EP2905792B1 - Device for reducing a magnetic unidirectional flux component in the core of a transformer - Google Patents

Device for reducing a magnetic unidirectional flux component in the core of a transformer Download PDF

Info

Publication number
EP2905792B1
EP2905792B1 EP14154070.8A EP14154070A EP2905792B1 EP 2905792 B1 EP2905792 B1 EP 2905792B1 EP 14154070 A EP14154070 A EP 14154070A EP 2905792 B1 EP2905792 B1 EP 2905792B1
Authority
EP
European Patent Office
Prior art keywords
windings
compensation
limb
winding
compensation winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14154070.8A
Other languages
German (de)
French (fr)
Other versions
EP2905792A1 (en
Inventor
Peter Hamberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14154070.8A priority Critical patent/EP2905792B1/en
Priority to CN201480075006.3A priority patent/CN105993056B/en
Priority to PCT/EP2014/078173 priority patent/WO2015117708A1/en
Priority to EP14815679.7A priority patent/EP3103125A1/en
Priority to US15/117,138 priority patent/US10424435B2/en
Publication of EP2905792A1 publication Critical patent/EP2905792A1/en
Application granted granted Critical
Publication of EP2905792B1 publication Critical patent/EP2905792B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias

Definitions

  • the invention relates to a device for reducing a magnetic DC component in the core of a transformer having at least three legs, in particular a three-phase transformer, comprising at least one compensation winding per leg of the transformer, wherein the compensation windings are magnetically coupled to the core of the transformer.
  • the field of application of the invention is basically both in transformers in the low or medium voltage range, as well as in transformers of very high power (power transformers, HVDC (high voltage DC transmission) transformers).
  • DC supply also referred to as DC component
  • GIC Geomagnetically Induced Currents
  • a voltage induced in a compensation winding is used and used for the compensation of the disturbing magnetic DC component by a thyristor switch is connected in series with a current limiting reactor to introduce the compensation current in the compensation winding.
  • This solution works well for DC currents to be compensated within a range that is smaller by an order of magnitude than geomagnetically induced currents, ie in the range below 10 A.
  • geomagnetically induced currents one would have to go to the medium voltage level, ie in the range of approximately 5 or 8 kV, and use powerful thyristors. Due to the high power dissipation of such thyristors would be a separate Provide cooling for the thyristors, so that this solution would not be economical then.
  • An apparatus according to the preamble of claim 1 is by any of the documents US 2010/0194373 and US2006 / 0197511 disclosed.
  • the principle of the solution according to the invention is again based on the DC compensation by means of compensation windings, in that targeted current is fed into the compensation windings, the effect of which is directed counter to the DC component and prevents the magnetization of the core of the transformer.
  • so-called Jacobamperewindungen be introduced into the transformer, ampere-turn is another term for the magnetic flux.
  • the compensation current is introduced by a switching unit in the compensation windings, wherein a compensation winding must be provided per phase or per leg of the transformer core and according to the invention two compensation windings are provided per phase or per leg of the transformer core.
  • the circulating voltage of the delta connection deliberately does not add up to zero, but the constant circulating voltage can be adjusted by the parameter m so that it lies below a certain value, eg below 690 V.
  • the effective number of turns N can in principle be chosen arbitrarily large, it is only the dielectric strength in the transformer must be considered.
  • phase control the phase of the voltage induced in the compensation windings voltage is detected and the switching unit is driven so that in the compensation windings, a pulsating direct current is fed, as already in the WO 2012/041368 A1 is shown.
  • the two compensation windings of a leg together always have the same number of turns, but they are not evenly distributed to the two compensation windings in two out of three legs. Also, all the compensation windings of a delta connection have a total of the same number of turns, the number of turns is only not distributed uniformly on the legs.
  • first and second delta connections are not electrically connected to one another are connected, but each delta circuit has its own switching unit.
  • the interleaved delta circuits can be provided that the first and second delta circuit are electrically connected in series and have a common switching unit.
  • At least one current limiting reactor is arranged electrically in series with the switching unit. This pre-switching of a current limiting reactor (inductance) can effectively filter out transient voltages.
  • the switching unit is connected to a measuring device for detecting the magnetic DC component in the transformer.
  • a measuring device for detecting the magnetic DC component in the transformer are approximately from the WO 2012/041368 A1 in the form of a magnetic shunt part with a sensor coil.
  • the shunt portion may be disposed adjacent the core of the transformer, for example, on a leg or yoke to bypass a portion of the magnetic flux. From this, bypassed magnetic flux can be very by means of a sensor coil easily gain a long-term stable sensor signal, which possibly after a signal processing the DC component (CD component) maps very well.
  • a control unit for the switching unit may be provided, wherein the control unit comprises a timer, which is connected to a phase detector, that the timer can be triggered by the phase detector, which can detect the phase of the voltages induced in the compensation windings and the Switching unit can control so that in the compensation windings, a pulsating direct current is fed.
  • the control unit would then also be connected to the measuring device for detecting the magnetic DC component in the transformer.
  • a corresponding method for operating the device is defined in claim 9.
  • direct current is deliberately introduced into a compensation winding K in order to eliminate the DC magnetization of the transformer core.
  • the alternating voltage induced in the compensation winding K is utilized; the compensation winding K acts like an AC voltage source.
  • the compensation winding K designed as a thyristor switching unit T is connected in series with a current limiting inductor L.
  • the required DC current can be adjusted by voltage synchronous ignition at a specific ignition timing of the thyristor T (phase control).
  • Ignition of the thyristor in the voltage zero crossing so sets the maximum direct current, which is superimposed with an alternating current of the amplitude of the direct current and the mains frequency. If the thyristor T is ignited later, the direct current becomes smaller, but also harmonic alternating currents occur.
  • the current flow in the thyristor T is limited by a current limiting inductor L, dimensioning for the current limitation is the permissible thermal load of the thyristor T.
  • FIG. 2 Another known embodiment for reducing the magnetic DC component is in Fig. 2 shown.
  • a controllable current source S is used and a compensation winding K1, K2, K3 are provided per phase of the transformer, which are connected to each other by means of delta connection.
  • the controllable current source S is electrically connected in series with the compensation windings K1, K2, K3.
  • a compensation winding K1, K2, K3 is arranged on a leg of a - not shown here - three-phase transformer.
  • the three compensation windings on the three phases can now be interconnected in the form of a delta connection because the geomagnetically induced current is distributed uniformly over all three phases. Therefore, one must also bring in all three phases or in their compensation windings, the same DC voltage Jacobamperewindungen.
  • a delta connection of the compensation windings therefore makes sense because the same current must flow through them and the circulating voltage (the sum of all partial voltages of a circuit or a loop in an electrical network) adds up to zero in an ideal symmetrical power system (no zero components).
  • a first embodiment of the invention is in Fig. 3 for a three-phase transformer.
  • Each leg or phase of the transformer are two compensation windings K1-1, K1-2; K2-1, K2-2; K3-1, K3-2 are provided.
  • a compensation winding K1-1, K2-1, K3-1 of one leg is always picked out and electrically connected to another of the other legs in a first delta connection 1.
  • the respective other compensation winding K1-2, K2-2, K3-2 of a leg is electrically connected to each other in a second delta connection 2 with the respective remaining compensation windings K1-2, K2-2, K3-2 of the other leg.
  • First and second delta circuit 1, 2 are not electrically connected to each other, each delta circuit 1, 2 has its own switching unit T with upstream current limiting inductor L.
  • the partial voltages of the circulating voltage in both delta circuits deliberately do not add up to zero, whereby a phase control can be used again.
  • the resulting (standing) circulating voltage can be adjusted by the parameter m so that it comes to lie below 690 V and the device according to the invention falls under the Low Voltage Directive.
  • the effective number of turns is at N and can be chosen arbitrarily large in principle, it must be considered only the dielectric strength in the transformer. No externally supplied power is needed, any zero components that occur would not cause the device according to the invention to lose its way.
  • Fig. 3 Another advantage of the design Fig. 3 is that the circulating voltage Uu1 in the first triangular circuit 1 is equal to the circulating voltage Uu2 in the second triangular circuit 2, such as Fig. 4 can be seen.
  • the course of the circulation voltage Uu over the time t is shown.
  • the circulating voltages Uu1, Uu2 are not only exactly the same, but also the same size.
  • FIG Fig. 5 An improved embodiment with reduced voltage potentials in the compensation windings is shown in FIG Fig. 5 shown.
  • First and second delta connections are electrically connected in series, in which the output of the first compensation winding K1-1 of the first leg is electrically connected to the input of the second compensation winding K3-2 of the third leg.
  • the input of the first compensation winding K3-1 of the third leg is connected to the - common to the two delta circuits 1,2 - switching unit T, as well as the output of the second compensation winding K1-2 of the first leg.
  • the switching unit T is also a current limiting reactor (inductance) L upstream.
  • the number of turns M in the second delta circuit 2 in Fig. 5 is smaller than the number of turns N in the first delta circuit 1 in this case, but the number of turns M could Also equal to or greater than the number of turns N in the first delta circuit 1 be.
  • the partial voltages of the circulating voltage over both delta circuits deliberately do not add up to zero, whereby again a phase control using the thyristor T, as already at Fig. 3 explained, can be used.
  • the resulting (standing) circulating voltage can be adjusted by the parameter m again so that it comes to lie below 690 V and the device according to the invention falls under the low-voltage directive.
  • the effective number of turns is N for the first delta circuit 1 and M for the second delta circuit 2.
  • the effective number of turns N can be chosen arbitrarily large in principle, it must only pay attention to the dielectric strength in the transformer. It does not require any externally supplied power, the device according to the invention is robust against any zero components occurring.
  • the arrows in the Fig. 2 . 3 indicate the current direction of the compensation current.
  • the control of the thyristors can, as in the WO 2012/041368 A1
  • the control unit essentially consists of a phase detector and a timer.
  • the phase detector for example a zero-crossing detector, derives a trigger signal from the induced voltage, which is fed to a timer.
  • the control unit provides on the output side a manipulated variable which is supplied to the thyristor T.
  • the inductance L is dimensioned such that when the thyristor T is turned on, a pulsating current flow flowing in a current direction is fed into the compensation winding K. In this case, the thyristor T at the end of the DC pulse in switched to the de-energized state, such as by the holding current of the thyristor T is exceeded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Vorrichtung zur Verringerung eines magnetischen Gleichfluss-Anteils im Kern eines Transformators mit zumindest drei Schenkeln, insbesondere eines Dreiphasentransformators, umfassend zumindest eine Kompensationswicklung pro Schenkel des Transformators, wobei die Kompensationswicklungen magnetisch mit dem Kern des Transformators gekoppelt sind.The invention relates to a device for reducing a magnetic DC component in the core of a transformer having at least three legs, in particular a three-phase transformer, comprising at least one compensation winding per leg of the transformer, wherein the compensation windings are magnetically coupled to the core of the transformer.

Der Einsatzbereich der Erfindung liegt grundsätzlich sowohl bei Transformatoren im Nieder- oder Mittelspannungsbereich, wie auch bei Transformatoren sehr hoher Leistung (Leistungstransformatoren, HGÜ (Hochspannungs-Gleichstrom-Übertragungs)-Transformatoren).The field of application of the invention is basically both in transformers in the low or medium voltage range, as well as in transformers of very high power (power transformers, HVDC (high voltage DC transmission) transformers).

Stand der TechnikState of the art

Bei elektrischen Transformatoren, wie sie in Energieverteilungsnetzen eingesetzt werden, kann es zu einer unerwünschten Einspeisung eines Gleichstroms in die Primärwicklung oder Sekundärwicklung kommen. Eine solche Gleichstromeinspeisung, auch als DC-Anteil bezeichnet, kann beispielsweise von elektronischen Baukomponenten herrühren, wie sie heutzutage bei der Ansteuerung von elektrischen Antrieben oder auch bei der Blindleistungskompensation verwendet werden. Eine andere Ursache können sogenannte geomagnetisch induzierte Ströme (englisch "Geomagnetically Induced Currents", GIC) sein.In electrical transformers, as used in power distribution networks, there may be an undesirable feed of a direct current into the primary winding or secondary winding. Such DC supply, also referred to as DC component, can for example come from electronic components, such as those used today in the control of electrical drives or in the reactive power compensation. Another cause may be so-called Geomagnetically Induced Currents (GIC).

Aufgrund von Sonnenwinden wird das Erdmagnetfeld verändert und damit werden an Leiterschleifen an der Erdoberfläche sehr niederfrequente Spannungen induziert. Bei langen elektrischen Energieübertragungsleitungen kann die induzierte Spannung relativ große niederfrequente Ströme (Quasi-Gleichströme) bewirken. Geomagnetisch induzierte Ströme treten ungefähr in Zehnjahreszyklen auf. Sie verteilen sich gleichmäßig auf alle (drei) Phasen, können pro Phase bis zu 30 A erreichen und fließen über den Sternpunkt eines Transformators ab. Dies führt zu einer starken Sättigung des Kerns des Transformators in einem Halbzyklus und daher zu einem starken Erregerstrom in einem Halbzyklus. Diese zusätzliche Erregung hat einen starken Oberwellenanteil und dadurch werden durch das Streufeld mit Oberwellenanteil Wirbelstromverluste in Wicklungen und Eisenteilen des Transformators verursacht. Dies kann zu lokaler Überhitzung im Transformator führen. Weiters kommt es durch den starken Erregungsbedarf zu einem hohen Blindleistungsverbrauch und Spannungsabfall. Gemeinsam kann dies zur Instabilität des Energieübertragungsnetzes führen. Stark vereinfacht gesprochen verhält sich der Transformator in einer Halbwelle wie eine Drossel.Due to solar winds, the Earth's magnetic field is changed, and so are at conductor loops on the earth's surface very much Low-frequency voltages induced. For long electrical power transmission lines, the induced voltage can cause relatively large low frequency currents (quasi-DC currents). Geomagnetically induced currents occur approximately in ten-year cycles. They are evenly distributed over all (three) phases, can reach up to 30 A per phase and flow through the neutral point of a transformer. This leads to a strong saturation of the core of the transformer in a half cycle and therefore to a strong excitation current in a half cycle. This additional excitation has a strong harmonic content and thus caused by the stray field with harmonic content eddy current losses in windings and iron parts of the transformer. This can lead to local overheating in the transformer. Furthermore, due to the strong excitation requirement, high reactive power consumption and voltage drop occur. Together, this can lead to the instability of the energy transmission network. To put it simply, the transformer behaves in a half-wave like a choke.

Manche Energieübertragungsunternehmen verlangen daher in der Spezifikation von Transformatoren bereits 100 A Gleichstrom für den Sternpunkt des Transformators.For this reason, some energy transmission companies already require 100 A DC for the neutral point of the transformer in the specification of transformers.

Gemäß der WO 2012/041368 A1 wird eine in einer Kompensationswicklung induzierte elektrische Spannung genutzt und für die Kompensation des störenden magnetischen Gleichfluss-Anteils herangezogen, indem ein Thyristorschalter in Serie mit einer Strombegrenzungsdrossel geschaltet wird, um den Kompensationsstrom in die Kompensationswicklung einzubringen. Diese Lösung funktioniert gut für auszugleichende Gleichströme in einem Bereich, die um eine Größenordnung kleiner sind als geomagnetisch induzierte Ströme, also etwa im Bereich unter 10 A. Für geomagnetisch induzierte Ströme müsste man auf die Mittelspannungsebene gehen, also in den Bereich von etwa 5 oder 8 kV, und leistungsstarke Thyristoren einsetzen. Aufgrund der hohen Verlustleistung derartiger Thyristoren wäre eine eigene Kühlung für die Thyristoren vorzusehen, sodass diese Lösung dann nicht wirtschaftlich wäre.According to the WO 2012/041368 A1 a voltage induced in a compensation winding is used and used for the compensation of the disturbing magnetic DC component by a thyristor switch is connected in series with a current limiting reactor to introduce the compensation current in the compensation winding. This solution works well for DC currents to be compensated within a range that is smaller by an order of magnitude than geomagnetically induced currents, ie in the range below 10 A. For geomagnetically induced currents, one would have to go to the medium voltage level, ie in the range of approximately 5 or 8 kV, and use powerful thyristors. Due to the high power dissipation of such thyristors would be a separate Provide cooling for the thyristors, so that this solution would not be economical then.

Eine andere Lösung für geomagnetisch induzierte Ströme stellt der sogenannte DC Blocker dar, bei dem im Prinzip ein Kondensator in den Sternpunkt des Transformators geschaltet wird. Diese Lösung ist problematisch, weil durch das Aufladen des Kondensators eine Verlagerungsspannung entsteht. Darüber hinaus ist die Verlagerungsspannung am Kondensator begrenzt, sodass in der Regel nicht der gesamte Gleichstrom geblockt werden kann. Problematisch ist diese Lösung auch, wenn es zu einem Kurzschluss im Übertragungsnetz und daher zu Nullströmen kommt.Another solution for geomagnetically induced currents is the so-called DC blocker, in which a capacitor is connected in principle in the neutral point of the transformer. This solution is problematic because the charging of the capacitor creates a transfer voltage. In addition, the displacement voltage across the capacitor is limited, so that usually not the entire DC current can be blocked. This solution is also problematic when it comes to a short circuit in the transmission network and therefore to zero currents.

Eine Vorrichtung gemäss Oberbegriff von Anspruch 1 ist durch jede der Druckschriften US 2010/0194373 und US2006/0197511 offenbart.An apparatus according to the preamble of claim 1 is by any of the documents US 2010/0194373 and US2006 / 0197511 disclosed.

Darstellung der Erfindung Es ist eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Verringerung eines geomagnetisch induzierten magnetischen Gleichfluss-Anteils im Kern eines Transformators zur Verfügung zu stellen, in welcher die Spannung unterhalb eines vorgebbaren Wertes liegt, welche z.B. innerhalb der sogenannten Niederspannungsrichtlinie, also unter 690 V, angesiedelt ist.DESCRIPTION OF THE INVENTION It is an object of the present invention to provide a device for reducing a magnetically induced magnetic flux component in the core of a transformer, in which the voltage is below a predeterminable value, which is e.g. within the so-called Low Voltage Directive, ie below 690 V.

Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen definiert.This object is achieved by a device having the features of patent claim 1. Advantageous embodiments of the invention are defined in the respective dependent claims.

Das Prinzip der erfindungsgemäßen Lösung beruht wieder auf der Gleichstromkompensation mittels Kompensationswicklungen, indem gezielt Strom in die Kompensationswicklungen eingespeist wird, dessen Wirkung dem Gleichfluss-Anteil entgegengerichtet ist und die Aufmagnetisierung des Kerns des Transformators verhindert. Mit anderen Worten werden sogenannte Gegenamperewindungen in den Transformator eingebracht, wobei Amperewindung ein anderer Begriff für die magnetische Durchflutung ist. Dabei wird der Kompensationsstrom durch eine Schalteinheit in die Kompensationswicklungen eingebracht, wobei pro Phase bzw. pro Schenkel des Transformatorkerns eine Kompensationswicklung vorgesehen sein muss und erfindungsgemäß pro Phase bzw. pro Schenkel des Transformatorkerns zwei Kompensationswicklungen vorgesehen sind.The principle of the solution according to the invention is again based on the DC compensation by means of compensation windings, in that targeted current is fed into the compensation windings, the effect of which is directed counter to the DC component and prevents the magnetization of the core of the transformer. In other words, so-called Gegenamperewindungen be introduced into the transformer, ampere-turn is another term for the magnetic flux. In this case, the compensation current is introduced by a switching unit in the compensation windings, wherein a compensation winding must be provided per phase or per leg of the transformer core and according to the invention two compensation windings are provided per phase or per leg of the transformer core.

Dadurch, dass die Kompensationswicklungen einer Dreieckschaltung unterschiedliche Windungszahlen haben, addiert sich die Umlaufspannung der Dreieckschaltung bewusst nicht auf Null, sondern die stehenbleibende Umlaufspannung ist durch den Parameter m so einstellbar, dass sie unter einem bestimmten Wert, z.B. unter 690 V, liegt. Die effektive Windungszahl N kann im Prinzip beliebig groß gewählt werden, es muss lediglich die Spannungsfestigkeit im Transformator beachtet werden.Characterized in that the compensation windings of a delta connection have different numbers of turns, the circulating voltage of the delta connection deliberately does not add up to zero, but the constant circulating voltage can be adjusted by the parameter m so that it lies below a certain value, eg below 690 V. The effective number of turns N can in principle be chosen arbitrarily large, it is only the dielectric strength in the transformer must be considered.

Bei der Phasenanschnittsteuerung wird die Phase der in den Kompensationswicklungen induzierten Spannung detektiert und die Schalteinheit so angesteuert, dass in die Kompensationswicklungen ein pulsierender Gleichstrom eingespeist wird, wie bereits in der WO 2012/041368 A1 gezeigt ist.In the phase control, the phase of the voltage induced in the compensation windings voltage is detected and the switching unit is driven so that in the compensation windings, a pulsating direct current is fed, as already in the WO 2012/041368 A1 is shown.

Eine Ausführungsform der Erfindung sieht zwei Dreieckschaltungen mit jeweils unterschiedlicher Wicklungszahl der Kompensationswicklungen vor, nämlich, dass die Kompensationswicklungen folgende Windungszahlen aufweisen und N, m von Null verschiedene natürliche Zahlen mit N>m sind:

  • die erste Kompensationswicklung eines ersten Schenkels hat N+m Windungen, während die zweite Kompensationswicklung des ersten Schenkels N-m Windungen hat,
  • die erste und die zweite Kompensationswicklung eines zweiten Schenkels haben jeweils N Windungen,
  • die erste Kompensationswicklung eines dritten Schenkels hat N-m Windungen, während die zweite Kompensationswicklung des dritten Schenkels N+m Windungen hat.
An embodiment of the invention provides two delta circuits, each with a different number of turns of the compensation windings, namely that the compensation windings have the following number of turns and N, m are non-zero natural numbers with N> m:
  • the first compensating winding of a first leg has N + m turns, while the second compensating turn of the first leg has Nm turns,
  • the first and the second compensating winding of a second leg each have N turns,
  • the first compensating winding of a third leg has Nm turns, while the second compensating turn of the third leg has N + m turns.

Mit anderen Worten haben die beiden Kompensationswicklungen eines Schenkels gemeinsam immer gleich viele Windungen, sie sind jedoch bei zwei von drei Schenkeln nicht gleichmäßig auf die beiden Kompensationswicklungen verteilt. Auch haben alle Kompensationswicklungen einer Dreieckschaltung insgesamt gleich viele Windungen, die Anzahl der Windungen ist nur nicht gleichmäßig auf die Schenkel verteilt.In other words, the two compensation windings of a leg together always have the same number of turns, but they are not evenly distributed to the two compensation windings in two out of three legs. Also, all the compensation windings of a delta connection have a total of the same number of turns, the number of turns is only not distributed uniformly on the legs.

Bei dieser Ausführungsvariante ist es vorteilhaft, wenn erste und zweite Dreieckschaltung elektrisch nicht miteinander verbunden sind, sondern jede Dreieckschaltung über eine eigene Schalteinheit verfügt.In this embodiment variant, it is advantageous if the first and second delta connections are not electrically connected to one another are connected, but each delta circuit has its own switching unit.

Eine andere Ausführungsform der Erfindung sieht zwei miteinander verschachtelte Dreieckschaltungen vor: die Kompensationswicklungen weisen folgende Windungszahlen auf und N, m, M sind von Null verschiedene natürliche Zahlen mit N>m:

  • die erste Kompensationswicklung eines ersten Schenkels hat N+m Windungen, während die zweite Kompensationswicklung des ersten Schenkels M Windungen hat,
  • die erste Kompensationswicklung eines zweiten Schenkels hat N Windungen, die zweite Kompensationswicklung des zweiten Schenkels hat M Windungen,
  • die erste Kompensationswicklung eines dritten Schenkels hat N-m Windungen, während die zweite Kompensationswicklung des dritten Schenkels M Windungen hat.
Another embodiment of the invention provides two interleaved delta circuits: the compensation windings have the following number of turns and N, m, M are non-zero natural numbers with N> m:
  • the first compensating winding of a first leg has N + m turns, while the second compensating turn of the first leg has M turns,
  • the first compensating winding of a second leg has N turns, the second compensating turn of the second leg has M turns,
  • the first compensating winding of a third leg has Nm turns, while the second compensating turn of the third leg M has turns.

Bei dieser Ausführungsform der miteinander verschachtelten Dreieckschaltungen kann vorgesehen sein, dass erste und zweite Dreieckschaltung elektrisch in Serie geschaltet sind und über eine gemeinsame Schalteinheit verfügen.In this embodiment, the interleaved delta circuits can be provided that the first and second delta circuit are electrically connected in series and have a common switching unit.

Für alle Schalteinheiten kann vorgesehen sein, dass zumindest eine Strombegrenzungsdrossel elektrisch in Reihe mit der Schalteinheit angeordnet ist. Durch dieses Vorschalten einer Strombegrenzungsdrossel (Induktivität) kann man transiente Spannungen effektiv ausfiltern.For all switching units can be provided that at least one current limiting reactor is arranged electrically in series with the switching unit. This pre-switching of a current limiting reactor (inductance) can effectively filter out transient voltages.

Für die Bestimmung des notwendigen Kompensationsstroms kann vorgesehen sein, dass die Schalteinheit mit einer Messeinrichtung zum Erfassen des magnetischen Gleichfluss-Anteils im Transformator verbunden ist. Derartige Messeinrichtungen sind etwa aus der WO 2012/041368 A1 in Form eines magnetischen Nebenschluss-Teils mit einer Sensorspule bekannt. Der Nebenschluss-Teil kann am Kern des Transformators z.B. an einem Schenkel oder am Joch anliegend angeordnet sein, um einen Teil des magnetischen Flusses in einem Bypass zu führen. Aus diesem, im Nebenschluss geführten magnetischen Fluss, lässt sich mittels einer Sensorspule sehr leicht ein langzeitstabiles Sensorsignal gewinnen, welches gegebenenfalls nach einer Signalaufbereitung den Gleichfluss-Anteil (CD-Anteil) sehr gut abbildet.For the determination of the necessary compensation current it can be provided that the switching unit is connected to a measuring device for detecting the magnetic DC component in the transformer. Such measuring devices are approximately from the WO 2012/041368 A1 in the form of a magnetic shunt part with a sensor coil. The shunt portion may be disposed adjacent the core of the transformer, for example, on a leg or yoke to bypass a portion of the magnetic flux. From this, bypassed magnetic flux can be very by means of a sensor coil easily gain a long-term stable sensor signal, which possibly after a signal processing the DC component (CD component) maps very well.

Zum Durchführen der Phasenanschnittsteuerung kann eine Steuereinheit für die Schalteinheit vorgesehen sein, wobei die Steuereinheit ein Zeitglied umfasst, welches so mit einem Phasendetektor verbunden ist, dass das Zeitglied vom Phasendetektor getriggert werden kann, welcher die Phase der in den Kompensationswicklungen induzierten Spannungen detektieren kann und die Schalteinheit so ansteuern kann, dass in die Kompensationswicklungen ein pulsierender Gleichstrom eingespeist wird. Die Steuereinheit wäre dann auch mit der Messeinrichtung zum Erfassen des magnetischen Gleichfluss-Anteils im Transformator verbunden.For performing the phase control, a control unit for the switching unit may be provided, wherein the control unit comprises a timer, which is connected to a phase detector, that the timer can be triggered by the phase detector, which can detect the phase of the voltages induced in the compensation windings and the Switching unit can control so that in the compensation windings, a pulsating direct current is fed. The control unit would then also be connected to the measuring device for detecting the magnetic DC component in the transformer.

Ein entsprechendes Verfahren zum Betrieb der Vorrichtung ist in Anspruch 9 definiert.A corresponding method for operating the device is defined in claim 9.

Kurzbeschreibung der FigurenBrief description of the figures

Zur weiteren Erläuterung der Erfindung wird im nachfolgenden Teil der Beschreibung auf die Figuren Bezug genommen, aus der weitere vorteilhafte Ausgestaltungen, Einzelheiten und Weiterbildungen der Erfindung zu entnehmen sind. Es zeigen:

Figur 1
eine Prinzipschaltung nach dem Stand der Technik zum Einbringen von Kompensationsstrom in eine Kompensationswicklung, umfassend einen Thyristorkreis,
Figur 2
eine Prinzipschaltung nach dem Stand der Technik zum Einbringen von Kompensationsstrom in Kompensationswicklungen mittels einer steuerbaren Stromquelle,
Figur 3
eine erfindungsgemäße Prinzipschaltung mit Kompensationswicklungen in zwei getrennten Dreieckschaltungen,
Figur 4
Spannungs- und Stromverlauf in den Dreieckschaltungen von Fig. 3,
Figur 5
eine erfindungsgemäße Prinzipschaltung mit Kompensationswicklungen in zwei miteinander elektrisch verbundenen Dreieckschaltungen.
To further explain the invention, reference is made in the following part of the description to the figures, from the further advantageous embodiments, details and further developments of the invention can be found. Show it:
FIG. 1
a principle circuit according to the prior art for introducing compensation current into a compensation winding, comprising a thyristor circuit,
FIG. 2
a principle circuit according to the prior art for introducing compensation current in Compensation windings by means of a controllable current source,
FIG. 3
an inventive circuit with compensation windings in two separate delta circuits,
FIG. 4
Voltage and current course in the delta circuits of Fig. 3 .
FIG. 5
an inventive circuit with compensation windings in two interconnected electrically delta circuits.

Ausführung der ErfindungEmbodiment of the invention

Gemäß dem Stand der Technik in Fig. 1 wird bei der sogenannten Gleichstrom-Kompensation gezielt Gleichstrom in eine Kompensationswicklung K eingebracht, um die Gleichstrommagnetisierung des Transformatorkerns aufzuheben. Zum Einbringen der notwendigen magnetischen Durchflutung (der sogenannten Gleichstrom-Amperewindungen) in die Kompensationswicklung K macht man sich die in der Kompensationswicklung K induzierte Wechselspannung zunutze, die Kompensationswicklung K wirkt wie eine Wechselspannungsquelle. An der Kompensationswicklung K wird eine als Thyristor ausgebildete Schalteinheit T in Serie mit einer Strombegrenzungsdrossel L geschaltet. Der erforderliche Gleichstrom kann durch spannungssynchrones Zünden bei einem bestimmten Zündzeitpunkt des Thyristors T eingestellt werden (Phasenanschnittsteuerung). Zündet man den Thyristor im Spannungsnulldurchgang, so stellt sich der maximale Gleichstrom ein, der jedoch mit einem Wechselstrom von der Amplitude des Gleichstroms und der Netzfrequenz überlagert ist. Zündet man den Thyristor T später, so wird der Gleichstrom kleiner, es entstehen jedoch auch Oberschwingungswechselströme. Der Stromverlauf im Thyristor T wird durch eine Strombegrenzungsdrossel L begrenzt, dimensionierend für die Strombegrenzung ist die zulässige thermische Belastung des Thyristors T.According to the prior art in Fig. 1 In the so-called direct current compensation, direct current is deliberately introduced into a compensation winding K in order to eliminate the DC magnetization of the transformer core. For introducing the necessary magnetic flux (the so-called DC ampere turns) into the compensation winding K, the alternating voltage induced in the compensation winding K is utilized; the compensation winding K acts like an AC voltage source. At the compensation winding K designed as a thyristor switching unit T is connected in series with a current limiting inductor L. The required DC current can be adjusted by voltage synchronous ignition at a specific ignition timing of the thyristor T (phase control). Ignition of the thyristor in the voltage zero crossing, so sets the maximum direct current, which is superimposed with an alternating current of the amplitude of the direct current and the mains frequency. If the thyristor T is ignited later, the direct current becomes smaller, but also harmonic alternating currents occur. The current flow in the thyristor T is limited by a current limiting inductor L, dimensioning for the current limitation is the permissible thermal load of the thyristor T.

Eine andere bekannte Ausführungsform zur Verringerung des magnetischen Gleichfluss-Anteils wird in Fig. 2 gezeigt. Statt des Thyristors T, und in dieser Ausführungsform auch statt der Strombegrenzungsdrossel L, wird eine steuerbare Stromquelle S verwendet und pro Phase des Transformators eine Kompensationswicklung K1, K2, K3 vorgesehen, die mittels Dreieckschaltung miteinander verbunden sind. Die steuerbare Stromquelle S ist elektrisch in Reihe mit den Kompensationswicklungen K1, K2, K3 geschaltet. Je eine Kompensationswicklung K1, K2, K3 ist auf einem Schenkel eines - hier nicht dargestellten - Dreiphasentransformators angeordnet.Another known embodiment for reducing the magnetic DC component is in Fig. 2 shown. Instead of the thyristor T, and in this embodiment also instead of the current limiting inductor L, a controllable current source S is used and a compensation winding K1, K2, K3 are provided per phase of the transformer, which are connected to each other by means of delta connection. The controllable current source S is electrically connected in series with the compensation windings K1, K2, K3. Depending on a compensation winding K1, K2, K3 is arranged on a leg of a - not shown here - three-phase transformer.

Die drei Kompensationswicklungen an den drei Phasen können nun in Form einer Dreieckschaltung miteinander verschaltet werden, weil sich der geomagnetisch induzierte Strom gleichmäßig auf alle drei Phasen verteilt. Daher muss man auch in alle drei Phasen bzw. in deren Kompensationswicklungen die gleichen Gleichspannungs-Gegenamperewindungen einbringen. Eine Dreieckschaltung der Kompensationswicklungen erscheint deshalb sinnvoll, weil durch alle der gleiche Strom fließen muss und sich die Umlaufspannung (die Summe aller Teilspannungen eines Umlaufs bzw. einer Masche in einem elektrischen Netzwerk) in einem idealen symmetrischen Stromnetz (keine Nullkomponenten) zu Null addiert.The three compensation windings on the three phases can now be interconnected in the form of a delta connection because the geomagnetically induced current is distributed uniformly over all three phases. Therefore, one must also bring in all three phases or in their compensation windings, the same DC voltage Gegenamperewindungen. A delta connection of the compensation windings therefore makes sense because the same current must flow through them and the circulating voltage (the sum of all partial voltages of a circuit or a loop in an electrical network) adds up to zero in an ideal symmetrical power system (no zero components).

Man könnte sich nun die Umlaufspannung von Null zunutze machen und die Gleichspannungs-Gegenamperewindungen über eine steuerbare Stromquelle S einbringen. Falls aber der Transformator nicht symmetrisch belastet wird, addieren sich die Teilspannungen der Umlaufspannung nicht zu Null und es ist von der Stromquelle S eine Blindleistung aufzubringen. Diese Leistung für die Stromquelle S ist aus anderen Quellen zuzuführen.One could now make use of the zero circulation voltage and introduce the DC voltage counterampere turns via a controllable current source S. If, however, the transformer is not loaded symmetrically, the partial voltages of the circulating voltage do not add to zero and a reactive power is to be applied by the current source S. This power for the current source S is supplied from other sources.

Durch Abwandlung der Vorrichtung aus Fig. 2, nämlich durch zwei erfindungsgemäße Dreieckschaltungen, kann aber wieder das Prinzip der Gleichstrom-Kompensation nach Fig. 1 verwendet und die Stromquelle S damit eliminiert werden.By modification of the device Fig. 2 , namely by two delta circuits according to the invention, but again the principle of DC compensation after Fig. 1 used and the power source S are eliminated with it.

Eine erste Ausführungsform der Erfindung ist in Fig. 3 für einen Dreiphasentransformator dargestellt. Pro Schenkel bzw. Phase des Transformators sind zwei Kompensationswicklungen K1-1, K1-2; K2-1, K2-2; K3-1, K3-2 vorgesehen sind. Immer wird eine Kompensationswicklung K1-1, K2-1, K3-1 eines Schenkels herausgegriffen und mit einer anderen der anderen Schenkel in einer ersten Dreieckschaltung 1 miteinander elektrisch verbunden. Die jeweils andere Kompensationswicklung K1-2, K2-2, K3-2 eines Schenkels wird in einer zweiten Dreieckschaltung 2 mit den jeweils übrigen Kompensationswicklungen K1-2, K2-2, K3-2 der anderen Schenkel miteinander elektrisch verbunden.A first embodiment of the invention is in Fig. 3 for a three-phase transformer. Each leg or phase of the transformer are two compensation windings K1-1, K1-2; K2-1, K2-2; K3-1, K3-2 are provided. A compensation winding K1-1, K2-1, K3-1 of one leg is always picked out and electrically connected to another of the other legs in a first delta connection 1. The respective other compensation winding K1-2, K2-2, K3-2 of a leg is electrically connected to each other in a second delta connection 2 with the respective remaining compensation windings K1-2, K2-2, K3-2 of the other leg.

Erste und zweite Dreieckschaltung 1, 2 sind elektrisch nicht miteinander verbunden, jede Dreieckschaltung 1, 2 verfügt über eine eigene Schalteinheit T mit vorgeschalteter Strombegrenzungsdrossel (Induktivität) L.First and second delta circuit 1, 2 are not electrically connected to each other, each delta circuit 1, 2 has its own switching unit T with upstream current limiting inductor L.

Die Kompensationswicklungen K1-1, K1-2; K2-1, K2-2; K3-1, K3-2 sind in der Regel gleichartig ausgebildet, also mit gleichem Leiterquerschnitt und gleichem Windungsdurchmesser, jedoch teilweise mit unterschiedlicher Anzahl von Windungen. Die Kompensationswicklungen haben dabei folgende Windungszahlen, wobei N, m natürliche Zahlen mit N>m sind: die erste Kompensationswicklung K1-1 eines ersten Schenkels (einer ersten Phase) hat N+m Windungen, während die zweite Kompensationswicklung K1-2 des ersten Schenkels (der ersten Phase) N-m Windungen hat,

  • die erste und die zweite Kompensationswicklung K2-1, K2-2 eines zweiten Schenkels (der zweiten Phase) haben jeweils N Windungen,
  • die erste Kompensationswicklung K3-1 eines dritten Schenkels (der dritten Phase) hat N-m Windungen, während die zweite Kompensationswicklung K3-2 des dritten Schenkels (der dritten Phase) N+m Windungen hat.
The compensation windings K1-1, K1-2; K2-1, K2-2; K3-1, K3-2 are generally the same design, ie with the same conductor cross-section and the same winding diameter, but sometimes with different number of turns. The compensation windings have the following number of turns, where N, m are natural numbers with N> m: the first compensation winding K1-1 of a first leg (a first phase) has N + m turns, while the second compensation winding K1-2 of the first leg ( the first phase) Nm has turns,
  • the first and the second compensation winding K2-1, K2-2 of a second leg (the second phase) each have N turns,
  • the first compensation winding K3-1 of a third leg (the third phase) has Nm turns, while the second Compensation winding K3-2 of the third leg (the third phase) has N + m turns.

Damit addieren sich die Teilspannungen der Umlaufspannung in beiden Dreieckschaltungen bewusst nicht zu Null, wodurch wieder eine Phasenanschnittsteuerung verwendet werden kann. Die resultierende (stehenbleibende) Umlaufspannung kann durch den Parameter m so eingestellt werden, dass sie auf unter 690 V zu liegen kommt und die erfindungsgemäße Vorrichtung unter die Niederspannungsrichtlinie fällt. Die effektive Windungszahl liegt jedoch bei N und kann im Prinzip beliebig groß gewählt werden, es muss lediglich die Spannungsfestigkeit im Transformator beachtet werden. Man benötigt keine fremd zugeführte Leistung, eventuell auftretende Nullkomponenten würden die erfindungsgemäße Vorrichtung nicht außer Tritt bringen.Thus, the partial voltages of the circulating voltage in both delta circuits deliberately do not add up to zero, whereby a phase control can be used again. The resulting (standing) circulating voltage can be adjusted by the parameter m so that it comes to lie below 690 V and the device according to the invention falls under the Low Voltage Directive. However, the effective number of turns is at N and can be chosen arbitrarily large in principle, it must be considered only the dielectric strength in the transformer. No externally supplied power is needed, any zero components that occur would not cause the device according to the invention to lose its way.

Ein weiterer Vorteil der Ausführung nach Fig. 3 liegt darin, dass die Umlaufspannung Uu1 in der ersten Dreiecksschaltung 1 gegengleich zur Umlaufspannung Uu2 in der zweiten Dreiecksschaltung 2 ist, wie Fig. 4 zu entnehmen ist. In der oberen Darstellung ist der Verlauf der Umlaufspannung Uu über die Zeit t dargestellt. Die Umlaufspannungen Uu1, Uu2 sind nicht nur genau gegengleich, sondern auch jeweils gleich groß.Another advantage of the design Fig. 3 is that the circulating voltage Uu1 in the first triangular circuit 1 is equal to the circulating voltage Uu2 in the second triangular circuit 2, such as Fig. 4 can be seen. In the upper illustration, the course of the circulation voltage Uu over the time t is shown. The circulating voltages Uu1, Uu2 are not only exactly the same, but also the same size.

Wenn man nun die als Thyristor ausgebildete Schalteinheit T in der zweiten Dreieckschaltung 2 aus Fig. 3 um eine Halbperiode T/2 später zündet als den Thyristor T in der ersten Dreieckschaltung 1, so ergibt sich der gleiche Gleichstromanteil, aber die überlagerte Wechselspannung ist gegengleich. Damit ergibt sich eine Reduktion der Oberwellenanteile, der in das Energienetz eingebrachte Oberwellenanteil wird reduziert. Der Verlauf des Kompensationsstromes I über die Zeit t ist in der unteren Darstellung in Fig. 4 zu sehen, I1 bezeichnet den Kompensationsstrom der ersten Dreieckschaltung 1, 12 den Kompensationsstrom der zweiten Dreieckschaltung 2. Die strichlierte waagrechte Linie ist der effektive Kompensationsstrom beider Dreieckschaltungen 1, 2.If you now turn off the designed as a thyristor switching unit T in the second delta circuit 2 Fig. 3 by a half period T / 2 later ignites than the thyristor T in the first delta circuit 1, the same DC component, but the superimposed AC voltage is equal to each other. This results in a reduction of the harmonic components, the harmonic component introduced into the energy network is reduced. The course of the compensation current I over the time t is in the lower illustration in FIG Fig. 4 I1 denotes the compensation current of the first delta connection 1, 12 the compensation current of the second delta connection 2 Dashed horizontal line is the effective compensation current of both delta circuits 1, 2.

Eine verbesserte Ausführungsform mit reduzierten Spannungspotentialen in den Kompensationswicklungen ist in Fig. 5 dargestellt. Durch die miteinander verschalteten Dreieckschaltungen 1, 2 addieren sich die Teilspannungen in jeder Dreieckschaltung zu Null. Erste und zweite Dreieckschaltung sind elektrisch in Serie geschaltet, indem der Ausgang der ersten Kompensationswicklung K1-1 des ersten Schenkels mit dem Eingang der zweiten Kompensationswicklung K3-2 des dritten Schenkels elektrisch verbunden ist. Der Eingang der ersten Kompensationswicklung K3-1 des dritten Schenkels ist mit der - den beiden Dreieckschaltungen 1,2 gemeinsamen - Schalteinheit T verbunden, ebenso der Ausgang der zweiten Kompensationswicklung K1-2 des ersten Schenkels. Der Schalteinheit T ist auch hier eine Strombegrenzungsdrossel (Induktivität) L vorgeschaltet.An improved embodiment with reduced voltage potentials in the compensation windings is shown in FIG Fig. 5 shown. As a result of the interconnected delta circuits 1, 2, the partial voltages in each delta connection add up to zero. First and second delta connections are electrically connected in series, in which the output of the first compensation winding K1-1 of the first leg is electrically connected to the input of the second compensation winding K3-2 of the third leg. The input of the first compensation winding K3-1 of the third leg is connected to the - common to the two delta circuits 1,2 - switching unit T, as well as the output of the second compensation winding K1-2 of the first leg. The switching unit T is also a current limiting reactor (inductance) L upstream.

Die Kompensationswicklungen weisen folgende Windungszahlen auf, wobei N, m, M natürliche Zahlen mit N>m und - in diesem Fall - M<N sind:

  • die erste Kompensationswicklung K1-1 eines ersten Schenkels (der ersten Phase) hat N+m Windungen, während die zweite Kompensationswicklung K1-2 des ersten Schenkels M Windungen hat,
  • die erste Kompensationswicklung K2-1 des zweiten Schenkels (der zweiten Phase) hat N Windungen, die zweite Kompensationswicklung K2-2 des zweiten Schenkels hat M Windungen,
  • die erste Kompensationswicklung K3-1 eines dritten Schenkels (der dritten Phase) hat N-m Windungen, während die zweite Kompensationswicklung K3-2 des dritten Schenkels M Windungen hat.
The compensation windings have the following number of turns, where N, m, M are natural numbers with N> m and, in this case, M <N:
  • the first compensating winding K1-1 of a first leg (the first phase) has N + m turns, while the second compensating winding K1-2 of the first leg M has turns,
  • the first second-stage (second phase) compensation winding K2-1 has N turns, the second second-turn second turn K2-2 has M turns,
  • the first compensation winding K3-1 of a third leg (the third phase) has Nm turns, while the second compensating winding K3-2 of the third leg M has turns.

Die Windungszahl M in der zweiten Dreieckschaltung 2 in Fig. 5 ist in diesem Fall kleiner als die Windungszahl N in der ersten Dreieckschaltung 1, die Windungszahl M könnte aber auch gleich groß wie oder größer als die Windungszahl N in der ersten Dreieckschaltung 1 sein.The number of turns M in the second delta circuit 2 in Fig. 5 is smaller than the number of turns N in the first delta circuit 1 in this case, but the number of turns M could Also equal to or greater than the number of turns N in the first delta circuit 1 be.

Damit addieren sich die Teilspannungen der Umlaufspannung über beide Dreieckschaltungen bewusst nicht zu Null, wodurch wieder eine Phasenanschnittsteuerung unter Verwendung des Thyristors T, wie bereits bei Fig. 3 erläutert, verwendet werden kann. Die resultierende (stehenbleibende) Umlaufspannung kann durch den Parameter m wieder so eingestellt werden, dass sie auf unter 690 V zu liegen kommt und die erfindungsgemäße Vorrichtung unter die Niederspannungsrichtlinie fällt. Die effektive Windungszahl liegt jedoch bei N für die erste Dreieckschaltung 1 und bei M für die zweite Dreieckschaltung 2. Die effektive Windungszahl N kann im Prinzip beliebig groß gewählt werden, es muss lediglich die Spannungsfestigkeit im Transformator beachtet werden. Man benötigt keine fremd zugeführte Leistung, die erfindungsgemäße Vorrichtung ist robust gegenüber eventuell auftretenden Nullkomponenten.Thus, the partial voltages of the circulating voltage over both delta circuits deliberately do not add up to zero, whereby again a phase control using the thyristor T, as already at Fig. 3 explained, can be used. The resulting (standing) circulating voltage can be adjusted by the parameter m again so that it comes to lie below 690 V and the device according to the invention falls under the low-voltage directive. However, the effective number of turns is N for the first delta circuit 1 and M for the second delta circuit 2. The effective number of turns N can be chosen arbitrarily large in principle, it must only pay attention to the dielectric strength in the transformer. It does not require any externally supplied power, the device according to the invention is robust against any zero components occurring.

Die Pfeile in den Fig. 2, 3 zeigen die Stromrichtung des Kompensationsstromes an.The arrows in the Fig. 2 . 3 indicate the current direction of the compensation current.

Für alle Ausführungsvarianten gilt, dass beim Schalten der Schalteinrichtung, also beim Zünden der Thyristoren T, der Kompensationsstrom zu fließen beginnt. Die Steuerung der Thyristoren kann wie in der WO 2012/041368 A1 erfolgen: die Steuereinheit besteht im Wesentlichen aus einem Phasendetektor und einem Zeitglied. Der Phasendetektor, z.B. ein Nulldurchgang-Detektor, leitet aus der induzierten Spannung ein Triggersignal ab, welches einem Zeitglied zugeführt wird. Zusammen mit einem ebenfalls der Steuereinheit zugeführten Steuersignal stellt die Steuereinheit ausgangsseitig eine Stellgröße bereit, welche dem Thyristor T zugeleitet wird. Die Induktivität L ist dabei so bemessen, dass bei einem Durchschalten des Thyristors T ein in eine Stromrichtung fließender, pulsierender Stromverlauf in die Kompensationswicklung K eingespeist wird. Dabei wird der Thyristor T am Ende des Gleichstrompulses in den stromlosen Zustand geschaltet, etwa, indem der Haltestrom des Thyristors T unterschritten wird.For all variants, when switching the switching device, ie when the thyristors T, the compensation current begins to flow. The control of the thyristors can, as in the WO 2012/041368 A1 The control unit essentially consists of a phase detector and a timer. The phase detector, for example a zero-crossing detector, derives a trigger signal from the induced voltage, which is fed to a timer. Together with a likewise supplied to the control unit control signal, the control unit provides on the output side a manipulated variable which is supplied to the thyristor T. The inductance L is dimensioned such that when the thyristor T is turned on, a pulsating current flow flowing in a current direction is fed into the compensation winding K. In this case, the thyristor T at the end of the DC pulse in switched to the de-energized state, such as by the holding current of the thyristor T is exceeded.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
erste Dreieckschaltungfirst delta connection
22
zweite Dreieckschaltungsecond delta connection
II
Kompensationsstromcompensating current
I1I1
Kompensationsstrom der ersten DreieckschaltungCompensation current of the first delta connection
1212
Kompensationsstrom der zweiten DreieckschaltungCompensation current of the second delta connection
KK
Kompensationswicklungcompensation winding
K1K1
Kompensationswicklung des ersten SchenkelsCompensation winding of the first leg
K2K2
Kompensationswicklung des zweiten SchenkelsCompensation winding of the second leg
K3K3
Kompensationswicklung des dritten SchenkelsCompensation winding of the third leg
K1-1K1-1
erste Kompensationswicklung des ersten Schenkelsfirst compensation winding of the first leg
K1-2K1-2
zweite Kompensationswicklung des ersten Schenkelssecond compensation winding of the first leg
K2-1K2-1
erste Kompensationswicklung des zweiten Schenkelsfirst compensation winding of the second leg
K2-2K2-2
zweite Kompensationswicklung des zweiten Schenkelssecond compensation winding of the second leg
K3-1K3-1
erste Kompensationswicklung des dritten Schenkelsfirst compensation winding of the third leg
K3-2K3-2
zweite Kompensationswicklung des dritten Schenkelssecond compensation winding of the third leg
LL
Strombegrenzungsdrossel (Induktivität)Current limiting reactor (inductance)
MM
Windungszahlnumber of turns
NN
Windungszahlnumber of turns
N+mN + m
Windungszahlnumber of turns
N-mN-m
Windungszahlnumber of turns
TT
Schalteinheit (Thyristor)Switching unit (thyristor)
T/2T / 2
Halbperiodehalf period
SS
steuerbare Stromquellecontrollable power source
Uuuu
Umlaufspannungcircumferential stress
Uu1UU1
Umlaufspannung der ersten DreieckschaltungCirculating voltage of the first delta connection
Uu2UU2
Umlaufspannung der zweiten DreieckschaltungCirculating voltage of the second delta connection

Claims (9)

  1. Device for reducing a magnetic unidirectional flux component in the core of a transformer having at least three limbs, in particular a three-phase transformer, comprising at least one compensation winding (K1, K2, K3) per limb of the transformer, wherein the compensation windings (K1, K2, K3), if attached to the limb, are magnetically coupled to the core of the transformer,
    characterised in that
    - the device comprises two compensation windings (K1-1, K1-2; K2-1, K2-2; K3-1, K3-2) per limb,
    - the first compensation windings (K1-1, K2-1, K3-1) of the limb are connected electrically to one another in a first delta connection (1) in each case,
    - the second compensation windings (K1-2, K2-2, K3-2) of the limb are connected electrically to one another in a second delta connection (2) in each case,
    - wherein the compensation windings of at least one of the delta connections (1, 2) have the following number of windings and N, m are natural numbers with N>m which differ from zero:
    the first compensation winding (K1-1) of a first limb has N+m windings,
    the first compensation winding (K2-1) of a second limb has N windings,
    the first compensation winding (K3-1) of a third limb has N-m windings,
    - and wherein for a phase controlled modulator at least one switching unit (T) is arranged in series with the compensation windings.
  2. Device according to claim 1, characterised in that the compensation windings have the following number of windings and N, m are natural numbers with N>m which differ from zero:
    the first compensation winding (K1-1) of a first limb has N+m windings, while the second compensation winding (K1-2) of the first limb has N-m windings,
    the first and the second compensation winding (K2-1, K2-2) of a second limb have N windings in each case, the first compensation winding (K3-1) of a third limb has N-m windings, while the second compensation winding (K3-2) of the third limb has N+m windings.
  3. Device according to claim 2, characterised in that the first and second delta connection (1, 2) are not electrically connected to one another, but each delta connection has a separate switching unit (T).
  4. Device according to claim 1, characterised in that the compensation windings have the following number of windings and N, m, M are natural numbers with N>m which differ from zero:
    the first compensation winding (K1-1) of a first limb has N+m windings, while the second compensation winding (K1-2) of the first limb has M windings,
    the first compensation winding (K2-1) of a second limb has N windings, the second compensation winding (K2-2) of the second limb has M windings,
    the first compensation winding (K3-1) of a third limb has N-m windings, while the second compensation winding (K3-2) of the third limb has M windings.
  5. Device according to claim 4, characterised in that the first and second delta connection (1, 2) are electrically connected in series and have a shared switching unit (T).
  6. Device according to one of claims 1 to 5, characterised in that the device comprises at least one current-limiting inductor (L) which is arranged electrically in series with the switching unit (T).
  7. Device according to one of claims 1 to 6, characterised in that the device comprises a measuring apparatus for detecting the magnetic unidirectional flux component and that the switching unit (T) is connected to the measuring apparatus.
  8. Device according to one of claims 1 to 7, characterised in that a control unit for the phase controlled modulator of the switching unit (T) is provided, wherein the control unit comprises a timer, that a phase detector is provided, that the timer is connected to the phase detector such that the timer can be triggered by the phase detector, which can detect the phase of the voltages induced into the compensation windings (K1-1, K1-2; K2-1, K2-2; K3-1, K3-2) and can activate the switching unit (T) such that a pulsating direct current is fed into the compensation windings (K1-1, K1-2; K2-1, K2-2; K3-1, K3-2).
  9. Method for operating a device according to claim 8, characterised in that the control unit comprises a timer, which is triggered by the phase detector, which detects the phase of the voltages inducted into the compensation windings (K1-1, K1-2; K2-1, K2-2; K3-1, K3-2) and activates the switching unit (T) such that a pulsating direct current is fed into the compensation windings (K1-1, K1-2; K2-1, K2-2; K3-1, K3-2).
EP14154070.8A 2014-02-06 2014-02-06 Device for reducing a magnetic unidirectional flux component in the core of a transformer Active EP2905792B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14154070.8A EP2905792B1 (en) 2014-02-06 2014-02-06 Device for reducing a magnetic unidirectional flux component in the core of a transformer
CN201480075006.3A CN105993056B (en) 2014-02-06 2014-12-17 The equipment of the unidirectional flux composition of the magnetic in core for reducing transformer
PCT/EP2014/078173 WO2015117708A1 (en) 2014-02-06 2014-12-17 Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
EP14815679.7A EP3103125A1 (en) 2014-02-06 2014-12-17 Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
US15/117,138 US10424435B2 (en) 2014-02-06 2014-12-17 Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14154070.8A EP2905792B1 (en) 2014-02-06 2014-02-06 Device for reducing a magnetic unidirectional flux component in the core of a transformer

Publications (2)

Publication Number Publication Date
EP2905792A1 EP2905792A1 (en) 2015-08-12
EP2905792B1 true EP2905792B1 (en) 2016-09-21

Family

ID=50033409

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14154070.8A Active EP2905792B1 (en) 2014-02-06 2014-02-06 Device for reducing a magnetic unidirectional flux component in the core of a transformer
EP14815679.7A Withdrawn EP3103125A1 (en) 2014-02-06 2014-12-17 Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14815679.7A Withdrawn EP3103125A1 (en) 2014-02-06 2014-12-17 Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer

Country Status (4)

Country Link
US (1) US10424435B2 (en)
EP (2) EP2905792B1 (en)
CN (1) CN105993056B (en)
WO (1) WO2015117708A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816426A (en) * 2020-06-09 2020-10-23 山东电力设备有限公司 Voltage compensation structure of variable magnetic flux voltage regulating autotransformer third winding and transformer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963978A (en) * 1975-02-14 1976-06-15 General Electric Company Reactive power compensator
DE2716594C2 (en) * 1977-04-14 1982-10-21 Proizvodstvennoe ob"edinenie Uralelektrotja&zcaron;ma&scaron; imeni V.I. Lenina, Sverdlovsk Three-phase transformer for feeding semiconductor bridge rectifiers
DE2716959A1 (en) 1977-04-16 1978-10-19 Nat Rejectors Gmbh Mechanical coin checker for four coin denominations - directs coins onto weight sensitive lever and along guide path to electromagnetic units accelerating coins with magnetic component
US4311253A (en) * 1979-09-14 1982-01-19 Westinghouse Electric Corp. Low loss stabilizer
US5416458A (en) 1991-04-25 1995-05-16 General Signal Corporation Power distribution transformer for non-linear loads
SE525698C2 (en) * 2003-06-27 2005-04-05 Forskarpatent I Syd Ab Transformer with protection against direct current magnetization caused by zero sequence current
US8314674B2 (en) * 2007-06-12 2012-11-20 Siemens Ag Österreich Electrical transformer with unidirectional flux compensation
US9046901B2 (en) * 2010-09-29 2015-06-02 Siemens Aktiengesellschaft Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer
CN103270562B (en) * 2010-09-29 2017-03-01 西门子公司 The apparatus and method of the unidirectional magnetic flux in compensator transformer iron core

Also Published As

Publication number Publication date
CN105993056A (en) 2016-10-05
EP2905792A1 (en) 2015-08-12
US10424435B2 (en) 2019-09-24
EP3103125A1 (en) 2016-12-14
WO2015117708A1 (en) 2015-08-13
CN105993056B (en) 2018-01-19
US20170213643A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
EP3080821B1 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a transformer
EP2622614B1 (en) Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer
EP2622615B1 (en) Arrangement and method for the compensation of a magnetic unidirectional flux in a transformer core
EP3430715B1 (en) Converter arrangement having a grounding transformer
DE202014011437U1 (en) High frequency series ac voltage regulator
DE602004004366T2 (en) ERROR CURRENT LIMITERS WITH CORES SATURATED BY SUPERCONDUCTIVE WINDINGS
DE112007003555T5 (en) Fault current limiter
WO2020207811A1 (en) Circuit assembly, electrolysis device, and method for operating a circuit assembly or an electrolysis device
EP2760115A1 (en) Method for balancing of capacitor voltages in a link circuit
EP2115864B1 (en) Ac/dc converter without rectifying elements at the secondary side of the transformer
DE4431050B4 (en) DC converter
EP2905792B1 (en) Device for reducing a magnetic unidirectional flux component in the core of a transformer
EP2670040B1 (en) Power supply assembly with an inverter for creating single phase alternating current
EP3005383B1 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
EP3080822B1 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a three-phase transformer
DE102022111914A1 (en) Switching power converters with injection stages and associated methods
EP3786986B1 (en) Circuit assembly for the reduction of a unidirectional flux component in the soft magnetic core of a transformer
DE845973C (en) Control device for electrical alternating current circuits
DE1089878B (en) Cylinder winding for transformers made from several parallel-connected and radially overlapped conductors crossed with each other
EP3101796A1 (en) Transformer circuit for modifying a voltage in an electrical power supply system relative to a nominal voltage
DE4033281C2 (en)
DE102018208626A1 (en) Magnetically adjustable reactor for reactive power compensation with capacitively connected auxiliary windings
DE1906432A1 (en) Converter for electrical power
AT519338A1 (en) Circuit arrangement for reducing a DC component in the soft magnetic core of a transformer
DE102014116846A1 (en) Electromagnetic mains voltage regulation and Smart Grid application

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160211

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 831624

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001477

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170123

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014001477

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

26N No opposition filed

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 831624

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014001477

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220901 AND 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 11

Ref country code: GB

Payment date: 20240220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240226

Year of fee payment: 11

Ref country code: FR

Payment date: 20240226

Year of fee payment: 11