationswicklung induzierten Spannung getriggert, und die Einschaltdauer richtet sich nach Maßgabe eines Sensorsignals, welche eine Messeinrichtung bereitstellt. Auf diese Weise wird ein sinusförmig pulsierender Gleichstrom in die Kompensationswicklung eingespeist, dessen Größe durch eine Strombegrenzungseinrichtung begrenzt wird. Eine Energiequelle, das heißt eine Batterie oder ein Kondensator, ist für die Erzeugung dieses pulsieren Gleichstroms nicht erforderlich. Die Stromflussdauer dieses pulsierenden Gleichstroms kann auf einfache Weise und sehr genau nach Maßgabe des zugeführten Sensorsignals, welches Richtung und Größe des zu kompensierenden DC-Anteils vorgibt, eingestellt werden. Der Mittelwert dieses so erzeugten gepulsten Gleichstroms bewirkt im weichmagnetischen Kern des Transformators eine Reduktion des Gleichfluss-Anteils, beziehungsweise hebt dessen Wirkung in Kern vollständig auf. Dadurch kommt es nicht mehr zu unerwünschten unsymmetrischen Aussteuerung des weichmagnetischen Kerns. In Folge davon ist die thermische Belastung der Wicklung des Transformators geringer. Bei Betrieb des Transformators sind Verluste und Geräusche geringer. Die Vorrichtung lässt sich dabei mit vergleichsweise einfachen Mitteln realisieren. Dabei können sowohl diskrete und oder programmierbare Bausteine verwendet werden und sind kommerziell verfügbar. Von großem Vorteil ist dabei, dass für die Erzeugung des Kompensationsstroms kein Energiespeicher, wie beispielsweise eine Batterie oder ein Kondensator, erforderlich ist. Die Energie zur Erzeugung des Kompensationsstroms wird direkt der Kompensationswicklung entnommen. Auf Grund ihrer Einfachheit ist die Zuverlässigkeit der Schaltungsanordnung hoch. Sie ist für den wartungsarmen Langzeitbetrieb eines Transformators in einem Energieverteilungsnetz gut geeignet. Der Einsatzbereich umfasst sowohl Transformatoren im Nieder- oder Mittelspannungsbereich, wie auch Transformatoren sehr hoher Leistung. Weder die Baugröße noch sicherheitsrelevante Einrichtungen oder andere Auslegungskriterien des Transformators werden durch den Einsatz der Erfindung ungünstig beeinflusst.
Die Steuereinrichtung besteht im Wesentlichen aus zwei Funktionsblöcken, aus einem Phasendetektor und einem Zeitglied. Der Phasendetektor erfasst den Nulldurchgang der in der Kompensationswicklung induzierten elektrischen Spannung und liefert das Triggersignal für den Einschaltzeitpunkt des Zeitintervalls, dessen Dauer nach Maßgabe des Sensorsignals vorgegebenen wird.
The invention is based on the idea to use the voltage induced in the compensation winding voltage and to use for the compensation of the disturbing magnetic DC component. According to the invention, a compensation current is generated by means of an electronic switching unit, wherein the switching-on of the switching unit is synchronized with the network and according to a predetermined switching strategy. According to the invention, the switch-on time is triggered by the phase of the voltage induced in the compensation winding, and the switch-on time depends on a sensor signal provided by a measuring device. In this way, a sinusoidally pulsating direct current is fed into the compensation winding whose size is limited by a current-limiting device. An energy source, that is a battery or a capacitor, is not required for the generation of this pulsating direct current. The current flow duration of this pulsating direct current can be set in a simple manner and very precisely in accordance with the supplied sensor signal, which predetermines the direction and magnitude of the DC component to be compensated. The mean value of this pulsed direct current generated in the soft magnetic core of the transformer, a reduction of the DC component, or completely eliminates its effect in the core. As a result, it no longer comes to undesirable asymmetric modulation of the soft magnetic core. As a result, the thermal load of the winding of the transformer is lower. When operating the transformer are losses and Noise lower. The device can be realized with comparatively simple means. Both discrete and or programmable devices can be used and are commercially available. Of great advantage is that no energy storage, such as a battery or a capacitor, is required for the generation of the compensation current. The energy for generating the compensation current is taken directly from the compensation winding. Due to its simplicity, the reliability of the circuitry is high. It is well suited for the low-maintenance long-term operation of a transformer in an energy distribution network. The application area includes both transformers in the low or medium voltage range, as well as transformers of very high power. Neither the size nor safety-relevant devices or other design criteria of the transformer are adversely affected by the use of the invention.
The control device consists essentially of two function blocks, a phase detector and a timer. The phase detector detects the zero crossing of the voltage induced in the compensation winding and supplies the trigger signal for the switch-on time of the time interval whose duration is predetermined in accordance with the sensor signal.

Von besonderem Vorteil kann dabei sein, wenn zum Zweck der Strombegrenzung im Strompfad in Reihe mit der Schalteinheit und der Kompensationswicklung eine Induktivität angeordnet ist. Der Vorteil der Verwendung einer Induktivität im Strompfad liegt alleine schon in der Tatsache begründet, dass der Spulenstrom der Kompensationswicklung dem zeitlichen Integral der Spulenspannung entspricht und somit durch eine geeignete Steuerstrategie über eine Periode in einfacher Weise Gleichanteile dieses Spannungsintegrals und somit des Spulenstroms erzielbar sind. Bei entsprechender Wahl der Induktivität kann die Belastung beim Einschalten sehr gering gehalten werden, da die zeitliche Änderung des Stroms im Einschaltaugenblick durch die Induktivität begrenzt ist. Grundsätzlich könnte anstelle der Induktivität auch ein anderer Zweipol verwendet werden. Schaltungstechnisch wäre auch ein ohmscher Widerstand denkbar, dessen Wirkverluste wären aber von Nachteil.Of particular advantage may be, if, for the purpose of current limiting in the current path in series with the switching unit and the compensation winding, an inductance is arranged. The advantage of using an inductance in the current path is already due to the fact that the coil current of the compensation winding corresponds to the time integral of the coil voltage and thus by a suitable control strategy over a period in a simple manner equal proportions of this voltage integral and thus the coil current can be achieved. With appropriate choice of inductance, the load when switching on can be very low are held, since the temporal change of the current is limited at startup by the inductance. In principle, another two-pole could be used instead of the inductance. Circuit technology would also be an ohmic resistance conceivable, but its losses would be a disadvantage.

Eine weitere Schutzmaßnahme zum Schutz der Schalteinrichtung vor induktive Spannungsspitzen kann darin bestehen, dass parallel zur Serienschaltung von Induktivität und Schalteinheit in einem parallel liegenden Schaltungszweig ein Überspannungsschutz vorgesehen ist.Another protective measure for protecting the switching device against inductive voltage peaks may be that an overvoltage protection is provided in parallel with the series connection of inductance and switching unit in a parallel circuit branch.

In einer ganz besonders bevorzugten Ausführungsform ist die Schalteinheit aus zumindest einem Thyristor gebildet. Der Vorteil der Verwendung eines Thyristors liegt zunächst darin, dass ein Thyristor mit einem Stromimpuls "gezündet", das heißt in den leitenden Zustand gebracht werden kann. Während der positiven Halbschwingung der Netzspannung hat der Thyristor bis zum nächsten Stromnulldurchgang die Eigenschaft einer Diode. Das Ende der Stromflussdauer wird vom Thyristor selbst bewirkt, indem der Haltestrom unterschritten wird und der Thyristor automatisch " löscht", das heißt in den nicht leitenden Zustand übergeht. Selbstverständlich sind auch andere Halbleiterschalter, wie GTO, IGBT Transistoren oder andere Schaltelemente denkbar.In a very particularly preferred embodiment, the switching unit is formed from at least one thyristor. The advantage of using a thyristor is first that a thyristor with a current pulse "ignited", that can be brought into the conductive state. During the positive half-wave of the mains voltage, the thyristor has the property of a diode until the next current zero crossing. The end of the current flow time is effected by the thyristor itself by the holding current is exceeded and the thyristor automatically "clears", that is, goes into the non-conductive state. Of course, other semiconductor switches, such as GTO, IGBT transistors or other switching elements are conceivable.

Um in der Kompensationswicklung einem Gleichstrom in beiden Stromrichtungen einspeisen zu können, sind verschiedene Schaltungsvarianten möglich. Es könnten zwei gegensinnig gewickelte Kompensationswicklungen in Verbindung jeweils mit einem unipolaren Halbleiterschalter verwendet werden, bzw. eine Wicklung mit bipolaren Halbleiterschaltern. Grundsätzlich könnte auch eine Umposchaltung eingesetzt werden. Eine besonders einfache Realisierung kann aber durch eine Antiparallelschaltung von zwei Schalteinheiten, insbesondere zwei antiparallelen Thyristoren erreicht werden. Es kann von Vorteil sein, wenn im Strompfad in Reihe ein Schalter zum Ein- und Ausschalten, sowie eine den Stromfluss begrenzende Sicherung vorgesehen sind. Dadurch kann die Kompensationseinrichtung aktiviert beziehungsweise deaktiviert werden. Im Fehlerfall sorgt die Sicherung für eine Begrenzung eines unzulässig hohen Stroms.In order to be able to feed a DC current in both directions of current in the compensation winding, different circuit variants are possible. It could be used in combination with a unipolar semiconductor switch, or a winding with bipolar semiconductor switches, two oppositely wound compensating windings. Basically, a Umposchaltung could be used. However, a particularly simple implementation can be achieved by an anti-parallel connection of two switching units, in particular two antiparallel thyristors. It can be advantageous if a switch for switching on and off as well as a fuse limiting the current flow are provided in series in the current path. As a result, the compensation device can be activated or deactivated. In the event of an error, the fuse ensures that an excessively high current is limited.

Es kann günstig sein, wenn die Schalteinheit und die Steuereinrichtung außerhalb des Kessels eines Transformators angeordnet wird. Die gesamte elektronische Schaltung ist dadurch von außen für Kontrolle und Wartung zugänglich.It may be favorable if the switching unit and the control device are arranged outside the boiler of a transformer. The entire electronic circuit is thus accessible from the outside for inspection and maintenance.

Eine ganz besonders bevorzugte Ausführung der Erfindung, kann darin bestehen, dass die Messeinrichtung zum Erfassen des magnetischen Gleichfluss-Anteils einen magnetischen Nebenschluss-Teil mit einer Sensorspule umfasst. Der Nebenschluss-Teil ist am Kern des Transformators z.B. an einem Schenkel oder am Joch anliegend angeordnet ist, um einen Teil des magnetischen Flusses in einem Bypass zu führen. Aus diesem, im Nebenschluss geführten magnetischen Fluss, lässt sich mittels einer Sensorspule sehr leicht ein langzeitstabiles Sensorsignal gewinnen, welches ggf. nach einer Signalaufbereitung den Gleichfluss-Anteil (DC-Anteil) sehr gut abbildet. Das Messergebnis ist weitgehend frei von Drift und für langzeitstabil. Da dieser Detektor im Wesentlichen aus dem Nebenschlussteil und der darauf angeordneten Sensorspule besteht, besitzt er eine hohe Zuverlässigkeit.A very particularly preferred embodiment of the invention can consist in that the measuring device for detecting the magnetic DC component comprises a magnetic shunt part with a sensor coil. The shunt part is connected to the core of the transformer e.g. is disposed adjacent to a leg or yoke to bypass a portion of the magnetic flux. From this, guided in the shunt magnetic flux can be obtained by means of a sensor coil very easily a long-term stable sensor signal, which if necessary after a signal processing the DC component shares very well. The measurement result is largely free of drift and for long-term stability. Since this detector consists essentially of the shunt part and the sensor coil arranged thereon, it has a high reliability.

Die eingangs gestellte Aufgabe wird auch durch ein Verfahren gelöst, das dadurch gekennzeichnet ist, dass der Einschaltzeitpunkt der Schalteinheit synchron zu der in der Kompensationswicklung induzierten Spannung und nach Maßgabe eines Sensorsignals erfolgt, wobei das Sensorsignal von einer Messeinrichtung zum Erfassen des magnetischen Gleichfluss-Anteils der Steuereinrichtung zugeführt wird. Ein derartiges Verfahren lässt sich schaltungstechnisch sehr einfach mit wenigen Bauelementen realisieren.The object stated in the introduction is also achieved by a method which is characterized in that the switch-on time of the switching unit is synchronous with the voltage induced in the compensation winding and in accordance with a sensor signal, wherein the sensor signal from a measuring device for detecting the magnetic DC component of the Control device is supplied. Such a thing In terms of circuitry, the method can be implemented very simply with a few components.

Die Schalteinheit wird mit einer Stellgröße gesteuert, welche von einem in der Steuereinrichtung vorhandenem Zeitglied vorgegeben wird, wobei das Zeitglied von einem Phasendetektor, welcher die Phase der in der Kompensationswicklung induzierten Spannung detektiert, getriggert wird. Das Zeitglied kann als diskreter Baustein, oder Teil einer digitalen Schaltung sein. Es kann von Vorteil sein, wenn die Stellgröße das Ergebnis einer Rechenoperation eines Mikroprozessors ist. Der Mikroprozessor kann dabei gleichzeitig auch zur Signalaufbereitung des Sensorsignals verwendet werden.The switching unit is controlled with a manipulated variable which is predetermined by a timer present in the control device, the timer being triggered by a phase detector which detects the phase of the voltage induced in the compensation winding. The timer may be a discrete device, or part of a digital circuit. It may be advantageous if the manipulated variable is the result of an arithmetic operation of a microprocessor. The microprocessor can be used at the same time for signal processing of the sensor signal.

In einer besonders bevorzugten Ausführung wird die Schalteinheit so angesteuert, dass in der Kompensationswicklung ein pulsierender Gleichstrom eingespeist wird. Dies hat den Vorteil, dass der arithmetische Mittelwert dieses pulsierenden Gleichstroms sehr einfach nach Maßgabe des zu kompensierenden DC-Anteils vorgegeben werden kann. Die elektronische Schalteinheit bleibt zwecks Reduktion der in der Induktivität gespeicherten magnetischen Energie sinnvoller Weise solange eingeschaltet, bis der pulsierende Gleichstrom abgeklungen ist. Somit hat ein Überspannungsschutz nach dem Ausschalten der elektrischen Schalteinheit faktisch keine, in der Spule gespeicherte magnetische Restenergie zu absorbieren.In a particularly preferred embodiment, the switching unit is driven so that in the compensation winding, a pulsating direct current is fed. This has the advantage that the arithmetic mean of this pulsating direct current can be specified very simply in accordance with the DC component to be compensated. For the purpose of reducing the magnetic energy stored in the inductance, the electronic switching unit remains meaningfully switched on until the pulsating direct current has decayed. Thus, overvoltage protection after turning off the electrical switching unit does not in fact absorb any residual magnetic energy stored in the coil.

Weiterhin wird zur Lösung der vorstehend genannten Aufgabe auch ein Verfahren zum Umrüsten eines Transformators angegeben. Die erfindungsgemäße Vorrichtung, beziehungsweise das erfindungsgemäße Verfahren, lässt sich auch bei bereits in Betrieb befindlichen Transformatoren vorteilhaft einsetzen. Der Aufwand ist hierbei sehr gering. Eine Umrüstung ist insbesondere dann sehr einfach, wenn eine bereits im Transformatorkessel angeordnete Kompensationswicklung gemäß der vorliegenden Erfindung verwendet werden kann. In diesem Fall braucht der Transformatorkessel nicht geöffnet zu werden, sondern die erfindungsgemäße Einrichtung nur mit den bereits herausgeführten Klemmen der Kompensationswicklung verbunden werden.Furthermore, a method for converting a transformer is given to achieve the above object. The device according to the invention, or the method according to the invention, can also be used advantageously in already operating transformers. The effort is very low. A conversion is particularly easy if a already arranged in the transformer tank compensation winding according to the present invention can be used. In this case, the transformer tank does not need to be opened, but the device according to the invention can only be connected to the already led out terminals of the compensation winding.

Kurzbeschreibung der ZeichnungBrief description of the drawing

Zur weiteren Erläuterung der Erfindung wird im nachfolgenden Teil der Beschreibung auf die Zeichnungen Bezug genommen, aus denen weitere vorteilhafte Ausgestaltungen, Einzelheiten und Weiterbildungen der Erfindung anhand eines nicht einschränkenden Ausführungsbeispiels zu entnehmen sind.
Es zeigen:

Figur 1
ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung, dargestellt in einer vereinfachten Skizze;
Figur 2
eine Darstellung des zeitlichen Verlaufs der in der Kompensationswicklung induzierten elektrischen Spannung des Kompensationsstroms;
Figur 3
eine Darstellung des Kompensationsstroms als Funktion der Stellgröße;
To further explain the invention, reference is made in the following part of the description to the drawings, from which further advantageous embodiments, details and further developments of the invention can be found by way of non-limiting embodiment.
Show it:
FIG. 1
an embodiment of the device according to the invention, shown in a simplified sketch;
FIG. 2
a representation of the time course of the induced voltage in the compensation winding of the compensation current;
FIG. 3
a representation of the compensation current as a function of the manipulated variable;

Ausführung der ErfindungEmbodiment of the invention

Die Figur 1 zeigt eine Vorrichtung 1 gemäß einem Ausführungsbeispiel der Erfindung in einer vereinfachten Darstellung. Die Vorrichtung 1 besteht im Wesentlichen aus einer Schaltungsanordnung die über die Klemmen K1 und K2 an eine Kompensationswicklungsanordnung K angeschlossen. Die Kompensationswicklungsanordnung K ist im Transformatorkessel 12 untergebracht und mit dem Kern 4 des Transformators magnetisch gekoppelt. Sie besteht üblicherweise nur aus einer Wicklung mit wenigen Windungen, die beispielsweise um einen Schenkel oder um ein Jochteil des Transformators gewickelt ist. Von der Kompensationswicklung K im Transformatorkessel 12 sind die Anschlüsse an den Klemmen K1 und K2 in den Außenraum 13 herausgeführt.The FIG. 1 shows a device 1 according to an embodiment of the invention in a simplified representation. The device 1 consists essentially of a circuit arrangement which is connected via the terminals K1 and K2 to a compensation winding arrangement K. The Compensation winding assembly K is housed in the transformer tank 12 and magnetically coupled to the core 4 of the transformer. It usually consists only of a winding with few turns, which is wound for example around a leg or a yoke part of the transformer. From the compensation winding K in the transformer tank 12, the terminals at the terminals K1 and K2 are led out into the outer space 13.

Bei Betrieb des Transformators wird in der Kompensationswicklung K eine elektrische Spannung induziert, die gemäß der Erfindung dazu genutzt wird, den störenden Gleichanteil des magnetischen Flusses im Kern 4 zu bekämpfen. Dies erfolgt durch netzgeführtes Schalten einer Schalteinheit T.During operation of the transformer an electrical voltage is induced in the compensation winding K, which is used according to the invention to combat the disturbing DC component of the magnetic flux in the core 4. This is done by network-controlled switching a switching unit T.

Im Folgenden wird näher erläutert, wie der in Figur 2 dargestellte Verlauf des Kompensationsstroms erzeugt wird:The following explains in more detail how the in FIG. 2 illustrated course of the compensation current is generated:

Wie aus der Darstellung der Figur 1 zu entnehmen ist, sind die Klemmen K1 und K2 der Kompensationswicklung K mit einer Steuereinrichtung 2 verbunden. Die Steuereinrichtung 2 besteht im Wesentlichen aus einem Phasendetektor P und einem Zeitglied TS. Der Phasendetektor P, z.B. ein Nulldurchgang-Detektor, leitet aus der induzierten Spannung ein Triggersignal 8 ab, welches einem Zeitglied TS zugeführt ist. Zusammen mit einem ebenfalls der Steuereinrichtung 2 zugeführten Steuersignals 6, stellt die Steuereinrichtung 2 ausgangsseitig eine Stellgröße 9 bereit, welche einer elektronischen Schalteinheit T zugeleitet ist. Die Schalteinheit T liegt in einem Strompfad 3 in Reihe mit der Kompensationswicklung K und in Reihe mit einer Induktivität L. Die Induktivität L ist dabei so bemessen, dass bei einem Durchschalten der Schalteinheit T ein in eine Stromrichtung fließender, sinusförmig pulsierender Stromverlauf in die Kompensationswicklung K eingespeist wird.As from the representation of FIG. 1 can be seen, the terminals K1 and K2 of the compensation winding K are connected to a control device 2. The control device 2 consists essentially of a phase detector P and a timer TS. The phase detector P, for example a zero-crossing detector, derives from the induced voltage a trigger signal 8, which is fed to a timer TS. Together with a likewise supplied to the control device 2 control signal 6, the control device 2 on the output side a manipulated variable 9 ready, which is fed to an electronic switching unit T. The switching unit T is in a current path 3 in series with the compensation winding K and in series with an inductance L. The inductance L is so dimensioned that when switching the switching unit T flowing in a current direction, sinusoidally pulsating current waveform in the compensation winding K is fed.

Im Strompfad 3 ist zum Zweck der Strombegrenzung eine Sicherung Si vorgesehen. Diese Sicherung Si ist in Figur 1 zwischen der Klemme K1 und einem Schalter S angeordnet. Der Schalter S dient dazu, den Strompfad 3 zu schließen beziehungsweise zu trennen.In the current path 3, a fuse Si is provided for the purpose of current limitation. This fuse Si is in FIG. 1 placed between the terminal K1 and a switch S. The switch S serves to close or disconnect the current path 3.

Gemäß der Erfindung erfolgt das Einschalten der elektronischen Schalteinheit T phasensynchron zur Spannung in der Kompensationswicklung K und nach einer vorgegebenen Schaltstrategie. Das heißt, je nach Größe und Richtung des einzubringenden Kompensationsstroms wird der Einschaltzeitpunkt mithilfe des vom Phasendetektor P gesteuerten Zeitgliedes TS entsprechend einem untenstehend näher erläuterten funktionalen Zusammenhang derart gesteuert, dass der resultierende arithmetische Mittelwert des pulsierenden Stromes in der Kompensationswicklung K durch seine Wirkung den störenden Gleichfluss-Anteil verringert beziehungsweise diesen vollständig kompensiert.According to the invention, the switching of the electronic switching unit T is carried out in phase synchronism with the voltage in the compensation winding K and according to a predetermined switching strategy. That is, depending on the size and direction of the compensation current to be introduced, the switch-on time is controlled by means of the controlled by the phase detector P timer TS according to a functional relationship explained in more detail below such that the resulting arithmetic mean of the pulsating current in the compensation winding K by its effect the disturbing DC Reduced share or this fully compensated.

Die Information bezüglich Größe und Richtung des zu kompensierenden Gleichfeldanteils im Kern 4 erhält die Steuereinrichtung 2 von einer Messeinrichtung 7 zum Messen des Gleichfluss-Anteils. Diese stellt das Sensorsignal 6 bereit, welches der Steuereinrichtung 2 zugeführt ist. Mit besonderem Vorteil arbeitet die Messeinrichtung 7 gemäß dem eingangs zitierten Messeprinzip des magnetischen Bypass ( PCT/EP2010/054857 ). Das heißt, sie besteht im Wesentlichen aus einem magnetischen Nebenschluss-Teil, der am Kern angeordnet ist, um einen Anteil des magnetischen Flusses in einem Bypass zu führen, aus denen dann, beispielsweise mit einer am Nebenschluss-Teil angeordneten Sensorspule in Verbindung mit einer Signalaufbereitung der Gleichfluss-Anteil ermittelt werden kann.The information regarding size and direction of the DC field component to be compensated in the core 4 is obtained by the control device 2 from a measuring device 7 for measuring the DC component. This provides the sensor signal 6, which is supplied to the control device 2. With particular advantage, the measuring device 7 operates according to the above-quoted measuring principle of the magnetic bypass ( PCT / EP2010 / 054857 ). That is, it consists essentially of a magnetic shunt portion disposed on the core to conduct a portion of the magnetic flux in a bypass, from which then, for example, a sensor coil arranged at the shunt portion in connection with signal conditioning the DC component can be determined.

Das Ausschalten der elektronischen Schalteinheit T erfolgt bei Nulldurchgang des Stroms (siehe Figur 2). Dieser Zeitpunkt lässt sich sehr einfach ermitteln, da die Stromflussdauer 16 der zweifachen Stellgröße x (Signal 9 in Figur 2) entspricht. Dadurch wird erreicht, dass der im Parallelzweig 5 vorgesehene Überspannungsschutz V beim Ausschalten nur eine geringe magnetische Restenergie absorbieren muss. Die Schaltverluste der elektronischen Schalteinheit sind minimal, da beim Einschalten, bedingt durch die Induktivität L im Strompfad 3, der Einschaltstrom gering ist; auch beim Ausschalten sind die Schaltverluste gering, da der Ausschaltzeitpunkt so festgelegt ist, dass er bei Nulldurchgang oder zumindest nahe Strom Null im Strompfad 3 erfolgt.Turning off the electronic switching unit T takes place at zero crossing of the current (see FIG. 2 ). This point in time can be determined very simply, since the current flow duration 16 is twice the manipulated variable x (signal 9 in FIG FIG. 2 ) corresponds. It is thereby achieved that the overvoltage protection V provided in the parallel branch 5 must absorb only a small residual magnetic energy when switched off. The switching losses of the electronic switching unit are minimal, since when switching, due to the inductance L in the current path 3, the inrush current is low; even when switching off the switching losses are low, since the switch-off is set so that it takes place at zero crossing or at least near zero current in the current path 3.

Der arithmetische Mittelwert des Kompensationsstroms IGL ist damit allein von dem durch die Stellgröße vorgegebenen Einschaltzeitpunkt bestimmt. Thyristoren sind als Schalter für die Schalteinheit T besonders geeignet, da sie prinzipbedingt bei Erreichen des stromlosen Zustandes, genauer gesagt beim Unterschreiten des so genannten Haltestroms, von selbst wieder in den nicht leitenden Zustand übergehen.The arithmetic mean of the compensation current I GL is thus determined solely by the predetermined by the manipulated variable switch-on. Thyristors are particularly suitable as a switch for the switching unit T, as they inherently go on reaching the de-energized state, more precisely, when falling below the so-called holding current, by itself again in the non-conductive state.

Indem der Einschaltzeitpunkt durch das Signal 9 vorgegebenen wird und synchron zum Netz erfolgt, und indem das Ausschalten der Schalteinheit T bei Nulldurchgang des Stromes durchgeführt wird, ist der arithmetische Mittelwert des Kompensationsstroms IGL sehr genau durch die Stellgröße x beziehungsweise das Stellgrößensignal 9 einstellbar.By the switching-on time is predetermined by the signal 9 and takes place synchronously to the network, and by turning off the switching unit T is performed at zero crossing of the current, the arithmetic mean of the compensation current I GL is very precisely adjusted by the manipulated variable x and the manipulated variable signal 9.

Die Figur 2 zeigt den zeitlichen Verlauf der in der Kompensationswicklung K induzierten Spannung 10 und den durch die erfindungsgemäße Schaltstrategie vorgegebenen pulsierenden Gleichstrom 11 (Kompensationsstrom IGL). Der Kompensationsstrom IGL weist die Form aneinander gereihter sinusförmiger Halbwellen 18 auf, die von Stromlücken 17 unterbrochen sind, wobei jede Halbwellen 18 symmetrisch zur halben Periodendauer T/2 der induzierten Spannung 10 ist. Der Einschaltzeitpunkt 14 wird wie oben dargestellt im Gleichlauf mit dem Netz und nach Maßgabe der Stellgröße 9 vorgegeben. Der Synchronisationspunkt für das Einschalten ist in Figur 2 der abfallende Nulldurchgang der Spannung 10. Durch geeignete Wahl der Induktivität L folgt nach dem Durchschalten der Schalteinheit T der Strom in Strompfad 3 dem Integral der elektrischen Spannung 10, das heißt, er hat beim Nulldurchgang der elektrischen Spannung 10 seinen Maximalwert und klingt dann wieder ab. Wenn der Kompensationsstrom 11 nahezu Null ist, geht die Schalteinheit T, z.B. ein Thyristor, in den nicht leitenden Zustand über. Die Stromflussdauer 16 ist durch die Stellgröße 9 oder durch das Löschen des Thyristors bestimmt. Jeder Halbwellen 18 folgt eine Stromlücken 17.The FIG. 2 shows the time course of the voltage induced in the compensation winding K 10 and the predetermined by the switching strategy according to the invention pulsating DC 11 (compensation current I GL ). The compensation current I GL has the form of juxtaposed sinusoidal half-waves 18 which are interrupted by current gaps 17, each half-wave 18 being symmetrical to half the period T / 2 of the induced voltage 10. The switch-on 14 is set as described above in synchronism with the network and in accordance with the manipulated variable 9. The synchronization point for switching on is in FIG. 2 By appropriate choice of the inductance L follows after switching through the switching unit T, the current in current path 3 the integral of the electrical voltage 10, that is, it has at the zero crossing of the electrical voltage 10 its maximum value and then stops again , When the compensation current 11 is almost zero, the switching unit T, eg a thyristor, transitions to the non-conductive state. The current flow time 16 is determined by the manipulated variable 9 or by the deletion of the thyristor. Each half-waves 18 follows a current gaps 17th

Um in der Wicklung K einen Kompensationsstrom IGL in beiden Richtungen vorzugeben, ist in Figur 1 in unterbrochener Linie eine zweite Schalteinheit T' angedeutet. Die beiden Schalteinheiten T und T' können beispielsweise zwei antiparallel geschaltete Thyristoren seien.In order to predetermine in the winding K a compensation current I GL in both directions, is in FIG. 1 in a broken line, a second switching unit T 'indicated. The two switching units T and T 'can be, for example, two anti-parallel connected thyristors.

Zwischen dem erzeugten Kompensationsstrom IGL und der Stellgröße x besteht ein nichtlinearer Zusammenhang, der in Figur 3 graphisch dargestellt ist und im Folgenden näher erläutert wird:There is a non-linear relationship between the generated compensation current I GL and the manipulated variable x FIG. 3 is shown graphically and explained in more detail below:

In der folgenden Betrachtung wird davon ausgegangen, dass der ohmsche Widerstand der Spule vernachlässigt werden kann.In the following discussion it is assumed that the ohmic resistance of the coil can be neglected.

Somit gilt für den funktionalen Zusammenhang zwischen Spulenstrom IL(t) und Spulenspannung UL(t) näherungsweise: I L t - I L t = 0 = 1 / L . I L t . dt

Figure imgb0001
Thus, for the functional relationship between coil current I L (t) and coil voltage U L (t) approximately: I L t - I L t = 0 = 1 / L , I L t , dt
Figure imgb0001

Sei nun:

  • T := Periodendauer der Spannung an der Kompensationswicklung [s]
  • Û := Scheitelwert der Spannung an der Kompensationswicklung [V]
  • L := Induktivität der Spule [H]
  • x := Stellgröße in Prozenten [%]
und sei ferner die Zeit t definiert durch: t = x . T 2 1 100
Figure imgb0002
dann folgt für den maximal erreichbaren arithmetischen Mittelwert (Gleichanteil) des Spulenstromes bzw. des Kompensationsstromes IMAX bei einer Stellgröße von 100 Prozent I MAX = U ^ L . T 2 π .
Figure imgb0003
Now be:
  • T: = period of the voltage at the compensation winding [s]
  • Û: = peak value of the voltage at the compensation winding [V]
  • L: = inductance of the coil [H]
  • x: = manipulated variable in percent [%]
and let the time t be defined by: t = x , T 2 1 100
Figure imgb0002
then follows for the maximum achievable arithmetic mean (DC component) of the coil current or the compensation current I MAX at a control value of 100 percent I MAX = U ^ L , T 2 π ,
Figure imgb0003

Für den arithmetischen Mittelwert (Gleichanteil) des Spulenstromes bzw. Kompensationsstromes IGL [A] als Funktion der Stellgröße x [%] ergibt sich nach einiger Zwischenrechnung: I GL = I MAX T sin 2 π t T - 2 π t cos 2 π t T π . T

Figure imgb0004
For the arithmetic mean (DC component) of the coil current or compensation current I GL [A] as a function of the manipulated variable x [%], after some intermediate calculation: I GL = I MAX T sin 2 π t T - 2 π t cos 2 π t T π , T
Figure imgb0004

Für den Effektivwert des im Kompensationsstromsignal enthaltenen Grundwellenanteiles IGW [A EFF] als Funktion der Stellgröße x [%] folgt: I GW = I MAX T sin 4 π t T - 4 π t 2 πT 2

Figure imgb0005
For the effective value of the fundamental component I GW [A EFF ] contained in the compensation current signal as a function of the manipulated variable x [%] follows: I GW = I MAX T sin 4 π t T - 4 π t 2 πT 2
Figure imgb0005

Darüber hinaus gilt für den Effektivwert des im Kompensationsstromsignal enthaltenen Spektralanteiles I0W [A EFF] der (k) ten Harmonischen als Funktion der Stellgröße x [%]: I OW = I MAX cos k π 1 + k sin 2 π t k - 1 T - k - 1 sin 2 π t k + 1 T k k 2 - 1 π 2

Figure imgb0006

Mit : k ∈ N und k≥2In addition, for the rms value of the spectral component I 0W [A EFF ] of the (k) th harmonic contained in the compensation current signal , the following applies as a function of the manipulated variable x [%]: I OW = I MAX cos k π 1 + k sin 2 π t k - 1 T - k - 1 sin 2 π t k + 1 T k k 2 - 1 π 2
Figure imgb0006

With: k ∈ N and k ≥2

Figur 3 zeigt den funktionalen Zusammenhang zwischen dem Kompensationsstrom IGL (bezogen auf den maximal erreichbaren Kompensationsstrom IMAX bei 100 Prozent) in Abhängigkeit der Stellgröße entsprechend Gleichung (4). FIG. 3 shows the functional relationship between the compensation current I GL (based on the maximum achievable compensation current I MAX at 100 percent) as a function of the manipulated variable according to equation (4).

Wenn die Größe und Richtung des zu kompensierenden Gleichfluss-Anteils bekannt ist (Sensorsignal 6), ermittelt die Steuereinrichtung gemäß der obigen Darstellung beziehungsweise des in Figur 3 dargestellten Zusammenhangs, die zur Kompensation erforderliche Stellgröße x (Signal 9). Dadurch kann auf einfache Weise bei einem Transformator die thermische Belastung der Wicklung sowie die störende Emission von Geräuschen reduziert werden. Die oben erläuterte elektronische Schaltung kann potenzialfrei aufgebaut werden. Dadurch treten auch im Einsatzbereich von hohen Netzspannungen keine Isolationsprobleme auf.If the size and direction of the DC component to be compensated is known (sensor signal 6), the control device determines according to the above illustration or the in FIG FIG. 3 shown relationship, the manipulated variable x required for compensation (signal 9). As a result, in a simple manner in a transformer, the thermal load of the winding and the disturbing emission be reduced by noises. The above-described electronic circuit can be constructed floating. As a result, no insulation problems occur even in the application of high mains voltages.

Zusammenstellung der verwendeten AI korrigiere BezugszeichenCompilation of AI used correct reference numerals

11
Schaltungsvorrichtungcircuit device
22
Steuereinrichtungcontrol device
33
Strompfadcurrent path
44
magnetischer Kern des Transformatorsmagnetic core of the transformer
55
Parallelzweigparallel branch
66
Sensorsignalsensor signal
77
Messeinrichtung zum erfassen des Gleichfluss-AnteilsMeasuring device for detecting the DC component
88th
Triggersignaltrigger signal
99
Signal Stellgröße xSignal manipulated variable x
1010
zeitlicher Verlauf der elektrischen Spannung an der Kompensationswicklungtime course of the electrical voltage at the compensation winding
1111
zeitliche Verlauf des Kompensationsstroms IGL im Strompfad 3time course of the compensation current I GL in the current path 3
1212
Kesselraum TransformatorsBoiler room transformer
1313
Außenraumouter space
1414
Einschaltzeitpunktswitch-on
1515
Ausschaltzeitpunktoff time
1616
StromflussdauerConducting period
1717
Stromlückencurrent gaps
1818
Halbwellehalf-wave
LL
SpuleKitchen sink
TT
Schalteinheit, ThyristorSwitching unit, thyristor
VV
ÜberspannungsschutzOvervoltage protection
TSTS
Zeitgliedtimer
PP
Phasendetektorphase detector
KK
Kompensationswicklungcompensation winding
SS
Schalterswitch
SiSi
Sicherungfuse
IGL I GL
Kompensationsstromcompensating current
K1K1
Anschlussklemmeterminal
K2K2
Anschlussklemmeterminal
XX
Stellgrößemanipulated variable

Claims (16)

  1. Device for reducing a magnetic unidirectional flux fraction in the core of a transformer, said device comprising:
    - a measuring device (7), providing a sensor signal (6) corresponding to the magnetic unidirectional flux fraction,
    - a compensation winding (K) which is coupled magnetically to the core (4) of the transformer,
    - a switching unit (T) which is arranged electrically in a path (3) of the current in series with the compensation winding (K), in order to feed a current into the compensation winding (K), the action of said current being in an opposite direction to the unidirectional flux fraction, wherein the switching unit (T) can be controlled by means of a control variable (9) provided by a control device (2),
    - characterised in that
    - the switching unit (T) can be switched into a conducting state during a predetermined time interval (16), the turn-on time (14) of said time interval (16) taking place in a manner synchronous to the mains, i.e. phase-synchronously to the voltage in the compensation winding (K) and in accordance with the control variable (9),
    - a device for current limitation (L) is provided in the path (3) of the current,
    - the control device (2) comprises a device (P) for detecting the voltage phase in the compensation winding (K) and a timer device (TS) triggered by said compensation winding (K) for specifying the time interval (16),
    - and that the sensor signal (6) is supplied to the control device (2).
  2. Device according to claim 1, characterised in that the current limiting device is formed by an inductance (L) connected in series in the path (3) of the current to the compensation winding (K) and to the switching unit (T).
  3. Device according to one of claims 1 to 2, characterised in that the switching unit (T) is controlled in such a way that the current (IGL) flowing in the path (3) of the current is a pulsating d.c. current and switches off the switching unit (T) when the current (IGL) in the path (3) of the current is zero or almost zero.
  4. Device according to claim 3, characterised in that the pulsating d.c. current (IGL) is formed of periodically recurring half-waves (18) and of current gaps (17) connecting adjacent half-waves (18).
  5. Device according to one of claims 1 to 4, characterised in that the switching unit (T) is formed of at least one semiconductor switch, preferably of at least one thyristor, GTO or IGBT.
  6. Device according to claim 5, characterised in that the switching unit (T) is formed of two thyristors connected in anti-parallel arrangement.
  7. Device according to one of claims 1 to 5, characterised in that a fuse (Si) and a switch (S) are arranged in the path (3) of the current.
  8. Device according to one of claims 1 to 7, characterised in that for detecting the magnetic unidirectional flux fraction, the measuring device (7) comprises a magnetic shunt part with a sensor coil, said shunt part being arranged at the core of the transformer, in order to guide part of the magnetic flux as a by-pass and the sensor signal is derived or formed from the voltage induced in the sensor coil.
  9. Method for reducing a magnetic unidirectional flux fraction in the core of a transformer, wherein by means of a switching unit (T), which is controlled by a control device (2), a compensation current (IGL) is fed into a compensation winding (K) coupled to the core (4), the action of said compensation current in the core being in a direction opposite to the unidirectional flux fraction, wherein the switching unit (T) is arranged in a path (3) of the current in series with the compensation winding (K), wherein the current flowing in the path (3) of the current is restricted by means of a current limiting device (L),
    wherein
    - the switching unit (T) is connected synchronously to the voltage induced in the compensation winding (K) and is switched on at a turn-on time (14) according to a sensor signal (6),
    - the switching unit (T) is controlled by a control variable (9), which is predetermined by a timer (TS) present in the control device (2), the timer (TS) being triggered by a phase detector (P), which phase detector (P) detects the phase of the voltage induced in the compensation winding (K), and
    - the sensor signal (6) is provided by a measuring device (7) for detecting the magnetic unidirectional flux fraction and supplying it to the control device (2).
  10. Method according to claim 9, characterised in that the current limiting device is formed by an inductance (L) in the path (3) of the current connected in series to the compensation winding (K) and to the switching unit (T).
  11. Method according to claim 9 or 10, characterised in that the switching unit (T) is controlled by a control variable (9), which control variable is predetermined by a timer (TS) present in the control device (2), wherein the timer (TS) is triggered by a phase detector (P), which phase detector (P) detects the phase of the voltage induced in the compensation winding (K).
  12. Method according to claim 9, 10 or 11, characterised in that the switching unit (T) is controlled, such that a pulsating direct current (11) is fed into the compensation winding (K).
  13. Method according to claim 12, characterised in that the pulsating direct current (11) is formed by periodically recurring sinusoidal half-waves (18) and current gaps (17) lying therebetween.
  14. Method according to claim 13, characterised in that the switching unit (T) is switched off at the end of a half-wave in a currentless or almost currentless state.
  15. Method according to one of claims 9 to 14, characterised in that the switching unit (T) comprises at least one thyristor and the switching off is predetermined by the current falling below the holding current of the at least one thyristor.
  16. Method for equipping a transformer, wherein a compensation winding (K) coupled magnetically to the core (4) of the transformer is connected to a device according to one of claims 1 to 8 or the method defined in claims 9 to 15 is used in connection with the compensation winding (K).
EP10760331.8A 2010-09-29 2010-09-29 Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer Active EP2622614B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/064397 WO2012041368A1 (en) 2010-09-29 2010-09-29 Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer

Publications (2)

Publication Number Publication Date
EP2622614A1 EP2622614A1 (en) 2013-08-07
EP2622614B1 true EP2622614B1 (en) 2015-03-18

Family

ID=43038065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10760331.8A Active EP2622614B1 (en) 2010-09-29 2010-09-29 Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer

Country Status (8)

Country Link
US (1) US9046901B2 (en)
EP (1) EP2622614B1 (en)
KR (1) KR101720039B1 (en)
CN (1) CN103270561B (en)
AU (1) AU2010361382B2 (en)
BR (1) BR112013007671B1 (en)
CA (1) CA2813057C (en)
WO (1) WO2012041368A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179617A1 (en) 2015-12-09 2017-06-14 Siemens Aktiengesellschaft Circuit assembly for the compensation of a dc component in a transformer
EP3196902A1 (en) 2016-01-25 2017-07-26 Siemens Aktiengesellschaft Circuit assembly for the reduction of a unidirectional flux fraction in the soft magnetic core of a transformer

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014191023A1 (en) 2013-05-28 2014-12-04 Siemens Aktiengesellschaft Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
WO2015086047A1 (en) 2013-12-10 2015-06-18 Siemens Aktiengesellschaft Device and method for reducing a magnetic unidirectional flux component in the core of a three-phase transformer
CA2930845C (en) 2013-12-10 2018-10-23 Siemens Aktiengesellschaft Device and method for reducing a magnetic unidirectional flux component of a transformer core
EP2905792B1 (en) 2014-02-06 2016-09-21 Siemens Aktiengesellschaft Device for reducing a magnetic unidirectional flux component in the core of a transformer
WO2015139743A1 (en) * 2014-03-19 2015-09-24 Siemens Aktiengesellschaft Dc compensation for high dc current in transformer
EP3021335B1 (en) 2014-11-11 2018-12-26 Siemens Aktiengesellschaft Assembly and method for reducing a magnetic unidirectional flux component in the core of a transformer
EP3065150B1 (en) 2015-03-05 2017-11-29 Siemens Aktiengesellschaft Transformer
EP3076411B1 (en) 2015-04-01 2017-11-29 Siemens Aktiengesellschaft Circuit assembly for reducing a magnetic unidirectional flux fraction in the core of a transformer
US11146053B2 (en) 2016-01-29 2021-10-12 Power Hv Inc. Bushing for a transformer
DE102018222183A1 (en) * 2018-12-18 2020-06-18 Siemens Aktiengesellschaft Magnetically adjustable choke coil in series connection
EP3783630B1 (en) * 2019-08-22 2023-10-04 Siemens Energy Global GmbH & Co. KG Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network
EP3786986B1 (en) 2019-08-28 2023-10-04 Siemens Energy Global GmbH & Co. KG Circuit assembly for the reduction of a unidirectional flux component in the soft magnetic core of a transformer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2013000A (en) 1978-01-20 1979-08-01 Hitachi Ltd Dc D.C. magnetic field cancellation circuit
US4346340A (en) 1980-04-30 1982-08-24 Hackett Jones Francis C Method and means for controlling the flux density in the core of an inductor
DE3631438A1 (en) 1986-09-16 1988-03-17 Telefonbau & Normalzeit Gmbh Circuit arrangement to compensate for direct-current magnetomotive forces in transformers
DE4021860C2 (en) 1990-07-09 1996-08-22 Siemens Ag Circuit arrangement and method for reducing noise in a transformer
CN2256154Y (en) * 1995-03-01 1997-06-11 郑文京 High speed electronic mutual inductor with power supply
US20040196675A1 (en) * 2002-08-05 2004-10-07 David Cope Self-powered direct current mitigation circuit for transformers
EP2156448B1 (en) 2007-06-12 2017-08-16 Siemens Aktiengesellschaft Electrical transformer with unidirectional flux compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179617A1 (en) 2015-12-09 2017-06-14 Siemens Aktiengesellschaft Circuit assembly for the compensation of a dc component in a transformer
EP3196902A1 (en) 2016-01-25 2017-07-26 Siemens Aktiengesellschaft Circuit assembly for the reduction of a unidirectional flux fraction in the soft magnetic core of a transformer

Also Published As

Publication number Publication date
CA2813057C (en) 2018-01-02
CN103270561B (en) 2016-09-21
AU2010361382A1 (en) 2013-04-11
EP2622614A1 (en) 2013-08-07
CA2813057A1 (en) 2012-04-05
BR112013007671B1 (en) 2020-11-03
CN103270561A (en) 2013-08-28
US9046901B2 (en) 2015-06-02
KR20130099982A (en) 2013-09-06
US20130201592A1 (en) 2013-08-08
AU2010361382B2 (en) 2014-07-24
BR112013007671A2 (en) 2016-08-09
WO2012041368A1 (en) 2012-04-05
KR101720039B1 (en) 2017-03-27

Similar Documents

Publication Publication Date Title
EP2622614B1 (en) Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer
DE709656C (en) AC switchgear with mechanically moved contacts
EP3080821B1 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a transformer
EP3021335B1 (en) Assembly and method for reducing a magnetic unidirectional flux component in the core of a transformer
EP0222727B1 (en) Device for minimizing the effects on a power system during the on-and-off switching of inductive and capacitive elements in a high voltage power system
DE2246505C3 (en) Circuit arrangement for the uninterruptible power supply of a direct current consumer with constant voltage
EP3179492B1 (en) Protective device for a transformer against geomagnetically induced currents
DE102008024348B4 (en) Method for reducing pulsed earth currents on a large electric device and compensating circuit for earth current displacement
EP3080822B1 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a three-phase transformer
DE102011082554A1 (en) Method for determination of earth leakage current in three-phase power supply network in e.g. house, involves determining fundamental oscillation component of earth leakage current by multiplication of portion of counter system with factor
EP3179617B1 (en) Circuit assembly for the compensation of a dc component in a transformer
DE3738493C2 (en) Fault location device
DE102008018619B4 (en) Inrush current limit for transformers
EP3005383B1 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
EP3783630B1 (en) Device for suppressing a direct current component during the operation of an electrical appliance connected to a high-voltage network
EP3076411B1 (en) Circuit assembly for reducing a magnetic unidirectional flux fraction in the core of a transformer
DE202013012835U1 (en) Protection circuit for a high-frequency heating device and high-frequency heating device with such a protection circuit
DE2306544A1 (en) SHUT-OFF CONTROL FOR GAS HEATING POINTS
DE645349C (en) Arrangement for controlling a tripping circuit in the event of a deviation from normal operating conditions
EP3103125A1 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
AT134930B (en) Protective device for converters with electric valves.
DE102013105313A1 (en) Residual current circuit breaker (RC element)
DE4036636A1 (en) Circuit with input terminals fed by supply voltage - has smoothing capacitor arranged parallel to output terminals and series circuit of inductance and magnetic controlled resistance at input
DE102015000292A1 (en) Gentle switching device and method for gently switching on an energisable electric power unit
DD262113B5 (en) Circuit arrangement for controlling the output power of an electrical apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20140214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 717026

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010009171

Country of ref document: DE

Effective date: 20150430

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150619

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150720

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010009171

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

26N No opposition filed

Effective date: 20151221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150929

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 717026

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010009171

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201202

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220818 AND 20220824

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230926

Year of fee payment: 14

Ref country code: GB

Payment date: 20230926

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230926

Year of fee payment: 14

Ref country code: DE

Payment date: 20230928

Year of fee payment: 14