EP2618038B1 - Installation et procédé pour fournir du xénon liquide - Google Patents

Installation et procédé pour fournir du xénon liquide Download PDF

Info

Publication number
EP2618038B1
EP2618038B1 EP13151810.2A EP13151810A EP2618038B1 EP 2618038 B1 EP2618038 B1 EP 2618038B1 EP 13151810 A EP13151810 A EP 13151810A EP 2618038 B1 EP2618038 B1 EP 2618038B1
Authority
EP
European Patent Office
Prior art keywords
tank
xenon
installation
bar
useful
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13151810.2A
Other languages
German (de)
English (en)
Other versions
EP2618038A3 (fr
EP2618038A2 (fr
Inventor
Elena Aprile
Wan-ting CHEN
Jean-Sébastien Stutzmann
Dominique Thers
Pierre Briend
Fabien Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECOLE DES MINES DE NANTES
Centre National de la Recherche Scientifique CNRS
Universite de Nantes
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Ecole des Mines de Nantes
Centre National de la Recherche Scientifique CNRS
Universite de Nantes
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole des Mines de Nantes, Centre National de la Recherche Scientifique CNRS, Universite de Nantes, Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Ecole des Mines de Nantes
Publication of EP2618038A2 publication Critical patent/EP2618038A2/fr
Publication of EP2618038A3 publication Critical patent/EP2618038A3/fr
Application granted granted Critical
Publication of EP2618038B1 publication Critical patent/EP2618038B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0261Details of cold box insulation, housing and internal structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0111Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/0126One vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0353Heat exchange with the fluid by cooling using another fluid using cryocooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0381Localisation of heat exchange in or on a vessel in wall contact integrated in the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/07Actions triggered by measured parameters
    • F17C2250/072Action when predefined value is reached
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/036Treating the boil-off by recovery with heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0527Superconductors
    • F17C2270/0536Magnetic resonance imaging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/36Xenon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to an installation for supplying liquid xenon, in particular to a cryostat for an imaging system or detection system. Furthermore, the present invention relates to a method for supplying liquid xenon, in particular to a cryostat for an imaging system or for a cosmic particle detection system.
  • the present invention finds particular application in the field of medical imaging or in the field of astronomical observation (for example of dark matter).
  • US2010037656A1 describes an installation for recovering, storing and supplying xenon gas.
  • This installation includes a tank adapted to contain xenon in the gaseous state.
  • this installation includes components for liquefying xenon downstream of the tank.
  • treating xenon in the gaseous state requires a large treatment volume, therefore significant space and large surfaces in contact with the xenon.
  • numerous components must be used to convert the xenon from the gaseous state to the liquid state upstream of the cryostat, which complicates the installation and lengthens the processing of the xenon.
  • the present invention aims in particular to resolve, in whole or in part, the problems mentioned above.
  • the subject of the invention is an installation for supplying liquid xenon, in particular to a cryostat for an imaging system or detection system, the installation being as defined by claim 1.
  • liquid xenon designates xenon in the liquid state or in the supercritical fluid state.
  • the term “useful mass” designates the mass of xenon which is necessary for the intended application, for example for the operation of a cryostat for an imaging system in the medical field or in the field of observation. astronomical.
  • a useful pressure between 60 bar and 80 bar allows the use of a relatively compact tank.
  • a pressure value corresponds to an absolute pressure
  • the overpressure limiter member thus calibrated makes it possible to avoid losses of gaseous xenon when the tank is subjected to the useful pressure of between 60 bar and 80 bar. In other words, this overpressure limiting device does not trigger when the entire useful mass of xenon is contained in the tank in the gaseous state at ambient temperature.
  • the machine further comprises a supply pipe which is connected to the tank and means for connect the supply line to the cryostat, so that the supply line channels liquid xenon to the cryostat when the installation is in service.
  • the useful mass of xenon is between 10 kg and 10,000 kg, preferably between 100 kg and 5,000 kg.
  • the shape and thickness of the walls of said at least one tank are selected so that said at least one tank supports stresses of between 0 to 8 MPa.
  • the tank can withstand a pressure of between 60 bar and 80 bar.
  • said at least one tank contains a useful mass of xenon of 3000 kg, the useful pressure being equal to 65 bar, and in which said at least one tank preferably has a generally spherical or generally cylindrical with an internal diameter of 1700 mm, the walls being made of stainless steel and having a constant thickness of 35 mm.
  • the overall spherical shape is optimized for large volumes.
  • the spherical shape minimizes the internal surface of the tank walls, therefore minimizing the bulk of the tank.
  • the overall cylindrical shape is optimized for small volumes.
  • the overall cylindrical shape is particularly easy to manufacture, transport and install.
  • An internal diameter of 1700 mm makes it possible to define a relatively compact tank.
  • such a tank can contain a similar volume of liquid xenon and a similar volume of gaseous xenon.
  • said at least one reservoir has a generally spherical or generally cylindrical shape.
  • the overall spherical shape is optimized for large volumes.
  • the spherical shape minimizes the internal surface of the tank walls, therefore minimizing the bulk of the tank.
  • the overall cylindrical shape is optimized for small volumes.
  • the overall cylindrical shape is particularly easy to manufacture, transport and install.
  • the installation comprises several tanks each having a generally cylindrical shape, the tanks preferably being juxtaposed.
  • the installation comprises several tanks each having a generally cylindrical shape, the tanks being preferably juxtaposed.
  • the tanks make it possible to modulate the useful mass of xenon to be supplied to a cryostat and to vary this useful mass during the service of such a cryostat.
  • the installation further comprises a purification device connected to the respective tank and adapted to purify gaseous xenon, preferably at room temperature, so as to reinject into a respective tank xenon having a degree of purity less than 2 ppb, preferably less than 1 ppb.
  • the verbs "connect”, “connect”, “connect”, “feed” and their derivatives relate to fluid communication, that is to say to the flow of fluid, between two elements remote, by means of a direct or indirect link, that is to say via none, one or more component(s) such as a pipe.
  • fluid designate a liquid, a gas or a supercritical fluid.
  • such a secondary heat exchanger allows liquid xenon to evaporate and reheat when it circulates in the heating pipe towards the purification device, while gaseous xenon cools and recondenses when it circulates in the cooling pipe coming from the purification device.
  • Such a primary heat exchanger makes it possible to liquefy and therefore recondense the gaseous xenon without risk of solidifying it, because the first coil and the cold source are separated by a guard distance.
  • thermally conductive material designates a material having a thermal conductivity greater than 100 W/m/K. Such a material makes it possible to quickly standardize the temperature of the block.
  • the cold source comprises a cryogenic machine, such as a pulsed gas tube, placed in the block or in contact with the block.
  • a cryogenic machine such as a pulsed gas tube
  • the cold head of the pulsed gas tube is arranged at the minimum distance from the liquefaction coil.
  • the cold source is a source of cryogenic fluid, which preferably contains essentially liquid dinitrogen, the primary heat exchanger further comprising a cooling coil, preferably made of stainless steel, which is arranged in the block so as to cool the block by circulation of the cryogenic fluid.
  • a cold source makes it possible to cool the block, therefore to liquefy the gaseous xenon efficiently.
  • the source of cryogenic fluid comprises a separator tank which is arranged upstream of the first coil.
  • a separator flask can remove any gaseous nitrogen at the inlet of the first coil, which makes it possible to precisely measure the quantity of cold (frigories) supplied to the xenon, in particular during a scientific experiment.
  • the primary heat exchanger further comprises control means for controlling the flow of cryogenic fluid to the pressure prevailing in a respective tank.
  • control means for controlling the flow of cryogenic fluid to the pressure prevailing in a respective tank.
  • control means can for example include a pressure sensor installed in the tank, a valve with variable shutter and a control member of this valve.
  • the primary heat exchanger further comprises an attenuator member adapted to reduce the flow of gaseous xenon taken from the respective tank when the temperature of the block is below a predetermined threshold.
  • an attenuator member makes it possible to prevent the solidification of the xenon in the first coil.
  • the attenuator member can be controlled by an industrial programmable controller.
  • the heating pipe and the cooling pipe are arranged so that their respective xenon flows are countercurrent.
  • the secondary heat exchanger can operate with high thermal efficiency.
  • the installation further comprises a compressor arranged downstream of the purification device and upstream of the secondary heat exchanger.
  • a compressor makes it possible to compress the gaseous xenon, therefore reducing the volume necessary for its purification.
  • the installation further comprises a valve with manually or automatically adjustable opening and arranged upstream of the cooling pipe so that the pressure prevailing in the cooling pipe is greater than the pressure in the pipe reheating.
  • a valve with adjustable opening allows the partial recondensation of the xenon in the case where liquid xenon is taken.
  • this heating device makes it possible to regulate the pressure prevailing inside the respective tank, therefore to vary the proportions of gaseous xenon and liquid xenon, for example during the transfer phases of the liquid xenon to the cryostat.
  • this heating device can be powered by the heat transfer fluid at ambient temperature, it limits or even avoids the risk of overheating the tank and therefore the risk of loss of xenon through a valve or a safety vent such as a disc. a break.
  • the heating device further comprises a gas flow meter and at least one temperature sensor arranged so as to precisely measure the quantity of heat (calories) supplied to the xenon, in particular during a scientific experiment.
  • the heating device further comprises a non-return valve disposed downstream of the heat transfer coil.
  • a non-return valve limits or even prevents the reflux of humid air into the heat transfer coil.
  • the thermal insulation equipment comprises at least one layer of thermally insulating material, such as closed cell polyvinyl chloride foam, said at least one layer being arranged so as to surround at least the or each tank, said at least one layer preferably being arranged on the external surface of the or each tank.
  • thermally insulating material such as closed cell polyvinyl chloride foam
  • the thermal insulation equipment comprises an envelope delimiting at least one cavity arranged around the or each tank, the cavity being placed under vacuum when the installation is in service.
  • the thermal insulation equipment comprises a pump arranged to evacuate said at least one cavity.
  • a pump arranged to evacuate said at least one cavity.
  • the thermal insulation equipment comprises several layers, including at least one layer reflecting infrared radiation, such as an aluminum film.
  • at least one layer reflecting infrared radiation such as an aluminum film.
  • the thermal insulation equipment comprises a layer of powdered perlite placed on the external surface of the respective tank, the perlite being for example placed under vacuum or swept by a stream of nitrogen.
  • a layer of perlite makes it possible to greatly reduce the thermal losses of the tank by conduction.
  • said at least one overpressure limiting member is calibrated to limit the overpressure to a determined value exceeding said useful pressure by 2 to 10 bar, preferably by 5 bar.
  • the method further comprises a step consisting of actuating the cryogenic device so that the useful mass of xenon comprises approximately 50% by volume of liquid xenon and approximately 50% by volume of gaseous xenon when the pressure in the respective tank is between 0.5 bar and 5 bar.
  • the vapors produced by the heat inputs to the tank are recondensed. This results in the pressure being controlled at the value required for use, in particular for transfer operations from the tank to the cryostat and conversely from the cryostat to the tank.
  • FIG. 1 illustrates an installation 1 for supplying liquid xenon LXe to a cryostat 2 for an imaging system not shown, via a supply line 3.
  • the installation 1 comprises a tank 4 delimiting an internal volume V4 adapted to contain a so-called useful mass of xenon, in the liquid state LXe and in the gaseous state GXe.
  • the tank 4 has a generally spherical shape with an internal diameter D4 measuring approximately 1700 mm.
  • the supply line 3 is connected to the tank 4 and a connection not shown is arranged to connect the supply line 3 to the cryostat 2, so that the supply line 3 channels liquid xenon LXe towards the cryostat 2 when the Installation 1 is in service.
  • the installation 1 further comprises a cryogenic device 10 adapted to condense a flow Xe.11 of gaseous xenon.
  • the cryogenic device 10 is connected, respectively by a forward pipe 11 and a return pipe 12, to the tank 4 so as to collect gaseous xenon Xe.11 coming from the upper part of the tank 4 and to channel a flow of condensed xenon Xe. 12 towards the tank 4.
  • the outward pipe 11 and the return pipe 12 can have a diameter of approximately 1 cm (3/8").
  • the installation 1 comprises thermal insulation equipment arranged to thermally insulate the tank 4.
  • the thermal insulation equipment comprises a layer 14 of closed cell polyvinyl chloride foam, the foam forming a thermally insulating material.
  • the layer 14 is arranged so as to surround the tank 4.
  • the layer 14 is here arranged on the external surface of the tank 4.
  • the layer 14 is arranged so as to surround the supply pipe 3.
  • the tank 4 comprises walls 6.
  • the shape and thickness of the walls 6 of the tank 4 are selected so that the tank 4 supports a useful pressure developed by the useful mass of xenon in the gaseous state at a temperature of approximately 300 K.
  • this useful pressure can be between 60 bar and 80 bar.
  • the useful mass of xenon is approximately 3000 kg.
  • the useful pressure is approximately 65 bar.
  • the walls 6 of the tank 4 are made of stainless steel and have a constant thickness E6 of approximately 35 mm.
  • the shape and thickness E6 of the walls 6 of the tank 4 are selected so that the tank 4 supports stresses of between 0 to 8 MPa. Thus, the tank can support the useful pressure of 65 bar.
  • the cryogenic power of the cryogenic device 10 is selected so that the useful mass of xenon comprises approximately 50% by volume of liquid xenon and approximately 50% by volume of gaseous xenon, as shown in Fig. figure 1 , when the pressure in tank 4 is between 1 bar and 2 bar.
  • This pressure corresponds to an operating pressure, that is to say when the tank delivers liquid xenon to the cryostat via a supply line 3.
  • the percentages indicated above may vary by plus or minus 15%, when the tank is initially filled before being put into service and under an operating pressure of between 1 bar and 2 bar.
  • the operating percentage of liquid xenon may vary for example between 5% to 50%, depending on the quantity of xenon transferred to the cryostat.
  • the cold source comprises a source 20 of cryogenic fluid, which essentially contains liquid dinitrogen LN2.
  • the primary heat exchanger 16 further comprises a cooling coil 21, preferably made of stainless steel, which is arranged in the block 18 so as to cool the block by circulation of the cryogenic fluid.
  • the minimum distance 21.22 between the liquefaction coil 22 and the cooling coil 21, which here represents the cold source, is greater than 50 mm.
  • the minimum distance 21.22 makes it possible to avoid the solidification of the xenon in the liquefaction coil 22.
  • the layer 14 is arranged so as to surround the block 18, the outward pipe 11 and the return pipe 12. The layer 14 thus makes it possible to limit the thermal losses through these components.
  • the primary heat exchanger 16 further comprises control means not shown for controlling the flow of liquid dinitrogen to the pressure prevailing in the tank 4. In other words, when this pressure increases, the flow of dinitrogen can be increased. liquid ; conversely, when this pressure decreases, the flow of liquid dinitrogen can be reduced.
  • the control means here comprise a pressure sensor, not shown, which is installed in the tank 4, a variable shutter valve, not shown, and a member, not shown, for controlling this valve.
  • the primary heat exchanger 16 further comprises an attenuator member, not shown, which is adapted to reduce the flow rate of the gaseous xenon flow Xe.11 when the temperature of the block 18 is below a predetermined threshold.
  • This attenuator can be controlled by an industrial programmable controller.
  • the installation 1 further comprises an overpressure limiting member 26 which is connected to the tank and which is calibrated to limit overpressure in the tank 4 to a value greater than or equal to the useful pressure.
  • the overpressure limiter member 26 can be calibrated at a setting pressure of approximately 70 bar for a useful pressure of approximately 65 bar.
  • the overpressure limiter member 26 lets the gaseous xenon GXe escape only when the pressure in the tank 4 exceeds 70 bar, which can occur when the tank is brought to a temperature above 300 K.
  • the installation 1 further comprises a purification device 30 which is connected to the tank 4 and which is adapted to purify a flow of gaseous xenon Xe.30, so as to reinject into the tank 4 a flow of ultrapure xenon Xe.31 having a degree of purity less than 2 ppb, or even 1 ppb.
  • a purification device 30 which is connected to the tank 4 and which is adapted to purify a flow of gaseous xenon Xe.30, so as to reinject into the tank 4 a flow of ultrapure xenon Xe.31 having a degree of purity less than 2 ppb, or even 1 ppb.
  • the purification device 30 can be formed by a device marketed under the reference Oxysorb ® and comprising a getter.
  • the heating pipe 42 extends between the tank 4 and the purification device 30 at the level of the secondary heat exchanger 40.
  • the cooling pipe 44 extends between the purification device 30 and the tank 4 at the level of the secondary heat exchanger 40. Secondary heat exchanger 40. Heating line 42 and cooling line 44 may have a diameter of approximately 1 cm (3/8").
  • the heating pipe 42 is arranged near the cooling pipe 44, so that the heating pipe 42 and the cooling pipe 44 are thermally coupled, that is to say they exchange a quantity of heat when installation 1 is in service.
  • the installation 1 further comprises a compressor, not shown, which is arranged downstream of the purification device 30 and upstream of the secondary heat exchanger 40.
  • the heating pipe 42 and the cooling pipe 44 are arranged so that their respective xenon flows are counter-current to each other, that is to say in opposite directions.
  • the installation further comprises a valve with adjustable opening 46, manually or automatically, and arranged upstream of the cooling pipe 44, so that the pressure prevailing in the cooling pipe 44 is greater than the pressure in the heating pipe 42.
  • the heating line 42 takes the xenon in the gas phase (upper part of the tank 4).
  • the xenon is then reheated in the exchanger 40.
  • the purified xenon circulating in the cooling line 44 is cooled and then returns in vapor form to the tank 4.
  • the heat transfer coil 52 is arranged in a lower region, in this case at the bottom, of the tank 4 so that the heat transfer coil 52 is placed in the liquid xenon LXe when the tank 4 is in service.
  • Installation 1 illustrated in figure 2 And 3 differs from installation 1 shown in figure 1 in particular in that its thermal insulation equipment comprises a casing or an envelope 5 delimiting a cavity arranged around the tank 4. In the example of figure 2 And 3 , this cavity is also arranged around other components of the installation 1, in particular around the cryogenic device 10.
  • This cavity is placed under vacuum when the installation 1 is in service, which makes it possible to thermally isolate all the components of the installation 1 which are located in the envelope 5, in particular the tank 4 and the cryogenic device 10.
  • thermal insulation equipment may comprise a type 5 enclosure plus a type 14 layer.
  • installation 1 illustrated in figure 2 And 3 differs from installation 1 shown in figure 1 in particular in that the reheating line 42 takes the xenon from the liquid phase LXe. The xenon is then vaporized and heated to ambient temperature in the exchanger 40. Thus, the purified xenon circulating in line 44 is cooled and liquefied, then it returns in liquid form to tank 4.
  • the pressure in tank 4 can be around 2 bar at 165 K.
  • the xenon is then 50% liquid LXe and 50% gaseous GXe.
  • the liquid xenon LXe can be led to cryostat 2.
  • the xenon used is recovered from the cryostat 2, in the gaseous or liquid state, via a pipe not shown.
  • the cryogenic device 10 continuously recondenses the gaseous xenon to maintain the balance of the proportions mentioned above and therefore maintain the tank 4 at the operating pressure of approximately 2 bar.
  • the purification device 30 purifies the xenon continuously.
  • the cryogenic device 10 is actuated so that the useful mass of xenon comprises approximately 50% by volume of liquid xenon LXe and approximately 50% by volume of gaseous xenon GXe when the pressure prevailing in the reservoir 4 is approximately 2 bar.
  • the transfer of liquid xenon from tank 4 to cryostat 2 is carried out with a pressure of approximately 2 bar in supply line 3; the duration of this transfer can be between 4 hours and 3 days depending on the useful mass of xenon.
  • the recovery of gaseous or liquid xenon from the cryostat 2 to the tank is carried out at a pressure of approximately 1 bar in the tank 4; the duration of this recovery can be between 4 hours and 3 days depending on the useful mass of xenon.
  • tank 4 When stopped, for example in the event of failure of a component of the installation 1 such as the cryogenic device 10, the tank 4 will slowly heat up to ambient temperature (300 K). The pressure in tank 4 will increase until it reaches the useful pressure, here 65 bar. Tank 4 can support this useful pressure until the cryogenic device 10 is restarted and the temperature of tank 4 is gradually lowered to 165 K.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

  • La présente invention concerne une installation pour fournir du xénon liquide, en particulier à un cryostat pour système d'imagerie ou système de détection. Par ailleurs, la présente invention a pour objet un procédé, pour fournir du xénon liquide, en particulier à un cryostat pour système d'imagerie ou pour système de détection de particules cosmiques.
  • La présente invention trouve notamment application dans le domaine de l'imagerie médicale ou dans le domaine de l'observation astronomique (par exemple de la matière noire).
  • US2010037656A1 décrit une installation pour récupérer, stocker et fournir du xénon gazeux. Cette installation comprend un réservoir adapté pour contenir du xénon à l'état gazeux. De plus, cette installation comprend des composants pour liquéfier le xénon en aval du réservoir.
  • Cependant, traiter le xénon à l'état gazeux nécessite un grand volume de traitement, donc un encombrement important et de grandes surfaces au contact du xénon. En outre, il faut employer de nombreux composants pour passer le xénon de l'état gazeux à l'état liquide en amont du cryostat, ce qui complexifie l'installation et allonge le traitement du xénon.
  • De plus, ces nombreux composants et ces grandes surfaces au contact du xénon gazeux forment des sources de pollution importantes, lesquelles empêchent d'atteindre un niveau de pureté requis en particulier pour les systèmes d'imagerie, en particulier dans le domaine de l'observation astronomique.
  • Le document WO 97/46840 montre un système de récupération du boil-off. U
  • La présente invention vise notamment à résoudre, en tout ou partie, les problèmes mentionnés ci-avant.
  • À cet effet, l'invention a pour objet une installation pour fournir du xénon liquide, en particulier à un cryostat pour système d'imagerie ou système de détection, l'installation étant telle que définie par la revendication 1.
  • Dans la présente demande, le terme « xénon liquide » désigne le xénon à l'état liquide ou à l'état de fluide supercritique.
  • Dans la présente demande, le terme « masse utile » désigne la masse de xénon qui est nécessaire à l'application visée, par exemple au fonctionnement d'un cryostat pour système d'imagerie dans le domaine médical ou dans le domaine de l'observation astronomique.
  • Ainsi, une telle installation limite voire évite les pertes de xénon en phase gazeuse (usuellement désigné par le terme anglais « boil-off ») par des organes de sécurité, même en cas d'arrêt de longue durée et de défaillance du dispositif cryogénique, donc lorsque le xénon est entièrement gazeux sous pression élevée. De plus, le dispositif cryogénique permet de recondenser de manière continue les vapeurs de xénon prélevées en partie haute du réservoir. L'installation fournit donc du xénon liquide, ce qui réduit considérablement le volume de traitement en comparaison des installations de l'art antérieur.
  • De plus, une pression utile entre 60 bar et 80 bar permet d'employer un réservoir relativement compact.
  • Dans la présente demande, sauf indication contraire, une valeur de pression correspond à une pression absolue.
  • En outre, l'organe limiteur de surpression ainsi taré permet d'éviter des pertes de xénon gazeux lorsque le réservoir subit la pression utile comprise entre 60 bar et 80 bar. En d'autres termes, cet organe limiteur de surpression ne se déclenche pas lorsque toute la masse utile de xénon est contenue dans le réservoir à l'état gazeux à la température ambiante.
  • Selon une variante de l'invention, la machine comprend en outre une conduite d'alimentation qui est reliée au réservoir et des moyens pour raccorder la conduite d'alimentation au cryostat, de sorte que la conduite d'alimentation canalise du xénon liquide vers le cryostat lorsque l'installation est en service.
  • Selon un mode de réalisation de l'invention, la masse utile de xénon est comprise entre 10 kg et 10000 kg, de préférence entre 100 kg et 5000 kg.
  • Ainsi, une telle masse permet de fournir du xénon à un système d'imagerie de petite taille (médical) ou à un système d'imagerie de grande taille (scientifique).
  • Selon une variante de l'invention, la forme et l'épaisseur des parois dudit au moins un réservoir sont sélectionnées de sorte que ledit au moins un réservoir supporte des contraintes comprises entre 0 à 8 MPa. Ainsi, le réservoir peut supporter une pression comprise entre 60 bar et 80 bar.
  • Selon un mode de réalisation de l'invention, ledit au moins un réservoir contient une masse utile de xénon de 3000 kg, la pression utile étant égale à 65 bar, et dans laquelle ledit au moins un réservoir a de préférence une forme globalement sphérique ou globalement cylindrique avec un diamètre interne de 1700 mm, les parois étant en acier inoxydable et ayant une épaisseur constante de 35 mm.
  • Ainsi, une telle masse utile de xénon convient pour de nombreuses applications d'imagerie, voire pour des applications de détection. La forme globalement sphérique est optimisée pour les grands volumes. La forme sphérique minimise la surface interne des parois du réservoir, donc minimise l'encombrement du réservoir. La forme globalement cylindrique est optimisée pour les petits volumes. La forme globalement cylindrique est particulièrement facile à fabriquer, à transporter et à implanter. Un diamètre interne de 1700 mm permet de définir un réservoir relativement compact.
  • Selon un mode de réalisation de l'invention, un quotient ayant :
    • pour dénominateur, le volume interne du réservoir respectif ;
    • pour numérateur, le volume qu'occupe la masse utile de xénon à l'état liquide sous la pression atmosphérique ; est compris entre 0,4 et 0,6, de préférence égal à 0,5.
  • Ainsi, un tel réservoir peut contenir un volume de xénon liquide et un volume de xénon gazeux similaires.
  • Selon un mode de réalisation de l'invention, ledit au moins un réservoir a une forme globalement sphérique ou globalement cylindrique.
  • Ainsi, la forme globalement sphérique est optimisée pour les grands volumes. La forme sphérique minimise la surface interne des parois du réservoir, donc minimise l'encombrement du réservoir. La forme globalement cylindrique est optimisée pour les petits volumes. La forme globalement cylindrique est particulièrement facile à fabriquer, à transporter et à implanter.
  • Selon un mode de réalisation de l'invention, l'installation comprend plusieurs réservoirs ayant chacun une forme globalement cylindrique, les réservoirs étant de préférence juxtaposés.
  • Ainsi, de tels réservoirs permettent de stocker et de fournir une importante masse utile de xénon.
  • Selon une variante de l'invention, l'installation comprend plusieurs réservoirs ayant chacun une forme globalement cylindrique, les réservoirs étant de préférence juxtaposés. Ainsi, de tels réservoirs permettent de moduler la masse utile de xénon à fournir à un cryostat et de varier cette masse utile durant le service d'un tel cryostat.
  • Selon un mode de réalisation de l'invention, l'installation comprend en outre un dispositif de purification relié au réservoir respectif et adapté pour purifier du xénon gazeux, de préférence à température ambiante, de façon à réinjecter dans un réservoir respectif du xénon ayant un degré de pureté inférieur à 2 ppb, de préférence inférieur à 1 ppb.
  • Ainsi, un tel dispositif de purification permet d'obtenir et d'entretenir un xénon « ultrapur », ce qui est requis pour les systèmes d'imagerie.
  • Dans la présente demande, les verbes « relier », « connecter », « raccorder », « alimenter » et leurs dérivés se rapportent à la communication de fluide, c'est-à-dire à l'écoulement de fluide, entre deux éléments distants, au moyen d'un lien direct ou indirect, c'est-à-dire par l'intermédiaire d'aucun, d'un ou de plusieurs composant(s) tel(s) qu'une conduite.
  • Dans la présente demande, le terme « fluide » et ses dérivés désigne un liquide, un gaz ou un fluide supercritique.
  • Selon un mode de réalisation de l'invention, l'installation comprend en outre au moins un échangeur thermique secondaire relié d'une part au réservoir respectif et d'autre part au dispositif de purification, l'échangeur thermique secondaire comprenant :
    • une conduite de réchauffage agencée en aval du réservoir respectif et en amont du dispositif de purification ; et
    • une conduite de refroidissement agencée en amont du réservoir respectif et en aval du dispositif de purification, la conduite de refroidissement étant thermiquement couplée à la conduite de réchauffage.
  • Ainsi, un tel échangeur thermique secondaire permet à du xénon liquide de s'évaporer et de se réchauffer lorsqu'il circule dans la conduite de réchauffage vers le dispositif de purification, pendant que du xénon gazeux refroidit et se recondense lorsqu'il circule dans la conduite de refroidissement en provenance du dispositif de purification.
  • Selon un mode de réalisation de l'invention, le dispositif cryogénique comporte au moins un échangeur thermique primaire, l'échangeur thermique primaire comprenant au moins :
    • un bloc en matériau thermiquement conducteur, de préférence en alliage d'aluminium ;
    • une source de froid agencée de façon à refroidir le bloc à une température inférieure ou égale à la température de liquéfaction du xénon ; et
    • un serpentin de liquéfaction, de préférence en acier inoxydable, qui est relié à un réservoir respectif et qui est agencé dans le bloc de façon à liquéfier du xénon prélevé dans le réservoir respectif, la distance minimale entre le serpentin de liquéfaction et la source de froid étant supérieure à 50 mm.
  • Ainsi, un tel échangeur thermique primaire permet de liquéfier donc de recondenser le xénon gazeux sans risque de le solidifier, car le premier serpentin et la source froide sont séparés par une distance de garde.
  • Dans la présente demande, le terme « matériau thermiquement conducteur » désigne un matériau présentant une conductivité thermique supérieure à 100 W/m/K. Un tel matériau permet d'uniformiser rapidement la température du bloc.
  • Selon une variante de l'invention, la source de froid comprend une machine cryogénique, telle qu'un tube à gaz pulsé, disposée dans le bloc ou au contact du bloc. Dans cette variante, la tête froide du tube à gaz pulsé est disposée à la distance minimale du serpentin de liquéfaction. Ainsi, une telle machine cryogénique permet de refroidir le bloc, donc de liquéfier le xénon gazeux de manière efficace.
  • Selon une variante de l'invention, la source de froid est une source de fluide cryogénique, qui contient de préférence essentiellement du diazote liquide, l'échangeur thermique primaire comprenant en outre un serpentin de refroidissement, de préférence en acier inoxydable, qui est agencé dans le bloc de façon à refroidir le bloc par circulation du fluide cryogénique. Ainsi, une telle source de froid permet de refroidir le bloc, donc de liquéfier le xénon gazeux de manière efficace.
  • Selon une variante de l'invention, la source de fluide cryogénique comprend un ballon séparateur qui est agencé en amont du premier serpentin. Ainsi, un tel ballon séparateur peut supprimer tout azote gazeux à l'entrée du premier serpentin, ce qui permet de mesurer précisément la quantité de froid (frigories) apportée au xénon, en particulier au cours d'une expérience scientifique.
  • Selon une variante de l'invention, l'échangeur thermique primaire comprend en outre des moyens d'asservissement pour asservir le débit de fluide cryogénique à la pression régnant dans un réservoir respectif. Ainsi, de tels moyens permettent de maintenir constante la pression régnant dans le réservoir respectif, en particulier de la maintenir à la pression utile développée par la masse utile de xénon à l'état gazeux, typiquement entre la pression atmosphérique et environ 5 bar. De tels moyens d'asservissement peuvent par exemple comprendre un capteur de pression installé dans le réservoir, une vanne à obturation variable et un organe de pilotage de cette vanne.
  • Selon une variante de l'invention, l'échangeur thermique primaire comprend en outre un organe atténuateur adapté pour réduire le débit de xénon gazeux prélevé dans le réservoir respectif lorsque la température du bloc est inférieure à un seuil prédéterminé. Ainsi, un tel organe atténuateur permet d'empêcher la solidification du xénon dans le premier serpentin. Par exemple, l'organe atténuateur peut être commandé par un automate programmable industriel.
  • Selon une variante de l'invention, la conduite de réchauffage et la conduite de refroidissement sont agencées de sorte que leurs écoulements respectifs de xénon se font à contre-courant. Ainsi, l'échangeur thermique secondaire peut fonctionner avec une haute efficacité thermique.
  • Selon une variante de l'invention, l'installation comprend en outre un compresseur agencé en aval du dispositif de purification et en amont de l'échangeur thermique secondaire. Ainsi, un tel compresseur permet de comprimer le xénon gazeux, donc de réduire le volume nécessaire à sa purification.
  • Selon une variante de l'invention, l'installation comprend en outre une vanne à ouverture réglable manuellement ou automatiquement et agencée en amont de la conduite de refroidissement de sorte que la pression régnant dans la conduite de refroidissement est supérieure à la pression dans la conduite de réchauffage. Ainsi, une telle vanne à ouverture réglable permet la recondensation partielle du Xénon dans le cas où on prélève du xénon liquide.
  • Selon un mode de réalisation de l'invention, l'installation comprend en outre un dispositif de réchauffage comprenant au moins :
    • un serpentin caloporteur adapté pour la circulation d'un fluide caloporteur, tel que du diazote gazeux à température ambiante, le serpentin caloporteur étant agencé dans une région basse d'un réservoir respectif de sorte que le serpentin caloporteur est disposé dans le xénon liquide lorsque le réservoir respectif est en service ; et
    • une vanne à ouverture variable, agencée de préférence en aval du serpentin caloporteur, de façon à réguler le débit de fluide caloporteur.
  • Ainsi, ce dispositif de réchauffage permet de réguler la pression régnant à l'intérieur du réservoir respectif, donc de varier les proportions de xénon gazeux et de xénon liquide, par exemple pendant les phases de transfert du xénon liquide vers le cryostat. De plus, comme ce dispositif de réchauffage peut être alimenté par le fluide caloporteur à température ambiante, il limite voire évite le risque de surchauffe du réservoir et donc le risque de pertes de xénon par une soupape ou un évent de sécurité tel qu'un disque de rupture.
  • Selon une variante de l'invention, le dispositif de réchauffage comprend en outre un débitmètre à gaz et au moins un capteur de température agencés de façon à mesurer précisément la quantité de chaleur (calories) apportée au xénon, en particulier au cours d'une expérience scientifique.
  • Selon une variante de l'invention, le dispositif de réchauffage comprend en outre un clapet anti-retour disposé en aval du serpentin caloporteur. Ainsi, un tel clapet anti-retour limite voire évite le reflux d'air humide dans le serpentin caloporteur.
  • Selon un mode de réalisation de l'invention, l'équipement d'isolation thermique comprend au moins une couche en matériau thermiquement isolant, tel qu'une mousse à cellules fermée en polyvinyle de chlorure, ladite au moins une couche étant agencée de façon à entourer au moins le ou chaque réservoir, ladite au moins une couche étant de préférence disposée sur la surface externe du ou de chaque réservoir.
  • Ainsi, une telle couche réduit fortement les pertes thermiques du réservoir par conduction.
  • Selon un mode de réalisation de l'invention, l'équipement d'isolation thermique comprend une enveloppe délimitant au moins une cavité agencée autour du ou de chaque réservoir, la cavité étant mise sous vide lorsque l'installation est en service.
  • Ainsi, une telle cavité permet de réaliser un vide statique autour du réservoir, ce qui réduit fortement les pertes thermiques du réservoir par convection.
  • Selon une variante de l'invention, l'équipement d'isolation thermique comprend une pompe agencée pour mettre sous vide ladite au moins une cavité. Ainsi, une telle pompe permet de réaliser un vide dynamique autour du réservoir, ce qui réduit considérablement les pertes thermiques du réservoir par convection.
  • Selon une variante de l'invention, l'équipement d'isolation thermique comprend plusieurs couches, dont au moins une couche réfléchissant le rayonnement infrarouge, tel qu'un film d'aluminium. Ainsi, de telles couches forment une isolation multicouches qui est compacte et qui réduit fortement les pertes thermiques du réservoir par conduction et par rayonnement.
  • Selon une variante de l'invention, l'équipement d'isolation thermique comprend une couche de perlite en poudre disposée sur la surface externe du réservoir respectif, la perlite étant par exemple mise sous vide ou balayée par un courant d'azote. Ainsi, une telle couche de perlite permet de réduire fortement les pertes thermiques du réservoir par conduction.
  • Selon un mode de réalisation de l'invention, ledit au moins un organe limiteur de surpression est taré pour limiter la surpression à une valeur déterminée excédant de 2 à 10 bar, de préférence de 5 bar ladite pression utile.
  • Ainsi, un tel tarage permet d'assurer la sécurité et la fiabiilité de l'installation et de ses composants.
  • Par ailleurs, la présente invention a pour objet un procédé, pour fournir du xénon liquide, en particulier à un cryostat pour système d'imagerie ou système de détection, le procédé comprenant les étapes :
    • mettre en oeuvre une installation selon l'invention ;
    • actionner le dispositif cryogénique de façon à maintenir dans ledit au moins un réservoir une pression de service comprise entre 0,5 bar et 5 bar ; et
    • canaliser du xénon liquide depuis ledit au moins un réservoir vers le cryostat par une conduite d'alimentation.
  • Ainsi, un tel procédé permet de faire fonctionner l'installation en mode normal pour fournir du xénon liquide à un cryostat.
  • Selon un mode de réalisation de l'invention, le procédé comprend en outre une étape consistant à actionner le dispositif cryogénique de sorte que la masse utile de xénon comprend environ 50% en volume de xénon liquide et environ 50% en volume de xénon gazeux lorsque la pression régnant dans le réservoir respectif est comprise entre 0,5 bar et 5 bar.
  • Ainsi, les vapeurs produites par les entrées de chaleur subies par le réservoir sont recondensées. Il en résulte que la pression est contrôlée à la valeur requise pour l'utilisation, en particulier pour les opérations de transfert du réservoir vers le cryostat et à l'inverse du cryostat vers le réservoir.
  • La présente invention sera bien comprise et ses avantages ressortiront aussi à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés, dans lesquels :
    • la figure 1 est une vue schématique en coupe d'une installation conforme à un premier mode de réalisation de l'invention et fonctionnant suivant un procédé conforme à l'invention ;
    • la figure 2 est une vue schématique en coupe d'une partie d'une installation conforme à un deuxième mode de réalisation de l'invention et fonctionnant suivant un procédé conforme à l'invention ; et
    • la figure 3 est une vue schématique en coupe d'une partie complémentaire de l'installation de la figure 2.
  • La figure 1 illustre une installation 1 pour fournir du xénon liquide LXe à un cryostat 2 pour un système d'imagerie non représenté, via une conduite d'alimentation 3.
  • L'installation 1 comprend un réservoir 4 délimitant un volume interne V4 adapté pour contenir une masse dite utile de xénon, à l'état liquide LXe et à l'état gazeux GXe. Dans l'exemple de la figure 1, le réservoir 4 a une forme globalement sphérique de diamètre interne D4 mesurant environ 1700 mm.
  • La conduite d'alimentation 3 est reliée au réservoir 4 et un raccord non représentée est agencé pour raccorder la conduite d'alimentation 3 au cryostat 2, de sorte que la conduite d'alimentation 3 canalise du xénon liquide LXe vers le cryostat 2 lorsque l'installation 1 est en service.
  • L'installation 1 comprend en outre un dispositif cryogénique 10 adapté pour condenser un flux Xe.11 de xénon gazeux. Le dispositif cryogénique 10 est relié, respectivement par une conduite aller 11 et une conduite retour 12, au réservoir 4 de façon à collecter du xénon gazeux Xe.11 provenant de la partie haute du réservoir 4 et à canaliser un flux de xénon condensé Xe.12 vers le réservoir 4. La conduite aller 11 et la conduite retour 12 peuvent avoir un diamètre d'environ 1 cm (3/8").
  • De plus, l'installation 1 comprend un équipement d'isolation thermique agencé pour isoler thermiquement le réservoir 4. Dans l'exemple de la figure 1, l'équipement d'isolation thermique comprend une couche 14 en une mousse à cellules fermée en polyvinyle de chlorure, la mousse formant un matériau thermiquement isolant.
  • La couche 14 est agencée de façon à entourer le réservoir 4. La couche 14 est ici disposée sur la surface externe du réservoir 4. De plus, la couche 14 est agencée de façon à entourer la conduite d'alimentation 3.
  • Le réservoir 4 comprend des parois 6. La forme et l'épaisseur des parois 6 du réservoir 4 sont sélectionnées de sorte que le réservoir 4 supporte une pression utile développée par la masse utile de xénon à l'état gazeux à une température d'environ 300 K. Typiquement, cette pression utile peut être comprise entre 60 bar et 80 bar.
  • Dans l'exemple de la figure 1, la masse utile de xénon est d'environ 3000 kg. Pour stocker le xénon dans des conditions de température variant entre 300 K et 165 K, la pression utile est d'environ 65 bar. Pour le diamètre interne D4 d'environ 1700 mm, les parois 6 du réservoir 4 sont en acier inoxydable et ont une épaisseur E6 constante d'environ 35 mm.
  • La forme et l'épaisseur E6 des parois 6 du réservoir 4 sont sélectionnées de sorte que le réservoir 4 supporte des contraintes comprises entre 0 à 8 MPa. Ainsi, le réservoir peut supporter la pression utile de 65 bar.
  • Pour déterminer le diamètre interne D4 en fonction de la masse utile de xénon, un quotient ayant :
    • pour dénominateur, le volume interne V4 du réservoir 4 ;
    • pour numérateur, le volume qu'occupe la masse utile de xénon à l'état liquide sous la pression atmosphérique (visible à la figure 1) ;
    est environ égal à 0,5.
  • La puissance cryogénique du dispositif cryogénique 10 est sélectionnée de sorte que la masse utile de xénon comprend environ 50% en volume de xénon liquide et environ 50% en volume de xénon gazeux, comme représenté à la figure 1, lorsque la pression régnant dans le réservoir 4 est comprise entre 1 bar et 2 bar.
  • Cette pression correspond à une pression de service, c'est-à-dire lorsque le réservoir débite du xénon liquide vers le cryostat via une conduite d'alimentation 3. En fonction de l'application (système d'imagerie médicale ou astronomique), les pourcentages indiqués ci-avant peuvent varier de plus ou moins 15%, lorsque le réservoir est initialement rempli avant sa mise en service et sous une pression de service comprise entre 1 bar et 2 bar. Au cours du service, le pourcentage opératoire de xénon liquide peut varier par exemple entre 5% à 50%, en fonction de la quantité de xénon transférée vers le cryostat.
  • Le dispositif cryogénique 10 comporte un échangeur thermique primaire 16, lequel comprend :
    • un bloc 18 en alliage d'aluminium de nuance AS07G06 ;
    • une source de froid agencée de façon à refroidir le bloc 18 à une température inférieure ou égale à la température de liquéfaction du xénon ;
    • un serpentin de liquéfaction 22 en acier inoxydable, qui est relié au réservoir 4 et qui est agencé dans le bloc 18 de façon à liquéfier le flux de xénon gazeux Xe.11 prélevé dans le réservoir 4.
  • Dans l'exemple de la figure 1, la source de froid comprend une source 20 de fluide cryogénique, qui contient essentiellement du diazote liquide LN2. L'échangeur thermique primaire 16 comprend en outre un serpentin de refroidissement 21, de préférence en acier inoxydable, qui est agencé dans le bloc 18 de façon à refroidir le bloc par circulation du fluide cryogénique.
  • La distance minimale 21.22 entre le serpentin de liquéfaction 22 et le serpentin de refroidissement 21, qui représente ici la source de froid, est supérieure à 50 mm. La distance minimale 21.22 permet d'éviter la solidification du xénon dans le serpentin de liquéfaction 22.Comme le montre la figure 1, la couche 14 est agencée de façon à entourer le bloc 18, la conduite aller 11 et la conduite retour 12. La couche 14 permet ainsi de limiter les pertes thermiques par ces composants.
  • L'échangeur thermique primaire 16 comprend en outre des moyens d'asservissement non représentés pour asservir le débit de diazote liquide à la pression régnant dans le réservoir 4. En d'autres termes, lorsque cette pression augmente, on peut augmenter le débit de diazote liquide ; inversement, lorsque cette pression diminue, on peut diminuer le débit de diazote liquide.
  • Cette pression peut ainsi être maintenue constante. Les moyens d'asservissement comprennent ici un capteur de pression non représentée qui est installé dans le réservoir 4, une vanne à obturation variable non représentée et un organe, non représenté, de pilotage de cette vanne.
  • L'échangeur thermique primaire 16 comprend en outre un organe atténuateur non représenté qui est adapté pour réduire le débit du flux de xénon gazeux Xe.11 lorsque la température du bloc 18 est inférieure à un seuil prédéterminé. Cet organe atténuateur peut être commandé par un automate programmable industriel.
  • L'installation 1 comprend en outre un organe limiteur de surpression 26 qui est relié au réservoir et qui est taré pour limiter une surpression dans le réservoir 4 à une valeur supérieure ou égale à la pression utile. Par exemple, l'organe limiteur de surpression 26 peut être taré à une pression de tarage d'environ 70 bar pour une pression utile d'environ 65 bar.
  • En d'autres termes, l'organe limiteur de surpression 26 laisse échapper le xénon gazeux GXe seulement quand la pression dans le réservoir 4 dépasse 70 bar, ce qui peut survenir lorsque le réservoir est porté à une température supérieure à 300 K.
  • L'installation 1 comprend en outre un dispositif de purification 30 qui est relié au réservoir 4 et qui est adapté pour purifier un flux de xénon gazeux Xe.30, de façon à réinjecter dans le réservoir 4 un flux de xénon ultrapur Xe.31 ayant un degré de pureté inférieur à 2 ppb, voire à 1 ppb.
  • Le dispositif de purification 30 peut être formé par un dispositif commercialisé sous la référence Oxysorb® et comprenant un getter.
  • Comme le montre la figure 1, l'installation 1 comprend en outre un échangeur thermique secondaire 40 qui est relié d'une part au réservoir 4 et d'autre part au dispositif de purification 30. L'échangeur thermique secondaire 40 comprend :
    • une conduite de réchauffage 42 agencée en aval du réservoir 4 et en amont du dispositif de purification 30 ; et
    • une conduite de refroidissement 44 agencée en amont du réservoir 4 et en aval du dispositif de purification 30, la conduite de refroidissement 44 étant thermiquement couplée à la conduite de réchauffage 42.
  • La conduite de réchauffage 42 s'étend entre le réservoir 4 et le dispositif de purification 30 au niveau de l'échangeur thermique secondaire 40. La conduite de refroidissement 44 s'étend entre le dispositif de purification 30 et le réservoir 4 au niveau de l'échangeur thermique secondaire 40. La conduite de réchauffage 42 et la conduite de refroidissement 44 peuvent avoir un diamètre d'environ 1 cm (3/8").
  • Dans l'échangeur thermique secondaire 40, la conduite de réchauffage 42 est agencée près de la conduite de refroidissement 44, de sorte que la conduite de réchauffage 42 et la conduite de refroidissement 44 sont thermiquement couplées, c'est-à-dire échangent une quantité de chaleur lorsque l'installation 1 est en service.
  • L'installation 1 comprend en outre un compresseur non représenté qui est agencé en aval du dispositif de purification 30 et en amont de l'échangeur thermique secondaire 40.
  • La conduite de réchauffage 42 et la conduite de refroidissement 44 sont agencées de sorte que leurs écoulements respectifs de xénon se font à contre-courant l'un de l'autre, c'est-à-dire dans des sens opposés.
  • L'installation comprend en outre une vanne à ouverture réglable 46, manuellement ou automatiquement, et agencée en amont de la conduite de refroidissement 44, de sorte que la pression régnant dans la conduite de refroidissement 44 est supérieure à la pression dans la conduite de réchauffage 42.
  • Comme le montre la figure 1, la conduite de réchauffage 42 prélève le xénon en phase gazeuse (partie haute du réservoir 4). Le xénon est ensuite réchauffé dans l'échangeur 40. Ainsi, le xénon purifié circulant dans la conduite de refroidissement 44 est refroidi puis retourne sous forme vapeur dans le réservoir 4.
  • Comme le montre la figure 1, en outre, l'installation 1 comprend un dispositif de réchauffage 50 qui comprend :
    • un serpentin caloporteur 52 adapté pour la circulation de diazote gazeux GN2 à température ambiante ; et
    • une vanne à ouverture variable 54, agencée de préférence en aval du serpentin caloporteur 52, de façon à réguler le débit de diazote gazeux GN2 qui circule dans le serpentin caloporteur 52.
  • Le serpentin caloporteur 52 est agencé dans une région basse, en l'occurrence au fond, du réservoir 4 de sorte que le serpentin caloporteur 52 est disposé dans le xénon liquide LXe lorsque le réservoir 4 est en service.
  • L'installation 1 illustrée aux figures 2 et 3 diffère de l'installation 1 illustrée à la figure 1 notamment en ce que son équipement d'isolation thermique comprend un carter ou une enveloppe 5 délimitant une cavité agencée autour du réservoir 4. Dans l'exemple des figures 2 et 3, cette cavité est aussi agencée autour d'autres composants de l'installation 1, en particulier autour du dispositif cryogénique 10.
  • Cette cavité est mise sous vide lorsque l'installation 1 est en service, ce qui permet d'isoler thermiquement tous les composants de l'installation 1 qui se trouvent dans l'enveloppe 5, en particulier le réservoir 4 et le dispositif cryogénique 10.
  • Dans l'exemple des figures 2 et 3, l'enceinte 5 remplit la fonction d'isolation thermique que la couche 14 remplit dans l'exemple de la figure 1. Néanmoins, selon un autre mode de réalisation, équipement d'isolation thermique peut comprendre une enceinte de type 5 plus une couche de type 14.
  • De plus, comme l'illustrent en détail les figures 2 et 3 :
    • La source 20 comprend un ballon séparateur agencé en amont du premier serpentin 21. Ce ballon séparateur supprime tout diazote gazeux à l'entrée du premier serpentin 21, ce qui permet de mesurer précisément la quantité de froid (frigories) apportée au xénon.
    • Le dispositif de réchauffage 50 comprend en outre un débitmètre à gaz 56 et au moins un capteur de température 58 agencés de façon à mesurer précisément la quantité de chaleur (calories) apportée au xénon par le diazote gaeux GN2.
    • Le dispositif de réchauffage 50 comprend en outre un clapet anti-retour 59 disposé en aval du serpentin caloporteur 52.
  • Comme le montre la figure 2, l'installation 1 illustrée aux figures 2 et 3 diffère de l'installation 1 illustrée à la figure 1 notamment en ce que la conduite de réchauffage 42 prélève le xénon dans la phase liquide LXe. Le xénon est ensuite vaporisé et réchauffé à température ambiante dans l'échangeur 40. Ainsi, le xénon purifié circulant dans la conduite 44 est refroidi et liquéfié, puis il retourne sous forme liquide dans le réservoir 4.
  • En service, la pression dans le réservoir 4 peut être d'environ 2 bar à 165 K. Le xénon se trouve alors à 50% liquide LXe et à 50% gazeux GXe. Le xénon liquide LXe peut être conduit vers le cryostat 2. Le xénon utilisé est récupéré depuis le cryostat 2, à l'état gazeux ou liquide, par une canalisation non représentée.
  • Un procédé conforme à l'invention, pour fournir du xénon liquide LXe au cryostat 2, comprend les étapes :
    • mettre en oeuvre l'installation 1 ;
    • actionner le dispositif cryogénique 10 de façon à maintenir dans le réservoir 4 une pression de service d'environ 2 bar ; et
    • canaliser du xénon liquide LXe depuis le réservoir 4 vers le cryostat 2 par la conduite d'alimentation 3.
  • Le dispositif cryogénique 10 recondense de manière continue le xénon gazeux pour entretenir l'équilibre des proportions mentionnées ci-avant et donc maintenir le réservoir 4 à la pression de service d'environ 2 bar. En d'autres termes, le dispositif de purification 30 purifie le xénon de manière continue.
  • Suivant un procédé conforme à l'invention, le dispositif cryogénique 10 est actionné de sorte que la masse utile de xénon comprend environ 50% en volume de xénon liquide LXe et environ 50% en volume de xénon gazeux GXe lorsque la pression régnant dans le réservoir 4 est d'environ 2 bar.
  • Généralement, le transfert de xénon liquide depuis le réservoir 4 vers le cryostat 2 est effectuée avec une pression d'environ 2 bar dans la conduite d'alimentation 3 ; la durée de ce transfert peut être comprise entre 4 h et 3 jours selon la masse utile de xénon.
  • Généralement, la récupération de xénon gazeux ou liquide depuis le cryostat 2 vers le réservoir est effectuée à une pression d'environ 1 bar dans le réservoir 4 ; la durée de cette récupération peut être comprise entre 4 h et 3 jours selon la masse utile de xénon.
  • À l'arrêt, par exemple en cas de défaillance d'un composant de l'installation 1 tel que le dispositif cryogénique 10, le réservoir 4 va lentement se réchauffer jusqu'à la température ambiante (300 K). La pression dans le réservoir 4 va augmenter jusqu'à atteindre la pression utile, ici 65 bar. Le réservoir 4 peut supporter cette pression utile jusqu'au redémarrage du dispositif cryogénique 10 et à l'abaissement progressif de la température du réservoir 4 jusqu'à 165 K.

Claims (9)

  1. Installation (1) de fourniture de xénon liquide (LXe), à un cryostat (2) d'unsystème d'imagerie ou un cryostat d'un système de détection, l'installation (1) comprenant au moins :
    - un réservoir (4) comprenant au moins une paroi (6) délimitant un volume interne (V4) destiné à contenir une masse utile de xénon ;
    - un dispositif cryogénique (10) relié fluidiquement au réservoir (4), ledit dispositif cryogénique (10) étant configuré pour collecter du xénon gazeux (GXe) provenant du réservoir (4), condenser le xénon gazeux (GXe), canaliser le xénon condensé vers le réservoir (4)
    - un équipement d'isolation thermique agencé pour isoler thermiquement au moins ledit au moins un réservoir (4) ;
    - la au moins une paroi (6) du réservoir présente une forme globalement cylindrique ou sphérique configurée pour supporter une pression utile développée par la masse utile de xénon à l'état gazeux à une température sensiblement égale à 300 K, la pression utile étant comprise entre 60 bar et 80 bar ; l'installation comprenant en outre au moins :
    - un organe limiteur de surpression relié au réservoir (4), ledit au moins un organe de surpression étant taré pour limiter une surpression à une valeur supérieure ou égale à ladite pression utile ;
    - au moins un échangeur thermique primaire (16), l'échangeur thermique primaire (16) comprenant au moins un bloc (18) en matériau thermiquement conducteur, de préférence en alliage d'aluminium, une source de froid agencée de façon à refroidir le bloc (18) à une température inférieure ou égale à la température de liquéfaction du xénon ; et un serpentin de liquéfaction (22), de préférence en acier inoxydable, qui est relié à un réservoir respectif (4) et qui est agencé dans le bloc (18) de façon à liquéfier du xénon prélevé dans le réservoir respectif (4), l'installation étant caractérisée en ce que
    - la paroi du réservoir a un diamètre interne de 1700 mm et a une épaisseur constante de 35 mm, et en ce que
    - dans l'échangeur thermique primaire, la distance minimale (21.22) entre le serpentin de liquéfaction (22) et la source de froid (21) est supérieure à 50 mm ; et en ce que
    - au moins un échangeur thermique secondaire (40) 2. est relié d'une part au réservoir respectif (4) et d'autre part à un dispositif de purification (30) relié au réservoir respectif (4), l'échangeur thermique secondaire (40) comprenant une conduite de réchauffage (42) agencée en aval du réservoir respectif (4) et en amont du dispositif de purification (30), et une conduite de refroidissement (44) agencée en amont du réservoir respectif (4) et en aval du dispositif de purification (30), la conduite de refroidissement (44) étant thermiquement couplée à la conduite de réchauffage (42).
  2. Installation (1) selon la revendication 1, dans laquelle la masse utile de xénon est comprise entre 10 kg et 10000 kg, de préférence entre 100 kg et 5000 kg.
  3. Installation (1) selon la revendication 1 ou 2, dans laquelle ledit au moins un réservoir (4) contient une masse utile de xénon de 3000 kg, la pression utile étant égale à 65 bar, les parois (6) étant en acier inoxydable.
  4. Installation (1) selon l'une des revendications précédentes, dans laquelle ledit au moins un réservoir (4) a une forme globalement sphérique ou globalement cylindrique.
  5. Installation selon la revendication 4, comprenant plusieurs réservoirs ayant chacun une forme globalement cylindrique, les réservoirs étant de préférence juxtaposés.
  6. Installation (1) selon l'une des revendications précédentes, dans laquelle le dispositif de purification (30) relié au réservoir respectif (4) est adapté pour purifier du xénon gazeux (GXe), de préférence à température ambiante, de façon à réinjecter dans un réservoir respectif (4) du xénon ayant un degré de pureté inférieur à 2 ppb, de préférence inférieur à 1 ppb.
  7. Installation selon l'une des revendications précédentes, dans laquelle ledit au moins un organe limiteur de surpression est taré pour limiter la surpression à une valeur déterminée excédant de 2 à 10 bar, de préférence de 5 bar, ladite pression utile.
  8. Procédé, pour fournir du xénon liquide (LXe), à un cryostat (2) pour système d'imagerie ou système de détection, le procédé comprenant les étapes :
    - mettre en oeuvre une installation selon l'une des revendications précédentes ;
    - actionner le dispositif cryogénique (10) de façon à maintenir dans ledit au moins un réservoir (4) une pression de service comprise entre 0,5 bar et 5 bar ; et
    - canaliser du xénon liquide (LXe) depuis ledit au moins un réservoir (4) vers le cryostat (2) par une conduite d'alimentation (3).
  9. Procédé selon la revendication 8, dans lequel lorsque la pression régnant dans le réservoir respectif (4) est comprise entre 0,5 bar et 5 bar, la masse utile de xénon comprend environ 50% en volume de xénon liquide (LXe) et environ 50% en volume de xénon gazeux (GXe).
EP13151810.2A 2012-01-19 2013-01-18 Installation et procédé pour fournir du xénon liquide Active EP2618038B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1250559A FR2986061B1 (fr) 2012-01-19 2012-01-19 Installation et procede pour fournir du xenon liquide

Publications (3)

Publication Number Publication Date
EP2618038A2 EP2618038A2 (fr) 2013-07-24
EP2618038A3 EP2618038A3 (fr) 2018-04-11
EP2618038B1 true EP2618038B1 (fr) 2023-11-22

Family

ID=47520868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13151810.2A Active EP2618038B1 (fr) 2012-01-19 2013-01-18 Installation et procédé pour fournir du xénon liquide

Country Status (2)

Country Link
EP (1) EP2618038B1 (fr)
FR (1) FR2986061B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041061B1 (fr) 2015-09-15 2019-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reservoir de stockage de fluide liquefie
NO20201157A1 (en) * 2020-10-23 2022-04-25 Ic Tech As Improved cryogenic storage tank with an integrated closed cooling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046840A1 (fr) * 1996-05-30 1997-12-11 Linde Aktiengesellschaft Procede et dispositif pour liquefier du gaz naturel et reliquefier du gaz d'evaporation
FR2757421B1 (fr) * 1996-12-24 1999-01-15 Air Liquide Procede d'epuration d'un fluide cryogenique par filtration et/ou adsorption
TW359736B (en) * 1997-06-20 1999-06-01 Exxon Production Research Co Systems for vehicular, land-based distribution of liquefied natural gas
FR2792707B1 (fr) * 1999-04-20 2001-07-06 Gaz De France Procede et dispositif de maintien en froid de reservoirs de stockage ou de transport d'un gaz liquefie
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage
US8973398B2 (en) * 2008-02-27 2015-03-10 Kellogg Brown & Root Llc Apparatus and method for regasification of liquefied natural gas
DE102009019275A1 (de) * 2008-10-09 2010-04-15 Linde Aktiengesellschaft Betanken von Fahrzeugen mit unter Druck stehenden, gasförmigen Medien

Also Published As

Publication number Publication date
EP2618038A3 (fr) 2018-04-11
EP2618038A2 (fr) 2013-07-24
FR2986061B1 (fr) 2019-12-06
FR2986061A1 (fr) 2013-07-26

Similar Documents

Publication Publication Date Title
EP2143988B1 (fr) Système de stockage de liquide cryogénique pour engin spatial
EP2802834B1 (fr) Dispositif de refroidissement adapte a la regulation thermique d&#39;une source de chaleur d&#39;un satellite, procede de realisation du dispositif de refroidissement et satellite associes
EP3350501B1 (fr) Réservoir de stockage de fluide liquéfié
US20150219391A1 (en) Method and apparatus for recovery of condensable gases from liquid storage tanks
FR3002028A1 (fr) Dispositif de transport de chaleur a fluide diphasique
EP2933444A1 (fr) Dispositif de contrôle d&#39;un circuit fermé fonctionnant selon un cycle de Rankine et procédé utilisant un tel dispositif.
FR2729718A1 (fr) Procede de regeneration d&#39;une pompe cryogenique, et pompe cryogenique pour sa mise en oeuvre
EP3893305B1 (fr) Installation et procédé d&#39;approvisionnement en hydrogène d&#39;une pile à combustible
EP2618038B1 (fr) Installation et procédé pour fournir du xénon liquide
EP0968387B1 (fr) Procede et installation de remplissage d&#39;un reservoir sous pression
EP3645934B1 (fr) Station et procédé de remplissage de réservoirs de gaz sous pression
EP3347112B1 (fr) Dispositif de conversion d&#39;un liquide en vapeur
EP0177416B1 (fr) Dispositif cryostatique pour détecteurs de rayonnements
EP3559542B1 (fr) Dispositif, système et procédé de régulation de la pression pour un réservoir de stockage de gaz naturel liquéfié
WO2024094561A1 (fr) Procédé de contrôle de la pression intérieure d&#39;un réservoir cryogénique
FR2872228A1 (fr) Equipement de recyclage et de pressurisation d&#39;un gaz condensable, notamment du xenon en circuit ferme
EP1842013B1 (fr) Installation de refroidissement cryogenique pour dispositif supraconducteur
EP2948665B1 (fr) Système de conditionnement de circuits cryogéniques
FR2828273A1 (fr) Procede d&#39;alimentation en air epure d&#39;une unite de distillation d&#39;air cryogenique et installation de mise en oeuvre de ce procede
EP3658508A1 (fr) Installation de dessalement d&#39;eau par compression mécanique de vapeur isolée thermiquement dans un local étanche
EP0767081A1 (fr) Dispositif de récupération de la chaleur des gaz d&#39;échappement d&#39;un véhicule
EP3907453A1 (fr) Dispositif de refroidissement pour installation de liquéfaction de gaz
WO2017089679A1 (fr) Systeme de generation d&#39;energie destine a etre monte dans un aeronef.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F17C 6/00 20060101ALI20171107BHEP

Ipc: F17C 7/02 20060101ALI20171107BHEP

Ipc: F17C 9/00 20060101AFI20171107BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F17C 9/00 20060101AFI20180306BHEP

Ipc: F17C 7/02 20060101ALI20180306BHEP

Ipc: F17C 6/00 20060101ALI20180306BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181010

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200224

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOLE DES MINES DE NANTES

Owner name: NANTES UNIVERSITE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013084958

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1634144

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240122

Year of fee payment: 12

Ref country code: FR

Payment date: 20240117

Year of fee payment: 12