EP2614562B1 - Bougie d'allumage pour moteur a combustion interne - Google Patents

Bougie d'allumage pour moteur a combustion interne Download PDF

Info

Publication number
EP2614562B1
EP2614562B1 EP11776221.1A EP11776221A EP2614562B1 EP 2614562 B1 EP2614562 B1 EP 2614562B1 EP 11776221 A EP11776221 A EP 11776221A EP 2614562 B1 EP2614562 B1 EP 2614562B1
Authority
EP
European Patent Office
Prior art keywords
turns
turn
coaxial
end portion
sparkplug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11776221.1A
Other languages
German (de)
English (en)
Other versions
EP2614562A1 (fr
Inventor
Marc Pariente
André AGNERAY
Xavier Jaffrezic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2614562A1 publication Critical patent/EP2614562A1/fr
Application granted granted Critical
Publication of EP2614562B1 publication Critical patent/EP2614562B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • H01T13/44Sparking plugs structurally combined with other devices with transformers, e.g. for high-frequency ignition

Definitions

  • the present invention relates to a spark plug for an internal combustion engine and more specifically for the controlled ignition of this type of engine.
  • the invention relates more particularly to a spark plug which comprises an inductive winding coupled to a spark plug electrode.
  • Radiofrequency type spark plugs make it possible to develop, from an electrode excited by a high-frequency alternating radiofrequency voltage, a multi-filament discharge considerably accelerating the start of combustion.
  • a spark plug which describes such a spark plug.
  • such known radio frequency spark plugs 110 comprise an inductive winding 112 and a high voltage central electrode 106 coupled to this inductive winding 112.
  • the high voltage central electrode 106 is adjusted in the extension of the winding 112.
  • the spark plug 110 comprises also a metal base 103 of cylindrical shape which is intended to be screwed into an opening opening inside the combustion chamber of the cylinder of a motor and which constitutes a ground electrode in the center of which coaxially extends the high voltage central electrode 106.
  • the metal base 103 is electrically connected to ground.
  • the high voltage central electrode 106 is isolated from the ground electrode 103 by means of an insulator 100, for example a ceramic sleeve.
  • the spark plug 110 has a cylindrical shielding 132 which caps the inductive winding 112.
  • the shield may be part of the body 135 of the spark plug 110, preferably made of metallic material, or it may be distinct by referring to the surface inside the body 135.
  • the inductive winding 112 is formed around an insulating mandrel 134, it is itself surrounded by an insulating sleeve 133, which may be of solid, liquid or gaseous nature.
  • the insulating mandrel 134 is a cylinder of revolution around which is wound helically a conductive wire 112 by forming turns so as to obtain a solenoid.
  • the conductive wire 112 is connected to the high-voltage central electrode 106 whereas, on the opposite side, the conductive wire 112 is connected to a connection terminal 131 allowing the supply of electrical energy.
  • the electric field is represented by field lines 150 which extend between the shield 132 and each turn of the coil 112.
  • the terminal turn 112a sees the electric field amplified by the concentration of the electric field lines. 150 converging on her.
  • a problem that arises and that aims to solve the present invention is to provide a more reliable spark plug and whose life is increased.
  • the present invention proposes a spark plug comprising an inductive winding and a central electrode coupled to the inductive winding, said inductive winding having in order, from an electrical connection terminal of the spark plug, a first portion of end, a central portion, and a second end portion, said electrode central extending in the extension of the second end portion and away from said central portion, said inductive winding having a conductive wire wound helically forming a succession of coaxial turns, the second end portion having a coil end terminal located opposite the central portion and connected to the central electrode, said inductive coil being adapted to produce an induced electric field in said second end portion.
  • the second end portion comprises a plurality of end coaxial turns which extend axially between said end turn and an upstream turn located towards the central portion; and that said end turn has a diameter smaller than the diameter of the upstream turn, while the turns of the plurality of end coaxial turns have a radius of curvature which decreases progressively between the upstream turn and the end turn, so as to be able to reduce the intensity of the induced electric field in the second end portion in the vicinity of the terminal turn.
  • a feature of the invention lies in the implementation of an inductive winding of a particular shape, the second end portion of which has turns of conductive wire for which the diameter is gradually reduced from the central portion where the turns are of the same diameter, up to the terminal turn.
  • the successive turns formed of a single wound conductive wire do not meet but are superimposed axially, and that therefore the notion of diameter of a turn must be understood as being the diameter of the average circle defined by said turn, and in particular in the second end portion where the radius of curvature of the turns decreases substantially continuously.
  • the turns define a circular helix formed around an axis A, and their diameter can be defined as the diameter of the circle of their projection on a plane perpendicular to this axis.
  • the electric potential increases from the first turn of the first end portion, from which it is fed, to the upstream turn. It grows thanks to the resonance phenomenon used in this type of radiofrequency candle. This potential increases substantially linearly from the first turn to the upstream turn. And the associated electric field (expressed in volts per mm) at the surface of the turns is substantially proportional, because the distance between the turns and the first conductive inner surface connected to the ground is constant; which implies that the ratio of the diameters remains constant.
  • This internal surface corresponds to the body of the candle or to a shield consisting of a cylindrical envelope of a material with very high electrical conductivity
  • the electric field evolves differently from the upstream coil to the terminal turn.
  • the electrical potential (expressed in volts) continues to grow between the upstream coil and the terminal coil, while the intensity of the maximum electric field decreases at the last turns and therefore the terminal turn.
  • the electric field is thus no longer able to generate sparks at least at the level of the terminal turn; and in this way, the insulating materials used, such as silicone oils or silicone gels, fully fulfill their insulating role without being degraded.
  • the service life of the spark plug is increased without having to introduce new additional parts, in particular between the end turn and the high voltage electrode.
  • the turns of the plurality of end coaxial turns form a conical spiral, so as to further attenuate the intensity of the electric field at the terminal turn.
  • the conductive wire may be made, according to an advantageous embodiment, a copper wire uniformly covered with an insulating film. And this conductive wire is for example wound in forming contiguous turns.
  • the turns of the plurality of coaxial end turns may be spaced from each other.
  • the spacing being a spacing greater than that generated by an insulating film covering the electrically conductive wire.
  • the spark plug further comprises a conductive connecting piece interposed between the end turn and the high voltage central electrode.
  • the conductive wire of the terminal turn is then electrically connected to the connecting piece in which the high voltage central electrode is at least partially engaged.
  • the conductive wire of the end turn is preferably welded to the connecting piece.
  • the connecting piece has an effect of "electrical guard" on the worst terminal and especially on the welding of the wire on the connecting piece.
  • the connecting piece is a screen that attenuates the intensity of the electric field. Indeed, with reference to Figures 8 to 10 , it can be seen a divergence of the electric field lines between said end turn and the connecting piece, which means that the electric field is particularly weak in this area.
  • the geometrical defect due to the weld (as for any equivalent means of connection), which naturally generates a concentration of the electric field, thus no longer tends to cause the formation of an unwanted spark.
  • the connecting piece is advantageously of cylindrical symmetry of revolution, and it is fitted coaxially to said plurality of end coaxial turns. In this way, the end turn comes to rest uniformly on the connecting piece.
  • the connecting piece is advantageously made of a high electrical conductivity alloy based on copper and / or silver and / or aluminum.
  • the spark plug preferably comprises a cylindrical shield of revolution adapted to receive coaxially said inductive winding, and the conductive connecting piece may have a diameter between 0.2 and 0.45 times the diameter of said cylindrical shield, and preferably 0.368 (1 / e, e being the base of the natural logarithms).
  • This ratio of diameters of 0.368 is the ratio which minimizes the electric field on the surface of the connecting piece.
  • the spark plug further comprises a winding mandrel having a cylindrical portion of revolution and a coaxial frustoconical end, and said conductive wire is wound helically around said frustoconical portion to form the second end portion of the inductive winding.
  • the winding mandrel is a support for winding the conductive wire.
  • the cylindrical part of revolution makes it possible to form the first end portion and the central portion of the inductive winding, while the coaxial frustoconical end makes it possible to form the second end portion, precisely of frustoconical shape.
  • said frustoconical end has a generatrix forming an angle between 5 ° and 80 ° with the axis of said frustoconical end.
  • the generatrix and the axis of the frustoconical end advantageously forms an angle between 5 ° and 45 °, preferably around 15 °: it is a compromise between the lowest possible decrease of the magnetic field which participates in the increase of the electric potential, and the greatest possible decline of the field associated electric.
  • this angle is preferably between 10 ° and 80 °, preferably around 45 °.
  • said frustoconical end of the winding mandrel advantageously has a helical groove for receiving the conductive wire. In this way, the conducting wire is held in a fixed position and forms turns spaced apart from each other by a predetermined distance.
  • the Figure 3 illustrates a spark plug 10 for spark ignition engine, also called radiofrequency plasma candle. It extends longitudinally along an axis of symmetry A between a candle head 12 and a candle tail 14.
  • the candle head 12 comprises a base 16, which has a shoulder 17 and an external thread 18 to screw precisely the base 16 inside a tapping not shown and which is practiced in the cylinder head of the engines.
  • a copper gasket may be fitted to the shoulder around the external thread 18. The thread opens into the combustion chamber of the engine cylinders.
  • the spark plug head 12 comprises a high-voltage central electrode 24.
  • This high-voltage central electrode 24 extends longitudinally and coaxially inside the base 16 to open at the end of the candle head 12.
  • the spark plug head 12 comprises an insulator 26, such as for example a ceramic insulating sleeve, housed inside the base 16, and through which the high-voltage central electrode 24 passes.
  • the spark plug tail 14 comprises an inductive winding 28 which extends longitudinally and coaxially with the base 16 and the high voltage central electrode 24. It has a first end portion 30, also called upper end portion, and opposite, a second end portion 32, also called lower end portion, and a central portion 34 which extends between the two end portions 30, 32.
  • the high voltage central electrode 24 extends coaxially in the extension of the lower end portion 32 to which it is electrically connected.
  • the electrical connection can be via a conductive connecting piece 35.
  • the inductive winding 28 is formed by the helical winding of a conductive wire 36 that can be covered with an insulating film around a winding mandrel 38.
  • the latter is made of an insulating material and preferably non-magnetic. It has a cylindrical portion of revolution 40 and a coaxial frustoconical end 42 which bears on the conductive connecting piece 35.
  • the conductive wire 36 is wound around the winding mandrel 38; the wire 36 forms on the one hand turns 44 which can be contiguous, of a constant diameter and substantially equivalent to the diameter of the mandrel, on its cylindrical portion of revolution 40; and on the other hand spiral end coaxial coils 45 whose radius of curvature decreases progressively on its coaxial end 42.
  • a particular form of the inductive coil 28 in its lower end portion will be described in more detail below. 32.
  • the spark plug 10 further comprises an insulating sleeve 48 made of a dielectric material and which caps the inductive winding 28 with a cylindrical shield of revolution 50 which surrounds the insulating sleeve 48.
  • the shield 50 can be part of body 54 of the candle 10, that is to say the outer envelope of the candle. It may also be distinct from the body 54 of the spark plug 10.
  • the shielding 50 is made of materials with a high electrical conductivity, for example a copper-based alloy and / or silver and / or aluminum. It may consist of depositing an alloy layer on the inner surface of the body 54 of the spark plug 10.
  • the shielding 50 has a substantially constant diameter, and covers, for example, presented to the figure 3 , at least the winding 28.
  • the end of the conductive wire 36 which extends beyond the upper end portion 30 of the inductive winding 28, is connected to a connector 52 which opens out of the spark plug 10, and which allows connection to a power supply not shown.
  • the inside diameter D1 of the shielding 50 is greater than the diameter D2 of the inductive coil 28.
  • the inside diameter D1 is the diameter of the first conductive surface facing in particular the winding 28.
  • the ratio of the outer diameter D2 and the inner diameter D1 is between 0.45 and 0.60 and preferably close to 0.56.
  • the conductive connecting piece 35 is also of cylindrical symmetry of revolution, of an external diameter D3 less than the inside diameter D1 of the shield 50.
  • the outer diameter D3 is between 0.20 and 0.45 times the diameter D1, and preferably close to 0.368.
  • the angle ⁇ between a generatrix G of the coaxial frustoconical end 42 and the axis of symmetry A is close to 15 °.
  • the turns 44 of the conductor wire 36 have a substantially constant diameter D2 in the cylindrical portion of revolutions 40 and substantially equal to the outside diameter of the winding mandrel 38. While the contiguous turns of the lower end portion 46 s extend between a terminal turn 58 whose diameter D58 is substantially equal to that of the top 56 of the coaxial frustoconical end 42 and an upstream turn 60 whose diameter D60 is substantially equal to that of the base 54 of the coaxial frustoconical end 42. It should be noted that the value of D60 preferably corresponds to the value of D2 .
  • the end turn 58 thus has a diameter D58 less than the diameter D60 of the upstream turn 60.
  • the diameter D58 is chosen in relation to the diameter D1 so that the ratio D58 / D1 is between 0.2 and 0.45 and preferably close to 0.368.
  • end coaxial turns 45 of the lower end portion 46 decreases, preferably continuously, between the upstream coil 60 and the end turn 58, around the coaxial frustoconical end 42 on which they rest.
  • the end turn 58 can bear against a surface of the connecting piece 35. This surface is preferably perpendicular to the axis A. Also, the end of the conductive wire which extends the end turn 58 can be welded to the workpiece In this embodiment which comprises the connecting piece 35, the diameter D58 can be decreased, the ratio D58 / D1 can then be significantly lower than 0.368.
  • the electric field is not linear in the extension of the central portion 34 cylindrical inductive winding 28. It regularly rises from the upper end portion 30 to the upstream coil 60, then, thanks to the break slope, it is maintained or even attenuated to the end turn 58. The maintenance or the decrease depending in particular on the angle ⁇ .
  • the electric field at this turn 58 is smaller than the destructive field of the insulating materials. It thus preserves the insulating materials that surround it.
  • connection piece 35 an "electrical guard” effect is obtained on the end turn 58 and also on the solder of the end of the conductive wire that escapes to rejoin the connecting piece 35.
  • a second embodiment of the invention is illustrated on the Figure 6 , where are all the elements of detail already illustrated on the Figure 3 . It will be observed that coaxial end turns 45 'conically spiral of the lower end portion 46', which extend between the upstream coil 60 and the end turn 58, are spaced apart from each other. Only the spiral conical spirals and the lower end portion 46 'have the same reference assigned a sign "'", because they differ from those of the previous example simply that the turns were contiguous.
  • the angle ⁇ of the generator with respect to the axis of symmetry A can then be greater than in the previous embodiment. It is preferably between 10 ° and 80 °, with a very good compromise at 45 °.
  • the figure 10 schematically represents the electric field which is exerted in this embodiment. It can be noted in this schematic representation that the concentration of the field lines is greater than in the first embodiment in contiguous turns. This is why we will favor an angle ⁇ greater than in the first embodiment, so as to compensate for a higher electric field by a magnetic field less disturbed favoring a better surge factor.
  • a helical spiral groove 62 conical in the coaxial frusto-conical end 42 may be provided so that conical spiral turns 45 'spaced from each other between the upstream coil 60 and the end turn 58. In this way, the conical spiral turns 45 'are held axially in a fixed position on the inclined slopes of the coaxial frustoconical end 42.
  • the connecting piece 35 in an alternative embodiment, may be an integral part of the high voltage central electrode 24. Whether or not it is integrated with the high voltage central electrode 24, the connecting piece 35 has an external geometry adapted to minimize the electric field on its surface.
  • the end turn 58 can bear against a surface of the connecting piece 35. This surface is preferably perpendicular to the axis A. Also, the end of the conductive wire which extends the end turn 58 can be welded to the piece of link 35.
  • the connecting piece 35 comprises at least one bearing surface and a surface of revolution.
  • the two surfaces being interconnected by a fillet (37, 39).
  • the bearing surface is intended in particular to receive the end turn 58. This surface is preferably perpendicular to the axis A of revolution of the spark plug 10.
  • the end of the wire of the end turn 58 (or 58 ') is electrically connected to the conductive connecting piece 35 in a zone of divergence of the electric field lines 150.
  • the connecting piece 35 has an effect of "electrical guard” on the end turn 58 and especially on the solder 58a (or 58a ') of the wire on the connecting piece 35.
  • the connecting piece 35 constitutes a screen which attenuates the intensity of the electric field at the weld, thanks to the surfaces present. Indeed, with reference to Figures 8 to 10 it can be seen a divergence of the electric field lines between said end turn 58 (or 58a ') and the connecting piece 35, which means that the electric field is particularly low in this area.
  • the geometric defect due to the weld 58a (or 58a ') which naturally generates a concentration of the electric field, thus no longer tends to cause the formation of an unwanted spark. This is the case for any equivalent means of connection.
  • the bearing surface extended connection fillet, is defined so as to cause this divergence of the electric field lines.
  • the angle of the bearing surface relative to the axis of the generatrix G is less than 180 °.
  • the surface of revolution has the diameter D3 described above and which depends on the inner diameter D1 of the shield 50.
  • connection fillet 37 connects the bearing surface and the surface of revolution. If we place our in a section of Exhibit 35 as it is the case in figure 3 , this connection fillet 37 corresponds to an arc tangent to both surfaces.
  • the connection fillet 37 makes it possible to distribute the electric field in order to avoid a concentration of the lines of the field.
  • the end turn 58 (or 58 ') is preferably placed closest to the junction zone between the bearing surface and the fillet.
  • connection fillet is shown in FIG. figure 9 .
  • the fillet 39 is of elliptical shape in order to more significantly optimize the distribution of the electric field lines.
  • the elliptical arc corresponding to a half major axis in the direction of the axis A, while the half small axis extends radially with respect to the axis A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • General Induction Heating (AREA)

Description

  • La présente invention se rapporte à une bougie d'allumage pour moteur à combustion interne et plus précisément pour l'allumage commandé de ce type de moteur. L'invention se rapporte plus particulièrement à une bougie d'allumage qui comporte un bobinage inductif couplé à une électrode de bougie.
  • Des bougies d'allumage de type radiofréquence permettent de développer, à partir d'une électrode excitée par une haute tension alternative radiofréquence, une décharge multi-filamentaire accélérant considérablement le début de la combustion. On pourra se référer au document FR 2 859 830 , lequel décrit une telle bougie d'allumage. En référence à la figure 1 (qui correspond à la figure 18 du document FR 2 859 830 ), de telles bougies d'allumage radiofréquences 110 connues comprennent un bobinage inductif 112 et une électrode centrale haute tension 106 couplée à ce bobinage inductif 112. L'électrode centrale haute tension 106 est ajustée dans le prolongement du bobinage 112. La bougie 110 comprend également un culot métallique 103 de forme cylindrique qui est destiné à être vissé dans un orifice débouchant à l'intérieur de la chambre de combustion du cylindre d'un moteur et qui constitue une électrode de masse au centre de laquelle s'étend coaxialement l'électrode centrale haute tension 106. Pour ce faire, le culot métallique 103 est connecté électriquement à la masse. En outre, l'électrode centrale haute tension 106 est isolée de l'électrode de masse 103 au moyen d'un isolateur 100, comme par exemple un manchon en céramique. On se retrouve ainsi en présence d'un résonateur série, composé du bobinage inductif 112 et d'un condensateur connectés en série, le condensateur étant composé d'au moins l'électrode centrale 106, la céramique 100 et l'électrode de masse 103. Par ailleurs, la bougie 110 comporte un blindage cylindrique 132 qui vient coiffer le bobinage inductif 112. Le blindage peut faire partie du corps 135 de la bougie 110, de préférence en matériau métallique, ou il peut être distinct en se rapportant sur la surface intérieure du corps 135.
  • Outre le fait que le bobinage inductif 112 est réalisé autour d'un mandrin isolant 134, il est lui-même entouré d'un manchon d'isolation 133, qui peut être de nature solide, liquide ou gazeuse. Le mandrin isolant 134 est un cylindre de révolution autour duquel est enroulé hélicoïdalement un fil conducteur 112 en formant des spires de manière à obtenir un solénoïde. À l'une de ses extrémités le fil conducteur 112 est relié à l'électrode centrale haute tension 106 tandis qu'à l'opposé, le fil conducteur 112 est relié à une borne de connexion 131 permettant l'alimentation en énergie électrique.
  • La mise en oeuvre d'un seul fil conducteur 112 pour former un solénoïde monocouche induit une élévation de tension le long du bobinage inductif. Cette élévation de tension, qui a lieu spire par spire, induit un champ électrique très important sur au moins la dernière spire qui est connectée à l'électrode centrale haute tension 106. Cette dernière spire est également appelée spire terminale. Le champ électrique au niveau de la dernière spire tend à dépasser le champ électrique critique de l'ordre de 15 à 20 kV/mm de certains matériaux isolants, ce qui peut générer des étincelles au niveau de cette spire terminale. Ces étincelles sont susceptibles de provoquer la dégradation anticipée notamment de l'isolant de la bougie d'allumage. En référence à la figure 2, ce phénomène se localise principalement sur la dernière spire du bobinage 112. La dernière spire, ou spire terminale, porte la référence 112a. Sur la figure 2, le champ électrique est représenté par des lignes de champ 150 qui s'étendent entre le blindage 132 et chaque spire du bobinage 112. Sur cette figure, au moins la spire terminale 112a voit le champ électrique amplifié par la concentration des lignes de champ électrique 150 qui convergent vers elle.
  • Aussi, un problème qui se pose et que vise à résoudre la présente invention, est de fournir une bougie d'allumage plus fiable et dont la durée de vie est augmentée.
  • Dans ce but, la présente invention propose une bougie d'allumage comprenant un bobinage inductif et une électrode centrale couplée au bobinage inductif, ledit bobinage inductif présentant dans l'ordre, depuis une borne de connexion électrique de la bougie, une première portion d'extrémité, une portion centrale, et une deuxième portion d'extrémité, ladite électrode centrale s'étendant dans le prolongement de la deuxième portion d'extrémité et à l'opposé de ladite portion centrale, ledit bobinage inductif présentant un fil conducteur enroulé hélicoïdalement en formant une succession de spires coaxiales, la deuxième portion d'extrémité présentant une spire terminale située à l'opposé de la portion centrale et reliée à l'électrode centrale, ledit bobinage inductif étant apte à produire un champ électrique induit dans ladite la deuxième portion d'extrémité. Selon l'invention, la deuxième portion d'extrémité comprend une pluralité de spires coaxiales d'extrémité qui s'étendent axialement entre ladite spire terminale et une spire amont située vers la portion centrale; et que ladite spire terminale présente un diamètre inférieur au diamètre de la spire amont, tandis que les spires de la pluralité de spires coaxiales d'extrémité présentent un rayon de courbure qui diminue progressivement entre la spire amont et la spire terminale, de manière à pouvoir réduire l'intensité du champ électrique induit dans la deuxième portion d'extrémité au voisinage de la spire terminale.
  • Ainsi, une caractéristique de l'invention réside dans la mise en oeuvre d'un bobinage inductif d'une forme particulière dont la deuxième portion d'extrémité présente des spires de fil conducteur pour lesquelles le diamètre se réduit progressivement depuis la portion centrale où les spires sont d'un même diamètre, jusqu'à la spire terminale. On notera que les spires successives formées d'un seul fil conducteur enroulé, ne se rejoignent pas mais se superposent axialement, et que par conséquent la notion de diamètre d'une spire doit s'entendre comme étant le diamètre du cercle moyen défini par ladite spire, et notamment dans la deuxième portion d'extrémité où le rayon de courbure des spires diminue de manière sensiblement continue.
  • S'agissant de la portion centrale du bobinage inductif, les spires définissent une hélice circulaire formée autour d'un axe A, et leur diamètre peut être défini comme étant le diamètre du cercle de leur projection sur un plan perpendiculaire à cet axe.
  • Grâce à la réduction progressive du diamètre des spires de la deuxième portion d'extrémité vers l'électrode centrale haute tension, le champ électrique se répartit sur l'ensemble de ces spires tout en évitant la concentration des lignes de champ électrique sur les dernières spires en direction de l'électrode centrale haute tension, et au moins sur la spire terminale. Ainsi, cette spire terminale n'est plus l'objet d'un champ particulièrement intense comme c'est le cas dans un bobinage inductif purement cylindrique connu de l'art antérieur.
  • Grâce à l'invention, on obtient une répartition plus homogène des lignes de champ électrique sur l'ensemble des spires du bobinage, conformément à la représentation schématique de la figure 4.
  • Le potentiel électrique (exprimé en volts) croit depuis la première spire de la première portion d'extrémité, d'où elle est alimentée, jusqu'à la spire amont. Il croît notamment grâce au phénomène de résonnance utilisé dans ce type de bougie dites radiofréquence. Ce potentiel augmente sensiblement linéairement depuis la première spire vers la spire amont. Et le champ électrique associé (exprimé en volts par mm) à la surface des spires lui est sensiblement proportionnel, car la distance, prise entre les spires et la première surface interne conductrice reliée à la masse, est constante ; ce qui implique que le rapport des diamètres reste constant. Cette surface interne correspond au corps de la bougie ou bien à un blindage constitué d'une enveloppe cylindrique d'un matériau à très haute conductivité électrique
  • Puis le champ électrique évolue différemment depuis la spire amont jusqu'à la spire terminale. Le potentiel électrique (exprimé en volts) continue de croître entre la spire amont et la spire terminale, tandis que l'intensité du champ électrique maximal diminue au niveau des dernières spires et par conséquent de la spire terminale. Le champ électrique n'est ainsi plus apte à générer des étincelles au moins au niveau de la spire terminale; et de la sorte, les matériaux isolants mis en oeuvre tels que, les huiles de silicone ou bien les gels de silicone, remplissent pleinement leur rôle d'isolant sans être dégradés. Par conséquent, la durée de vie de la bougie d'allumage est augmentée, sans avoir à introduire de nouvelles pièces supplémentaires, notamment entre la spire terminale et l'électrode haute tension.
  • Cependant, le fait de diminuer progressivement le diamètre des spires d'un bobinage inductif engendre une perturbation du champ magnétique. Et la perturbation du champ magnétique engendre à son tour une diminution du coefficient de surtension global du bobinage inductif, ce qui n'est pas souhaitable. Aussi, un compromis acceptable est trouvé entre la réduction des contraintes électriques procurées par la nouvelle forme de la deuxième portion d'extrémité, et la réduction des pertes électromagnétiques.
  • Selon un mode de mise en oeuvre de l'invention particulièrement avantageux, les spires de la pluralité de spires coaxiales d'extrémité forment une spirale conique, de manière à atténuer plus encore l'intensité du champ électrique au niveau de la spire terminale.
  • Par ailleurs, le fil conducteur peut être fait, selon une variante de réalisation avantageuse, d'un fil de cuivre uniformément recouvert d'une pellicule isolante. Et ce fil conducteur est par exemple enroulé en formant des spires jointives.
  • Dans un autre exemple, les spires de la pluralité de spires coaxiales d'extrémité peuvent être espacées les unes des autres. L'espacement étant un espacement supérieur à celui engendré par une pellicule isolante recouvrant le fil électriquement conducteur. De la sorte, on obtient non pas une influence sur le champ électrique qui demeure atténué, mais une meilleure répartition du champ magnétique dans la zone située entre la spire amont et la spire terminale et ce, grâce aux espaces entre les spires. Bien évidemment, on bénéficie toujours dans cette configuration, de l'atténuation du champ électrique.
  • Selon un aspect complémentaire de l'invention, la bougie d'allumage comprend en outre une pièce de liaison conductrice interposée entre la spire terminale et l'électrode centrale haute tension. Le fil conducteur de la spire terminale est alors connecté électriquement à la pièce de liaison dans laquelle est engagée au moins partiellement l'électrode centrale haute tension. Le fil conducteur de la spire terminale est de préférence soudé à la pièce de liaison. La pièce de liaison a un effet de « garde électrique » sur la pire terminale et surtout sur la soudure du fil sur la pièce de liaison. La pièce de liaison constitue un écran qui atténue l'intensité du champ électrique. En effet, en référence aux figures 8 à 10, on peut constater une divergence des lignes de champ électrique entre ladite spire terminale et la pièce de liaison, ce qui signifie que le champ électrique est particulièrement faible dans cette zone. Le défaut géométrique dû à la soudure (comme pour tout moyen équivalent de liaison), qui naturellement engendre une concentration du champ électrique, n'a ainsi plus tendance à provoquer la formation d'une étincelle non désirée.
  • La pièce de liaison est avantageusement de symétrie cylindrique de révolution, et elle est ajustée coaxialement à ladite pluralité de spires coaxiales d'extrémité. De la sorte, la spire terminale vient s'appuyer uniformément sur la pièce de liaison. La pièce de liaison est avantageusement réalisée dans un alliage à haute conductivité électrique à base de cuivre et/ou d'argent et/ou d'aluminium.
  • De plus, la bougie d'allumage comprend préférentiellement un blindage cylindrique de révolution apte à recevoir coaxialement ledit bobinage inductif, et la pièce de liaison conductrice peut présenter un diamètre compris entre 0,2 et 0,45 fois le diamètre dudit blindage cylindrique, et de préférence 0,368 (1/e, e étant la base des logarithmes népériens).
  • Ce rapport de diamètres de 0,368 étant le rapport qui minimise le champ électrique à la surface de la pièce de liaison.
  • La bougie d'allumage comprend en outre un mandrin de bobinage présentant une partie cylindrique de révolution et une extrémité tronconique coaxiale, et ledit fil conducteur est enroulé hélicoïdalement autour de ladite partie tronconique pour former la deuxième portion d'extrémité du bobinage inductif. Le mandrin de bobinage constitue un support permettant d'enrouler le fil conducteur. La partie cylindrique de révolution permet de former la première portion d'extrémité et la portion centrale du bobinage inductif, tandis que l'extrémité tronconique coaxiale permet de former la deuxième portion d'extrémité, précisément de forme tronconique.
  • En outre, et de manière préférentielle, ladite extrémité tronconique présente une génératrice formant un angle compris entre 5° et 80° avec l'axe de ladite extrémité tronconique. Selon une première variante de réalisation dans laquelle les spires coaxiales d'extrémité sont jointives, la génératrice et l'axe de l'extrémité tronconique forme avantageusement un angle compris entre 5° et 45°, de préférence autour de 15° : il s'agit d'un compromis entre la baisse la plus faible possible du champ magnétique qui participe à l'augmentation du potentiel électrique, et la baisse la plus grande possible du champ électrique associé. Lorsque les spires sont espacées les unes des autres, cet angle est préférentiellement compris entre 10° et 80°, de préférence autour de 45°. Dans ce mode de réalisation, on privilégie un peu plus la préservation du champ magnétique par rapport à la baisse du champ électrique. L'avantage résidant également dans la baisse de longueur de la portion tronconique, du fait de l'angle de cône plus important. De plus, notamment lorsque les spires sont espacées les unes des autres, ladite extrémité tronconique du mandrin de bobinage présente avantageusement une rainure hélicoïdale pour recevoir le fil conducteur. De la sorte, le fil conducteur est maintenu en position fixe et forme des spires éloignées les unes des autres d'une distance prédéterminée.
  • Mais d'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après de modes de réalisation particuliers de l'invention, donnés à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
    • la Figure 1 est une vue schématique en coupe axiale d'une bougie d'allumage selon l'art antérieur;
    • la Figure 2 est une représentation schématique du champ électrique s'appliquant entre la deuxième portion d'extrémité du bobinage inductif et le blindage de la bougie représentée sur la Figure 1 ;
    • la Figure 3 est une vue schématique en coupe axiale d'une bougie d'allumage conforme à l'invention;
    • la Figure 4 est une représentation schématique du champ électrique s'appliquant entre la deuxième portion d'extrémité du bobinage inductif et le blindage de la bougie représentée sur la Figure 3 ;
    • la Figure 5 est une vue schématique de détail de la bougie représentée sur la Figure 3, selon un premier mode de mise en oeuvre du bobinage;
    • la Figure 6 est une vue schématique de détail de la bougie représentée sur la Figure 3, selon un deuxième mode de mise en oeuvre du bobinage;
    • la Figure 7 est une vue schématique de détail de la bougie représentée sur la Figure 3, selon un troisième mode de mise en oeuvre du bobinage;
    • la Figure 8 est une représentation schématique du champ électrique s'appliquant entre les dernières spires du bobinage inductif, la pièce de liaison, et le blindage de la bougie représentée sur la Figure 3 ;
    • la Figure 9 est similaire à la figure 8 pour une variante de réalisation de la pièce de liaison; et,
    • la Figure 10 est similaire aux figures 8 et 9 pour le deuxième et le troisième mode mise en oeuvre du bobinage des Figures 6 et 7.
  • La Figure 3 illustre une bougie d'allumage 10 pour moteur thermique à allumage commandé, dénommée également bougie à plasma radiofréquence. Elle s'étend longitudinalement selon un axe de symétrie A entre une tête de bougie 12 et une queue de bougie 14. La tête de bougie 12 comprend un culot 16, lequel présente un épaulement 17 et un filetage externe 18 permettant de visser précisément le culot 16 à l'intérieur d'un taraudage non représenté et qui est pratiqué dans la culasse des moteurs. Un joint d'étanchéité en cuivre peut être ajusté sur l'épaulement autour du filetage externe 18. Le taraudage débouche à l'intérieur de la chambre de combustion des cylindres de moteur.
  • La tête de bougie 12 comporte une électrode centrale haute tension 24. Cette électrode centrale haute tension 24 s'étend longitudinalement et coaxialement à l'intérieur du culot 16 pour déboucher à l'extrémité de la tête de bougie 12. Elle présente par ailleurs une extrémité en pointe 25. Au surplus, la tête de bougie 12 comprend un isolateur 26, comme par exemple un manchon isolant en céramique, logé à l'intérieur du culot 16, et traversé par l'électrode centrale haute tension 24.
  • La queue de bougie 14 comprend un bobinage inductif 28 qui s'étend longitudinalement et coaxialement au culot 16 et à l'électrode centrale haute tension 24. Il présente une première portion d'extrémité 30, encore appelée portion d'extrémité supérieure, et à l'opposé, une deuxième portion d'extrémité 32, encore appelée portion d'extrémité inférieure, ainsi qu'une portion centrale 34 qui s'étend entre les deux portions d'extrémité 30, 32. L'électrode centrale haute tension 24 s'étend coaxialement dans le prolongement de la portion d'extrémité inférieure 32 à laquelle elle est reliée électriquement. Dans un mode de réalisation de l'invention, la liaison électrique peut se faire l'intermédiaire d'une pièce de liaison conductrice 35.
  • Lorsque la bougie d'allumage 10 telle que représentée sur la Figure 3 est alimentée en énergie électrique au niveau du connecteur 52, une étincelle ramifiée, ou plasma ramifié, est apte à se produire depuis l'extrémité en pointe de l'électrode haute tension 24, qui fait sailli du manchon isolant en céramique 26.
  • Le bobinage inductif 28 est réalisé par l'enroulement hélicoïdal d'un fil conducteur 36 pouvant être recouvert d'une pellicule isolante autour d'un mandrin de bobinage 38. Ce dernier est réalisé dans un matériau isolant et préférentiellement amagnétique. Il présente une partie cylindrique de révolution 40 et une extrémité tronconique coaxiale 42 qui vient prendre appui sur la pièce de liaison conductrice 35. Ainsi, le fil conducteur 36 est enroulé autour du mandrin de bobinage 38 ; le fil 36 forme d'une part des spires 44 pouvant être jointives, d'un diamètre constant et sensiblement équivalent au diamètre du mandrin, sur sa partie cylindrique de révolution 40 ; et d'autre part des spires coaxiales d'extrémité 45 en spirale dont le rayon de courbure décroît progressivement, sur son extrémité coaxiale 42. On décrira plus en détail ci-après une forme particulière du bobinage inductif 28 dans sa portion d'extrémité inférieure 32.
  • La bougie d'allumage 10 comprend en outre un manchon d'isolation 48 réalisé dans un matériau diélectrique et qui vient coiffer le bobinage inductif 28 avec un blindage cylindrique de révolution 50 qui entoure le manchon d'isolation 48. Le blindage 50 peut faire partie du corps 54 de la bougie 10, c'est-à-dire de l'enveloppe externe de la bougie. Il peut également être distinct du corps 54 de la bougie 10. Le blindage 50 est en matériaux à haute conductivité électrique, par exemple un alliage à base de cuivre et/ou d'argent et/ou d'aluminium. Il peut consister en un dépôt d'une couche d'alliage sur la surface intérieure du corps 54 de la bougie 10. Le blindage 50 possède un diamètre sensiblement constant, et il recouvre, par l'exemple présenté à la figure 3, au moins le bobinage 28.
  • Par ailleurs, l'extrémité du fil conducteur 36 qui s'étend au-delà de la portion d'extrémité supérieure 30 du bobinage inductif 28, est raccordé à un connecteur 52 qui débouche à l'extérieur de la bougie d'allumage 10, et qui permet le raccordement à une alimentation électrique non représentée.
  • On se reportera à la Figure 5 illustrant plus en détail la portion d'extrémité inférieure 46 du bobinage inductif 28, dont le fil conducteur est enroulé autour de l'extrémité tronconique coaxiale 42 du mandrin de bobinage 38. On retrouve également sur cette Figure 5, la pièce de liaison 35 et le blindage cylindrique 50. On a également représenté sur cette figure des diamètres décrits dans le tableau ci-dessous : Tableau de correspondance des diamètres représentés sur la Figure 5
    D1 Diamètre intérieur du blindage 50
    D2 Diamètre du bobinage inductif 28
    D3 Diamètre extérieur de la pièce de liaison 35
    D58 Diamètre de la spire terminale 58
    D60 Diamètre de la spire amont 60
  • Le diamètre intérieur D1 du blindage 50 est supérieur au diamètre D2 du bobinage inductif 28. Par diamètre intérieur D1, on entend le diamètre de la première surface conductrice en regard notamment du bobinage 28. Selon un mode de mise en oeuvre de l'invention particulièrement avantageux, le rapport du diamètre extérieur D2 et du diamètre intérieur D1 est compris entre 0,45 et 0,60 et préférentiellement proche de 0,56. D 2 D 1 0 , 45 0 , 60
    Figure imgb0001
  • La pièce de liaison conductrice 35 est également de symétrie cylindrique de révolution, d'un diamètre externe D3 inférieur au diamètre intérieur D1 du blindage 50. Selon un mode de mise en oeuvre particulièrement avantageux, le diamètre extérieur D3 est compris entre 0,20 et 0,45 fois le diamètre D1, et de préférence proche de 0,368. D 3 D 1 0 , 20 0 , 45
    Figure imgb0002
  • Dans l'exemple de réalisation représenté sur la Figure 5, l'angle α entre une génératrice G de l'extrémité tronconique coaxiale 42 et l'axe de symétrie A est voisin de 15°.
  • De la sorte, les spires 44 du fil conducteur 36 présentent un diamètre D2 sensiblement constant dans la partie cylindrique de révolutions 40 et sensiblement égal au diamètre extérieur du mandrin de bobinage 38. Tandis que les spires jointives de la portion d'extrémité inférieure 46 s'étendent entre une spire terminale 58 dont le diamètre D58 est sensiblement égal à celui du sommet 56 de l'extrémité tronconique coaxial 42 et une spire amont 60 dont le diamètre D60 est sensiblement égal à celui de la base 54 de l'extrémité tronconique coaxial 42. Il est à noter que la valeur de D60 correspond de préférence à la valeur de D2.
  • La spire terminale 58 présente ainsi un diamètre D58 inférieur au diamètre D60 de la spire amont 60. Le diamètre D58 est choisi en relation avec le diamètre D1 de sorte que le rapport D58/D1 soit compris entre 0,2 et 0,45 et de préférence proche de 0,368.
  • Et entre ces deux spires, le rayon de courbure, des spires coaxiales d'extrémité 45 de la portion d'extrémité inférieure 46, décroît, de préférence de manière continue, entre la spire amont 60 et la spire terminale 58, autour de l'extrémité tronconique coaxial 42 sur laquelle elles s'appuient.
  • En référence aux figures 3, et 5 à 10, la spire terminale 58 peut prendre appui contre une surface de la pièce de liaison 35. Cette surface étant de préférence perpendiculaire à l'axe A. Aussi, l'extrémité du fil conducteur qui prolonge la spire terminale 58 peut être soudée sur la pièce de liaison 35. Dans ce mode de réalisation qui comporte la pièce de liaison 35, le diamètre D58 peut être diminué, le rapport D58/D1 pouvant alors être nettement inférieur à 0,368.
  • Grâce à la forme particulière des spires de la portion d'extrémité inférieure 46, dont le diamètre diminue progressivement de la spire amont 60 jusqu'à la spire terminale 58, le champ électrique n'est pas linéaire dans le prolongement de la portion centrale 34 cylindrique du bobinage inductif 28. Il croit régulièrement de la portion d'extrémité supérieure 30 jusqu'à la spire amont 60, puis, grâce à la rupture de pente, il se maintient, voire s'atténue jusqu'à la spire terminale 58. Le maintien ou la diminution dépendant notamment de l'angle α. Le champ électrique au niveau de cette dernière spire 58 est inférieur au champ destructif des matériaux isolants. Il permet ainsi de préserver les matériaux isolants qui l'entourent.
  • Au surplus, grâce à la pièce de liaison 35 on obtient un effet de « garde électrique » sur la spire terminale 58 et également sur la soudure de l'extrémité du fil conducteur qui s'en échappe pour rejoindre la pièce de liaison 35.
  • On observera que le diamètre des spires de la portion d'extrémité inférieure 46 décroît dans l'exemple présenté sur les Figures 3 à 10 de manière linéaire. Il n'est pas du tout exclu de prévoir une décroissance selon une progression mathématique monotone différente.
  • Un second mode de mise en oeuvre de l'invention est illustré sur la Figure 6, où figurent tous les éléments de détail déjà illustré sur la Figure 3. On observera que des spires coaxiales d'extrémité 45' en spirale conique de la portion d'extrémité inférieure 46', qui s'étendent entre la spire amont 60 et la spire terminale 58, sont espacées les unes des autres. Seules les spires en spirale conique et la portion d'extrémité inférieure 46' portent une même référence affectée d'un signe « ' », car elles diffèrent de celles de l'exemple précédent simplement en ce que les spires étaient jointives.
  • Grâce à l'espacement des spires coaxiales d'extrémité 45' en spirale conique on obtient toujours un écrantage du champ électrique dû à la portion d'extrémité inférieure 46' tronconique, mais au surplus, on obtient une meilleure répartition du champ magnétique dans cette zone tronconique. L'angle α de la génératrice par rapport à l'axe de symétrie A peut alors être plus important que dans le mode de réalisation précédent. Il est de préférence compris entre 10° et 80°, avec un très bon compromis à 45°. La figure 10 représente de manière schématique le champ électrique qui s'exerce dans ce mode de réalisation. On peut noter dans cette représentation schématique que la concentration des lignes de champ est plus importante que dans le premier mode de réalisation en spires jointives. C'est pourquoi on privilégiera un angle α plus important que dans le premier mode de réalisation, de manière à compenser un champ électrique supérieur par un champ magnétique moins perturbé favorisant un meilleur facteur de surtension.
  • Selon ce second mode de mise en oeuvre de l'invention, et conformément à une variante de réalisation illustrée sur la Figure 7, on peut ménager une rainure hélicoïdale 62 en spirale conique dans l'extrémité tronconique coaxiale 42, de manière à pouvoir y insérer dans une position donnée, les spires en spirale conique 45', espacées les unes des autres entre la spire amont 60 et la spire terminale 58. De la sorte, les spires en spirale conique 45' sont maintenues axialement en position fixe sur les pentes inclinées de l'extrémité tronconique coaxiale 42.
  • La pièce de liaison 35, dans une variante, de réalisation peut faire partie intégrante de l'électrode centrale haute tension 24. Qu'elle soit intégrée ou non à l'électrode centrale haute tension 24, la pièce de liaison 35 présente une géométrie externe adaptée à la minimisation du champ électrique sur sa surface.
  • la spire terminale 58 peut prendre appui contre une surface de la pièce de liaison 35. Cette surface étant de préférence perpendiculaire à l'axe A. Aussi, l'extrémité du fil conducteur qui prolonge la spire terminale 58 peut être soudée sur la pièce de liaison 35.
  • Ainsi, la pièce de liaison 35 comporte au moins une surface d'appui et une surface de révolution. Les deux surfaces étant reliées entre elles par un congé de raccordement (37, 39).
  • La surface d'appui est destinée notamment à recevoir la spire terminale 58. Cette surface est de préférence perpendiculaire à l'axe A de révolution de la bougie 10.
  • L'extrémité du fil de la spire terminale 58 (ou 58') est connectée électriquement à la pièce de liaison conductrice 35 dans une zone de divergence des lignes 150 de champ électrique. La pièce de liaison 35 a un effet de « garde électrique » sur la spire terminale 58 et surtout sur la soudure 58a (ou 58a') du fil sur la pièce de liaison 35. La pièce de liaison 35 constitue un écran qui atténue l'intensité du champ électrique au niveau de la soudure, grâce aux surfaces présentes. En effet, en référence aux figures 8 à 10, on peut constater une divergence des lignes de champ électrique entre ladite spire terminale 58 (ou 58a') et la pièce de liaison 35, ce qui signifie que le champ électrique est particulièrement faible dans cette zone. Le défaut géométrique dû à la soudure 58a (ou 58a'), qui naturellement engendre une concentration du champ électrique, n'a ainsi plus tendance à provoquer la formation d'une étincelle non désirée. Ceci est le cas pour tout moyen équivalent de liaison.
  • Pour y parvenir, la surface d'appui, prolongé du congé de raccordement, est définie de sorte à provoquer cette divergence des lignes de champ électrique. Une façon d'y parvenir est que l'angle de la surface d'appui par rapport à l'axe de la génératrice G soit inférieur à 180°.
  • La surface de révolution a le diamètre D3 décrit précédemment et qui dépend du diamètre intérieur D1 du blindage 50.
  • En référence à la figure 8, un congé de raccordement 37 relie la surface d'appui et la surface de révolution. Si on se place dans une section de la pièce 35 telle que c'est le cas à la figure 3, ce congé de raccordement 37 correspond à un arc de cercle tangent aux deux surfaces. Le congé de raccordement 37 permet de répartir le champ électrique afin d'éviter une concentration des lignes du champ. La spire terminale 58 (ou 58') est de préférence placée au plus proche de la zone de jonction entre la surface d'appui et le congé de raccordement.
  • Une variante de réalisation du congé de raccordement est représentée à la figure 9. Sur cette figure, en comparaison avec la figure 8, le congé 39 est de forme elliptique afin d'optimiser de manière plus importante la répartition des lignes de champ électrique. L'arc elliptique correspondant a un demi grand axe dans la direction de l'axe A, tandis que le demi petit axe s'étend radialement par rapport à l'axe A.

Claims (9)

  1. Bougie d'allumage (10) radiofréquence comprenant un bobinage inductif (28) et une électrode centrale (24) couplée au bobinage inductif, ledit bobinage inductif (28) présentant dans l'ordre, depuis une borne de connexion électrique de la bougie, une première portion d'extrémité (30), une portion centrale (34), et une deuxième portion d'extrémité (32), ladite électrode centrale (24) s'étendant dans le prolongement de la deuxième portion d'extrémité (32) et à l'opposé de ladite portion centrale (34), ledit bobinage inductif (28) présentant un fil conducteur (36) enroulé hélicoïdalement autour d'un mandrin de bobinage (38) présentant une partie cylindrique de révolution,en formant une succession de spires coaxiales (44, 45, 58, 60), la deuxième portion d'extrémité (32) présentant une spire terminale (58) située à l'opposé de la portion centrale (34) et reliée à l'électrode centrale (24), ledit bobinage inductif (28) étant apte à produire un champ électrique induit dans ladite la deuxième portion d'extrémité (32); où la deuxième portion d'extrémité (32) comprend une pluralité de spires coaxiales d'extrémité (45) qui s'étendent axialement entre ladite spire terminale (58) et une spire amont (60) située vers la portion centrale (34) ;
    caractérisée en ce que ladite spire terminale (58) présente un diamètre D58 inférieur au diamètre D60 de la spire amont (60), tandis que les spires de la pluralité de spires coaxiales d'extrémité (45) présentent un rayon de courbure qui diminue progressivement entre la spire amont (60) et la spire terminale (58), de manière à pouvoir réduire l'intensité du champ électrique induit dans la deuxième portion d'extrémité (32) au voisinage de la spire terminale (58),
    ledit mandrin de bobinage (38) présentant une extrémité tronconique coaxiale (42), ledit fil conducteur (36) étant enroulé hélicoïdalement au moins autour de ladite extrémité tronconique (42) pour former la deuxième portion d'extrémité (32) du bobinage inductif (28).
  2. Bougie d'allumage selon la revendication 1, caractérisée en ce que les spires de la pluralité de spires coaxiales d'extrémité (45, 45') forment une spirale conique.
  3. Bougie d'allumage selon la revendication 1 ou 2, caractérisée en ce que les spires de la pluralité de spires coaxiales d'extrémité (45') sont espacées les unes des autres.
  4. Bougie d'allumage selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle comprend en outre une pièce de liaison conductrice (35) interposée entre la spire terminale (58) et l'électrode centrale (24).
  5. Bougie d'allumage selon la revendication 4, caractérisée en ce que la pièce de liaison conductrice (35) est de symétrie cylindrique de révolution, et en ce qu'elle est ajustée coaxialement à ladite pluralité de spires coaxiales d'extrémité (45, 45').
  6. Bougie d'allumage selon la revendication 5, caractérisée en ce qu'elle comprend en outre un blindage cylindrique de révolution (50) apte à recevoir coaxialement ledit bobinage inductif (28) et la pièce de liaison (35), et en ce que ladite pièce de liaison conductrice (35) présente un diamètre D3 compris entre 0,2 et 0,45 fois le diamètre D1 dudit blindage cylindrique (50).
  7. Bougie d'allumage selon l'une des revendications 4 à 6, caractérisée en ce que l'extrémité du fil de la spire terminale (58 ; 58') est connectée électriquement à la pièce de liaison conductrice (35) dans une zone de divergence des lignes (150) de champ électrique.
  8. Bougie d'allumage selon l'une des revendications 1 à 7, caractérisée en ce que l'extrémité tronconique coaxiale (42) présente une génératrice G formant un angle compris entre 5° et 80° avec l'axe A de l'extrémité tronconique coaxiale (42).
  9. Bougie d'allumage selon l'une des revendications 1 à 8, caractérisée en ce que ladite extrémité tronconique coaxiale (42) du mandrin de bobinage (38) présente une rainure hélicoïdale (62) pour recevoir le fil conducteur (36).
EP11776221.1A 2010-09-10 2011-09-08 Bougie d'allumage pour moteur a combustion interne Not-in-force EP2614562B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057206A FR2964803B1 (fr) 2010-09-10 2010-09-10 Bougie d'allumage pour moteur a combustion interne
PCT/FR2011/052057 WO2012032268A1 (fr) 2010-09-10 2011-09-08 Bougie d'allumage pour moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP2614562A1 EP2614562A1 (fr) 2013-07-17
EP2614562B1 true EP2614562B1 (fr) 2016-04-20

Family

ID=43501492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11776221.1A Not-in-force EP2614562B1 (fr) 2010-09-10 2011-09-08 Bougie d'allumage pour moteur a combustion interne

Country Status (11)

Country Link
US (1) US8810115B2 (fr)
EP (1) EP2614562B1 (fr)
JP (1) JP5813769B2 (fr)
KR (1) KR20130102071A (fr)
CN (1) CN103201916B (fr)
BR (1) BR112013005599B1 (fr)
ES (1) ES2569340T3 (fr)
FR (1) FR2964803B1 (fr)
MX (1) MX2013002622A (fr)
RU (1) RU2577319C2 (fr)
WO (1) WO2012032268A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108251B4 (de) * 2011-10-21 2017-12-07 Borgwarner Ludwigsburg Gmbh Korona-Zündeinrichtung
DE102014102230B4 (de) * 2013-04-22 2019-07-11 Borgwarner Ludwigsburg Gmbh Verfahren zum Herstellen einer Koronazündeinrichtung
DE102013022269B3 (de) * 2013-05-06 2014-07-24 Borgwarner Beru Systems Gmbh Verfahren zum Herstellen einer Korona-Zündeinrichtung
DE102013104643B3 (de) 2013-05-06 2014-06-18 Borgwarner Beru Systems Gmbh Korona-Zündeinrichtung
DE102013110246B4 (de) * 2013-09-17 2017-03-09 Borgwarner Ludwigsburg Gmbh Korona-Zündeinrichtung
KR101507092B1 (ko) * 2013-09-24 2015-03-31 서울대학교산학협력단 자기장 유도 코일이 구비된 점화 플러그
EP2977603A1 (fr) * 2014-07-21 2016-01-27 Apojee Unité et système d'allumage
EP3663572A1 (fr) * 2018-12-04 2020-06-10 Punch Powertrain France Unite d'allumage et produit motorise

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2071389A5 (fr) * 1969-12-26 1971-09-17 Champion Spark Plug Co

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459856A (en) * 1944-08-12 1949-01-25 Mallory & Co Inc P R Transformer spark plug
US4149508A (en) * 1977-07-27 1979-04-17 Kirk Jr Donald Electronic ignition system exhibiting efficient energy usage
US4224554A (en) * 1978-05-20 1980-09-23 Ngk Spark Plug Co., Ltd. Spark plug having a low noise level
US4903674A (en) * 1989-03-13 1990-02-27 General Motors Corporation Spark developing apparatus for internal combustion engines
US5357233A (en) * 1991-08-23 1994-10-18 Nippondenso Co., Ltd. Ignition apparatus for internal combustion engine
CZ282875B6 (cs) * 1994-12-23 1997-11-12 BRISK Tábor a. s. Zapalovací svíčka
DE19840765C2 (de) * 1998-09-07 2003-03-06 Daimler Chrysler Ag Verfahren und integrierte Zündeinheit für die Zündung einer Brennkraftmaschine
US6522232B2 (en) * 2001-04-26 2003-02-18 Delphi Technologies, Inc. Ignition apparatus having reduced electric field HV terminal arrangement
WO2002097831A1 (fr) * 2001-05-31 2002-12-05 Denso Corporation Bobine d'allumage de moteur a combustion interne, et son procede de fabrication
US6668810B1 (en) * 2002-11-06 2003-12-30 Visteon Global Technologies, Inc. Ignition coil assembly with spark plug connector
FR2859830B1 (fr) * 2003-09-12 2014-02-21 Renault Sas Bougie de generation de plasma a inductance integree.
FR2890247B1 (fr) * 2005-08-25 2007-09-28 Renault Sas Bougie d'allumage plasma pour un moteur a combustion interne
FR2890248B1 (fr) * 2005-08-25 2007-09-28 Renault Sas Bougie d'allumage a plasma pour un moteur a combustion interne
FR2893455B1 (fr) * 2005-11-14 2007-12-14 Renault Sas Bougie d'allumage pour moteur a combustion interne
RU2322743C1 (ru) * 2006-07-06 2008-04-20 Открытое акционерное общество "АВТОВАЗ" Свеча зажигания (варианты)
FR2907269B1 (fr) * 2006-10-17 2009-01-30 Renault Sas Dispositif de generation de plasma radiofrequence.
JP4272682B2 (ja) * 2006-10-30 2009-06-03 日本特殊陶業株式会社 内燃機関用スパークプラグ及びその製造方法
DE102009035897A1 (de) * 2009-08-03 2011-02-10 Robert Bosch Gmbh Zündspule, Zündkerze sowie Zündanordnung umfassend eine Zündspule und -kerze
FR2965984B1 (fr) * 2010-10-12 2012-10-12 Renault Sa Prevention contre un court-circuit de la bougie rf

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2071389A5 (fr) * 1969-12-26 1971-09-17 Champion Spark Plug Co

Also Published As

Publication number Publication date
JP2014502401A (ja) 2014-01-30
MX2013002622A (es) 2013-10-28
RU2577319C2 (ru) 2016-03-20
US20130293086A1 (en) 2013-11-07
FR2964803B1 (fr) 2012-08-31
FR2964803A1 (fr) 2012-03-16
KR20130102071A (ko) 2013-09-16
US8810115B2 (en) 2014-08-19
EP2614562A1 (fr) 2013-07-17
CN103201916B (zh) 2016-03-02
BR112013005599A2 (pt) 2020-08-04
RU2013115912A (ru) 2014-10-20
BR112013005599B1 (pt) 2021-03-09
WO2012032268A1 (fr) 2012-03-15
JP5813769B2 (ja) 2015-11-17
ES2569340T3 (es) 2016-05-10
CN103201916A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
EP2614562B1 (fr) Bougie d'allumage pour moteur a combustion interne
EP2080254B1 (fr) Dispositif de generation de plasma radiofrequence
EP1949514B1 (fr) Bougie d'allumage pour un moteur a combustion interne
CA1111377A (fr) Electrode pour appareil generateur d'ozone
EP1920510B1 (fr) Bougie d'allumage plasma pour un moteur a combustion interne
WO2012049403A1 (fr) Prevention contre un court-circuit de la bougie rf
EP1662626B1 (fr) Nouveau procédé de montage d'un ensemble bougie et bobine utilisant une transmission du couple de serrage par le corps de la bobine
EP1897193B1 (fr) Bougie d'allumage pour moteur a combustion interne
EP2526595B1 (fr) Bougie, systeme d'allumage, moteur et procede d'allumage pour le moteur
EP1732187B1 (fr) Bougie à plasma radiofréquence pour l'allumage commandé de moteurs à combustion interne
EP1758219B1 (fr) Bougie d'allumage pour un moteur à combustion interne
BE1009076A5 (fr) Electrode de masse amelioree pour bougie.
FR2982711A1 (fr) Bougie d'allumage
FR3100374A1 (fr) Bobine comprenant un ensemble de spires conductrices asymétriques
FR2995460A1 (fr) "bougie d'allumage de type a etincelle radiofrequence a amorce de rupture integree"
FR2899393A1 (fr) Bougie de generation de plasma radiofrequence pour un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140923

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2569340

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160510

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 793358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011025678

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 793358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011025678

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210922

Year of fee payment: 11

Ref country code: FR

Payment date: 20210921

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210920

Year of fee payment: 11

Ref country code: DE

Payment date: 20210920

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211124

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011025678

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220908

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220909