EP2610965B1 - Antenne compacte à large bande à double polarisation linéaire - Google Patents

Antenne compacte à large bande à double polarisation linéaire Download PDF

Info

Publication number
EP2610965B1
EP2610965B1 EP12199498.2A EP12199498A EP2610965B1 EP 2610965 B1 EP2610965 B1 EP 2610965B1 EP 12199498 A EP12199498 A EP 12199498A EP 2610965 B1 EP2610965 B1 EP 2610965B1
Authority
EP
European Patent Office
Prior art keywords
antenna
mhz
radiating elements
frequencies
electromagnetic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12199498.2A
Other languages
German (de)
English (en)
Other versions
EP2610965A1 (fr
Inventor
Olivier Clauzier
Franck Colombel
Mohammed HIMDI
Cyrille Le Meins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1, Thales SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2610965A1 publication Critical patent/EP2610965A1/fr
Application granted granted Critical
Publication of EP2610965B1 publication Critical patent/EP2610965B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the invention relates to a compact antenna.
  • the invention is in the field of antennas and antenna systems dedicated to applications for receiving and emitting electromagnetic waves in a very wide frequency band.
  • the compact antenna operates in the VHF and UHF bands, that is to say at frequencies between 30 MHz and 3 GHz, and more particularly at frequencies between 30 MHz and 500 MHz.
  • the document US 3,967,276 A describes an antenna having radiating elements, a reflective plane and an absorbing surface.
  • the document JP 6 018650 A describes an antenna having two radiating elements.
  • Antennas as above are described in FR 2,736,212 and are used for various purposes, for example in the field of telecommunications, and are particularly intended to be carried on a craft, whether terrestrial, airborne or naval.
  • these antennas must for example have a visual discretion or a SER, for Surface Equivalent Radar, low, have high radio performance such as a ROS, Stationary Wave Ratio, low, a strong gain, etc., all presenting small dimensions.
  • omnidirectional antennas of linear polarization monopole or dipole type mainly vertical linear polarization, to cover the band between 30 MHz and 500 MHz.
  • the radio performance of dipole type omnidirectional antennas is substantially degraded when they are integrated with gear having metal parts located near said antennas.
  • omni-directional monopole antennas require a sufficiently large ground plane relative to the wavelength to obtain optimal radioelectric performance, these being moreover dependent on the surface of the machine on which they are arranged. . These antennas thus have radioelectric performances impacted by the surface on which they are arranged. Moreover, they do not make it possible to deal with the multi-polarization aspect of electromagnetic waves. Finally, although these antennas have reduced dimensions compared to dipole antennas, they sometimes remain incompatible with criteria of visual discretion, SER, aerodynamics and / or road gauge.
  • the spiral antennas have a limitation of the low frequency of use located around 200 MHz in view of the congestion targeted by the subject of the present application.
  • these antennas are for the most part right or left circular polarization and do not allow to treat the multi-polarization aspect of electromagnetic waves from a single antenna.
  • these antennas generally have gain and ROS values and unidirectional radiation insufficient at low frequencies.
  • This last type of antenna finally has radio performance particularly degraded at low frequencies, that is to say below about 200 MHz, in the case where they must be placed in a metal cavity intended to improve the visual discretion. , the SER and / or the aerodynamics of the craft in which they are integrated. The level of performance degradation varies depending on the diameter of this cavity.
  • the object of the invention is therefore to obtain an antenna which makes it possible to improve the satisfaction of these criteria.
  • the invention relates to an antenna according to claim 1.
  • the compact broadband antenna comprises one or more of the features defined in claims 2 to 10.
  • the invention relates to a land-based, airborne or naval machine according to claim 11.
  • the machine may comprise the feature defined in claim 12.
  • the antenna according to the invention 2 is intended to be fixed on a surface of a mobile machine, for example of an element or a structure of said machine.
  • the antenna 2 is intended to be fixed in a metal cavity formed in the skin of said machine and provided for this purpose.
  • the antenna 2 is intended to emit and receive electromagnetic waves whose frequencies are in the entire frequency range 30 MHz - 500 MHz. Alternatively, it is intended to emit and receive electromagnetic waves whose frequencies are in the entire frequency range 30 MHz - 800 MHz.
  • the antenna 2 comprises a plurality of radiating elements 4 and a wound wound coil 6 (c '). that is to say, it includes resistors, as will be seen later) associated with the radiating elements 4 of the antenna 2.
  • c ' wound wound coil 6
  • the antenna 2 comprises means 8 for impedance matching and power supply radiating elements 4, an absorbent surface 10 and a reflector plane 12.
  • the radiating elements 4 are adapted to receive and emit electromagnetic waves.
  • the radiating elements 4 are made from an electrically conductive material.
  • the radiating elements 4 are made in printed technology known to those skilled in the art.
  • the antenna according to the invention 2 comprises four radiating elements 4. These elements 4 are planar, coplanar and each have a generally triangular shape.
  • triangular general shape is meant a triangle shape, a triangle of which one or more sides have a slight rounding, or a triangle of which one or more vertices are rounded, “chipped” or “blunted”.
  • each radiating element 4 has three vertices.
  • each radiating element 4 comprises a slightly rounded free edge 14 and an opposite peak 16 to said rounded edge 14.
  • These radiating elements 4 are substantially in the same plane P. In addition, all have substantially the same dimensions.
  • the radiating elements 4 also have an opening angle of about 40 ° to optimize the performance of impedance and gain of the antenna 2 over the bandwidth covered, while minimizing the clutter of the antenna. antenna, as will be seen later.
  • the radiating elements 4 are divided into two dipoles 18 each having two radiating elements 4.
  • Each dipole 18 is adapted to emit or receive electromagnetic waves having a vertical linear polarization for one and horizontal for the other.
  • the emission and reception of any polarization wave are then obtained by combining the two linear polarizations in an analog manner by adding for example a coupling function or by digital processing, this being known to those skilled in the art.
  • the dipoles 18 are orthogonal.
  • the two radiating elements 4 of a dipole 18 adapted for a given linear polarization are arranged between the two radiating elements 4 of the other dipole 18, two successive radiating elements 4 being connected by the charged wound corona 6, as will be seen by the following.
  • the two dipoles 18 are substantially inscribed in a circle K of center O, the rounded free edge 14 of each radiating element 4 belonging to this circle.
  • the opposite vertex 16 of each radiating element 4 is oriented towards the center O of the circle K.
  • the dipoles 18 are thus symmetrical with respect to the center O of the circle K.
  • the diameter of the circle K is equal to a fraction of the length of an electromagnetic wave, that is to say that the diameter is equal to ⁇ / n , where ⁇ is the wavelength and n is a strictly positive.
  • n is typically chosen to be 2.
  • the dimensioning of the dipoles is then determined as a rule by the ⁇ / 2 ratio independently of the resulting bulk.
  • the diameter of the circle K is taken substantially equal to 330 mm, n therefore being approximately between 30 and 1.8 respectively for electromagnetic waves of frequency from 30 MHz to 500 MHz.
  • the range of variation of n is adjustable depending on the desired frequency band and radio performance.
  • an antenna whose radiating elements have small dimensions relative to the length of the electromagnetic waves they are intended to capture and / or transmit has degraded radioelectric properties at frequencies corresponding to these wavelengths.
  • the wound coil 6 is able to impart an inductive behavior to the antenna 2, which makes it possible to improve the gain values of the antenna 2 at low frequencies, particularly at frequencies below 300 MHz.
  • wound coil 6 is adapted to optimize the impedance matching and the gain of the antenna 2 at low frequencies.
  • the wound coil 6 comprises a plurality of connecting coils 20 formed between the radiating elements 4.
  • the wound coil 6 thus comprises four connecting coils 20 each connected on each side to two adjacent radiating elements 4.
  • Each connecting coil 20 is formed between two radiating elements 4 so as to describe the arc of the circle K circumscribing the dipoles 18 between the two radiating elements 4 to which it is connected.
  • each coil 20 comprises a plurality of turns of constant diameter and pitch. Each of its turns comprises a point having a maximum distance at the point O.
  • the connecting coils 20 are then arranged so that the circle K circumscribing the dipoles 18 is substantially circumscribed to all of these points for a given binding coil 20 , and this for each of the connection coils 20 that comprises the wound coil 6.
  • the wound coil 6 further comprises resistors 22 adapted to optimize the impedance matching of the antenna 2.
  • a resistor 22 is interposed between each end 24 that has a connecting coil 20 and the radiating element 4 to which it is connected.
  • each resistor 22 is for example substantially equal to 300 Ohms.
  • the value of the resistor 22 is adjustable according to the desired frequency band and radio performance.
  • the diameter D of a connecting coil 20 is equal to 20 mm
  • its pitch (the distance between two successive turns of the connecting coil 20) taken equal to 5 mm
  • the number of turns N of each connection coil 20 is taken as 26, which gives a length H of about 150 mm.
  • Relation (1) then gives a resonance frequency of the connecting coil 20 at about 90 MHz.
  • This resonance then causes a degradation of the ROS performance of the antenna 2 for electromagnetic waves of frequency close to the resonance frequency of the connecting coils 20.
  • connection coils 20 used, as will be seen later in a second embodiment of the invention.
  • the absorbent surface 10 is able to optimize the level of impedance matching, to increase the directivity of the antenna 2 and consequently to improve the gain of the antenna 2 at the low frequencies.
  • this absorbent surface 10 makes it possible to reduce the vertical bulk of the antenna 2 as well as the impact of the surface on which the antenna is fixed on the radio performance of the antenna according to the invention 2.
  • the absorbent surface 10 is made from a ferrite material and is located near the radiating elements 4.
  • the absorbent surface 10 thus absorbs a portion of the radiation emitted by the antenna 2 in the direction opposite to its preferred radiation direction.
  • the figure 3 representing a top view of the absorbent surface 10, in the case in question, it has a generally octagonal shape and lies in a plane substantially parallel to the plane P of the radiating elements 4.
  • the absorbent surface 10 is at a distance from the plane P radiating elements 4 substantially equal to 15 mm.
  • Absorbent surface 10 comprises a plurality of absorbent surface portions 26.
  • the absorbent surface 10 comprises nine portions of absorbent surface 26 of generally square shape and edge with a length taken equal to 100 mm.
  • the absorbent surface 10 is thus included in a 300 mm square edge whose center C belongs to an axis AA 'perpendicular to the plane P and passing through O.
  • the four absorbent surface portions 26 at the corners of this square have a bevel approximately 70 mm wide.
  • the absorbent surface 10 has a thickness of about 7 mm.
  • the reflective plane 12 of the antenna according to the invention 2 is able to provide a reference of mass and to reflect at the high frequencies of the band of the antenna 2, for example above about 350 MHz, a part of the electromagnetic radiation emitted by the antenna 2 in the direction opposite to its preferred radiation direction - the latter being along the axis AA 'and, with reference to the figure 4 , in the direction of the axis AA 'from the lower part of the figure to the upper part of the figure -, and thus increase the radio performance of the antenna 2 at high frequencies.
  • the reflector plane 12 contributes to minimizing the influence of the gear in which the antenna 2 is integrated on the radio performance thereof.
  • the reflective plane 12 is parallel to the plane P and remote from it by a distance equal to a fraction of the length of an electromagnetic wave, that is to say that the distance is equal to ⁇ / m , Where ⁇ is the wavelength and m is a strictly positive number.
  • m is typically chosen to be equal to 4.
  • the distance from the reflector plane to the dipoles is then determined by the ⁇ / 4 ratio independently of the resulting congestion. .
  • the distance from the reflective plane 12 to the plane P is taken substantially equal to 150 mm, m then being approximately between 67 and 4 respectively for electromagnetic waves of frequency ranging from 30 MHz to 500 MHz.
  • the variation range of m is adjustable according to the desired frequency band and radio performance.
  • the reflector plane 12 has a generally circular shape of central axis A-A 'and diameter approximately 350 mm.
  • the radiating elements 4, the reflective plane 12 and the absorbing surface 10 are parallel to each other and are centered around the axis A-A '.
  • the antenna according to the invention 2 thus has dimensions such that it is substantially comprised in a cylinder axis A-A ', diameter 350 mm and height 150 mm.
  • the arrangement of the reflective plane 12 and the absorbent surface 10 with respect to the dipoles 18 is able to minimize the interference between the main radiation of the antenna 2 and the portion of the radiation in the direction opposite to the preferred radiation direction of the antenna 2 which is reflected against the surrounding surfaces or objects and then interferes with the main radiation of the antenna 2.
  • the combination of the reflector plane 12 and the absorbing surface 10 is thus able to minimize the impact on the radio performance of the surface or cavity intended to receive the antenna 2.
  • this combination makes it possible to minimize this impact when said surface or said cavity is made from a metallic material.
  • the impedance matching and power supply means 8 of the antenna 2 are adapted to ensure the impedance matching and the supply of the dipoles 18 of the antenna 2 as well as to symmetrize the currents in the elements radiating 4.
  • these means 8 comprise two connectors 28, two impedance transformers 30, electrical contacts 32 placed between the radiating elements 4 and the transformers 30.
  • these means 8 comprise electrical contacts 34, 36 placed between the connectors 28 and transformers 30, the reference electrical contacts 36 being ground contacts.
  • the connectors 28 are adapted to provide the electrical interface between the antenna 2 and a device (not shown) for transmitting and / or receiving associated therewith.
  • such connectors 28 are intended to be engaged with coaxial cables (not shown) for example, and then have a core 38 and a mass 40 complementary to those of the coaxial cables to which they are connected.
  • each connector 28 is connected to an asymmetrical channel 44 which comprises each impedance transformer 30 via an electrical contact 34, and the ground 40 of each connector 28 is connected to a ground path 46 of each transformer 30 via an electrical contact 36, the ground 40 of each connector 28 being in electrical continuity with the reflector plane 12 via an electrical contact 35.
  • an impedance transformer 30 is adapted to maximize the power transfer between the dipoles 18 of the antenna 2 and the transmitting and / or receiving device to which the antenna 2 is associated.
  • Each dipole 18 is associated with an impedance transformer 30.
  • each impedance transformer 30 comprises two symmetrical channels 42 each connected to one of the radiating elements 4 of the corresponding dipole 18 via an electrical contact 32, as well as an asymmetrical channel 44 and a ground channel 46, as described hereinabove. above..
  • the reference electrical contacts 32 are well known to those skilled in the art and will not be described here.
  • the antenna 2 has lower standing wave ratio values or of the order of 3 for frequencies above 200 MHz, that is, it has good impedance matching qualities over a wide frequency band.
  • the antenna 2 according to this embodiment of the invention has a gain substantially equal to -16 dBi at 100 MHz at -6 dBi at 200 MHz and becomes positive above 310 MHz.
  • the gain is further comprised between -38 dBi and -16 dBi between 30 MHz and 100 MHz.
  • the figure 7 provides the radiation patterns in the azimuth plane of an antenna 2 according to this first embodiment of the invention for frequencies of 30, 50, 100, 300 and 500 MHz.
  • such an antenna 2 has a main radiation lobe, that is to say radiation in its preferred direction, stable as a function of frequency and a good forward / backward ratio, and this even at frequencies less than or equal to 100 MHz.
  • the reflector plane 12 and the absorbing surface 10 contribute to the optimization of the impedance, the directivity and therefore the gain on the utilization band of the antenna 2, as described above.
  • the presence of the absorbent surface 10 and of the reflector plane 12 thus makes the antenna 2 suitable for being disposed both on a surface 41 and in a cavity 43 formed in the skin 45 of a terrestrial, naval or airborne machine 47, so that the radiating elements 4 are flush substantially opening the cavity 43.
  • an antenna 2 according to a second embodiment is envisaged in which the radio performances are further improved.
  • the ROS value is greater than 3 for frequencies between 30 and 200 MHz and greater than 5 for frequencies between 50 and 150 MHz approximately.
  • This variant of the invention is then advantageously used to improve the value of the standing wave ratio at low frequencies.
  • the wound ring 6 comprises four portions of wound crown 48.
  • Each wound coil portion 48 is disposed between two adjacent radiating elements 4 and has four adjacent connecting coils 50.
  • resistor 52 Between two adjacent connecting coils 50 is interposed a resistor 52.
  • the value thereof is for example substantially equal to 300 Ohms. This value is adjustable according to the desired frequency band and radio performance.
  • each connecting coil 50 is decreased with respect to the first embodiment of the invention, as illustrated in FIG. figure 8 .
  • each connecting coil 50 With reference to formula (1), the number of revolutions of each connecting coil 50 being brought back, for example, from 26 to 6.
  • the connection coils 50 then have a resonance frequency around 300 MHz.
  • connection coils 50 according to the second embodiment of the 2 antenna of the invention drop the value of the ROS from more than 9 to 100 MHz in the first embodiment of the antenna 2 according to the invention about 5.2 about 100 MHz in the second embodiment of the antenna 2 according to the invention.
  • the gain of the antenna 2 remains substantially identical as a function of the frequency regardless of the embodiment of the antenna 2 according to the invention, the value of the gain being substantially equal to -16 dBi at 100 MHz, at -6 dBi at 200 MHz and becoming positive beyond 330 MHz according to the second embodiment of the antenna 2 according to the invention.
  • the figure 11 provides the radiation patterns of the antenna 2 according to the second embodiment of the invention.
  • these radiation patterns are substantially similar to the radiation patterns of an antenna 2 according to the first embodiment, the antenna 2 according to the second embodiment of the invention thus having radio-directivity properties similar to those of the antenna 2 according to the first embodiment.
  • the radiating elements 4 of the dipoles 18 of the antenna 2 are sized to be able to emit and / or receive electromagnetic waves of frequency between 30 MHz and 800 MHz .
  • the radio performance of the antenna 2 is degraded because of the limitations related to the diameter and height dimensions of the antenna 2 vis-à-vis the wavelengths at high frequencies and the band pass of the impedance transformer 30 used.
  • the antenna 2 according to the invention is protected by a radome whose shape and material are determined according to criteria known to those skilled in the art.

Description

  • L'invention concerne une antenne compacte.
  • Plus particulièrement, l'invention concerne une antenne d'émission/réception d'ondes électromagnétiques, du type comprenant :
    • deux dipôles orthogonaux, chaque dipôle comprenant deux éléments rayonnants,
    • un plan réflecteur, et
    • une surface absorbante.
  • L'invention se situe dans le domaine des antennes et des systèmes antennaires dédiés à des applications de réception et d'émission d'ondes électromagnétiques dans une très large bande de fréquences. Par exemple, l'antenne compacte opère dans les bandes VHF et UHF, c'est-à-dire à des fréquences comprises entre 30 MHz et 3 GHz, et plus particulièrement à des fréquences comprises entre 30 MHz et 500 MHz.
  • Le document US 3 967 276 A décrit une antenne présentant des éléments rayonnants, un plan réflecteur et une surface absorbante. Le document JP 6 018650 A décrit une antenne présentant deux éléments rayonnants.
  • Des antennes telles que ci-dessus sont décrites dans FR 2 736 212 et sont utilisées à diverses fins, par exemple dans le domaine des télécommunications, et sont notamment destinées à être emportées sur un engin, qu'il soit terrestre, aéroporté ou naval.
  • Dès lors, ces antennes sont soumises à un certain nombre de contraintes techniques spécifiques.
  • Ainsi, ces antennes doivent par exemple présenter une discrétion visuelle ou une SER, pour Surface Equivalente Radar, faibles, disposer de performances radioélectriques élevées telles qu'un ROS, pour Rapport d'Onde Stationnaire, faible, un gain fort, etc., tout en présentant de faibles dimensions.
  • Dans certains cas, elles doivent également être adaptées pour recevoir, émettre et/ou discriminer les ondes électromagnétiques quelle que soit leur polarisation.
  • En outre, elles doivent disposer d'une couverture radioélectrique unidirectionnelle.
  • Enfin, elles ne doivent pas dégrader l'aérodynamisme ou le gabarit routier d'un engin auquel elles sont intégrées et présenter des performances radioélectriques indépendantes vis-à-vis de celui-ci.
  • Des antennes satisfaisant certaines de ces contraintes sont connues de l'état de la technique, par exemple dans les applications de communication.
  • Ainsi, US 7 692 603 B1 décrit une antenne dont les éléments rayonnants sont spiralés. Une telle antenne présente de faibles dimensions adaptées pour minimiser les couplages et interférences électromagnétiques avec les objets avoisinants.
  • En outre, il existe des antennes omnidirectionnelles de type monopôle ou dipôle à polarisation linéaire, principalement à polarisation linéaire verticale, permettant de couvrir la bande comprise entre 30 MHz et 500 MHz.
  • Toutefois, ces solutions ne donnent pas entière satisfaction.
  • En effet, la plupart des antennes de l'état de la technique ne présentent qu'une partie des caractéristiques décrites ci-dessus.
  • Ainsi, la plupart des antennes connues de l'homme du métier présentent un encombrement incompatible avec les critères:
    • □ de discrétion visuelle,
    • □ et/ou de réduction de la SER,
    • □ et/ou d'optimisation de l'aérodynamisme de l'engin auquel elles sont intégrées,
    • □ et/ou de respect du gabarit routier dudit engin.
  • En outre, les performances radioélectriques des antennes omnidirectionnelles de type dipôle sont sensiblement dégradées lorsqu'elles sont intégrées à des engins présentant des parties métalliques situées à proximité desdites antennes.
  • Par ailleurs, les antennes omnidirectionnelles de type monopôle nécessitent un plan de masse suffisamment grand par rapport à la longueur d'onde pour obtenir des performances radioélectriques optimales, celles-ci étant en outre dépendantes de la surface de l'engin sur laquelle elles sont agencées. Ces antennes présentent ainsi des performances radioélectriques impactées par la surface sur laquelle elles sont agencées. De plus, elles ne permettent pas de traiter l'aspect multi-polarisations des ondes électromagnétiques. Enfin, bien que ces antennes aient des dimensions réduites par rapport aux antennes dipôles, celles-ci restent parfois incompatibles avec des critères de discrétion visuelle, de SER, d'aérodynamisme et/ou de gabarit routier.
  • De même, les antennes spiralées présentent une limitation de la fréquence basse d'utilisation située aux alentours de 200 MHz au regard de l'encombrement visé par l'objet de la présente demande. En outre, ces antennes sont pour la plupart à polarisation circulaire droite ou gauche et ne permettent pas de traiter l'aspect multi-polarisation des ondes électromagnétiques à partir d'une seule antenne. De plus, ces antennes présentent généralement des valeurs de gain et de ROS ainsi qu'un caractère unidirectionnel du rayonnement insuffisants en basses fréquences.
  • Ce dernier type d'antenne présente enfin des performances radioélectriques particulièrement dégradées en basses fréquences, c'est-à-dire en dessous d'environ 200 MHz, dans le cas où elles doivent être placées dans une cavité métallique destinée à améliorer la discrétion visuelle, la SER et/ou l'aérodynamisme de l'engin auquel elles sont intégrées. Le niveau de dégradation de performances varie en fonction du diamètre de cette cavité.
  • L'objet de l'invention est donc d'obtenir une antenne qui permette d'améliorer la satisfaction de ces critères.
  • A cet effet, l'invention concerne une antenne selon la revendication 1.
  • Selon d'autres aspects de l'invention, l'antenne compacte à large bande comprend l'une ou plusieurs des caractéristiques définies dans les revendications 2 à 10.
  • En outre, l'invention concerne un engin terrestre, aéroporté ou naval selon la revendication 11.
  • Selon d'autres aspects de l'invention, l'engin peut comprendre la caractéristique définie dans la revendication 12.
  • L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels :
    • la figure 1 représente une vue du dessus d'un premier mode de réalisation d'une antenne selon l'invention,
    • la figure 2 représente une vue d'une partie d'une bobine de liaison de l'antenne de la figure 1,
    • la figue 3 représente une vue du dessus de la surface absorbante dans une antenne selon l'invention,
    • la figure 4 représente une vue de côté du premier mode de réalisation d'une antenne selon l'invention,
    • la figure 5 est un diagramme de représentation du rapport d'onde stationnaire en fonction de la fréquence pour une antenne selon le premier mode de réalisation de l'invention,
    • la figure 6 est un diagramme de représentation du gain d'une antenne selon le premier mode de réalisation de l'invention en fonction de la fréquence,
    • la figure 7 représente des diagrammes de rayonnement selon le plan azimutal d'une antenne selon le premier mode de réalisation de l'invention pour des fréquences valant 30 MHz, 50 MHz, 100 MHz, 300 MHz et 500 MHz,
    • la figure 8 représente une vue du dessus d'un second mode de réalisation d'une antenne selon l'invention,
    • la figure 9 est un diagramme de représentation du rapport d'onde stationnaire en fonction de la fréquence dans une antenne selon les premier et deuxième modes de réalisation de l'invention,
    • la figure 10 est un diagramme de représentation du gain en fonction de la fréquence d'une antenne selon le premier et le second modes de réalisation de l'invention,
    • la figure 11 représente des diagrammes de rayonnement selon le plan azimutal d'une antenne selon le second mode de réalisation pour des fréquences valant 30 MHz, 50 MHz, 100 MHz, 300 MHz et 500 MHz, et
    • la figure 12 est une vue de côté de l'antenne de la figure 4 disposée dans une cavité.
  • L'antenne selon l'invention 2 est destinée à être fixée sur une surface d'un engin mobile, par exemple d'un élément ou d'une structure dudit engin. Avantageusement, l'antenne 2 est destinée à être fixée dans une cavité métallique ménagée dans la peau dudit engin et prévue à cet effet.
  • L'antenne 2 est destinée à émettre et recevoir des ondes électromagnétiques dont les fréquences sont comprises dans toute la gamme de fréquences 30 MHz - 500 MHz. En variante, elle est destinée à émettre et recevoir des ondes électromagnétiques dont les fréquences sont comprises dans toute la gamme de fréquences 30 MHz - 800 MHz.
  • En référence à la figure 1 et à la figure 4, qui représentent respectivement une vue de dessus et une vue de côté d'une antenne 2 dans un premier mode de réalisation de l'invention, l'antenne 2 comprend une pluralité d'éléments rayonnants 4 et une couronne bobinée 6 chargée (c'est-à-dire qu'elle comprend des résistances, comme on le verra par la suite) associée aux éléments rayonnants 4 de l'antenne 2. En outre, elle comprend des moyens 8 d'adaptation d'impédance et d'alimentation des éléments rayonnants 4, une surface absorbante 10, ainsi qu'un plan réflecteur 12.
  • Les éléments rayonnants 4 sont propres à recevoir et émettre des ondes électromagnétiques.
  • A cet effet, les éléments rayonnants 4 sont réalisés à partir d'un matériau électriquement conducteur.
  • Dans le mode de réalisation de la figure 1, les éléments rayonnants 4 sont réalisés en technologie imprimée connue de l'homme du métier.
  • En référence à la figure 1, l'antenne selon l'invention 2 comprend quatre éléments rayonnants 4. Ces éléments 4 sont plans, coplanaires et présentent chacun une forme générale triangulaire.
  • Par « forme générale triangulaire », on entend une forme de triangle, de triangle dont un ou plusieurs côtés présentent un léger arrondi, ou encore de triangle dont un ou plusieurs sommets sont arrondis, « écornés » ou « émoussés ».
  • Dans l'exemple illustré sur la Figure 1, chaque élément rayonnant 4 présente trois sommets. En outre, chaque élément rayonnant 4 comprend un bord libre 14 légèrement arrondi et un sommet opposé 16 audit bord arrondi 14.
  • Ces éléments rayonnants 4 sont sensiblement compris dans un même plan P. En outre, tous présentent sensiblement les mêmes dimensions.
  • Dans l'exemple de la figure 1, les éléments rayonnants 4 présentent par ailleurs un angle d'ouverture d'environ 40° permettant d'optimiser les performances d'impédance et de gain de l'antenne 2 sur la largeur de bande couverte, tout en minimisant l'encombrement de l'antenne, comme on le verra par la suite.
  • Les éléments rayonnants 4 sont répartis en deux dipôles 18 comportant chacun deux éléments rayonnants 4.
  • Chaque dipôle 18 est propre à émettre ou recevoir des ondes électromagnétiques présentant une polarisation linéaire verticale pour l'un et horizontale pour l'autre. L'émission et la réception d'ondes de polarisation quelconque (polarisation linéaire quelconque ou polarisation circulaire ou polarisation elliptique) sont alors obtenues par combinaison des deux polarisations linéaires de manière analogique en ajoutant par exemple une fonction de couplage ou par traitement numérique, ceci étant connu de l'homme du métier.
  • A cet effet, les dipôles 18 sont orthogonaux. Les deux éléments rayonnants 4 d'un dipôle 18 adapté pour une polarisation linéaire donnée sont agencés entre les deux éléments rayonnants 4 de l'autre dipôle 18, deux éléments rayonnants 4 successifs étant reliés par la couronne bobinée chargée 6, comme on le verra par la suite.
  • Les deux dipôles 18 sont sensiblement inscrits dans un cercle K de centre O, le bord libre 14 arrondi de chaque élément rayonnant 4 appartenant à ce cercle. En outre, le sommet opposé 16 de chaque élément rayonnant 4 est orienté vers le centre O du cercle K. Les dipôles 18 sont ainsi symétriques par rapport au centre O du cercle K.
  • Le diamètre du cercle K est égal à une fraction de la longueur d'une onde électromagnétique, c'est-à-dire que le diamètre est égal à λ / n , où λ est la longueur d'onde et n est un nombre strictement positif.
  • Pour une antenne idéale de faible largeur de bande centrée autour d'une longueur d'onde λ, n est typiquement choisi égal à 2.
  • Le dimensionnement des dipôles est alors déterminé en règle générale par le ratio λ/2 indépendamment de l'encombrement résultant.
  • Or, les contraintes d'encombrement et de largeur de bande auxquelles l'antenne 2 selon l'invention répond se traduisent par un écart important avec ce cas de figure.
  • Ainsi, dans le mode de réalisation considéré, le diamètre du cercle K est pris sensiblement égal à 330 mm, n étant donc compris approximativement entre 30 et 1,8 respectivement pour des ondes électromagnétiques de fréquence allant de 30 MHz à 500 MHz.
  • Dans certains modes de réalisation, la plage de variation de n est ajustable en fonction de la bande de fréquence et des performances radioélectriques recherchées.
  • De manière connue, une antenne dont les éléments rayonnants présentent des dimensions faibles par rapport à la longueur des ondes électromagnétiques qu'ils sont destinés à capter et/ou émettre présente des propriétés radioélectriques dégradées aux fréquences correspondant à ces longueurs d'onde.
  • Ainsi, la couronne bobinée 6 est propre à conférer un comportement selfique à l'antenne 2, ce qui permet d'améliorer les valeurs de gain de l'antenne 2 aux basses fréquences, particulièrement aux fréquences inférieures à 300 MHz.
  • En outre, la couronne bobinée 6 est propre à optimiser l'adaptation d'impédance et le gain de l'antenne 2 aux basses fréquences.
  • A cet effet, la couronne bobinée 6 comprend une pluralité de bobines de liaison 20 ménagées entre les éléments rayonnants 4.
  • Dans le mode de réalisation de la figure 1, la couronne bobinée 6 comprend ainsi quatre bobines de liaison 20 raccordées chacune de part et d'autre à deux éléments rayonnants 4 adjacents.
  • Chaque bobine de liaison 20 est ménagée entre deux éléments rayonnants 4 de façon à décrire l'arc du cercle K circonscrit aux dipôles 18 compris entre les deux éléments rayonnants 4 auxquels elle est raccordée.
  • Comme illustré sur la figure 1, chaque bobine 20 comprend une pluralité de spires de diamètre et de pas constants. Chacune de ses spires comprend un point présentant une distance maximale au point O. Les bobines de liaison 20 sont alors disposées de sorte que le cercle K circonscrit aux dipôles 18 soit sensiblement circonscrit à l'ensemble de ces points pour une bobine de liaison 20 donnée, et ce pour chacune des bobines de liaison 20 que comprend la couronne bobinée 6.
  • La couronne bobinée 6 comprend en outre des résistances 22 propres à optimiser l'adaptation d'impédance de l'antenne 2.
  • A cet effet, une résistance 22 est intercalée entre chaque extrémité 24 que présente une bobine de liaison 20 et l'élément rayonnant 4 auquel celle-ci est raccordée.
  • Dans l'exemple de la figure 1, la valeur de chaque résistance 22 est par exemple sensiblement égale à 300 Ohms. La valeur de la résistance 22 est ajustable en fonction de la bande de fréquence et des performances radioélectriques recherchées.
  • De manière connue et en référence à la figure 2 qui représente une vue d'une bobine de liaison 20, chaque bobine de liaison 20 génère une résonance importante autour d'une valeur de fréquence f 0, cette fréquence f 0 dite « fréquence de résonance de la bobine de liaison 20» étant définie par : f 0 = 29 , 85. H D 1 5 N . D ,
    Figure imgb0001

    f 0 étant en MHz, H la longueur de la bobine de liaison 20 (en m), D le diamètre de la bobine de liaison 20 (en m) et N le nombre de tours de fil bobiné de la bobine de liaison 20.
  • Dans le mode de réalisation des figures 1 et 2, le diamètre D d'une bobine de liaison 20 est égal à 20 mm, son pas (la distance entre deux spires successives de la bobine de liaison 20) pris égal à 5 mm, et le nombre de tours N de chaque bobine de liaison 20 est pris égal à 26, ce qui donne une longueur H d'environ 150 mm.
  • La relation (1) donne alors une fréquence de résonance de la bobine de liaison 20 environ à 90 MHz.
  • Cette résonance cause alors une dégradation des performances de ROS de l'antenne 2 pour des ondes électromagnétiques de fréquence proche de la fréquence de résonance des bobines de liaison 20.
  • On conçoit qu'il est intéressant de décaler cette fréquence de résonance en modifiant les dimensions des bobines de liaison 20 utilisées, comme on le verra par la suite dans un second mode de réalisation de l'invention.
  • De manière connue de l'homme du métier, la surface absorbante 10 est propre à optimiser le niveau d'adaptation d'impédance, à augmenter la directivité de l'antenne 2 et par conséquent à améliorer le gain de l'antenne 2 aux basses fréquences.
  • En outre, cette surface absorbante 10 permet de réduire l'encombrement vertical de l'antenne 2 ainsi que l'impact de la surface sur laquelle l'antenne est fixée sur les performances radioélectriques de l'antenne selon l'invention 2.
  • A cet effet, la surface absorbante 10 est réalisée à partir d'un matériau de type ferrite et est située à proximité des éléments rayonnants 4.
  • La surface absorbante 10 absorbe ainsi une partie du rayonnement émis par l'antenne 2 dans la direction opposée à sa direction de rayonnement privilégiée.
  • En référence aux figures 3 et 4, la figure 3 représentant une vue du dessus de la surface absorbante 10, dans le cas considéré, celle-ci présente une forme générale octogonale et est comprise dans un plan sensiblement parallèle au plan P des éléments rayonnants 4. La surface absorbante 10 est à une distance du plan P des éléments rayonnants 4 sensiblement égale à 15 mm.
  • La surface absorbante 10 comprend une pluralité de portions de surface absorbante 26.
  • Dans l'exemple de la figure 3, la surface absorbante 10 comprend neuf portions de surface absorbante 26 de forme générale carrée et d'arête d'une longueur prise égale à 100 mm.
  • La surface absorbante 10 est ainsi comprise dans un carré d'arête 300 mm dont le centre C appartient à un axe A-A' perpendiculaire au plan P et passant par O. Les quatre portions de surface absorbante 26 situées aux angles de ce carré présentent un biseau de largeur environ égale à 70 mm.
  • En regard de la Figure 4, la surface absorbante 10 présente une épaisseur d'environ 7 mm.
  • De manière connue, le plan réflecteur 12 de l'antenne selon l'invention 2 est propre à fournir une référence de masse et à réfléchir aux hautes fréquences de la bande de l'antenne 2, par exemple au dessus d'environ 350 MHz, une partie du rayonnement électromagnétique émis par l'antenne 2 dans la direction opposée à sa direction de rayonnement privilégiée - celle-ci étant selon l'axe A-A' et, en référence à la figure 4, dans le sens du parcours de l'axe A-A' depuis la partie inférieure de la figure vers la partie supérieure de la figure - , et ainsi augmenter les performances radioélectriques de l'antenne 2 aux hautes fréquences.
  • En outre, le plan réflecteur 12 contribue à minimiser l'influence de l'engin auquel est intégrée l'antenne 2 sur les performances radioélectriques de celle-ci.
  • Ainsi, le plan réflecteur 12 est parallèle au plan P et distant de celui-ci d'une distance égale à une fraction de la longueur d'une onde électromagnétique, c'est-à-dire que la distance est égale à λ/ m , 1 où λ est la longueur d'onde et m est un nombre strictement positif.
  • Pour une antenne idéale de faible largeur de bande centrée autour d'une longueur d'onde λ, m est typiquement choisi égal à 4. La distance du plan réflecteur aux dipôles est alors déterminée par le ratio λ/4 indépendamment de l'encombrement résultant.
  • Or, les contraintes d'encombrement et de largeur de bande auxquelles l'antenne 2 selon l'invention répond se traduisent par un écart important avec ce cas de figure.
  • Ainsi, dans le mode de réalisation considéré, la distance du plan réflecteur 12 au plan P est prise sensiblement égale à 150 mm, m étant alors compris approximativement entre 67 et 4 respectivement pour des ondes électromagnétiques de fréquence allant de 30 MHz à 500 MHz.
  • Dans certains modes de réalisation, la plage de variation de m est ajustable en fonction de la bande de fréquence et des performances radioélectriques recherchées.
  • Le plan réflecteur 12 présente une forme générale circulaire d'axe central A-A' et de diamètre environ 350 mm.
  • Les éléments rayonnants 4, le plan réflecteur 12 et la surface absorbante 10 sont parallèles entre eux et sont centrés autour de l'axe A-A'.
  • En référence à la figure 4, l'antenne selon l'invention 2 présente ainsi des dimensions telles qu'elle est sensiblement comprise dans un cylindre d'axe A-A', de diamètre 350 mm et de hauteur 150 mm.
  • En outre, la disposition du plan réflecteur 12 et de la surface absorbante 10 par rapport aux dipôles 18 est propre à minimiser les interférences entre le rayonnement principal de l'antenne 2 et la partie du rayonnement dans la direction opposée à la direction de rayonnement privilégiée de l'antenne 2 qui se réfléchit contre les surfaces ou les objets avoisinants et interfère alors avec le rayonnement principal de l'antenne 2.
  • La combinaison du plan réflecteur 12 et de la surface absorbante 10 est ainsi propre à minimiser l'impact sur les performances radioélectriques de la surface ou de la cavité prévue pour accueillir l'antenne 2.
  • Plus particulièrement, cette combinaison permet de minimiser cet impact lorsque la dite surface ou ladite cavité est réalisée à partir d'un matériau métallique.
  • Les moyens d'adaptation d'impédance et d'alimentation 8 de l'antenne 2 sont propres à assurer l'adaptation d'impédance et l'alimentation des dipôles 18 de l'antenne 2 ainsi qu'à symétriser les courants dans les éléments rayonnants 4.
  • A cet effet, ces moyens 8 comprennent deux connecteurs 28, deux transformateurs d'impédance 30, des contacts électriques 32 placés entre les éléments rayonnant 4 et les transformateurs 30. En outre, ces moyens 8 comprennent des contacts électriques 34, 36 placés entre les connecteurs 28 et les transformateurs 30, les contacts électriques de référence 36 étant des contacts de masse.
  • Les connecteurs 28 sont adaptés pour assurer l'interface électrique entre l'antenne 2 et un dispositif (non représenté) d'émission et/ou de réception qui lui est associé.
  • De manière connue, de tels connecteurs 28 sont destinés à être mis en prise avec des câbles coaxiaux (non représentés) par exemple, et présentent alors une âme 38 et une masse 40 complémentaires de celles des câbles coaxiaux auxquels ils sont raccordés.
  • Dans le mode de réalisation de la figure 4, l'âme 38 de chaque connecteur 28 est raccordée à une voie asymétrique 44 que comprend chaque transformateur d'impédance 30 via un contact électrique 34, et la masse 40 de chaque connecteur 28 est raccordée à une voie de masse 46 de chaque transformateur 30 via un contact électrique 36, la masse 40 de chaque connecteur 28 étant en continuité électrique avec le plan réflecteur 12 via un contact électrique 35.
  • De tels contacts électriques 34, 35, 36 sont bien connus de l'homme du métier et ne seront pas décrits ici.
  • De manière connue, un transformateur d'impédance 30 est adapté pour maximiser le transfert de puissance entre les dipôles 18 de l'antenne 2 et le dispositif d'émission et/ou de réception auquel l'antenne 2 est associée.
  • A chaque dipôle 18 est associé un transformateur d'impédance 30.
  • Comme illustré sur la Figure 4, chaque transformateur d'impédance 30 comprend deux voies symétriques 42 raccordées chacune à l'un des éléments rayonnants 4 du dipôle 18 correspondant via un contact électrique 32, ainsi qu'une voie asymétrique 44 et une voie de masse 46, comme décrit ci-dessus..
  • Les contacts électriques de référence 32 sont bien connus de l'homme du métier et ne seront pas décrits ici.
  • En référence à la figure 5, qui est une courbe de représentation du ROS de l'antenne 2 selon le premier mode de réalisation en fonction de la fréquence, l'antenne 2 présente des valeurs de rapport d'onde stationnaire inférieures ou de l'ordre de 3 pour des fréquences supérieures à 200 MHz, c'est-à-dire qu'elle présente de bonnes qualités d'adaptation d'impédance sur une large bande de fréquences.
  • Par ailleurs, en référence à la figure 6, qui est une courbe de représentation du gain de l'antenne 2 selon ce mode de réalisation en fonction de la fréquence, l'antenne 2 selon ce mode de réalisation de l'invention présente un gain sensiblement égal à -16 dBi à 100 MHz, à -6 dBi à 200 MHz et devient positif au-delà de 310 MHz.
  • Le gain est en outre compris entre -38 dBi et -16 dBi entre 30 MHz et 100 MHz.
  • La figure 7 fournit les diagrammes de rayonnement dans le plan azimutal d'une antenne 2 selon ce premier mode de l'invention pour des fréquences valant 30, 50, 100, 300 et 500 MHz.
  • On constate sur ces diagrammes qu'une telle antenne 2 présente un lobe de rayonnement principal, c'est-à-dire de rayonnement dans sa direction privilégiée, stable en fonction de la fréquence ainsi qu'un bon rapport avant/arrière, et ce même aux fréquences inférieures ou égales à 100 MHz. En outre, le plan réflecteur 12 et la surface absorbante 10 contribuent à l'optimisation de l'impédance, de la directivité et par conséquent du gain sur la bande d'utilisation de l'antenne 2, comme décrit ci-dessus.
  • Comme décrit ci-dessus et en référence à la figure 12, qui est une vue de côté d'une antenne 2 disposée dans une cavité 43, la présence de la surface absorbante 10 et du plan réflecteur 12 rend ainsi l'antenne 2 propre à être disposée aussi bien sur une surface 41 que dans une cavité 43 ménagée dans la peau 45 d'un engin 47 terrestre, naval ou aéroporté, de telle sorte que les éléments rayonnants 4 affleurent sensiblement l'ouverture de la cavité 43.
  • Ainsi, l'antenne 2 selon ce mode de réalisation de l'invention :
    • présente un faible encombrement par rapport aux longueurs d'onde d'utilisation,
    • dispose d'une large bande passante,
    • est discrète visuellement,
    • présente de bonnes performances radioélectriques pour des fréquences comprises entre 30 et 500 MHz au regard des contraintes fixées,
    • est propre à traiter des ondes électromagnétiques quelle que soit leur polarisation,
    • présente un rayonnement permettant une couverture radioélectrique quasi-unidirectionnelle sur une large bande de fréquence,
    • réduit la dépendance vis-à-vis de la surface de l'engin sur laquelle elle est agencée, et
    • est avantageusement adaptée pour être installée dans une cavité métallique, comme illustré sur la Figure 12.
  • Elle est ainsi adaptée pour satisfaire simultanément de nombreuses contraintes auxquelles les antennes de l'état de la technique ne répondent que partiellement.
  • En variante, une antenne 2 selon un deuxième mode de réalisation est envisagée dans laquelle les performances radioélectriques sont encore améliorées.
  • En effet, comme illustré sur la figure 5, la valeur du ROS est supérieure à 3 pour des fréquences comprises entre 30 et 200 MHz et supérieure à 5 pour des fréquences comprises entre 50 et 150 MHz environ.
  • Cette valeur du ROS résulte de la présence des bobines de liaison 20 qui dégradent l'adaptation d'impédance de l'antenne 2 autour de leur fréquence de résonance.
  • Cette variante de l'invention est alors avantageusement utilisée pour améliorer la valeur du rapport d'onde stationnaire aux basses fréquences.
  • Comme illustré sur la figure 8, qui est une vue du dessus de l'antenne 2 selon le deuxième mode de réalisation, la couronne bobinée 6 comprend quatre portions de couronne bobinée 48.
  • Chaque portion de couronne bobinée 48 est disposée entre deux éléments rayonnants 4 adjacents et présente quatre bobines de liaison 50 adjacentes.
  • Entre deux bobines de liaison 50 adjacentes est intercalée une résistance 52. La valeur de celle-ci est par exemple sensiblement égale à 300 Ohms. Cette valeur est ajustable en fonction de la bande de fréquence et des performances radioélectriques recherchées.
  • Le nombre de spires de chaque bobine de liaison 50 est diminué par rapport au premier mode de réalisation de l'invention, comme illustré sur la figure 8.
  • En référence à la formule (1), le nombre de tours de chaque bobine de liaison 50 étant ramené par exemple de 26 à 6. Les bobines de liaison 50 présentent alors une fréquence de résonance aux alentours de 300 MHz.
  • Ce décalage de la fréquence de résonance des bobines de liaison 50 vers les hautes fréquences est avantageux, dans la mesure où à partir de cette fréquence de 300 MHz, le rayonnement de l'antenne 2 est assuré par les dipôles 18 uniquement.
  • Les performances de ROS dégradées aux basses fréquences de l'antenne 2 selon le premier mode de réalisation de l'invention du fait de la résonance des bobines de liaison peuvent ainsi être améliorées.
  • En référence aux figures 9 et 10, qui sont des courbes de représentation respectivement du ROS et du gain d'une antenne 2 selon les deux modes de réalisation sur la plage de fréquences, on constate alors que les dimensions des bobines de liaison 50 selon le deuxième mode de réalisation de l'antenne 2 de l'invention font chuter la valeur du ROS de plus de 9 à 100 MHz dans le premier mode de réalisation de l'antenne 2 selon l'invention à environ 5.2 environ à 100 MHz dans le deuxième mode de réalisation de l'antenne 2 selon l'invention.
  • En outre, le gain de l'antenne 2 reste sensiblement identique en fonction de la fréquence quel que soit le mode de réalisation de l'antenne 2 selon l'invention, la valeur du gain étant sensiblement égal à -16 dBi à 100 MHz, à -6 dBi à 200 MHz et devenant positive au-delà de 330 MHz selon le deuxième mode de réalisation de l'antenne 2 selon l'invention.
  • La figure 11 fournit les diagrammes de rayonnement de l'antenne 2 selon le deuxième mode de réalisation de l'invention.
  • On constate que ces diagrammes de rayonnement sont sensiblement similaires aux diagrammes de rayonnement d'une antenne 2 selon le premier mode de réalisation, l'antenne 2 selon le deuxième mode de réalisation de l'invention présentant ainsi des propriétés de directivité radioélectrique similaires à celles de l'antenne 2 selon le premier mode de réalisation.
  • En variante (non représentée), les éléments rayonnants 4 des dipôles 18 de l'antenne 2 selon les deux modes de réalisation de l'invention sont dimensionnés pour pouvoir émettre et/ou recevoir des ondes électromagnétiques de fréquence comprise entre 30 MHz et 800 MHz.
  • Au delà de 800 MHz, les performances radioélectriques de l'antenne 2 sont dégradées du fait des limitations liées aux dimensions en diamètre et en hauteur de l'antenne 2 vis-à-vis des longueurs d'ondes aux hautes fréquences et à la bande passante du transformateur d'impédance 30 utilisé.
  • Dans une autre variante (non représentée), l'antenne 2 selon l'invention est protégée par un radôme dont la forme et le matériau sont déterminés en fonction de critères connus de l'homme du métier.

Claims (12)

  1. Antenne (2) d'émission/réception d'ondes électromagnétiques, du type comprenant deux dipôles (18) orthogonaux, chaque dipôle (18) comprenant deux éléments rayonnants (4), l'antenne (2) comprenant en outre un plan réflecteur (12) et une surface absorbante (10),
    où les éléments rayonnants (4) sont sensiblement plans et présentent chacun une forme générale triangulaire, chaque élément rayonnant (4) étant agencé entre les deux éléments rayonnants (4) de l'autre dipôle (18), caractérisée en ce que deux éléments rayonnants (4) successifs sont reliés par une couronne bobinée (6).
  2. Antenne (2) selon la revendication 1, caractérisée en ce que les éléments rayonnants (4) sont tous sensiblement compris dans un même plan (P).
  3. Antenne (2) selon la revendication 1 ou 2, caractérisée en ce que chaque élément rayonnant (4) présente un bord libre (14) légèrement arrondi, les dipôles (18) étant sensiblement inscrits dans un cercle (K), le bord libre (14) de chaque élément rayonnant (4) appartenant audit cercle (K).
  4. Antenne (2) selon la revendication 3, caractérisée en ce que chaque élément rayonnant (4) comprend un sommet (16) opposé à son bord libre (14) arrondi, ledit sommet (16) de chaque élément rayonnant (14) étant sensiblement orienté vers le centre (O) dudit cercle (K).
  5. Antenne (2) selon l'une quelconque des revendications précédentes, caractérisée en ce que la couronne bobinée (6) comprend des bobines de liaison (20), chaque bobine de liaison (20) étant raccordée à deux éléments rayonnants (4) successifs.
  6. Antenne (2) selon la revendication 5, caractérisée en ce qu'une bobine de liaison (20) présente deux extrémités (24) raccordées chacune via une résistance (22) à l'un des éléments rayonnants (4) auxquels la bobine de liaison (20) est raccordée.
  7. Antenne (2) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la couronne bobinée (6) comprend des portions de couronne bobinée (48), chaque portion de couronne bobinée (48) reliant deux éléments rayonnants (4) successifs et présentant plusieurs bobines de liaison (50) adjacentes, une résistance (52) étant disposée entre deux bobines de liaison (50) adjacentes.
  8. Antenne (2) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est intégralement comprise dans un cylindre de diamètre sensiblement égal à 350 mm et de hauteur sensiblement égale à 150 mm.
  9. Antenne (2) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est adaptée pour émettre/recevoir des ondes électromagnétiques dont les fréquences sont comprises dans toute la gamme de fréquences 30 MHz - 500 MHz, et avantageusement dans toute la gamme de fréquences 30 MHz - 800 MHz.
  10. Antenne (2) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est propre à émettre et recevoir des ondes électromagnétiques présentant une polarisation parmi une polarisation linéaire quelconque, une polarisation circulaire ou une polarisation elliptique, chaque dipôle (18) étant respectivement propre à l'émission/réception d'ondes électromagnétiques présentant une polarisation linéaire horizontale pour l'un des dipôles (18) et linéaire verticale pour l'autre dipôle (18).
  11. Engin (47) terrestre, aéroporté ou naval, du type comportant :
    - une surface plane (41) et/ou une cavité (43) ménagée de l'engin (47),
    - une antenne (2) selon l'une quelconque des revendications précédentes agencée sur la surface plane (41) et/ou dans la cavité (43).
  12. Engin (47) selon la revendication 11, caractérisé en ce que la surface plane (41) et/ou la cavité (43) sont réalisées à partir d'un matériau métallique.
EP12199498.2A 2011-12-27 2012-12-27 Antenne compacte à large bande à double polarisation linéaire Active EP2610965B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1104120A FR2985097B1 (fr) 2011-12-27 2011-12-27 Antenne compacte large bande a double polarisation lineaire

Publications (2)

Publication Number Publication Date
EP2610965A1 EP2610965A1 (fr) 2013-07-03
EP2610965B1 true EP2610965B1 (fr) 2014-07-16

Family

ID=47388483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12199498.2A Active EP2610965B1 (fr) 2011-12-27 2012-12-27 Antenne compacte à large bande à double polarisation linéaire

Country Status (5)

Country Link
EP (1) EP2610965B1 (fr)
AU (1) AU2013200057B2 (fr)
CA (1) CA2800949C (fr)
FR (1) FR2985097B1 (fr)
ZA (1) ZA201300044B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490022B (zh) * 2016-01-15 2018-06-19 北京航空航天大学 多通道紧缩场馈源

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967276A (en) * 1975-01-09 1976-06-29 Beam Guidance Inc. Antenna structures having reactance at free end
FR2736212B1 (fr) * 1990-12-14 1998-01-02 Dassault Electronique Coupleur balun hyperfrequence integre, en particulier pour antenne dipole
JPH0618650A (ja) * 1992-07-03 1994-01-28 Tokyo Gas Co Ltd 地中探査レーダ用アンテナ
US7372424B2 (en) * 2006-02-13 2008-05-13 Itt Manufacturing Enterprises, Inc. High power, polarization-diverse cloverleaf phased array
US7750861B2 (en) * 2007-05-15 2010-07-06 Harris Corporation Hybrid antenna including spiral antenna and periodic array, and associated methods
US7692603B1 (en) 2008-07-09 2010-04-06 Lockheed Martin Corporation Spiral antenna

Also Published As

Publication number Publication date
AU2013200057B2 (en) 2016-12-01
FR2985097A1 (fr) 2013-06-28
CA2800949A1 (fr) 2013-06-27
CA2800949C (fr) 2020-02-18
ZA201300044B (en) 2014-12-23
AU2013200057A1 (en) 2013-07-11
FR2985097B1 (fr) 2014-07-25
EP2610965A1 (fr) 2013-07-03

Similar Documents

Publication Publication Date Title
EP0899814B1 (fr) Structure rayonnante
FR2826186A1 (fr) Antenne mulitfonctions integrant des ensembles fil-plaque
EP0886889A1 (fr) Antenne reseau imprimee large bande
FR2826185A1 (fr) Antenne fil-plaque multifrequences
CA2985023C (fr) Systeme antennaire a ondes de surface
WO2012041770A1 (fr) Reflecteur d'antenne large bande pour une antenne filaire plane a polarisation circulaire et procede de realisation du reflecteur d'antenne
FR2922687A1 (fr) Antenne compacte a large bande.
EP1225655B1 (fr) Antenne planaire et dispositif de transmission bi-bande incluant cette antenne
EP2610966B1 (fr) Antenne compacte large bande à très faible épaisseur et à double polarisations linéaires orthogonales opérant dans les bandes V/UHF
EP2817850B1 (fr) Dispositif à bande interdite électromagnétique, utilisation dans un dispositif antennaire et procédé de détermination des paramètres du dispositif antennaire
WO2004040696A1 (fr) Antenne a materiau bip multi-faisceaux
EP2610965B1 (fr) Antenne compacte à large bande à double polarisation linéaire
FR2957462A1 (fr) Dispositif d'antenne comportant une antenne plane et un reflecteur d'antenne large bande et procede de realisation du reflecteur d'antenne
Hinostroza Design of wideband arrays of spiral antennas.
EP1350285B1 (fr) Sonde electromagnetique
EP2449629B1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
FR3003699A1 (fr) Antenne helice compacte a polarisation circulaire
EP3692598B1 (fr) Antenne à substrat ferromagnétique dispersif partiellement saturé
EP3902059B1 (fr) Antenne directive large bande à émission longitudinale
WO2016139403A1 (fr) Structure antennaire omnidirectionnelle large bande
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
EP2449623B1 (fr) Dispositif d'extension de bande modulable pour antenne omnidirectionnelle tres large bande
WO2010070019A1 (fr) Antenne omnidirectionnelle tres large bande
EP0850496B1 (fr) Dispositif d'emission a antenne omnidirectionnelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 17/00 20060101ALI20140131BHEP

Ipc: H01Q 9/28 20060101ALI20140131BHEP

Ipc: H01Q 19/10 20060101ALI20140131BHEP

Ipc: H01Q 1/38 20060101AFI20140131BHEP

Ipc: H01Q 21/26 20060101ALI20140131BHEP

INTG Intention to grant announced

Effective date: 20140221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 678126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012002457

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 678126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140716

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141017

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012002457

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141227

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121227

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231005 AND 20231011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 12

Ref country code: DE

Payment date: 20231208

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012002457

Country of ref document: DE

Owner name: UNIVERSITE DE RENNES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), PARIS, FR; THALES, NEUILLY-SUR-SEINE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012002457

Country of ref document: DE

Owner name: THALES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), PARIS, FR; THALES, NEUILLY-SUR-SEINE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012002457

Country of ref document: DE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), PARIS, FR; THALES, NEUILLY-SUR-SEINE, FR; UNIVERSITE DE RENNES 1, RENNES, FR