EP2616561B1 - Optimisation de l'usinabilite d'aciers martensitiques inoxydables - Google Patents

Optimisation de l'usinabilite d'aciers martensitiques inoxydables Download PDF

Info

Publication number
EP2616561B1
EP2616561B1 EP11773051.5A EP11773051A EP2616561B1 EP 2616561 B1 EP2616561 B1 EP 2616561B1 EP 11773051 A EP11773051 A EP 11773051A EP 2616561 B1 EP2616561 B1 EP 2616561B1
Authority
EP
European Patent Office
Prior art keywords
temperature
steel
fabricating
cooling
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11773051.5A
Other languages
German (de)
English (en)
Other versions
EP2616561A1 (fr
Inventor
Jean-François Laurent CHABOT
Laurent Ferrer
Pascal Charles Emile Thoison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2616561A1 publication Critical patent/EP2616561A1/fr
Application granted granted Critical
Publication of EP2616561B1 publication Critical patent/EP2616561B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the percentages of composition are percentages by weight unless otherwise specified.
  • a stainless martensitic steel is a steel with a chromium content greater than 10.5%, and whose structure is essentially martensitic (ie the amount of alphagenic elements is sufficiently high compared to that of the elements Gammagens - see explanations below).
  • This half-product is then pre-cut into sub-elements which are shaped (for example by forging or rolling) in order to give them a shape approximating their final shape.
  • Each sub-element thus becomes a part with overthicknesses (called part in the rough state) with respect to the final dimensional dimensions of use.
  • the objective of the phase (A) is to homogenize the microstructure within the part, and to re-dissolve soluble particles at this temperature by recrystallization.
  • Phase (B) has as its primary objective a maximum transformation of austenite to martensite within the steel part.
  • transformations of the martensitic microstructure do not occur simultaneously at any point in the room, but gradually from its surface to its core.
  • the change in crystallographic volume that accompanies these transformations therefore generates internal stresses and, at the end of quenching (because of the low temperatures then reached), limits the relaxations of these stresses.
  • the second objective is to minimize the risk of quenching taps, that is to say the appearance of cracks on the surface of the workpiece by the release of residual stresses in the steel in a weak metallurgical martensitic state.
  • phase (C) a treatment of income
  • T max is substantially equal to the nominal temperature M F end of martensitic transformation of the steel, ie from 150 to 200 ° C for a martensitic stainless steel.
  • T min is 20 to 28 ° C depending on the chemical composition. It then remains in the steel a residual austenite rate that could not be transformed.
  • Phase (C) - first treatment of income - of this quality heat treatment aims on the one hand a transformation of fresh martensite into martensite revenue (more stable and more tenacious) and on the other hand a destabilization of the residual austenite from previous phases.
  • phase (D) - cooling of the first income - of this quality heat treatment aims to transform the residual austenite into martensite.
  • the hottest part of the room must also be cooled down to a temperature within the temperature range [T max ; T min ].
  • phase (E) - second treatment of income - of this heat treatment of quality aims at the transformation of the new fresh martensite into martensite revenue (more stable and tenacious) aiming to reach the best compromise in the mechanical properties of the steel.
  • phase (F) - cooling of the second income - of this quality heat treatment brings the raw room to room temperature.
  • the documents FR 2 920 784 and FR 2 893 954 disclose the manufacture of a martensitic stainless steel by austenitization followed by tempering and two incomes.
  • the present invention aims to provide a manufacturing method that improves the machinability of these steels.
  • thermomechanical treatments such as forging, rolling
  • This blank is then intended to be machined to give it its final shape after performing the heat treatment quality.
  • the blank in this steel is heated to a temperature above the austenization temperature T AUS , and the workpiece is maintained at this temperature until the entire workpiece is at a temperature of temperature above the austenization temperature T AUS (austenization of steel).
  • the steel is then quenched sufficiently fast so that the austenite does not turn into a ferrito-pearlitic structure (see explanations and figure 3 below).
  • the majority of the volume of the steel part is likely to turn into martensite, since the austenite can only be transformed into martensite if it has not previously been transformed into a ferrito-pearlitic structure.
  • the austenization of the steel and then its quenching corresponds to treatment 1 on the figure 1 .
  • the steel solidifies gradually during its cooling. This solidification takes place by growth of dendrites 10, as illustrated in FIG. figure 2 .
  • the dendrites 10, corresponding to the first solidified grains are by definition richer in alphagenes elements while the interdendritic regions 20 are richer in elements, gamma (application of the rule known segments on the phase diagram).
  • An alphagene element is an element that favors a ferritic type structure (structures that are more stable at low temperature: bainite, ferrite-pearlite, martensite).
  • a gammagenic element is an element that favors an austenitic structure (stable structure at high temperature: austenite). There is therefore segregation between dendrites 10 and interdendritic regions 20.
  • the figure 3 is a known temperature (T) - time (t) diagram for a steel according to the invention when it is cooled from a temperature above the austenitic temperature T AUS .
  • Curves D and F mark the beginning and the end of the austenite transformation (region A) in a ferrito-pearlitic structure (FP region). This transformation takes place, partially or fully, when the cooling curve C that following the ingot passes respectively in the region between the D and F curves or in the FP region. It does not take place when the cooling curve C is entirely in the region A, as illustrated in FIG. figure 3 .
  • curves D, F, M S , and M F in solid lines are valid for structures richer in alphagenic elements (that is to say in the dendrites of steel), whereas the same curves in lines dotted d ', F', M S , and M F are valid for structures richer in gammagene elements (that is to say in the interdendritic spaces of steel).
  • austenite transformation curves in the ferrito-pearlitic structure in the case of interdendritic spaces are shifted to the right with respect to the austenite transformation curves into a ferrito-pearlitic structure in the dendrites (curves D and F). It takes more time at a given temperature to transform the austenite into a ferritic-pearlitic structure in the case of interdendritic spaces than in the case of dendrites.
  • the cooling of the steel during quenching after austenisation follows curve C of the figure 3 .
  • the steel goes below the temperature of martensitic transformation end in cooling M F interdendritic spaces. Due to the cooling process, the skin temperature of the room is lower than the temperature in the heart of the room, which is its hottest part.
  • This heating is effected for example by placing the room in an environment (preheated oven or heating chamber) where there is a temperature at least equal to the maximum temperature T max .
  • a first income of the steel is then made by continuing to heat it up to a temperature T R , which is lower than the austenitic temperature T AUS .
  • This income makes it possible to stabilize the fresh martensitic crystallographic phase by, for example, precipitating carbides within the martensite and thus imparting more resilience to the martensite of the steel.
  • This first income treatment corresponds to step 2 in figure 1 .
  • the steel is then cooled until the hottest part of the steel reaches the maximum temperature T max which is lower than the martensitic transformation end temperature in cooling M F 'of the interdendritic spaces, and is then heated immediately. steel.
  • the steel is then immediately subjected to a second treatment of income, substantially identical to the first treatment of income, then allowing the steel to cool to room temperature T A.
  • This second income treatment corresponds to step 3 in figure 1 .
  • the inventors have carried out machinability tests on stainless martensitic steels having undergone the process of the invention. They compared the results of these tests to the results of machinability tests on austenized steels followed by quenching and two incomes but where the minimum temperature of the hottest part of the part is simply less than the martensitic transformation end temperature in cooling M F of the dendrites, and the steel is not immediately warmed between tempering and first income, or between first income and second income.
  • the wear of the machining plates per meter of machined steel is divided by about 10 (11 mm to 1.3 mm cutting speed of 120 m / min compared to a steel manufactured according to a method of the prior art.
  • the power required for machining is further divided by more than two compared to a steel manufactured according to a method of the prior art.
  • the surface condition of the steel after machining is also improved.
  • the results can be explained as follows: as indicated above, the martensitic transformation end temperature in cooling M F 'of the interdendritic regions is less than the martensitic transformation end of cooling temperature M F dendrites. Now we have seen that during the cooling of steel, this steel solidifies into a microstructure which is an alternation of dendrites and interdendritic regions ( figure 2 ). Thus, when the temperature drops below the martensitic transformation end temperature in M F cooling of the dendrites, the dendrites have become martensite, while the interdendritic regions have not yet been transformed into martensite.
  • zones in all the steel ie the interdendritic regions
  • residual austenite Part of this residual austenite will be transformed at the next first income stage into fresh martensite.
  • the other part of this residual austenite will be located only at the most segregated points of the material (for example, in the most concentrated interdendritic spaces).
  • the new fresh martensite stabilizes but another portion of the remaining residual austenite continues to turn into fresh martensitic in these most segregated areas.
  • Steel therefore has a structural heterogeneity with harder grains corresponding to fresh martensite in a softer matrix. It is this heterogeneity that is responsible for the bad machinability of steel, the harder grains using platelets and blocking their advance.
  • the maximum temperature T max that reaches the hottest part of the steel before being reheated is between 20 ° C and 75 ° C.
  • Such a temperature T m is lower than the martensitic transformation end temperature in cooling M F 'interdendritic spaces.
  • this maximum temperature T max is between 28 ° C and 35 ° C.
  • step ( ⁇ ) In order to determine when the hottest part of the steel reaches the maximum temperature T max , it is possible for example, in step ( ⁇ ), to measure the skin temperature of the steel and to use abacuses to deduce the temperature of the hottest part of the steel.
  • the temperature gradient between the surface of the steel and the hottest part of the steel is as small as possible in order to reduce the gap between the end temperature of the steel martensitic transformation in M F cooling of dendrites and martensitic transformation end temperature in cooling M F 'interdendritic spaces. Indeed, by reducing this gap, the constraints in the room are then lower, and we gain in productivity.
  • the threshold duration d s depends on the geometry of the part.
  • the length of s is at least 15 minutes (min) to a minimum dimension of the part of 50 mm, 30 min to a minimum dimension of the part of 100 mm, 45 min to a minimum dimension of the workpiece 150 mm, and so on.
  • d s (15 min) ⁇ ⁇ minimum dimension (in mm) ⁇ / 50.
  • the steel can for example be placed in an oven where a temperature of between T min and MF' prevails.
  • the steel can be thermally insulated from the outside environment, for example by placing it in a blanket.
  • At least one expansion of the steel is performed at a temperature below the temperature of income T R at which the first income and the second income have been made.
  • This relaxation corresponds to step 4 in figure 1 . It allows the relaxation of residual stresses within the steel, and improves the service life.
  • the ESR process consists in placing a steel ingot in a crucible in which a slag (mineral mixture, for example lime, fluoride, magnesia, alumina, spath) has been poured in such a way that the lower end of the ingot quenches in the slag . Then an electric current is passed into the ingot, which serves as an electrode. This stream liquefies the slag and melts the lower end of this electrode which is in contact with the slag. The molten steel of this electrode passes through the slag in the form of fine droplets, to solidify below the layer of supernatant slag, into a new ingot that grows gradually.
  • a slag mineral mixture, for example lime, fluoride, magnesia, alumina, spath
  • the slag acts, inter alia, as a filter which extracts the inclusions from the steel droplets, so that the steel of this new ingot located below the slag layer contains fewer inclusions than the initial ingot (electrode). .
  • This operation is carried out at atmospheric pressure and air.
  • the VAR process consists in melting in a crucible under a high vacuum the steel ingot, which serves as an electrode.
  • the ingot / electrode is melted by establishing an electric arc between the end of the ingot / electrode and the top of the secondary ingot which is formed by melting the ingot / electrode.
  • the secondary ingot solidifies in contact with the walls of the crucible and the inclusions float on the surface of the secondary ingot, and may subsequently be removed. A secondary ingot of greater purity than the initial ingot / electrode is thus obtained.
  • the steel undergoes, before step (1), a reflow.
  • reflow is chosen from a group comprising ESR slag remelting or VAR vacuum arc remelting.
  • step (1) a homogenization treatment of the steel is carried out.
  • the inventors have found that satisfactory results are obtained when the ingot is subjected in this oven to a homogenization treatment during a holding time t after the temperature of the most The cold of this ingot has reached a homogenization temperature T, this time t being equal to at least one hour, and the homogenization temperature T varying between a lower temperature T inf and the burn temperature of this steel.
  • the temperature T inf is approximately equal to 900 ° C.
  • the burn temperature of a steel is defined as the temperature in the raw state of solidification at which the grain boundaries in the steel transform (or even liquefy), and is greater than T Inf . This time t of maintaining the steel in the furnace therefore varies inversely with this homogenization temperature T.
  • the homogenization temperature T is 950 ° C., and the corresponding holding time t is equal to 70 hours.
  • the homogenization temperature T is 1250C which is slightly lower than burn temperature, then the corresponding holding time t is equal to 10 hours.
  • the maximum temperature T max is lower than the martensitic transformation end temperature in cooling M F of the dendrites in the steel, and in steps (1) and (2) it is ensured that steel remains at or below the maximum temperature T max for as short a time as possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • La présente invention concerne un procédé de fabrication d'un acier martensitique inoxydable comportant les étapes de traitement thermique suivantes :
    1. (1) On chauffe l'acier à une température supérieure à la température d'austénisation TAUS de l'acier, puis on trempe l'acier jusqu'à ce que la partie la plus chaude de l'acier soit inférieure ou égale à une température maximale Tmax, et supérieure ou égale à une température minimale Tmin, la vitesse de refroidissement étant suffisamment rapide pour que l'austénite ne se transforme pas en structure ferrito-perlitique.
    2. (2) On effectue un premier revenu de l'acier suivi d'un refroidissement jusqu'à ce que la partie la plus chaude de l'acier soit inférieure ou égale à la température maximale Tmax, et supérieure ou égale à la température minimale Tmin.
    3. (3) On effectue un second revenu de l'acier suivi d'un refroidissement jusqu'à température ambiante TA.
    La température ambiante est égale à la température de la pièce où le procédé est réalisé.
  • Dans la présente invention, les pourcentages de composition sont des pourcentages massiques, à moins qu'il en soit précisé autrement.
  • Un acier martensitique inoxydable est un acier dont la teneur en chrome est supérieure à 10,5%, et dont la structure est essentiellement martensitique (c'est-à-dire que la quantité en éléments alphagènes est suffisamment élevée par rapport à celle des éléments gammagènes - Voir explications ci-dessous).
  • On part d'un demi-produit sous une forme quelconque, par exemple sous une forme de billettes ou de barres de cet acier.
  • Ce demi-produit est ensuite prédécoupé en sous-éléments qui sont mis en forme (par exemple par forgeage ou laminage) afin de leur conférer une forme se rapprochant de leur forme finale. Chaque sous-élément devient ainsi une pièce avec des surépaisseurs (appelée pièce à l'état brut) par rapport aux côtes dimensionnelles finales d'utilisation.
  • Cette pièce à l'état brut avec des surépaisseurs est destinée ensuite à être usinée afin de lui donner sa forme finale (pièce finale).
  • Dans le cas où les pièces finales doivent posséder une grande précision dimensionnelle (comme par exemple dans l'aéronautique), ces pièces à l'état brut doivent subir un traitement thermique (traitement thermique de qualité) avant cet usinage. Ce traitement thermique de qualité ne peut pas être effectué après cet usinage, car il conduit à des changements dimensionnels qu'il est difficile de prévoir pour des pièces de géométrie complexe.
  • Ce traitement thermique de qualité qui permet d'ajuster très finement les propriétés de la pièce en acier par des transformations métallurgiques comprend six phases majeures :
    1. (A) une austénisation, c'est-à-dire un chauffage au-dessus de la température à laquelle la microstructure de l'acier s'est transformée en austénite (température austénitique TAUS)
    2. (B) suivie d'une trempe,
    3. (C) suivie d'un premier traitement de revenu,
    4. (D) suivi d'un refroidissement
    5. (E) suivi d'un second traitement de revenu
    6. (F) suivi d'un refroidissement.
  • La phase (A) a pour objectif d'homogénéiser la microstructure au sein de la pièce, et de remettre en solution de particules solubles à cette température par recristallisation.
  • La phase (B) a pour objectif premier une transformation maximale de l'austénite en martensite au sein de la pièce en acier. Cependant, les transformations de la microstructure martensitique ne se font pas simultanément en tout point de la pièce, mais graduellement de sa surface vers son coeur. Le changement de volume cristallographique qui accompagne ces transformations engendre donc des contraintes internes et, en fin de trempe (à cause des basses températures atteintes alors), limite les relaxations de ces contraintes. Le second objectif est de minimiser le risque de tapures de trempe, c'est-à-dire l'apparition de fissures en surface de la pièce de par la libération de contraintes résiduelles dans l'acier dans un état métallurgique martensitique peu tenace. Pour atteindre ces deux objectifs antinomiques, il est habituel de commencer à réchauffer la pièce par un traitement de revenu (phase (C)) lorsque sa partie la plus chaude s'est refroidie jusqu'à une température dans une fourchette avec une température maximale Tmax et une température minimale Tmin pour éviter les tapures. La température Tmax est sensiblement égale à la température nominale MF de fin de transformation martensitique de l'acier, soit de 150 à 200°C pour un acier martensitique inoxydable. La température Tmin est de 20 à 28°C suivant la composition chimique. Il reste alors dans l'acier un taux d'austénite résiduelle qui n'aura pas pu être transformé.
  • La phase (C) - premier traitement de revenu - de ce traitement thermique de qualité a pour objectif d'une part une transformation de la martensite fraîche en martensite revenue (plus stable et plus tenace) et d'autre part une déstabilisation de l'austénite résiduelle issue des phases antérieures.
  • La phase (D) - refroidissement du premier revenu - de ce traitement thermique de qualité a pour objectif de transformer l'austénite résiduelle en martensite. La partie la plus chaude de la pièce doit être aussi refroidie jusqu'à une température dans la fourchette de températures [Tmax ; Tmin].
  • La phase (E) - second traitement de revenu - de ce traitement thermique de qualité a pour objectif la transformation de la nouvelle martensite fraîche en martensite revenue (plus stable et plus tenace) visant à atteindre le meilleur compromis dans les propriétés mécaniques de l'acier.
  • La phase (F) - refroidissement du second revenu - de ce traitement thermique de qualité ramène la pièce brute à température ambiante.
  • Les documents FR 2 920 784 et FR 2 893 954 divulguent la fabrication d'un acier inoxydable martensitique par une austénitisation suivie d'une trempe et de deux revenus.
  • Durant l'usinage des pièces, malgré ce traitement thermique de qualité, on observe actuellement une grande dispersion dans l'usinabilité de lots de pièces formées dans un acier résultant d'un tel procédé de fabrication. Il en découle des variations importantes dans l'usure des plaquettes d'usinage, et des variations importantes dans les puissances nécessaires à fournir par le dispositif d'usinage pour parvenir à usiner ces pièces en acier. La conséquence est une consommation trop importante, dispersée et imprévisible de plaquettes d'usinage, une perte de cadence dans l'usinage de lots de pièces, et une dispersion dans les états de surface obtenus, avec dans certains cas de moins bons états de surface usinée des pièces.
  • La présente invention vise à proposer un procédé de fabrication qui permette d'améliorer l'usinabilité de ces aciers.
  • Ce but est atteint grâce au fait que, la température maximale Tmax est inférieure ou égale à la température de fin de transformation martensitique en refroidissement MF des espaces interdendritiques dans l'acier, et en ce que, à la fin de chacune des étapes (1) et (2), on effectue la sous-étape suivante :
    • (ω) Dès que la température de la partie la plus chaude de l'acier atteint la température maximale Tmax, on réchauffe l'acier immédiatement.
  • Grâce à ces dispositions, on obtient une moindre usure des plaquettes d'usinage par unité de longueur usinée, et une moindre puissance requise pour l'usinage. L'état de surface de l'acier après usinage est également amélioré (plus faibles tailles des stries causées par la plaquette d'usinage sur la surface). Ainsi, on diminue le coût du procédé.
  • L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
    • la figure 1 montre schématiquement les traitements thermiques du procédé selon l'invention,
    • la figure 2 est un schéma illustrant les dendrites et les régions interdendritiques,
    • la figure 3 montre schématiquement un diagramme temps-température pour un acier utilisé dans le procédé selon l'invention.
  • Dans le procédé selon l'invention, on part d'une pièce brute avec des surépaisseurs qui a subi une succession de traitements thermomécaniques (tels que le forgeage, le laminage) afin de lui conférer une forme la plus proche possible de sa forme finale.
  • Cette pièce brute est destinée ensuite à être usinée afin de lui donner sa forme finale après avoir réalisé le traitement thermique de qualité.
  • On chauffe la pièce brute en cet acier jusqu'à une température supérieure à la température d'austénisation TAUS, et on maintient la pièce à cette température jusqu'à ce que la totalité de la pièce soit à une température supérieure à la température d'austénisation TAUS (austénisation de l'acier).
  • On effectue ensuite une trempe de l'acier suffisamment rapide pour que l'austénite ne se transforme pas en structure ferrito-perlitique (voir explications et figure 3 ci-dessous). Ainsi, la majorité du volume de la pièce en acier est susceptible de se transformer en martensite, puisque l'austénite ne peut se transformer en martensite que si elle n'a pas au préalable été transformée en structure ferrito-perlitique.
  • Enfin on termine par les deux revenus successifs pour affiner les propriétés de l'acier.
  • L'austénisation de l'acier puis sa trempe correspondent au traitement 1 sur la figure 1.
  • On décrit ci-dessous différentes transformations métallurgiques susceptibles de se produire au sein d'un acier selon l'invention au cours de son refroidissement depuis la température austénitique.
  • En amont de la chaine industrielle, durant les opérations d'élaboration et la réalisation du dernier lingot, l'acier se solidifie progressivement pendant son refroidissement. Cette solidification s'effectue par croissance de dendrites 10, comme illustré en figure 2. En accord avec le diagramme de phases des aciers martensitiques inoxydables, les dendrites 10, correspondant aux premiers grains solidifiés sont par définition plus riches en éléments alphagènes tandis que les régions interdendritiques 20 sont plus riches en éléments, gammagènes (application de la règle connue des segments sur le diagramme de phases). Un élément alphagène est un élément qui favorise une structure de type ferritique (structures plus stables à basse température : bainite, ferrite-perlite, martensite). Un élément gammagènes est un élément qui favorise une structure austénitique (structure stable à haute température : austénite). Il se produit donc une ségrégation entre dendrites 10 et régions interdendritiques 20.
  • La figure 3 est un diagramme température (T) - temps (t) connu pour un acier selon l'invention lorsqu'on le refroidit depuis une température supérieure à la température austénitique TAUS. Les courbes D et F marquent le début et la fin de la transformation d'austénite (région A) en structure ferrito-perlitique (région FP). Cette transformation s'effectue, partiellement ou pleinement, lorsque la courbe de refroidissement C que suit le lingot passe respectivement dans la région entre les courbes D et F ou dans la région FP. Elle ne s'effectue pas lorsque la courbe de refroidissement C se situe entièrement dans la région A, comme illustré en figure 3.
  • Lorsque la courbe de refroidissement C passe en dessous de la température de début de transformation martensitique en refroidissement MS (droite MS sur la figure 3), la majorité de l'austénite restant dans l'acier commence à se transformer en martensite. Lorsque la courbe de refroidissement passe en dessous de la température de fin de transformation martensitique en refroidissement MF (droite MF sur la figure 3), la majorité de l'austénite restant dans l'acier s'est transformée en martensite, appelée martensite fraiche.
  • Sur la figure 3, les courbes D, F, MS, et MF en traits pleins sont valables pour des structures plus riches en éléments alphagènes (c'est-à-dire dans les dendrites de l'acier), tandis que les mêmes courbes en traits pointillés D', F', MS, et MF sont valables pour des structures plus riches en éléments gammagènes (c'est-à-dire dans les espaces interdendritiques de l'acier).
  • On note que les courbes de transformation d'austénite en structure ferrito-perlitique dans le cas des espaces interdendritiques (courbes D'et F') sont décalées vers la droite par rapport aux courbes de transformation d'austénite en structure ferrito-perlitique dans le cas des dendrites (courbes D et F). Il faut donc plus de temps à une température donnée pour transformer l'austénite en structure ferrito-perlitique dans le cas des espaces interdendritiques que dans le cas des dendrites.
  • On note que les courbes de transformation d'austénite en martensite dans le cas des espaces interdendritiques (droites MS', et MF') sont décalées vers le bas par rapport aux courbes de transformation d'austénite en martensite dans le cas des dendrites (droites MS et MF). La transformation d'austénite en martensite s'effectue donc à des températures plus basses dans le cas des espaces interdendritiques que dans le cas des dendrites.
  • Dans le procédé selon l'invention, le refroidissement de l'acier durant la trempe après austénisation (traitement qui correspond à l'étape 1 en figure 1) suit la courbe C de la figure 3. Ainsi, l'acier passe en dessous de la température de fin de transformation martensitique en refroidissement MF des espaces interdendritiques. De par le processus de refroidissement, la température de peau de la pièce est inférieure à la température au coeur de la pièce, qui est sa partie la plus chaude.
  • Dès que la température de la partie la plus chaude de la pièce atteint une température maximale Tmax. qui est donc inférieure à la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques, on réchauffe la pièce.
  • Ce réchauffement s'effectue par exemple en plaçant la pièce dans un environnement (four préchauffé ou enceinte calorifique) où règne une température au moins égale à la température maximale Tmax.
  • On effectue ensuite un premier revenu de l'acier en continuant à le réchauffer jusqu'à une température TR, qui est inférieure à la température austénitique TAUS. Ce revenu permet de stabiliser la phase cristallographique martensitique fraîche en faisant par exemple précipiter des carbures au sein de la martensite et donc de conférer plus de résilience à la martensite de l'acier.
  • Ce premier traitement de revenu correspond à l'étape 2 en figure 1.
  • On refroidit ensuite l'acier jusqu'à ce que la partie la plus chaude de l'acier atteigne la température maximale Tmax qui est inférieure à la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques, puis on réchauffe immédiatement l'acier.
  • On fait ensuite subir immédiatement à l'acier un second traitement de revenu, sensiblement identique au premier traitement de revenu, en laissant ensuite l'acier refroidir jusqu'à température ambiante TA.
  • Ce second traitement de revenu correspond à l'étape 3 en figure 1.
  • Les inventeurs ont réalisé des essais d'usinabilité sur des aciers martensitiques inoxydables ayant subi le procédé de l'invention. Ils ont comparé les résultats de ces essais aux résultats d'essais d'usinabilité sur des aciers ayant subi une austénisation suivie d'une trempe et de deux revenus mais où la température minimale de la partie la plus chaude de la pièce est simplement inférieure à la température de fin de transformation martensitique en refroidissement MF des dendrites, et où l'acier n'est pas immédiatement réchauffé entre la trempe et le premier revenu, ou entre le premier revenu et le second revenu.
  • La composition des aciers Z12CNDV12 est la suivante (norme DMD0242-20 indice E) :
    • C (0,10 à 0,17%) - Si (<0,30%) - Mn (0,5 à 0,9%) - Cr (11 à 12,5%) - Ni (2 à 3%) - Mo (1,50 à 2,00%) - V (0,25 à 0,40%) - N2 (0,010 à 0,050%) - Cu (<0,5%) - S (<0,015%) - P (<0,025%) et satisfaisant le critère 4,5 ≤ ( Cr - 40×C - 2×Mn - 4×Ni + 6×Si + 4×Mo + 11×V - 30×N) < 9.
  • Les inventeurs ont constaté qu'avec un acier fabriqué selon le procédé de l'invention, l'usure des plaquettes d'usinage par mètre d'acier usinée est divisée par environ 10 (passage de 11 mm à 1,3 mm) pour une vitesse de coupe de 120 m/min comparé à un acier fabriqué selon un procédé de l'art antérieur. La puissance requise pour l'usinage est en outre divisée par plus de deux comparé à un acier fabriqué selon un procédé de l'art antérieur. L'état de surface de l'acier après usinage est également amélioré.
  • En particulier, avec une température maximale Tmax comprise entre 28°C et 35°C, l'usure des plaquettes d'usinage par unité de longueur d'acier usinée est divisée par 15, et la puissance requise pour l'usinage divisée par 2,5. Une température maximale Tmax comprise entre 20°C et 75°C donne aussi de bons résultats.
  • Lorsque la température maximale Tmax est au delà de 90°C (et jusqu'à 180°C) les résultats en usinage sont les plus mauvais.
  • On retrouve des résultats moyens (intermédiaires entre bons et mauvais) lorsqu'on réchauffe l'acier dès que la partie la plus chaude de la pièce atteint une température au delà de 180°C (et jusqu'à 300°C).
  • Selon les inventeurs, les résultats peuvent s'expliquer de la façon suivante : comme indiqué ci-dessus, la température de fin de transformation martensitique en refroidissement MF' des régions interdendritiques est inférieure à la température de fin de transformation martensitique en refroidissement MF des dendrites. Or on a vu que lors du refroidissement de l'acier, cet acier se solidifie en une microstructure qui est une alternance de dendrites et de régions interdendritiques (figure 2). Ainsi, lorsque la température descend en dessous de la température de fin de transformation martensitique en refroidissement MF des dendrites, les dendrites ont fini de se transformer en martensite, alors que les régions interdendritiques n'ont pas encore fini se transformer en martensite. Donc, si l'on réchauffe l'acier dès qu'il a atteint la température de fin de transformation martensitique en refroidissement MF des dendrites, des zones dans tout l'acier (à savoir les régions interdendritiques) contiennent de l'austénite résiduelle. Une partie de cette austénite résiduelle se transformera lors de l'étape du premier revenu suivant en martensite fraiche. L'autre partie de cette austénite résiduelle sera localisé uniquement au niveau des points les plus ségrégés de la matière (par exemple, au niveau des espaces interdendritiques les plus concentrés).
  • Au cours du second revenu, la nouvelle martensite fraîche se stabilise mais une autre partie du restant de l'austénite résiduelle continue à se transformer en martensitique fraîche dans ces endroits les plus ségrégés. L'acier présente donc une hétérogénéité de structure avec des grains plus durs correspondant à la martensite fraîche dans une matrice plus douce. C'est cette hétérogénéité qui est responsable de la mauvaise usinabilité de l'acier, les grains plus durs usant les plaquettes et bloquant leur avance.
  • A l'inverse, si l'on réchauffe l'acier dès que la partie la plus chaude de la pièce atteint une température élevée (comprise entre 180°C et 300°C), on conserve de l'austénite résiduelle, qui donne au final un comportement moyen lors de l'usinage ultérieur.
  • On comprend donc pourquoi le refroidissement de l'acier jusqu'à la température de fin de transformation martensitique en refroidissement MF' des régions interdendritiques, puis le réchauffement immédiat de l'acier dès qu'il a atteint cette température MF, permettent d'obtenir une microstructure plus homogène au sein de l'acier.
  • Par exemple, la température maximale Tmax qu'atteint la partie la plus chaude de l'acier avant d'être réchauffée est comprise entre 20°C et 75°C. Une telle température Tm est inférieure à la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques.
  • Par exemple, cette température maximale Tmax est comprise entre 28°C et 35°C.
  • Afin de déterminer quand la partie la plus chaude de l'acier atteint la température maximale Tmax, on peut par exemple, à l'étape (ω), mesurer la température de peau de l'acier et utiliser des abaques pour en déduire la température de la partie la plus chaude de l'acier.
  • Par ailleurs, il est avantageux que le gradient de température entre la surface de l'acier et la partie la plus chaude de l'acier soit le plus faible possible, afin de réduire l'écart entre la température de fin de transformation martensitique en refroidissement MF des dendrites et la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques. En effet, en réduisant cet écart, les contraintes au sein de la pièce sont alors moindres, et on gagne en productivité.
  • Ainsi, avantageusement, dans chacune des étapes (1) et (2), on effectue la sous-étape suivante avant la sous-étape (ω):
    • (ψ) Dès que la température de la partie la plus chaude de l'acier atteint une température seuil Ts inférieure à la température de début de transformation martensitique en refroidissement MS des dendrites dans ledit acier, et supérieure à la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques, on maintient l'acier dans un environnement où règne sensiblement une température comprise entre la température minimale Tmin et la température MF' pendant une durée seuil ds de façon à réduire le gradient de température entre la surface de l'acier et la partie la plus chaude de l'acier.
  • La durée seuil ds dépend de la géométrie de la pièce. La durée ds est au minimum de 15 minutes (min) pour une dimension minimale de la pièce de 50 mm, de 30 min pour une dimension minimal de la pièce de 100 mm, de 45 min pour une dimension minimale de la pièce de 150 mm, et ainsi de suite. Pour une dimension minimale de la pièce comprise entre ces valeurs, on peut par exemple en déduire la durée ds par extrapolation avec la formule : ds = (15 min) × {dimension minimale (en mm)}/50.
  • Pour maintenir l'acier dans un environnement où règne sensiblement la température comprise entre la température minimale Tmin et la température MF', on peut par exemple placer l'acier dans un four où règne une température comprise entre Tmin et MF'.
  • Alternativement, on peut isoler thermiquement l'acier de l'environnement extérieur, par exemple en le plaçant dans une couverture.
  • Avantageusement, après le second revenu, on effectue au moins une détente de l'acier à une température inférieure aux températures de revenu TR auxquelles le premier revenu et le second revenu ont été effectués.
  • Cette détente correspond à l'étape 4 en figure 1. Elle permet la relaxation de contraintes résiduelles au sein de l'acier, et en améliore la durée de vie.
  • Afin d'améliorer la tenue en fatigue des aciers selon l'invention, on cherche à augmenter la propreté inclusionnaire de l'acier, c'est-à-dire à diminuer la quantité d'inclusions indésirables (certaines phases alliées, oxydes, carbures, composés intermétalliques) présentes dans l'acier. En effet, ces inclusions agissent comme des sites d'amorces de fissures qui conduisent, sous sollicitation cyclique, à une ruine prématurée de l'acier.
  • On connaît des procédés pour améliorer la propreté inclusionnaire, notamment un procédé de refusion tel que la refusion sous laitier ou ESR (Electro Slag Refusion), ou la refusion par arc sous vide ou VAR (Vacuum Arc Remelting). Ces procédés sont connus, et seul leur fonctionnement global est rappelé ci-après.
  • Le procédé ESR consiste à placer un lingot en acier dans un creuset dans lequel on a versé un laitier (mélange minéral, par exemple chaux, fluorures, magnésie, alumine, spath) de telle sorte que l'extrémité inférieure du lingot trempe dans le laitier. Puis on fait passer un courant électrique dans le lingot, qui sert d'électrode. Ce courant liquéfie le laitier et fait fondre l'extrémité inférieure de cette électrode qui est en contact avec le laitier. L'acier fondu de cette électrode traverse le laitier sous forme de fines gouttelettes, pour se solidifier en dessous de la couche de laitier qui surnage, en un nouveau lingot qui croît ainsi progressivement. Le laitier agit, entre autres comme un filtre qui extrait les inclusions des gouttelettes d'acier, de telle sorte que l'acier de ce nouveau lingot situé en dessous de la couche de laitier contient moins d'inclusions que le lingot initial (électrode). Cette opération s'effectue à la pression atmosphérique et à l'air.
  • Le procédé VAR consiste à fondre dans un creuset sous un vide poussé le lingot d'acier, qui sert d'électrode. Le lingot/électrode est fondu par l'établissement d'un arc électrique entre l'extrémité du lingot/électrode et le sommet du lingot secondaire qui se forme par fusion du lingot/électrode. Le lingot secondaire se solidifie au contact des parois du creuset et les inclusions flottent à la surface du lingot secondaire, et peuvent ultérieurement être éliminées. On obtient donc un lingot secondaire d'une plus grande pureté que le lingot/électrode initial.
  • Avantageusement, l'acier subit, avant l'étape (1), une refusion.
  • Par exemple la refusion est choisie dans un groupe comprenant la refusion sous laitier ESR ou la refusion par arc sous vide VAR.
  • Avantageusement, avant l'étape (1), on effectue un traitement d'homogénéisation de l'acier.
  • En effet, lors de cette homogénéisation, il se produit une diffusion des éléments d'alliage des zones à forte concentration vers les zones à faible concentration. On permet alors une réduction de l'intensité des ségrégations en éléments alphagènes dans les dendrites 10, et une réduction de l'intensité des ségrégations en éléments gammagènes dans les régions interdendritiques 20. La réduction de l'intensité des ségrégations en ces éléments gammagènes a notamment pour conséquence un rapprochement de la température de fin de transformation martensitique en refroidissement MF des dendrites et de la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques, ainsi qu'une moindre différence structurale entre les dendrites 10 et les régions interdendritiques 20.
  • En ce qui concerne les particularités du traitement d'homogénéisation, les inventeurs ont trouvé que des résultats satisfaisants sont obtenus lorsque le lingot est soumis dans ce four à un traitement d'homogénéisation pendant un temps de maintien t après que la température du point le plus froid de ce lingot a atteint une température d'homogénéisation T, ce temps t étant égal à au moins une heure, et la température d'homogénéisation T variant entre une température inférieure Tinf et la température de brûlure de cet acier.
  • La température Tinf est environ égale à 900°C. La température de brûlure d'un acier est définie comme la température à l'état brut de solidification à laquelle les joints de grains dans l'acier se transforment (voire se liquéfient), et est supérieure à TInf. Ce temps t de maintien de l'acier dans le four varie donc inversement à cette température d'homogénéisation T.
  • Par exemple, dans le cas d'un acier martensitique inoxydable Z12CNDV12 (norme AFNOR) utilisé par les inventeurs dans les essais, la température d'homogénéisation T est 950°C, et le temps de maintien t correspondant est égal à 70 heures. Lorsque la température d'homogénéisation T est de 1250C qui est légèrement inférieure à la température de brûlure, alors le temps de maintien t correspondant est égal à 10 heures.
  • Selon un autre mode de réalisation de l'invention, il est possible, afin d'améliorer l'usinabilité des aciers martensitiques inoxydables, d'effectuer un traitement d'homogénéisation de l'acier tel que décrit ci-dessus, puis d'effectuer les étapes (1), (2) et (3) selon l'art antérieur sans effectuer la sous-étape (ω). Dans ce mode de réalisation, la température maximale Tmax est inférieure à la température de fin de transformation martensitique en refroidissement MF des dendrites dans l'acier, et, dans les étapes (1) et (2) on fait en sorte que l'acier reste à une température égale ou inférieure à la température maximale Tmax pendant un temps le plus court possible.

Claims (10)

  1. Procédé de fabrication d'un acier martensitique inoxydable comportant les étapes de traitement thermique suivantes :
    (1) On chauffe l'acier à une température supérieure à la température d'austénisation TAUS de l'acier, puis on trempe l'acier jusqu'à ce que la partie la plus chaude de l'acier soit inférieure ou égale à une température maximale Tmax, et supérieure ou égale à une température minimale Tmin, la vitesse de refroidissement étant suffisamment rapide pour que l'austénite ne se transforme pas en structure ferrito-perlitique.
    (2) On effectue un premier revenu de l'acier suivi d'un refroidissement jusqu'à ce que la partie la plus chaude de la l'acier soit inférieure ou égale à ladite température maximale Tmax, et supérieure ou égale à ladite température minimale Tmin.
    (3) On effectue un second revenu de l'acier suivi d'un refroidissement jusqu'à température ambiante TA,
    ledit procédé étant caractérisé en ce que ladite température maximale Tmax est inférieure ou égale à la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques dans ledit acier, et en ce que, à la fin de chacune des étapes (1) et (2), on effectue la sous-étape suivante :
    (ω) Dès que la température de la partie la plus chaude de l'acier atteint ladite température maximale Tmax, on réchauffe l'acier immédiatement.
  2. Procédé de fabrication d'un acier martensitique inoxydable selon la revendication 1, caractérisé en ce que ladite température maximale Tmax est comprise entre 20°C et 75°C.
  3. Procédé de fabrication d'un acier martensitique inoxydable selon la revendication 2, caractérisé en ce que ladite température maximale Tmax est comprise ou égale entre 28 et 35°C.
  4. Procédé de fabrication d'un acier martensitique inoxydable selon l'une quelconque des revendications 1 à 3 caractérisé en ce que, à l'étape (ω), on mesure la température de peau de l'acier et on utilise des abaques pour en déduire la température de la partie la plus chaude de l'acier.
  5. Procédé de fabrication d'un acier martensitique inoxydable selon l'une quelconque des revendications 1 à 4 caractérisé en ce qu'après l'étape (3) on effectue au moins une détente dudit acier à une température inférieure aux températures de revenu auxquelles le premier revenu de l'étape (2) et le second revenu de l'étape (3) ont été effectués.
  6. Procédé de fabrication d'un acier martensitique inoxydable selon l'une quelconque des revendications 1 à 5, caractérisé en ce que, dans chacune des étapes (1) et (2), on effectue la sous-étape suivante avant la sous-étape (w) :
    (ψ) Dès que la température de la partie la plus chaude de l'acier atteint une température seuil Ts inférieure à la température de début de transformation martensitique en refroidissement MS des dendrites dans ledit acier, et supérieure à la température de fin de transformation martensitique en refroidissement MF' des espaces interdendritiques, on maintient l'acier dans un environnement où règne sensiblement une température comprise entre ladite température minimale Tmin et ladite température MF' pendant une durée seuil ds de façon à réduire le gradient de température entre la surface de l'acier et la partie la plus chaude de l'acier.
  7. Procédé de fabrication d'un acier martensitique inoxydable selon la revendication 6 caractérisé en ce que, à l'étape (ψ), on place l'acier dans un four où règne une température comprise entre ladite température minimale Tmin et ladite température MF'.
  8. Procédé de fabrication d'un acier martensitique inoxydable selon l'une quelconque des revendications 1 à 7 caractérisé en ce que, avant l'étape (1), on effectue une refusion dudit acier.
  9. Procédé de fabrication d'un acier martensitique inoxydable selon l'une quelconque des revendications 1 à 8 caractérisé en ce qu'avant l'étape (1), on effectue un traitement d'homogénéisation dudit acier.
  10. Procédé de fabrication d'un acier martensitique inoxydable selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la composition dudit acier est C (0,10 à 0,17%) - Si (<0,3%) - Mn (0,5 à 0,9%) - Cr (11 à 12,5%) - Ni (2 à 3%) - Mo (1,5 à 2%) - V (0,25 à 0,4%) - N2 (0,01 à 0,05%) - Cu (<0,5%) - S (<0,015%) - P (<0,025%), le critère 4,5 ≤(Cr -40×C -2×Mn -4×Ni +6×Si +4×Mo +11×V -30×N)< 9 étant satisfait.
EP11773051.5A 2010-09-14 2011-09-08 Optimisation de l'usinabilite d'aciers martensitiques inoxydables Active EP2616561B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057326A FR2964668B1 (fr) 2010-09-14 2010-09-14 Optimisation de l'usinabilite d'aciers martensitiques inoxydables
PCT/FR2011/052056 WO2012035240A1 (fr) 2010-09-14 2011-09-08 Optimisation de l'usinabilite d'aciers martensitiques inoxydables

Publications (2)

Publication Number Publication Date
EP2616561A1 EP2616561A1 (fr) 2013-07-24
EP2616561B1 true EP2616561B1 (fr) 2016-03-02

Family

ID=43708960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11773051.5A Active EP2616561B1 (fr) 2010-09-14 2011-09-08 Optimisation de l'usinabilite d'aciers martensitiques inoxydables

Country Status (8)

Country Link
US (1) US9464336B2 (fr)
EP (1) EP2616561B1 (fr)
CN (1) CN103097555B (fr)
BR (1) BR112013006063B1 (fr)
CA (1) CA2810781C (fr)
FR (1) FR2964668B1 (fr)
RU (1) RU2598427C2 (fr)
WO (1) WO2012035240A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807630B2 (ja) 2012-12-12 2015-11-10 Jfeスチール株式会社 継目無鋼管の熱処理設備列および高強度ステンレス鋼管の製造方法
FR3013738B1 (fr) * 2013-11-25 2016-10-14 Aubert & Duval Sa Acier inoxydable martensitique, piece realisee en cet acier et son procede de fabrication
KR102471016B1 (ko) * 2018-06-13 2022-11-28 닛테츠 스테인레스 가부시키가이샤 마르텐사이트계 s쾌삭 스테인리스강
CN113265512B (zh) * 2021-05-17 2022-08-12 山西太钢不锈钢股份有限公司 一种消除电渣马氏体锻圆机加工表面色差的方法
CN116377314B (zh) * 2023-06-05 2023-10-27 成都先进金属材料产业技术研究院股份有限公司 一种燃气轮机用马氏体耐热钢及其冶炼方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090230A (en) * 1996-06-05 2000-07-18 Sumitomo Metal Industries, Ltd. Method of cooling a steel pipe
RU2176674C1 (ru) * 2001-03-01 2001-12-10 Федеральное государственное унитарное предприятие Центральный научно-исследовательский институт конструкционных материалов "Прометей" Способ термической обработки высокопрочных коррозионно-стойких хромоникелевых сталей мартенситного класса
FR2872825B1 (fr) * 2004-07-12 2007-04-27 Industeel Creusot Acier inoxydable martensitique pour moules et carcasses de moules d'injection
FR2893954B1 (fr) * 2005-11-29 2008-02-29 Aubert & Duval Soc Par Actions Acier pour outillage a chaud, et piece realisee en cet acier et son procede de fabrication
PL2164998T3 (pl) * 2007-07-10 2011-05-31 Aubert & Duval Sa Stal martenzytyczna hartowana, mająca niską lub zerową zawartość kobaltu, sposób wytwarzania części z tej stali, oraz część uzyskana tym sposobem
US8120325B2 (en) * 2007-08-10 2012-02-21 Sony Ericsson Mobile Communications Ab Battery short circuit monitoring
FR2920784B1 (fr) * 2007-09-10 2010-12-10 Aubert & Duval Sa Acier inoxydable martensitique, procede de fabrication de pieces realisees en cet acier et pieces ainsi realisees
FR2951198B1 (fr) * 2009-10-12 2013-05-10 Snecma Traitements thermiques d'aciers martensitiques inoxydables apres refusion sous laitier

Also Published As

Publication number Publication date
CN103097555B (zh) 2015-02-18
WO2012035240A1 (fr) 2012-03-22
US20130180628A1 (en) 2013-07-18
RU2013116810A (ru) 2014-10-20
CN103097555A (zh) 2013-05-08
CA2810781C (fr) 2018-11-06
BR112013006063A2 (pt) 2016-06-07
CA2810781A1 (fr) 2012-03-22
FR2964668B1 (fr) 2012-10-12
RU2598427C2 (ru) 2016-09-27
FR2964668A1 (fr) 2012-03-16
BR112013006063B1 (pt) 2019-02-19
US9464336B2 (en) 2016-10-11
EP2616561A1 (fr) 2013-07-24

Similar Documents

Publication Publication Date Title
EP2616561B1 (fr) Optimisation de l&#39;usinabilite d&#39;aciers martensitiques inoxydables
KR101150365B1 (ko) 고탄소 열연강판 및 그 제조방법
FR2536765A1 (fr) Procede de fabrication de plaques d&#39;acier ayant une resistance elevee a la traction
EP2245203B1 (fr) Tôle en acier inoxydable austenitique et procede d&#39;obtention de cette tôle
JP5067120B2 (ja) 軸受粗成形品の製造方法
FR2573775A1 (fr) Aciers au nickel ayant une grande aptitude a arreter les craquelures
JP5035137B2 (ja) 軸受鋼鋼材およびその製造方法
CN110453053A (zh) 一种齿轮钢带状组织的控制方法
US8808474B2 (en) Heat treatment of martensitic stainless steel after remelting under a layer of slag
EP2488672B1 (fr) Homogeneisation d&#39;aciers martensitiques inoxydables apres refusion sous laitier
CN114749617A (zh) 一种减少200系不锈钢热轧卷边部山鳞的生产方法
JP3579558B2 (ja) 耐焼割れ性に優れた軸受鋼
KR100832960B1 (ko) 고탄소 크롬 베어링강의 제조방법
JP7328606B2 (ja) 冷間圧延用鍛鋼ロール
JP3709794B2 (ja) 高強度高靭性鋼板の製造方法
JP5867324B2 (ja) 軸受鋼
KR20120058258A (ko) 고탄소 크롬 베어링강 주편의 거대탄화물 제거방법
FR2525239A1 (fr) Tubes d&#39;acier ayant des proprietes ameliorees, applicables a la fois pour la construction et l&#39;exploitation miniere et procede pour les preparer a partir d&#39;aciers microallies combines
BE655310A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011023662

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0001180000

Ipc: C22C0038000000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/44 20060101ALI20141022BHEP

Ipc: C22C 38/04 20060101ALI20141022BHEP

Ipc: C21D 1/22 20060101ALI20141022BHEP

Ipc: C22C 38/46 20060101ALI20141022BHEP

Ipc: C22C 38/00 20060101AFI20141022BHEP

Ipc: C21D 6/00 20060101ALI20141022BHEP

Ipc: C21D 1/18 20060101ALI20141022BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141202

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20160104

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011023662

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160302

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 778115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011023662

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

26N No opposition filed

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 13

Ref country code: GB

Payment date: 20230823

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230822

Year of fee payment: 13

Ref country code: FR

Payment date: 20230822

Year of fee payment: 13

Ref country code: DE

Payment date: 20230822

Year of fee payment: 13