CN105490022B - 多通道紧缩场馈源 - Google Patents

多通道紧缩场馈源 Download PDF

Info

Publication number
CN105490022B
CN105490022B CN201610028143.2A CN201610028143A CN105490022B CN 105490022 B CN105490022 B CN 105490022B CN 201610028143 A CN201610028143 A CN 201610028143A CN 105490022 B CN105490022 B CN 105490022B
Authority
CN
China
Prior art keywords
feed
transmitting
compact
multichannel
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610028143.2A
Other languages
English (en)
Other versions
CN105490022A (zh
Inventor
王正鹏
李志平
武建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610028143.2A priority Critical patent/CN105490022B/zh
Publication of CN105490022A publication Critical patent/CN105490022A/zh
Application granted granted Critical
Publication of CN105490022B publication Critical patent/CN105490022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种多通道紧缩场馈源,包括一个发射馈源(1)和六个接收馈源(2,3,4,5,6,7),发射馈源(1)位于反射面坐标系的中轴线,六个接收馈源(2,3,4,5,6,7)均匀分布在发射馈源(1)的两侧,发射和接收馈源的相对位置取决于馈源与反射面坐标原点的夹角。在测量过程中,发射馈源发出连续波扫频信号,多个接收馈源同时接收被测目标的反射信号。该多通道馈源与相应的发射和接收模块配合可实现同时多角度RCS信号测试,大大提高了测试效率,对于大型和超大型紧缩场测试场地的测试效率提升明显,同时由于测试效率提高使转台连续扫描时的宽带扫频测量成为可能。

Description

多通道紧缩场馈源
技术领域
本发明涉及紧缩场馈源的技术领域,具体涉及一种多通道紧缩场馈源。
背景技术
随着紧缩场技术的不断发展,紧缩场场地的规模不断增大,同时紧缩场反射面的尺寸不断增大,与之对应的紧缩场静区也不断增大,用户可以测量的目标越来越大。随之而来的是用户对于大型超大型紧缩场测试场地的测试效率要求,用户希望能够在大型场地中高效的测试目标,从而大大降低测试的成本。在大型场地中,馈源及测量仪表系统所占的费用比例很低,如果能够通过优化设计馈源和测量仪表系统提高测试效率,对提高整个测量场地的费效比意义重大。举例说明,大型超大型紧缩场系统的耗资往往达到上亿元人民币,如果可以通过优化设计馈源和测量仪表可将测试效率提高3倍以上,相应投入的成本只有百万量级,这对提高紧缩场系统的费效比意义重大。
多馈源系统在大型超大型反射面天线中有广泛的应用,多馈源可以形成多个波束,指向不同的观察区域,同时,多波束馈源还可以配合和差网络实现多目标跟踪等功能。紧缩场主要工作在近场区,馈源作用与传统的多馈源系统有较大不同,紧缩场馈源的边缘照射电平相对较高,焦径比也往往更大。传统的紧缩场馈源往往采用单发单收的方式,依据小角度单双站等效原理,将收发馈源分置在紧缩场反射面中轴线的两侧,采用一支馈源发一支馈源收的方式进行目标散射特性测量。随着多端口矢量网络分析仪等多端口测试设备的出现,使多通道馈源的应用成为可能,本发明结合大型超大型紧缩场的需求以及目前测试仪表系统的发展,提出一种新的多通道紧缩场馈源。
发明内容
本发明的目的在于:提出了一种多通道紧缩场馈源,该馈源系统能够显著提高大型超大型紧缩场测试系统的测试效率。
本发明采用的技术方案为:一种多通道紧缩场馈源,包括一个发射馈源、第一接收馈源、第二接收馈源、第三接收馈源、第四接收馈源、第五接收馈源和第六接收馈源,其中发射馈源位于馈源支架面板的中心位置,接收馈源在发射馈源的两侧均匀布置,其中第一接收馈源、第二接收馈源距离发射馈源的距离均为d1,第三接收馈源、第四接收馈源距离发射馈源的距离均为d2,第五接收馈源、第六接收馈源距离发射馈源的距离均为d3,发射馈源与接收馈源的间距d1,d2,d3取决于馈源与反射面的相对关系,发射馈源与所述六个接收馈源在同一条直线上,该直线与紧缩场反射面的x向坐标轴平行,发射馈源的相位中心位于紧缩场反射面的焦点位置,发射馈源与所述六个接收馈源的俯仰角相同,发射馈源和所述六个接收馈源的后面连接测量专用的微波网络,在目标散射特性测量过程中,由发射馈源发射调频连续波信号,六个接收馈源同时接收来自不同方向的散射信号,配合转台的码盘返回的转台位置信息,可以实现同时多通道测量,对应同时实现多角度测量。
其中,所述的发射馈源可以为双槽轴向槽皱纹喇叭,也可以为多槽轴向槽皱纹喇叭,第一接收馈源可以为与发射馈源辐射方向图相同的皱纹喇叭,也可为波束宽度略宽的皱纹喇叭。
其中,所述的馈源支架面板安装与馈源支架上,馈源支架面板与馈源支架都在紧缩场反射面所在的坐标系内,其中,紧缩场反射面为旋转抛物面,坐标系原点是反射面所在抛物面的顶点,发射馈源相位中心所在的位置为旋转抛物面的焦点。
其中,所述的发射馈源和六个接收馈源后连接测量专用的微波网络,具体为发射馈源后连接定向耦合器,定向耦合器的信号输入端连接功率放大器,耦合端连接衰减器,衰减器后连接混频器,混频器的输出端与其他接收端得到的中频信号相参,六个接收馈源后分别连接混频器,所有混频器的本振信号均由本振单元经本振信号分配器后提供。
其中,所述的发射馈源和六个接收馈源的相对位置由紧缩场反射面的几何尺寸决定,若令坐标系原点与发射馈源与第一接收馈源连线的中点M1及与发射馈源与第二接收馈源连线的中点M2的夹角为α1,则M1,M3与坐标系原点的夹角也等于α1,依次类推,M2,M4与坐标系原点的夹角,M3,M5与坐标系原点的夹角,M4,M6与坐标系原点的夹角也均等于α1
其中,所述α1角即为多通道紧缩场馈源的水平方向目标测量步进角,该角度满足如下几何关系,其中F为紧缩场反射面的焦距:
其中,所述的发射馈源与第一、第二接收馈源的间距d1大于最低频率波长。
其中,所述的多通道紧缩场馈源仅适合于大型及超大型紧缩场场地,具体为焦距F大于15m,发射馈源与第五、第六接收馈源的间距d3取决于α1,同时需满足α1≤0.9°。
本发明与现有技术相比的优点在于:
(1)、本发明采用了单发射馈源和多接收馈源,采用单发多收结构,仅使用一个昂贵且不易稳定的功率放大器,整个馈源系统的结构简单。多个接收通道使整个馈源系统可以同时接收到多个不同角度的待测目标回波信号,大大提高了测试的效率,使转台连续扫描时的宽带扫频测量成为可能。
(2)、本发明通过优化设计发射和接收馈源之间的间距,使测试角均匀分布,极大的方便了待测目标的二维成像和三维成像中的数据处理。
(3)、本发明设计了多通道馈源的微波射频接收系统,通过该系统可以提供稳定可靠的发射参考通道,各个接收端的接收机测试效率高。
附图说明
图1为本发明多通道紧缩场馈源布局图;
图2为紧缩场系统布局图;
图3为馈电网络结构;
图4为馈源相对位置示意图;
图中附图标记含义为:1为发射馈源,2,3,4,5,6,7为第一、第二、第三、第四、第五、第六接收馈源,d1为发射馈源1与第一接收馈源2之间的距离,d2为发射馈源1与第三接收馈源4之间的距离,d3为发射馈源1与第五接收馈源6之间的距离。8为馈源支架面板,9为馈源支架,10为紧缩场反射面,11为功率放大器,12为低噪声放大器,13为混频器,14为衰减器,15为坐标系原点,16为定向耦合器,1a为输出端的中频参考信号,1b为输入发射信号,2a,3a,4a,5a,6a,7a为接收端输出中频信号,M1为发射馈源1与第一接收馈源2连线的中点,M2为发射馈源1与第二接收馈源3连线的中点,M3为发射馈源1与第三接收馈源4连线的中点,M4为发射馈源1与第四接收馈源5连线的中点,M5为发射馈源1与第五接收馈源6连线的中点,M6为发射馈源1与第六接收馈源7连线的中点,α1为坐标系原点15与M1及M2的夹角。
具体实施方式
下面结合附图以及具体实施例进一步说明本发明。
本发明的构思如下:本发明针对传统紧缩场馈源单发单收测试效率低的缺点,提出了一种多通道紧缩场馈源,通过一路发射多路接收实现馈源系统的高效测量,这对于大型超大型紧缩场提升测试效率至关重要。
根据上述发明的构思,本发明采用如下技术方案:
首先设计多通道紧缩场馈源的发射和接收馈源。多通道馈源主要由发射馈源1,第一、第二、第三、第四、第五、第六接收馈源2,3,4,5,6,7和发射接收模块组成,发射馈源的相位中心位于紧缩场反射面10的焦点位置,紧缩场反射面10为旋转抛物面,整个多通道馈源系统位于由紧缩场反射面10确定的坐标系中,第一、第三、第五接收馈源2,4,6和第二、第四、第六接收馈源3,5,7对称分布在发射馈源的两侧,发射馈源和接收馈源之间的最小间距大于最低工作频率的一倍波长。如最低工作频率为1GHz,则d1>300mm,这主要是为了便于馈源的安装定位,并使收发馈源之间具有一定的隔离度,收发馈源之间的典型隔离度应该大于50dB。
发射馈源1和接收馈源可以采用相同的皱纹喇叭天线,也可采用不同的皱纹喇叭天线,但是为了保证测试不同角度来波信号的一致性,所有接收馈源均采用同样的皱纹喇叭天线,避免在后期数据处理中引入额外的不确定度。发射馈源1与第一、第二、第三、第四、第五、第六接收馈源2,3,4,5,6,7的相位中心要严格位于同一条直线上,该直线与由紧缩场反射面10确定的坐标系x轴平行,各馈源相位中心偏离该直线的距离应当在0.02倍工作频率以内。
多通道馈源的每个馈源后不再连接传统的以矢量网络分析仪为核心的测试系统,而是连接分离式测试系统,发射馈源1后连接定向耦合器16,定向耦合器16的信号输入端连接功率放大器,耦合端连接衰减器14,衰减器后连接混频器13,混频器的输出端与其他接收端得到的中频信号相参。第一、第二、第三、第四、第五、第六接收馈源2,3,4,5,6,7后分别连接混频器13。所有混频器13的本振信号均由本振单元经本振信号分配器后提供。最终输入中频接收机的中频信号有输入端输出的参考中频信号1a,接收端输出中频信号2a,3a,4a,5a,6a,7a,中频接收机通过分析接收端输出中频信号和参考中频信号得出测试所需的幅度相位信息。
发射馈源1和多个接收馈源即第一、第二、第三、第四、第五、第六接收馈源2,3,4,5,6,7的相对位置是多通道馈源设计的关键,相对位置关系由紧缩场反射面的几何尺寸确定。若令坐标系原点15与M1及M2的夹角为α1,F为紧缩场反射面10的焦距,可知为了后期数据处理的难度,减小测量不确定度,要将多通道测量的多个角度的信息设置在相同的步进角度上,即要求d2和d3满足:
由上述几何关系可知,多通道馈源的整体尺寸大于2*d3,对于最低工作频率3GHz,F=15m的紧缩场系统,要求α1=0.573°,d2=0.3m,d3=0.5m。由上述分析可知,多通道馈源的馈源间距取决于最低工作频率和紧缩场反射面焦距F,随着工作频率的升高,多通道馈源系统的间距可以变化,以取得更小的α1
该馈源是一种适用于大型和超大型紧缩场测试场地的馈源,该馈源主要针对大型超大型紧缩场测试场地测试效率的瓶颈,提出多路接收的概念,通过合理设计馈源布局和收发系统,可以实现同时多角度测量,大大缓解了大型超大型紧缩场测试效率低的难题。

Claims (7)

1.一种多通道紧缩场馈源,其特征在于:包括一个发射馈源(1)、第一接收馈源(2)、第二接收馈源(3)、第三接收馈源(4)、第四接收馈源(5)、第五接收馈源(6)和第六接收馈源(7),其中发射馈源(1)位于馈源支架面板(8)的中心位置,接收馈源在发射馈源(1)的两侧均匀布置,其中第一接收馈源(2)、第二接收馈源(3)距离发射馈源的距离均为d1,第三接收馈源(4)、第四接收馈源(5)距离发射馈源的距离均为d2,第五接收馈源(6)、第六接收馈源(7)距离发射馈源的距离均为d3,发射馈源与接收馈源的间距d1,d2,d3取决于馈源与反射面的相对关系,发射馈源(1)与所述六个接收馈源(2,3,4,5,6,7)在同一条直线上,该直线与紧缩场反射面的x向坐标轴平行,发射馈源(1)的相位中心位于紧缩场反射面的焦点位置,发射馈源(1)与所述六个接收馈源(2,3,4,5,6,7)的俯仰角相同,发射馈源(1)和所述六个接收馈源(2,3,4,5,6,7)的后面连接测量专用的微波网络,在目标散射特性测量过程中,由发射馈源(1)发射调频连续波信号,六个接收馈源(2,3,4,5,6,7)同时接收来自不同方向的散射信号,配合转台的码盘返回的转台位置信息,可以实现同时多通道测量,对应同时实现多角度测量。
2.根据权利要求1所述的多通道紧缩场馈源,其特征在于:所述的发射馈源(1)可以为双槽轴向槽皱纹喇叭,也可以为多槽轴向槽皱纹喇叭,第一接收馈源(2)可以为与发射馈源(1)辐射方向图相同的皱纹喇叭,也可为波束宽度略宽的皱纹喇叭。
3.根据权利要求1所述的多通道紧缩场馈源,其特征在于:所述的馈源支架面板(8)安装于馈源支架(9)上,馈源支架面板(8)与馈源支架(9)都在紧缩场反射面所在的坐标系内,其中,紧缩场反射面为旋转抛物面,坐标系原点(15)是反射面所在抛物面的顶点,发射馈源(1)相位中心所在的位置为旋转抛物面的焦点。
4.根据权利要求1所述的多通道紧缩场馈源,其特征在于:所述的发射馈源(1)和六个接收馈源(2,3,4,5,6,7)后连接测量专用的微波网络,具体为发射馈源(1)后连接定向耦合器(16),定向耦合器(16)的信号输入端连接功率放大器,耦合端连接衰减器(14),衰减器后连接混频器(13),混频器的输出端与其他接收端得到的中频信号相参,六个接收馈源(2,3,4,5,6,7)后分别连接混频器(13),所有混频器(13)的本振信号均由本振单元经本振信号分配器后提供。
5.根据权利要求1所述的多通道紧缩场馈源,其特征在于:α1角即为多通道紧缩场馈源的水平方向目标测量步进角,该角度满足如下几何关系,其中F为紧缩场反射面(10)的焦距:
6.根据权利要求1所述的多通道紧缩场馈源,其特征在于:所述的发射馈源(1)与第一、第二接收馈源(2,3)的间距d1大于最低频率波长。
7.根据权利要求1所述的多通道紧缩场馈源,其特征在于:所述的多通道紧缩场馈源仅适合于大型及超大型紧缩场场地,具体为焦距F大于15m,发射馈源(1)与第五、第六接收馈源(6,7)的间距d3取决于α1,同时需满足α1≤0.9°。
CN201610028143.2A 2016-01-15 2016-01-15 多通道紧缩场馈源 Active CN105490022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610028143.2A CN105490022B (zh) 2016-01-15 2016-01-15 多通道紧缩场馈源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610028143.2A CN105490022B (zh) 2016-01-15 2016-01-15 多通道紧缩场馈源

Publications (2)

Publication Number Publication Date
CN105490022A CN105490022A (zh) 2016-04-13
CN105490022B true CN105490022B (zh) 2018-06-19

Family

ID=55676859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610028143.2A Active CN105490022B (zh) 2016-01-15 2016-01-15 多通道紧缩场馈源

Country Status (1)

Country Link
CN (1) CN105490022B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663665B (zh) * 2018-04-03 2020-03-31 北京环境特性研究所 一种确定紧缩场的不确定度的方法及装置
CN110557212A (zh) * 2019-07-15 2019-12-10 上海无线通信研究中心 基于扩展紧缩场测试的毫米波终端测试系统及其方法
CN110703218A (zh) * 2019-10-12 2020-01-17 西北工业大学 一种一发多收结合转台旋转的双站散射测量系统及方法
CN111669232B (zh) * 2020-05-25 2022-10-11 中国信息通信研究院 一种基于多馈源紧缩场的无线通信设备测试系统及方法
CN112034266B (zh) * 2020-05-25 2023-06-23 北京中测国宇科技有限公司 一种毫米波多馈源紧缩场测试系统
CN113161724B (zh) * 2020-11-13 2022-07-05 北京航空航天大学 紧缩场多馈源转台
CN112540238B (zh) * 2020-12-18 2022-03-25 北京航空航天大学 一种多频共用高效率紧缩场馈源系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610965A1 (fr) * 2011-12-27 2013-07-03 Thales Antenne compacte à large bande à double polarisation linéaire
CN203644950U (zh) * 2013-10-29 2014-06-11 深圳光启创新技术有限公司 基于平板反射阵列的紧缩场天线

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610965A1 (fr) * 2011-12-27 2013-07-03 Thales Antenne compacte à large bande à double polarisation linéaire
CN203644950U (zh) * 2013-10-29 2014-06-11 深圳光启创新技术有限公司 基于平板反射阵列的紧缩场天线

Also Published As

Publication number Publication date
CN105490022A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105490022B (zh) 多通道紧缩场馈源
US20210250107A1 (en) Methods and apparatuses for testing wireless communication to vehicles
US7440766B1 (en) Method for employing multipath propagation in wireless radio communications
US3665481A (en) Multi-purpose antenna employing dish reflector with plural coaxial horn feeds
CN102445599B (zh) 一种阵列天线方向图的频域测量方法
CN109959909B (zh) 用于圆极化测试的单发双收rcs测试系统及测试方法
CN100392379C (zh) 一种微波吸收材料反射率的测量方法
Gaffoglio et al. OAM multiple transmission using uniform circular arrays: Numerical modeling and experimental verification with two digital television signals
US11131701B1 (en) Multi-probe anechoic chamber for beam performance testing of an active electronically steered array antenna
JP2022059609A (ja) 高速ota生産ラインテストプラットフォーム
CN112540238B (zh) 一种多频共用高效率紧缩场馈源系统
CN109361061B (zh) 天线
CN106291145A (zh) 无线终端的测试系统
US3828349A (en) Stacked beam radar
CN106602283B (zh) 基于角相特性的高功率电磁涡旋h面合成天线
CN109669174A (zh) 一种雷达天线系统
JPH10148673A (ja) ミリ波イメージングレーダ
CN104993220A (zh) 旋转场式全向天线、低空近程雷达系统及信号处理方法
Kim et al. A dual-band FMCW radar for through-wall detection
CN209624772U (zh) 一种雷达天线系统
CN210576438U (zh) 一种圆极化阵列Vivaldi天线
CN110797660B (zh) 测向天线及测向方法
CN105223556A (zh) L型收发阵列天线前端及其信号处理方法
JP2001099918A (ja) ホログラフィックレーダ装置
CN114421146B (zh) 一种雷达及车辆

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant