EP2616600B1 - Verfahren und vorrichtung zur kontrolle eines abwassernetzwerkes - Google Patents

Verfahren und vorrichtung zur kontrolle eines abwassernetzwerkes Download PDF

Info

Publication number
EP2616600B1
EP2616600B1 EP11773041.6A EP11773041A EP2616600B1 EP 2616600 B1 EP2616600 B1 EP 2616600B1 EP 11773041 A EP11773041 A EP 11773041A EP 2616600 B1 EP2616600 B1 EP 2616600B1
Authority
EP
European Patent Office
Prior art keywords
network
rain
setpoints
function
list
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11773041.6A
Other languages
English (en)
French (fr)
Other versions
EP2616600A1 (de
Inventor
Benoît BERAUD
Maurin Lovera
Mohammad Mourad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veolia Eau Compagnie Generale des Eaux SCA
Original Assignee
Veolia Eau Compagnie Generale des Eaux SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veolia Eau Compagnie Generale des Eaux SCA filed Critical Veolia Eau Compagnie Generale des Eaux SCA
Publication of EP2616600A1 publication Critical patent/EP2616600A1/de
Application granted granted Critical
Publication of EP2616600B1 publication Critical patent/EP2616600B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools

Definitions

  • the invention relates to the general field of waste water networks.
  • the invention relates in particular to the real-time management of such a network.
  • a waste water network typically includes transport works, for example pipelines, intended to bring water to a treatment plant and storage facilities such as storm basins.
  • the network may also include automation and actuators such as pumps and valves, to influence the flow of water in the network.
  • a pump can be controlled depending on the level of water in a tank.
  • the control commands of the actuators have an influence on the performance of the network.
  • a high trigger level for a discharge pump of a storm basin limits the amount of water discharged into the downstream network and thus limits the risk of flooding or spilling into the natural environment in the downstream network.
  • a high level also limits the amount of water that can still be stored in case of heavy rain. The risk of spilling into the natural environment upstream of the storm basin is thus increased.
  • the real-time management of a waste water system consists in adapting actuator control instructions to a rain event, in order to improve network performance.
  • the performances are for example characterized by the location of urban floods and the quantity of spill in the natural environment or the quantity of energy used during this management.
  • it is known to adapt the control commands of the actuators to predicted or measured rain.
  • the sanitation network of Seine-Saint-Denis described in the document «Real-time operation of the sewerage network of Seine-Saint Denis», JM Delattre, presented at the conference "The management of the drenaje unrbano", Barcelona, 2004 , is based on a scenario approach.
  • a typical rain approaching as close as possible to the actual and future rain in the area is selected from a sample of 27 rains.
  • each rain-type corresponds a set of instructions of the actuators of the network.
  • a wastewater system may include many structures and actuators.
  • the inventors have found that in practice, a network almost always included at least one structure or an actuator unavailable or operating at reduced capacity.
  • the unavailability may be due for example to a default or to a jobless for maintenance.
  • the sets of setpoints are predetermined according to a model of the network which represents the nominal state of the network.
  • the setpoints used can lead to an underperformance of the network when its state is not the nominal state.
  • the aim of the invention is to provide a method of controlling a waste water network, having improved performance.
  • the invention aims to use a set of instructions that leads to improved performance.
  • the invention relates to a method of controlling a wastewater network, said network comprising actuators able to influence water flow rates in the network, the behavior of the actuators depending on instructions, the method comprising the steps according to claim 1.
  • the deposit set is selected not only according to the type of rain but also according to the current state of the network.
  • the list of sets of set contains a set of instructions allowing to obtain improved performances, whatever the state of the network.
  • the step of determining at least one new set of setpoints includes determining a new set set for each type of rain in the list of rain types.
  • the step of determining at least one new set of instructions may comprise the execution of an optimization algorithm.
  • the step of determining at least one new set of setpoints includes determining the network model based on a nominal network pattern and second status information.
  • the network model used is an updated model.
  • the invention also provides a control device for a wastewater network according to claim 8.
  • the invention also provides a wastewater network comprising actuators capable of influencing water flow rates in the network, the behavior of the actuators depending on setpoints, and a control device according to the invention.
  • the invention also relates to a computer program comprising instructions for executing the steps of the above-mentioned control method when said program is executed by a computer.
  • This program can use any programming language, and be in the form of source code, object code, or intermediate code between source code and object code, such as in a partially compiled form, or in any other form desirable shape.
  • the invention also relates to a recording medium or information carrier readable by a computer, and comprising instructions of a computer program as mentioned above.
  • the recording media mentioned above can be any entity or device capable of storing the program.
  • the medium may comprise storage means, such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or a magnetic recording medium, for example a diskette (floppy disc) or a disk hard.
  • the recording media may correspond to a transmissible medium such as an electrical or optical signal, which may be conveyed via an electrical or optical cable, by radio or by other means.
  • the program according to the invention can be downloaded in particular on an Internet type network.
  • the recording media may correspond to an integrated circuit in which the program is incorporated, the circuit being adapted to execute or to be used in the execution of the method in question.
  • the figure 1 represents a network 1 of waste water, intended to convey rainwater from an agglomeration to a purification plant 4.
  • the agglomeration is divided between a north zone 2 and a south zone 3.
  • the network 1 comprises reservoirs S1 to S7, pumps P1 to P10, buffers T1 to T15, pipes represented by arrows, and a control device 8.
  • Each reservoir S1 to S7 also comprises a sensor. level for measuring the height of water h in the tank.
  • circles 5, 6 and 7 represent discharge points towards the natural environment, respectively in a first stream A5, a second stream A6 and a third stream A7.
  • the figure 2 is a graph which represents the behavior of the pumps P1 to P10 of the network 1.
  • the flow rate Q of a pump is controlled according to the height h of water in the associated reservoir, measured by a sensor. Thus, if the height h is less than h stop , the pump is stopped. The water level will then go up to reach h start . The pump then starts at flow Q min . Two possibilities then arise. If the weather is dry, the flow of waste water entering the tank is less than Q min and the water level will drop until it reaches h stop , which will cause the pump to stop. If the weather is rainy and the waste water flow is greater than Q min , the water level will continue to rise and the pump will then increase its flow, until it stabilizes at the incoming water flow, or until reaching its maximum flow Q max .
  • the water height h max at which the pump reaches its maximum flow rate Q max constitutes a control setpoint which indicates the tendency which one has to store in the tank (if h max is high) or to pump rapidly towards the downstream to avoid storage (if h max is low).
  • the value of h max influences the performance of the network. Indeed, a high value of h max limits the amount of water discharged in the downstream network and therefore to limit the risk of flooding in the downstream network. However a high value of h max also limits the amount of water that can still be stored in case of heavy rain. The risk of spilling into the natural environment is therefore increased.
  • the control device 8 is for example located in a control room of the network manager 1.
  • the figure 3 represents the control device 8 in more detail. It presents the architecture of a computer and comprises in particular a processor 9, a non-volatile memory 10, a random access memory 11, and a communication interface 12.
  • the processor 9 allows the execution of a control program of the network 1 stored in the memory 10, using the RAM 11.
  • the memory 10 is an information carrier within the meaning of the invention and the control device 8 constitutes a control device within the meaning of the invention.
  • the control device 8 stores, in the memory 10, a list of rain types, a list of states of the network, and a plurality of setpoints for the pumps P1 to P10.
  • the list of types of rain includes a homogeneous rain called "PLHO", and a stronger rain on the south zone 3 called "PLFS”.
  • the state list of the network comprises a nominal state EN, in which the tanks S1 to S7, the pumps P1 to P10, the buffers T1 to T15 and the mains of the network 1 all function normally, and a first state of unemployment EC1, in which an intervention on the network requires to limit the flow rate Q max pumps P1 and P2 at half their nominal flow Q max .
  • the list of sets of setpoints includes a set of setpoints associated with each pair of rain type and network status, as shown in Table 1 where C1 to C4 represent the sets of instructions. Table 1. PLHO PLFS IN C1 C2 EC1 C3 C4
  • the figure 4 represents steps of the control method implemented by the control device 8.
  • the control device 8 obtains information on the current or expected rainfall on the agglomeration, for example from a weather station.
  • the control device 8 also obtains information representative of the current state of the network 1, for example by consulting an intervention planning system or by consulting sensors capable of generating such information, for example a fault sensor of a pump.
  • step E20 the control station 8 selects a type of rain from the list of rain types that best matches the rain determined in step E10.
  • the control station 8 also selects, in the state list of the network, the state that best corresponds to the state determined in step E10.
  • step E30 the control device 8 selects, in the list of set sets, the set of setpoints corresponding to the type of rain and the state of the network selected in step E20. For example, if the rain PLSF and the nominal state EN have been selected in step E20, the controller 8 selects the set of set C2 in step 30.
  • step E40 the control device 8 sends the pumps P1 to P10 messages indicating the instructions to be used, that is to say the instructions of the set of set C2 in the case mentioned above.
  • Steps E10 to E40 can be repeated.
  • a new set of instructions which is better adapted to the conditions can be selected in step E30.
  • the new set of setpoints selected will then provide better network performance, given the current or expected rain and network condition.
  • the figure 5 represents other steps of the control method implemented by the control device 8.
  • step E50 the controller obtains state information representative of a current or intended state of the network, called state EC2.
  • the status information may for example indicate a work that is unemployed or operating at a reduced capacity.
  • the control device 8 can consult an intervention planning system or sensors capable of generating such information, as in step E10. It is assumed here that none of the states EN and EC1 of the list of predetermined states corresponds to the state information obtained. The state EC2 is therefore a new state of the network.
  • step E60 the control device 8 determines an updated model of the network 1.
  • the control device 8 updates a nominal model of the network 1, stored for example in the memory 10, depending on the information of state obtained in step E50.
  • the updated model of network 1 reflects the current or expected EC2 state of the network.
  • the control device 8 determines in step E70, for each type of rain of the list of types of rain, a set of instructions using the updated model.
  • a reference set C5 is determined for the rain PLHO and the state EC2
  • a set of set point C6 is determined for the rain PLFS and the state EC2.
  • the control device 8 implements an optimization algorithm to determine the set of setpoint that optimizes the performance of the network 1, for a given rain and using the updated model.
  • the implementation of the optimization algorithm can for example be performed as in the document cited in the introduction.
  • the performance of the network 1 can be represented by a performance function defined by the network manager 1.
  • the optimization algorithm then provides a set of instructions that minimizes the FP performance function.
  • the optimization algorithm may be a multi-objective optimization algorithm that provides a plurality of solutions minimizing VA5, VA6 and VA7, followed by a selection among the solutions found according to the relative criticality of the rivers.
  • the optimization algorithm can take into account constraints, for example boundaries between which should be the instructions to optimize.
  • the sets of setpoints C1 to C4 above have been predetermined in a similar way, using the optimization algorithm and the nominal model of the network 1 (games C1 and C2) or an updated model according to the state EC1 (games C3 and C4).
  • step E80 the games C5 and C6 are added to the list of set sets, in correspondence with the types of rain PLHO and PLFS and the state of the network EC2.
  • the list of sets of setpoints comprises a set of setpoints associated with each pair of rain type and network status, including the EC2 state of step E50. as shown in Table 2.
  • Table 2. PLHO PLFS IN C1 C2 EC1 C3 C4 EC2 C5 C6
  • step E80 is preceded by a step (not shown) of validation of the sets of instructions C5 and C6 by an operator.
  • the optimization of the step E70 concerns only part of the setpoints of the network 1.
  • the setpoints h max of the pumps P9 and P10 directly connected to the purification station 4 may be judged too much critical to be optimized.
  • the optimization algorithm relates only to the h max setpoints of the other pumps P1 to P8.
  • the stages of the figure 5 are executed for example periodically or in response to an order introduced by an operator.
  • the stages of the figure 5 may also be executed when the controller 8 detects, in step E10, a state of the network that does not match any of the states of the predetermined state list.
  • steps E50 to E80 when a new state of the network 1 is provided or detected, new sets of corresponding instructions are added to the list.
  • the list of sets of setpoints contains sets of instructions allowing to obtain improved performances, whatever the state of the network.
  • the figure 6 represents other steps of the control method implemented by the control device 8. The steps of the figure 6 are executed after a significant rain event.
  • step F10 the control device 8 obtains data representative of the operation of the network 1 during the rain event. These data include, for example, the water levels in the tanks S1 to S7, the flows of the pumps P1 to P10 and the volumes or flows of the discharges A5 to A6. The control device 8 also obtains data representative of the rain that has actually fallen, for example a hyetogram of rain measured during the rain event. Finally, the control device 8 is aware of the set of setpoints selected for the rain event, as well as the type of selected rain and the corresponding selected network state.
  • the controller 8 evaluates different values of the performance function FP of the network 1.
  • step F20 the control device 8 evaluates the real performances FP (1) of the network 1.
  • the value FP (1) is calculated as a function of the data representative of the operation of the network 1 during the rainy event, obtained in step F10.
  • step F30 the control device 8 evaluates simulated performance FP (2) of the network 1 without reclassification of the rain.
  • the control device 8 calculates the value FP (2) according to the hyetogram of rain obtained in step F10 and the set of set used during the rain event.
  • step F40 the control device 8 evaluates simulated performance FP (3) of network 1 with reclassification of the rain.
  • the control device 8 calculates the value FP (3) according to the hyetogram of rain obtained in step F10 and a set of instructions corresponding to the type of rain that should have been selected from the list of types of rain. , considering the rain actually fell.
  • step F50 the control device 8 determines an optimum setpoint set for the rain actually fell, and in step F60 evaluates the optimal simulated performance FP (4) of the network 1.
  • the control device 8 calculates the value FP (4) as a function of the hyetogram of rain obtained in step F10 and the optimum setpoint set determined in step F50.
  • the model of the network 1 used is the model updated according to the network state selected for the rain event.
  • step F70 FP (1) is compared to FP (2). If a significant difference is found, it indicates that a device of the network 1 is defective.
  • step F110 the comparison of measured and simulated flow rates and levels makes it possible to identify the faulty equipment. For example, if the measured flow rate of a pump peaks at a given level lower than the simulated flow rate of the pump, it indicates that the pump is defective. The control device 8 can then display a maintenance recommendation for this pump to the network manager 1.
  • step F80 FP (2) is compared to FP (3). If a significant difference is found, it indicates that the rain-type selected for the rain event was far from the rain actually falling. In other words, rain detection and forecasting needs to be improved to better select the rain-type. Thus, in step F120, the control device 8 displays a recommendation for improving the detection and prediction of rain.
  • step F90 FP (3) is compared to FP (4). If a significant difference is found, this indicates that the set of setpoints selected for the rain event was suboptimal.
  • step F130 the controller 8 displays a recommendation to add a rain-type to the list of rain types, with the corresponding optimal setpoints.
  • the control device 8 determines, for the new standard rain and for each network state of the network status list, a new set of instructions. For this purpose, the control device 8 implements an optimization algorithm, as explained above with reference to step E70.
  • a significant difference means for example a difference greater than a predetermined threshold.
  • step F100 FP (4), which represents the optimized performance of the network 1 for the fallen rain, is compared to a performance threshold. If the optimized performance is considered insufficient, then in step F140 the controller 8 displays a recommendation to study the improvement of the structure of the network 1 or its real-time management.
  • the invention has been described above with reference to an embodiment in which the actuators of the network are pumps and the control instructions are heights h max .
  • the invention may relate to other types of actuator, for example valves, and other types of control setpoint.
  • the control law of the pumps may be different from that shown on the figure 2 .
  • the network status list initially comprises only the nominal state EN.
  • the steps represented on the figure 5 allow to add one or more additional states if necessary.
  • the list of types of rain can be initially empty. In this case, if the control device 8 has sufficient computing power to implement the optimization algorithm in the time interval between the rain forecast and the actual occurrence of the rain, a first type of rain corresponding to the expected rain can be added to the list of types of rain with the determined set of instructions, before the appearance of the rain. The determined instructions can then be applied.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Feedback Control In General (AREA)

Claims (9)

  1. Verfahren zur Steuerung eines Abwassernetzes (1), wobei das Netz Aktuatoren (P1-P10) umfasst, die geeignet sind, Wassermengen im Netz zu beeinflussen, wobei das Verhalten der Aktuatoren von Sollwerten abhängt, wobei das Verfahren umfasst:
    - einen Schritt (E20) der Auswahl eines Niederschlagstyps in einer Liste von vorbestimmten Niederschlagstypen,
    - einen Schritt (E40) des Sendens der Sollwerte des ausgewählten Satzes von Sollwerten zu den Aktuatoren,
    - einen Schritt (E10) des Erhalts von ersten Zustandsinformationen, die für einen aktuellen Zustand des Netzes repräsentativ sind, wobei der Satz von Sollwerten in der Liste von vorbestimmten Sätzen von Sollwerten in Abhängigkeit von den ersten Zustandsinformationen ausgewählt ist,
    wobei das Steuerungsverfahren ferner umfasst:
    - einen Schritt (E50) des Erhalts von zweiten Zustandsinformationen, die für einen aktuellen oder vorhergesehenen Zustand des Netzes repräsentativ sind,
    - einen Schritt (E70) der Bestimmung mindestens eines neuen Satzes von Sollwerten in Abhängigkeit von einem Modell des Netzes und den zweiten Zustandsinformationen, und
    - einen Schritt (E80) der Hinzufügung des neuen Satzes von Sollwerten zu der Liste von Sollwertsätze,
    wobei der Schritt der Bestimmung mindestens eines neuen Satzes von Sollwerten die Bestimmung (E60) des Modells des Netzes in Abhängigkeit von einem Nominalmodell des Netzes und den zweiten Zustandsinformationen umfasst,
    dadurch gekennzeichnet, dass es ferner umfasst:
    - einen Schritt (E20) der Auswahl eines Niederschlagstyps in einer Liste von vorbestimmten Niederschlagstypen in Abhängigkeit von einem vorhergesagten oder gemessenen Niederschlag,
    - einen Schritt (E30) der Auswahl eines Satzes von Sollwerten in einer Liste von vorbestimmten Sätzen von Sollwerten in Abhängigkeit von dem ausgewählten Niederschlagstyp,
    - einen Schritt (F60) der Bewertung von optimalen Leistungen des Netzes während eines Niederschlagsereignisses,
    - einen Schritt (F40) der Bewertung von simulierten Leistungen des Netzes in Abhängigkeit von einem Niederschlags-Hyetogramm des Niederschlagsereignisses und einem Sollwertsatz, der in Abhängigkeit von dem Niederschlags-Hyetogramm ausgewählt ist,
    - einen Schritt (F90) des Vergleichs zwischen den optimalen und simulierten Leistungen.
  2. Steuerungsverfahren gemäß Anspruch 1, bei dem der Schritt der Bestimmung mindestens eines neuen Satzes von Sollwerten die Bestimmung eines neuen Sollwertsatzes für jeden Niederschlagstyp der Liste von Niederschlagstypen umfasst.
  3. Steuerungsverfahren gemäß einem der Ansprüche 1 und 2, bei dem der Schritt der Bestimmung mindestens eines neuen Sollwertsatzes die Ausführung eines Optimierungsalgorithmus, der die Leistungen des Netzes optimiert, umfasst.
  4. Steuerungsverfahren gemäß einem der Ansprüche 1 bis 3, umfassend:
    - einen Schritt (F20) der Bewertung von realen Leistungen des Netzes während eines Niederschlagsereignisses,
    - einen Schritt (F30) der Bewertung von simulierten Leistungen des Netzes in Abhängigkeit von einem Niederschlags-Hyetogramm des Niederschlagsereignisses und dem während des Niederschlagsereignisses ausgewählten Sollwertsatzes,
    - einen Schritt (F70) des Vergleichs zwischen den realen und simulierten Leistungen.
  5. Steuerungsverfahren gemäß einem der Ansprüche 1 bis 3, umfassend:
    - einen Schritt (F30) der Bewertung von ersten simulierten Leistungen des Netzes in Abhängigkeit von einem Niederschlags-Hyetogramm des Niederschlagsereignisses und dem während des Niederschlagsereignisses ausgewählten Sollwertsatzes,
    - einen Schritt (F40) der Bewertung von zweiten simulierten Leistungen des Netzes in Abhängigkeit von dem Niederschlags-Hyetogramm und einem in Abhängigkeit von dem Niederschlags-Hyetogramm ausgewählten Sollwertsatz,
    - einen Schritt (F80) des Vergleichs zwischen den ersten und zweiten simulierten Leistungen.
  6. Computerprogramm, umfassend Befehle für die Ausführung der Schritte des Steuerungsverfahrens gemäß Anspruch 1, wenn das Programm von einem Computer ausgeführt wird.
  7. Von einem Computer lesbarer Informationsträger, umfassend Befehle eines Computerprogramms gemäß Anspruch 6.
  8. Steuerungsvorrichtung (8) für ein Abwassernetz (1), wobei das Netz Aktuatoren (P1-P10) umfasst, die geeignet sind, Wassermengen im Netz zu beeinflussen, wobei das Verhalten der Aktuatoren von Sollwerten abhängt, wobei die Steuerungsvorrichtung umfasst:
    - Mittel zur Auswahl eines Niederschlagstyps in einer Liste von vorbestimmten Niederschlagstypen in Abhängigkeit von einem vorhergesagten oder gemessenen Niederschlag,
    - Mittel zur Auswahl eines Sollwertsatzes in einer Liste von vorbestimmten Sollwertsätzen in Abhängigkeit vom ausgewählten Niederschlagstyp, und
    - Mittel zum Senden der Sollwerte des ausgewählten Satzes von Sollwerten zu den Aktuatoren,
    wobei die Steuerungsvorrichtung ferner umfasst:
    - Mittel zum Erhalt von ersten Zustandsinformationen, die für einen aktuellen oder Zustand des Netzes repräsentativ sind, wobei der Sollwertsatz in der Liste von vorbestimmten Sollwertsätzen in Abhängigkeit von dem ausgewählten Niederschlagstyp und den ersten Zustandsinformationen ausgewählt wird,
    - Mittel zum Erhalt von zweiten Zustandsinformationen, die für einen aktuellen oder vorhergesehenen Zustand des Netzes repräsentativ sind,
    - Mittel zur Bestimmung mindestens eines neuen Satzes von Sollwerten in Abhängigkeit von einem Modell des Netzes und den zweiten Zustandsinformationen, und
    - Mittel zur Hinzufügung des neuen Satzes von Sollwerten zu der Liste von Sollwertsätze,
    wobei die Mittel zur Bestimmung mindestens eines neuen Satzes von Sollwerten Mittel zur Bestimmung des Modells des Netzes in Abhängigkeit von einem Nominalmodell des Netzes und den zweiten Zustandsinformationen umfasst,
    wobei die Steuerungsvorrichtung geeignet ist:
    - optimale Leistungen des Netzes während eines Niederschlagsereignisses zu bewerten,
    - simulierte Leistungen des Netzes in Abhängigkeit von einem Niederschlags-Hyetogramm des Niederschlagsereignisses und einem in Abhängigkeit von dem Niederschlags-Hyetogramm ausgewählten Sollwertsatz zu bewerten,
    - die optimalen und simulierten Leistungen zu vergleichen.
  9. Abwassernetz (1), umfassend Aktuatoren (P1-P10), die geeignet sind, Wassermengen in dem Netz zu beeinflussen, wobei das Verhalten der Aktuatoren von Sollwerten abhängt, und eine Steuerungsvorrichtung (8) gemäß Anspruch 8.
EP11773041.6A 2010-09-13 2011-09-07 Verfahren und vorrichtung zur kontrolle eines abwassernetzwerkes Active EP2616600B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057272A FR2964674B1 (fr) 2010-09-13 2010-09-13 Procede et dispositif de commande d'un reseau d'eau residuaire
PCT/FR2011/052043 WO2012035235A1 (fr) 2010-09-13 2011-09-07 Procede et dispositif de commande d'un reseau d'eau residuaire

Publications (2)

Publication Number Publication Date
EP2616600A1 EP2616600A1 (de) 2013-07-24
EP2616600B1 true EP2616600B1 (de) 2017-10-04

Family

ID=43827685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11773041.6A Active EP2616600B1 (de) 2010-09-13 2011-09-07 Verfahren und vorrichtung zur kontrolle eines abwassernetzwerkes

Country Status (5)

Country Link
US (1) US8660703B2 (de)
EP (1) EP2616600B1 (de)
FR (1) FR2964674B1 (de)
HU (1) HUE036544T2 (de)
WO (1) WO2012035235A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522365B1 (en) 2011-05-26 2022-12-06 J. Carl Cooper Inverter power source load dependent frequency control and load shedding
US11183843B1 (en) 2011-05-26 2021-11-23 J. Carl Cooper Power source load control
US10879727B1 (en) * 2011-05-26 2020-12-29 James Carl Cooper Power source load control
US9400085B2 (en) * 2012-12-19 2016-07-26 Jon Erik Rasmussen Method, system, and apparatus for flood control
US10082806B2 (en) * 2013-08-28 2018-09-25 Horiba Stec, Co., Ltd. Flow-rate control device and flow-rate control program
US10501925B1 (en) 2015-03-20 2019-12-10 Christopher Conway Lavenson Notifications for reducing overflows from combined sewer systems and sanitary sewer systems
CN106599451B (zh) * 2016-12-12 2020-06-12 西安交通大学 一种rv减速器主轴承的多目标优化方法
IL251373A0 (en) * 2017-03-23 2017-07-02 Jet Line Infrastructure Ltd System and method for bypassing a sewer line

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016373A1 (de) * 1990-05-19 1991-11-21 Vollmar Oskar Gmbh Verfahren zur ueberwachung eines kanalisationsnetzes
US20020170350A1 (en) * 2001-05-18 2002-11-21 Schutzbach James S. Method and system for analyzing the effect of inflow and infiltration on a sewer system
WO2002095149A2 (en) * 2002-05-17 2002-11-28 Ads Corporation Method and system for analyzing the effect of inflow and infiltration on a sewer system
US7289923B2 (en) * 2005-07-21 2007-10-30 Nagare System and method for fluid distribution
US8293097B2 (en) * 2008-03-17 2012-10-23 Bowers Jr Gregory Scott System for continuous optimization of wastewater treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8660703B2 (en) 2014-02-25
WO2012035235A1 (fr) 2012-03-22
FR2964674A1 (fr) 2012-03-16
HUE036544T2 (hu) 2018-07-30
US20120065786A1 (en) 2012-03-15
FR2964674B1 (fr) 2012-10-12
EP2616600A1 (de) 2013-07-24

Similar Documents

Publication Publication Date Title
EP2616600B1 (de) Verfahren und vorrichtung zur kontrolle eines abwassernetzwerkes
Guo et al. Sizing of rainwater storage units for green building applications
KR101545335B1 (ko) 인공신경망 및 퍼지 기법을 이용한 우수 펌프 제어시스템
CN108431700B (zh) 用于生成适于被发送至水排放网络中的致动器的控制信号的方法
EP2394002B1 (de) Behälter zum vorübergehenden halten von wasser auf dem dach eines gebäudes mit einer gesteuerten leckrate
CA2103496A1 (fr) Installation pour la production d'energie electrique et la regulation d'un ecoulement hydraulique
EP2795006B1 (de) Flussbegrenzungsvorrichtung
WO2018020180A1 (fr) Outil de gestion de multiples ressources en eau
Kändler et al. Real time controlled sustainable urban drainage systems in dense urban areas
EP3303713B1 (de) Vorrichtung zur temporären zurückhalterung von wasser
Koudelak et al. Sewerage network modelling in Latvia, use of InfoWorks CS and Storm Water Management Model 5 in Liepaja city
EP3469427B1 (de) Verfahren, computerprogrammprodukt und system zur dynamischen steuerung eines fluidischen netzwerks
FR3035563A1 (fr) Arrosage autonome-telegere
WO2011015791A1 (fr) Contrôle d'une installation en fonction de la dangerosité de son interaction avec une espèce animale
FR2900138A1 (fr) Systeme et procede de ramassage centralise de dechets par aspiration
Lumley et al. Implementing a digital twin for optimized real-time control of Gothenburg's regional sewage system
WO2023161589A1 (fr) Procede et systeme de pilotage d'un reservoir d'eau
FR3096441A1 (fr) Dispositif de récupération de fluide glycolé, de traitement du taux de glycol et de réinjection du fluide glycolé traité dans une installation de refroidissement
WO2019193010A1 (fr) Pompe a vitesse variable commandée par un détecteur de niveau d'eau piezométrique protégé par un tube
KR102579259B1 (ko) 지능형 빗물관리시스템
US20210340749A1 (en) System for increasing and displaying effectiveness and efficiency of stormwater infrastructure
WO2014020241A2 (fr) Installation de production d'energie
EP4279744A1 (de) Verfahren zur überwachung des betriebs einer pumpstation
FR3109144A1 (fr) Contrôle à distance de la conformité des distances règlementaires d’une citerne
FR3031591A1 (fr) Procede et dispositif de detection d'encrassement pour des tuyauteries

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170425

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011042134

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 934185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: VEOLIA EAU - COMPAGNIE GENERALE DES EAUX, FR

Free format text: FORMER OWNER(S): VEOLIA EAU - COMPAGNIE GENERALE DES EAUX, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 26583

Country of ref document: SK

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VEOLIA EAU - COMPAGNIE GENERALE DES EAUX

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011042134

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E036544

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180907

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011042134

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230906

Year of fee payment: 13

Ref country code: CZ

Payment date: 20230828

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230905

Year of fee payment: 13

Ref country code: HU

Payment date: 20230901

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20240917

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240917

Year of fee payment: 14