EP3902059B1 - Antenne directive large bande à émission longitudinale - Google Patents

Antenne directive large bande à émission longitudinale Download PDF

Info

Publication number
EP3902059B1
EP3902059B1 EP21163164.3A EP21163164A EP3902059B1 EP 3902059 B1 EP3902059 B1 EP 3902059B1 EP 21163164 A EP21163164 A EP 21163164A EP 3902059 B1 EP3902059 B1 EP 3902059B1
Authority
EP
European Patent Office
Prior art keywords
antenna
ground plane
yagi
disc
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21163164.3A
Other languages
German (de)
English (en)
Other versions
EP3902059A1 (fr
Inventor
Leslie Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus SAS
Original Assignee
Airbus SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus SAS filed Critical Airbus SAS
Publication of EP3902059A1 publication Critical patent/EP3902059A1/fr
Application granted granted Critical
Publication of EP3902059B1 publication Critical patent/EP3902059B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to the general field of antennas and more particularly to longitudinal emission antennas of the Yagi-Uda type.
  • the antenna according to the present invention can advantageously be on board an aircraft to allow air-ground communications in a wide frequency band.
  • the growing number of communications systems on board vehicles requires the ability to transmit and receive in a plurality of frequency bands, which generally involves having to install on a vehicle as many antennas as there are distinct communications systems it comprises, this multiplication of antennas representing a source of complexity both for installation and for maintenance. It may then be advantageous, a fortiori when the recipients of these communications are collocated or close in terms of viewing angle, to use a global antenna common to all of these communications systems.
  • a fortiori when the recipients of these communications are collocated or close in terms of viewing angle, to use a global antenna common to all of these communications systems.
  • a global broadband antenna can share a global broadband antenna.
  • the advantage of such pooling also resides in less protrusion on the surface of the aircraft and consequently less drag.
  • the on-board antennas it is often preferable for the on-board antennas to have high directivity and therefore high gain, so as to reduce energy consumption and increase the signal-to-noise ratio.
  • the gain of an antenna being proportional to the effective aperture cross section of the antenna, itself proportional to the area of the antenna in the plane orthogonal to the direction of the lobe principal, the search for antennas with high directivity leads to antennas of large dimensions in the plane orthogonal to that of the direction of emission.
  • the main lobe of the antenna must have a low angle of elevation and the aperture surface of the antenna must therefore be large in a plane orthogonal to the longitudinal axis of the aircraft, which increases drag and therefore fuel consumption.
  • the Yagi-Uda antenna initially developed for aeronautics and then universally used as a TV antenna is an antenna having both good directivity and a relatively small aperture surface. It is in fact known to those skilled in the art that this type of antenna consists of a half-wave linear dipole, generally folded, of a parasitic reflector element located behind and of one or more parasitic director elements located in front of this dipole, all mounted on the same mast, the direction of the main lobe being given by the direction of the mast.
  • the reflector element has a greater lateral extension than that of the dipole, the latter having a greater lateral extension than that of the directing elements.
  • the parasitic reflector and director elements act as radiating dipoles powered by induction by the half-wave dipole which is the only wire-powered one.
  • the Yagi-Uda antenna can be assimilated in a first approximation to an array antenna whose elements would be fed by mutual induction. By suitably choosing the position and the spacing between the different elements, the waves emitted by the different elements add up constructively in the direction of the mast and destructively in the opposite direction.
  • antennas of the Yagi-Uda type are their operation in narrow band, making them unusable as a global broadband antenna in the preceding sense. Indeed, their fractional band, in other words the ratio between their bandwidth on their central frequency is of the order of 10%.
  • the document US 2019/280365 A1 has an antenna embedded in or on glass structures having apparatus extending a ground plane onto an antenna near a dielectric structure, such as a windshield, to couple a radiated wave into the dielectric structure to control the tilt of the antenna radiation pattern.
  • the document US 2014/043197 A1 describes an ultra-wideband antenna assembly comprising an electromagnetic reflective structure for reflecting electromagnetic waves, an antenna operatively associated with the electromagnetic reflective structure, a director operatively associated with the antenna.
  • the document US7023396 B2 relates to a broadband antenna with omnidirectional radiation comprising a first circular or semi-circular monopole perpendicular to a ground plane, and at least one second circular or semi-circular monopole, the monopoles being positioned relative to each other so as to have a common diameter.
  • An object of the present invention is therefore to provide an antenna having a small effective aperture section while offering a wide operating band and a high directivity.
  • the present invention is defined by a Yagi-Uda type antenna according to claim 1.
  • the conductive return extends parallel to the disc and is located behind the latter, between the disc and the reflective parasitic element.
  • the conductive return extends parallel to the disc and is located in front of the latter, between the disc and the parasitic director element.
  • the reflective parasitic element has, in the direction perpendicular to the ground plane, a dimension greater than that of the conductive plate in this same direction.
  • the director parasitic element is configured as a folded monopole, comprising a first conductive segment and a second conductive segment, parallel to each other and to the conductive plate, said first and second conductive segments being connected at a first common end, of the side opposite the ground plane and not being connected at their second ends, on the side of the ground plane.
  • the conductive plate is in the form of a disc and the first and second conductive segments have a length less than the diameter of this disc.
  • the operating bandwidth of the Yagi-Uda type antenna will be able to cover more than one octave.
  • the invention also relates to an aircraft on which is mounted a Yagi-Uda antenna as described above, said antenna being mounted on the lower part of the fuselage of the aircraft, the longitudinal axis of the antenna being substantially parallel to the longitudinal axis of the aircraft and the ground plane being constituted by the skin of the fuselage.
  • a first idea at the basis of the invention is to modify a Yagi-Uda type antenna, by choosing as the radiating element a conductive plate so as to make it broadband without causing it to lose its directivity properties.
  • a second idea underlying the invention is to reduce the lateral extension of this antenna by using a ground plane to adopt a monopolar configuration. This monopolar configuration is all the more advantageous since the ground plane is naturally available in the form of a conductive surface of the vehicle itself.
  • the linear dipole of the Yagi-Uda antenna supplied by wire is replaced here in an original way by a monopolar plate antenna, advantageously chosen to be circular in shape.
  • a monopole in the form of a radiating disc located above a ground plane, as illustrated schematically in Fig. 1 .
  • This disk is fed at its lower end O' by an antenna signal via a recess arranged through the ground plane P.
  • the radiation of such a monopole is identical to an equivalent dipole consisting of the monopoly and its image in relation to the mass plane.
  • the operating bandwidth of the circular patch antenna is substantially greater than that of a monopole of height equal to the diameter of the antenna in question.
  • Fig. 2 a diagram giving the reflection coefficient (magnitude in decibels of the parameter S 11 ) of the antenna of the Fig. 1 depending on the frequency of the antenna signal, this for a disc diameter of 20mm. Note that the width of the operating band taken at 10dB extends over a frequency range starting at about 3.3 GHz and going beyond 12 GHz.
  • FIG. 3 schematically represents a broadband longitudinal emission antenna according to one embodiment of the invention.
  • the antenna is in a monopolar configuration in the sense that it is located above a conductive plane P acting as a ground plane.
  • the term "above” is here purely relative and the antenna may be located under the conductive plane.
  • the antenna is mounted under the fuselage of an aircraft for communication with the ground, it will be understood that the antenna in question will be located under the conductive plane constituted by the skin of the fuselage.
  • the antenna shown, 300 is longitudinal emission ( end-fire antenna ) in the sense that the signal emitted by the antenna will be in the direction Oz.
  • the direction Oz may be substantially parallel to the longitudinal axis of the aircraft and point towards the front or the rear of the aircraft.
  • the antenna could point in a lateral direction.
  • the antenna includes a radiating element, 320, in the form of a wire-fed plate.
  • This radiating element is the only element of the antenna to be supplied directly, the other elements being supplied only by induction.
  • the radiating element 320 is in the form of a disc.
  • the diameter will be chosen in the order of ⁇ /4 where ⁇ is the wavelength corresponding to the lower limit of the operating band of the antenna.
  • the radiating element 320 will advantageously be mounted in folded form by means of a conductive return 325 substantially parallel to the plate 321 and having a small transverse dimension in the direction Ox.
  • the conductive return 325 may be constituted by a conductive rod of small diameter or a rigid conductive strip of small width.
  • the lower end 326 of the conductive return 325 is electrically connected to a ground plane. On transmission, the antenna signal is applied between the lower end 322 and the ground plane. Similarly, on reception, the antenna signal is taken between end 322 and the ground plane.
  • the folded shape of the radiating element 320 is an advantageous feature of the invention. This shape makes it possible to increase the impedance of the radiating element of the monopole known from the prior art. Indeed, if the impedance of a monopole disc is about 37 Ohms, that of this monopole in folded configuration is four times higher.
  • the conductive return 325 may be located in front of the plate 321 of the monopole in the direction of the longitudinal direction Oz.
  • the conductive return may extend parallel to the plate and is situated in front of the latter, between the plate (for example a disc) and the directing parasitic element.
  • this conductive return will be located behind the plate, between the plate (for example a disc) and a passive reflective element, described below, so as not to hinder propagation in the longitudinal direction.
  • the antenna also comprises a passive reflector element, 310, also called a parasitic reflector element located at the rear of the radiating element.
  • This reflective element may also take different forms.
  • the reflective element will have a vertical dimension (that is to say in the direction Oy perpendicular to the ground plane) greater than or even simply slightly greater than the vertical dimension of the plate 321.
  • the vertical dimension of the reflective element may exceed that of the radiating plate by 5%.
  • the reflective element will have transverse dimensions (perpendicular to the axis Oz) greater than that of the radiating plate.
  • the reflector element 310 may be in the form of a disc of larger diameter or even of a paraboloid having an effective section of larger diameter and whose the axis of revolution coincides with the longitudinal axis Oz.
  • the antenna 300 further comprises one or more directing elements 330.
  • These directing elements can each have the shape of a vertical rod of any diameter or, preferably, of a linear structure folded on itself having the advantage of being stronger and lighter.
  • a director element 330 comprises a first segment perpendicular to the ground plane, in the form of a rod or a rigid conductive strip and a second parallel conductive segment of the same shape, located at a low distance from the first.
  • the first and second segments are connected together at a common first end 331 on the side opposite the ground plane.
  • the respective second ends, 332 and 333, of the first and second segments located on the side of the ground plane are not connected to each other.
  • the transverse dimensions of the directing elements 330 in a plane orthogonal to the axis Oz are chosen lower or even slightly lower than the respective transverse dimensions of the radiating plate 321.
  • the first and second segments of a directing element have a length of the order of 5% shorter than the diameter of the circle.
  • the reflective element, 310, the radiating element, 320, composed of the patch antenna, and the directing element(s), 330, are advantageously mounted on a substantially flat surface such as for example a ground plane or the skin of an aircraft directed in the direction Oz and form a monopolar Yagi-Uda type antenna.
  • the relative positions of the elements along the Oz axis and their spacings are chosen so as to optimize the shape of the beam, in particular to reduce the secondary lobes thereof, and to allow impedance matching (generally at 50 ⁇ ).
  • the introduction of director elements and a reflective element in the field of the radiating element has the consequence of reducing the impedance of the antenna and therefore the non-radiated power.
  • the radiating element has a high impedance, of the order of 150 ⁇ , which makes it possible to use directing elements 330 and a reflecting element 310 while reducing the non-radiated power.
  • the various elements of the antenna can be produced simply and at low cost from metal sheets or strips.
  • Fig. 4 represents a diagram giving the reflection coefficient (parameter S 11 ) of the antenna of the Fig. 3 depending on the frequency.
  • the radiating plate is made up of a metal disc with a diameter of 20mm.
  • the antenna further includes a semi-cylindrical reflector element and a director element.
  • the width of the operating band taken at 10dB extends over an octave from 3 to 6 GHz. It therefore encompasses most of the 4G and 5G frequency bands used around the world.
  • the proposed antenna can in particular be used as an overall antenna for several on-board air-ground communication systems, in particular when the aircraft is in the approach phase.
  • This antenna can also serve as a relay antenna in the event of use of cellular telephones by the passengers of the aircraft.
  • Fig. 5 represents the three-dimensional radiation pattern of the antenna of the Fig. 3 at a frequency of 4 GHz.
  • the antenna has a good directivity at low and medium elevation, a longitudinal emission in the direction of the Oz axis with a gain of nearly 10 dB.
  • This good directivity at low elevation is confirmed by the two-dimensional radiation pattern of this same antenna, still at a frequency of 4 GHz, in an elevation plane at 5°, as illustrated in Fig. 6 .
  • This elevation angle corresponds to the case of an antenna mounted on the lower part of the fuselage of the aircraft (the axis Oz being substantially parallel to the longitudinal axis of the latter) and to a typical situation where the aircraft flies at an altitude of 3km and the ground station is about 30 km away.
  • the azimuth angular width of the main lobe is more than 120°, which allows high quality of service communications even when the ground station is not aligned with the heading of the aircraft. It is therefore not necessary to perform dynamic beamforming to point in the direction of this station.
  • the radiation pattern has few secondary lobes with strong rejection, which correspondingly reduces the risks of interference in reception.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Description

    Domaine technique
  • La présente invention concerne le domaine général des antennes et plus particulièrement des antennes à émission longitudinale de type Yagi-Uda. L'antenne selon la présente invention peut être avantageusement embarquée à bord d'un aéronef pour permettre des communications air-sol dans une large bande de fréquence.
  • Etat de la technique antérieure
  • Le nombre croissant de systèmes de communications embarqués sur les véhicules nécessite de pouvoir transmettre et recevoir dans une pluralité de bandes de fréquences, ce qui implique généralement de devoir installer sur un véhicule autant d'antennes que de systèmes de communications distincts qu'il comporte, cette multiplication d'antennes représentant une source de complexité tant pour l'installation que pour la maintenance. Il peut être alors intéressant, a fortiori lorsque les destinataires de ces communications sont colloqués ou proches en termes d'angle de visée, d'utiliser une antenne globale commune à l'ensemble de ces systèmes de communications. Ainsi par exemple, à bord d'un aéronef, plusieurs systèmes de communications air-sol utilisant des bandes de fréquence distinctes peuvent partager une antenne globale large-bande. L'avantage d'une telle mutualisation réside également dans une moindre protubérance à la surface de l'aéronef et par conséquent une trainée plus faible.
  • Par ailleurs, il est souvent préférable que les antennes embarquées présentent une grande directivité et donc un gain élevé, de manière à réduire la consommation énergétique et à augmenter le rapport signal sur bruit. De manière générale, le gain d'une antenne étant proportionnelle à la section efficace d'ouverture de l'antenne, elle-même proportionnelle à la surface de l'antenne dans le plan orthogonal à la direction du lobe principal, la recherche d'antennes à forte directivité conduit à des antennes de grandes dimensions dans le plan orthogonal à celui de la direction d'émission. Dans le cas précité de communications d'un aéronef avec le sol, le lobe principal de l'antenne doit présenter un faible angle d'élévation et la surface d'ouverture de l'antenne doit donc être importante dans un plan orthogonal à l'axe longitudinal de l'aéronef, ce qui accroît la trainée et donc la consommation de carburant.
  • L'antenne Yagi-Uda développée initialement pour l'aéronautique et universellement utilisée ensuite comme antenne TV est une antenne présentant à la fois une bonne directivité et une surface d'ouverture relativement réduite. Il est en effet connu de l'homme du métier que ce type d'antenne se compose d'un dipôle linéaire demi-onde, généralement replié, d'un élément parasite réflecteur situé en arrière et d'un ou plusieurs éléments parasites directeurs situés en avant de ce dipôle, tous montés sur un même mât, la direction du lobe principal étant donnée par la direction du mât. L'élément réflecteur présente une extension latérale plus grande que celle du dipôle, celui-ci présentant une extension latérale plus importante que celle des éléments directeurs. Les éléments parasites réflecteur et directeurs agissent comme des dipôles rayonnants alimentés par induction par le dipôle demi-onde qui est le seul alimenté par voie filaire. L'antenne Yagi-Uda peut être assimilée en première approximation à une antenne réseau dont les éléments seraient alimentés par induction mutuelle. En choisissant convenablement la position et l'espacement entre les différents éléments, les ondes émises par les différents éléments s'additionnent de manière constructive dans la direction du mât et de manière destructive dans la direction inverse.
  • Toutefois, un inconvénient majeur des antennes de type Yagi-Uda est leur fonctionnement en bande étroite les rendant inutilisables comme antenne large bande globale au sens précédent. En effet, leur bande fractionnelle, autrement dit le rapport entre leur largeur de bande sur leur fréquence centrale est de l'ordre de 10%.
  • Le document US8228254 B2 décrit des antennes dipôles et monopolaires de taille réduite, imprimées sur une face d'un substrat avec des patchs de chargement fendus aux extrémités de l'antenne, et une bande conductrice sur l'autre face pour former une structure dipôle ou monopolaire pliée.
  • Le document US 2019/280365 A1 présente une antenne encastrée dans ou sur des structures en verre comportant un appareil prolongeant un plan de masse sur une antenne à proximité d'une structure diélectrique, telle qu'un pare-brise, afin de coupler une onde rayonnée dans la structure diélectrique afin de contrôler l'inclinaison du diagramme de rayonnement de l'antenne.
  • L'article « A Dual-Band Microstrip fed Monopole Quasi - Yagi Antenna" (Nuangpirom pinit et al) décrit une antenne unipolaire et quasi-Yagi alimentée par microruban à double bande utilisable dans un point d'accès de réseau local sans fil (WLAN) à double bande.
  • Le document US 2014/043197 A1 décrit un ensemble d'antenne à bande ultralarge comprenant une structure réfléchissante électromagnétique pour réfléchir des ondes électromagnétiques, une antenne fonctionnellement associée à la structure réfléchissante électromagnétique, un directeur associé de manière opérationnelle à l'antenne.
  • Le document US7023396 B2 concerne une antenne large bande à rayonnement omnidirectionnel comprenant un premier monopôle circulaire ou semi-circulaire perpendiculaire à un plan de masse, et au moins un deuxième monopôle circulaire ou semi-circulaire, les monopôles étant positionnés les uns par rapport aux autres de manière à avoir un diamètre commun.
  • Un objet de la présente invention est par conséquent de proposer une antenne possédant une faible section efficace d'ouverture tout en offrant une large bande de fonctionnement et une directivité élevée.
  • Présentation de l'invention
  • La présente invention est définie par une antenne de type Yagi-Uda selon la revendication 1.
  • Selon une première variante, le retour conducteur s'étend parallèlement au disque et est situé derrière celui-ci, entre le disque et l'élément parasite réflecteur.
  • Selon une seconde variante, le retour conducteur s'étend parallèlement au disque et est situé devant celui-ci, entre le disque et l'élément parasite directeur.
  • Avantageusement, l'élément parasite réflecteur présente, dans la direction perpendiculaire au plan de masse, une dimension supérieure à celle de la plaque conductrice selon cette même direction.
  • De préférence, l'élément parasite directeur est configuré comme un monopole replié, comprenant un premier segment conducteur et un second segment conducteur, parallèles entre eux et à la plaque conductrice, lesdits premier et second segments conducteurs étant reliés en une première extrémité commune, du côté opposé au plan de masse et n'étant pas reliés à leurs secondes extrémités, du côté du plan de masse.
  • La plaque conductrice se présente sous la forme d'un disque et les premier et second segments conducteurs ont une longueur inférieure au diamètre de ce disque.
  • La bande passante de fonctionnement de l'antenne de type Yagi-Uda pourra couvrir plus d'une octave.
  • Enfin, l'invention concerne également un aéronef sur lequel est montée une antenne Yagi-Uda comme exposé ci-dessus, ladite antenne étant montée sur la partie inférieure du fuselage de l'aéronef, l'axe longitudinal de l'antenne étant sensiblement parallèle à l'axe longitudinal de l'aéronef et le plan de masse étant constitué par la peau du fuselage.
  • Brève description des figures
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel de l'invention, décrit en référence aux figures jointes parmi lesquelles :
    • [Fig. 1] représente de manière schématique une antenne plaque monopolaire sous forme de disque ;
    • [Fig. 2] représente un diagramme donnant le coefficient de réflexion de l'antenne de la Fig. 1, en fonction de la fréquence ;
    • [Fig. 3] représente de manière schématique une antenne à émission longitudinale large bande selon un mode de réalisation de l'invention ;
    • [Fig. 4] représente un diagramme donnant le coefficient de réflexion de l'antenne de la Fig. 3 en fonction de la fréquence ;
    • [Fig. 5] représente le diagramme de rayonnement tridimensionnel de l'antenne de la Fig. 3;
    • [Fig. 6] représente un diagramme de rayonnement bidimensionnel de l'antenne de la Fig. 3 dans un plan d'élévation à 5°.
    Description de modes de réalisation
  • Une première idée à la base de l'invention est de modifier une antenne de type Yagi-Uda, en choisissant comme élément rayonnant une plaque conductrice de manière à la rendre large bande sans lui faire perdre pour autant ses propriétés de directivité. Une seconde idée à la base de l'invention est de réduire l'extension latérale de cette antenne en utilisant un plan de masse pour adopter une configuration monopolaire. Cette configuration monopolaire est d'autant plus avantageuse que le plan de masse est disponible naturellement sous la forme d'une surface conductrice du véhicule lui-même.
  • Ainsi, le dipôle linéaire de l'antenne Yagi-Uda alimenté par voie filaire est remplacé ici de manière originale par une antenne plaque monopolaire, avantageusement choisie de forme circulaire.
  • Nous considérerons tout d'abord un monopole sous forme d'un disque rayonnant situé au-dessus d'un plan de masse, tel qu'illustré schématiquement en Fig. 1. Ce disque est alimenté à son extrémité inférieure O' par un signal d'antenne via un évidement aménagé à travers le plan de masse P. De manière connue en soi, le rayonnement d'un tel monopole est identique d'un dipôle équivalent constitué du monopole et de son image par rapport au plan de masse.
  • La bande passante de fonctionnement de l'antenne plaque circulaire est sensiblement supérieure à celle d'un monopole de hauteur égale au diamètre de l'antenne en question. A titre d'exemple, on a représenté en Fig. 2 un diagramme donnant le coefficient de réflexion (magnitude en décibels du paramètre S 11 ) de l'antenne de la Fig. 1 en fonction de la fréquence du signal d'antenne, ce pour un diamètre de disque de 20mm. On remarque que la largeur de la bande de fonctionnement prise à 10dB s'étend sur une gamme de fréquence commençant à environ 3.3 GHz et allant au-delà de 12 GHz.
  • La Fig. 3 représente schématiquement une antenne à émission longitudinale large bande selon un mode de réalisation de l'invention.
  • L'antenne se présente dans une configuration monopolaire au sens où se située au-dessus d'un plan conducteur P faisant office de plan de masse. Le terme « au-dessus » est ici purement relatif et l'antenne pourra se situer sous le plan conducteur. Par exemple, si l'antenne est montée sous le fuselage d'un aéronef pour une communication avec le sol, on comprendra que l'antenne en question sera située sous le plan conducteur constitué par la peau du fuselage.
  • L'antenne représentée, 300, est à émission longitudinale (end-fire antenna) au sens où le signal émis par l'antenne le sera dans la direction Oz. Dans le cas du montage sur un aéronef, la direction Oz pourra être sensiblement parallèle à l'axe longitudinal de l'aéronef et pointer vers l'avant ou bien l'arrière de l'appareil. Alternativement, l'antenne pourra pointer dans une direction latérale.
  • L'antenne comprend un élément rayonnant, 320, sous la forme d'une plaque alimentée par voie filaire. Cet élément rayonnant est le seul élément de l'antenne à être alimenté directement, les autres éléments n'étant alimentés que par induction.
  • L'élément rayonnant 320 se présente sous la forme d'un disque.
  • Dans le cas d'un disque, le diamètre sera choisi de l'ordre de λ / 4 où λ est la longueur d'onde correspondant à la borne inférieure de la bande de fonctionnement de l'antenne.
  • Avantageusement, l'élément rayonnant 320 sera avantageusement monté sous forme repliée au moyen d'un retour conducteur 325 sensiblement parallèle à la plaque 321 et présentant une faible dimension transversale dans la direction Ox. Par exemple, le retour conducteur 325 pourra être constitué par une tige conductrice de faible diamètre ou une bande conductrice rigide de faible largeur. L'extrémité inférieure 326 du retour conducteur 325 est électriquement reliée à un plan de masse. A l'émission, le signal d'antenne est appliqué entre l'extrémité inférieure 322 et le plan de masse. De manière similaire, à la réception, le signal d'antenne est pris entre l'extrémité 322 et le plan de masse.
  • La forme repliée de l'élément rayonnant 320 est une caractéristique avantageuse de l'invention. Cette forme permet en effet d'augmenter l'impédance de l'élément rayonnant du monopole connu de l'art antérieur. En effet, si l'impédance d'un disque monopole est d'environ 37 Ohms, celle de ce monopole en configuration repliée est quatre fois plus élevée.
  • Le retour conducteur 325 pourra être situé devant la plaque 321 du monopole dans le sens de la direction longitudinale Oz. Par exemple, le retour conducteur pourra s'étendre parallèlement à la plaque et est situé devant celle-ci, entre la plaque (par exemple un disque) et l'élément parasite directeur. Alternativement et préférentiellement, ce retour conducteur sera situé derrière la plaque, entre la plaque (par exemple un disque) et un élément réflecteur passif, décrit ci-après, de manière à ne pas gêner la propagation dans le sens longitudinal.
  • L'antenne comporte également un élément réflecteur passif, 310, dit encore élément réflecteur parasite situé à l'arrière de l'élément rayonnant. Cet élément réflecteur pourra également se présenter sous différentes formes. De manière générale, l'élément réflecteur possèdera une dimension verticale (c'est-à-dire dans la direction Oy perpendiculaire au plan de masse) supérieure voire simplement légèrement supérieure à la dimension verticale de la plaque 321. Par exemple, la dimension verticale de l'élément réflecteur pourra excéder de 5% celle de la plaque rayonnante. De manière plus générale, l'élément réflecteur possèdera des dimensions transversales (perpendiculaires à l'axe Oz) supérieures à celle de la plaque rayonnante.
  • Ainsi, lorsque la plaque 321 se présente sous la forme d'un disque, l'élément réflecteur 310 pourra se présenter sous la forme d'un disque de plus grand diamètre voire d'un paraboloïde ayant une section efficace de plus grand diamètre et dont l'axe de révolution est confondu avec l'axe longitudinal Oz.
  • Avantageusement, l'antenne 300 comprend en outre un ou plusieurs éléments directeurs 330. Ces éléments directeurs peuvent posséder chacun la forme d'une tige verticale de diamètre quelconque ou, de préférence, d'une structure linéaire repliée sur elle-même présentant l'avantage d'être plus solide et plus légère. Dans ce cas, un tel élément directeur 330 comprend un premier segment perpendiculaire au plan de masse, sous la forme d'une tige ou d'une bande rigide conductrice et d'un second segment conducteur parallèle et de même forme, situé à une faible distance du premier. Les premier et second segments sont reliés ensemble à une première extrémité commune 331 du côté opposé au plan de masse. En revanche, les secondes extrémités respectives, 332 et 333, des premier et second segments situés du côté du plan de masse ne sont pas connectées entre elles.
  • De manière générale, le fait d'utiliser des éléments linéaires repliés sur euxmêmes permet d'améliorer la rigidité d'ensemble de l'antenne.
  • Les dimensions transversales des éléments directeurs 330 dans un plan orthogonal à l'axe Oz sont choisies inférieures voire légèrement inférieures aux dimensions transversales respectives de la plaque rayonnante 321. Par exemple, lorsque la plaque possède une forme circulaire, les premier et second segments d'un élément directeur ont une longueur de l'ordre de 5% plus courte que le diamètre du cercle.
  • L'élément réflecteur, 310, l'élément rayonnant, 320, composé de l'antenne plaque, et l'(es) élément(s) directeur(s), 330, sont avantageusement montés sur une surface substantiellement plate comme par exemple un plan de masse ou la peau d'un aéronef dirigé selon la direction Oz et forment une antenne de type Yagi-Uda monopolaire.
  • Les positions relatives des éléments le long de l'axe Oz et leurs espacements sont choisis de manière à optimiser la forme du faisceau, notamment à en réduire les lobes secondaires, et à permettre l'adaptation d'impédance (généralement à 50Ω). L'introduction d'éléments directeurs et d'un élément réflecteur dans le champ de de l'élément rayonnant a pour conséquence de réduire l'impédance de l'antenne et donc la puissance non rayonnée. L'élément rayonnant possède une impédance élevée, de l'ordre de 150 Ω, ce qui permet d'utiliser des éléments directeurs 330 et un élément réflecteur 310 tout en réduisant la puissance non rayonnée.
  • Les différents éléments de l'antenne peuvent être réalisés simplement et à bas coût à partir de feuilles ou de bandes métalliques.
  • La Fig. 4 représente un diagramme donnant le coefficient de réflexion (paramètre S 11 ) de l'antenne de la Fig. 3 en fonction de la fréquence.
  • La plaque rayonnante est constituée par un disque métallique de diamètre 20mm. L'antenne comporte en outre un élément réflecteur hémicylindrique et un élément directeur. On remarque sur la Fig. 4 que la largeur de la bande de fonctionnement prise à 10dB s'étend sur une octave de 3 à 6 GHz. Elle englobe par conséquent la plupart des bandes de fréquence 4G et 5G utilisées dans le monde.
  • Ainsi, l'antenne proposée peut notamment servir comme antenne globale à plusieurs systèmes de communication air-sol embarqués, en particulier lorsque l'aéronef est en phase d'approche. Cette antenne peut aussi servir d'antenne relais en cas d'utilisation de téléphones cellulaires par les passagers de l'aéronef.
  • La Fig. 5 représente le diagramme de rayonnement tridimensionnel de l'antenne de la Fig. 3 à une fréquence de 4 GHz.
  • On note que l'antenne présente une bonne directivité à faible et moyenne élévation, une émission longitudinale dans la direction de l'axe Oz avec un gain de près de 10 dB.
  • Cette bonne directivité à faible élévation est confirmée par le diagramme de rayonnement bidimensionnel de cette même antenne, toujours à une fréquence de 4GHz, dans un plan d'élévation à 5°, comme illustré en Fig. 6. Cet angle d'élévation correspond au cas d'une antenne montée sur la partie inférieure du fuselage de l'aéronef (l'axe Oz étant sensiblement parallèle à l'axe longitudinal de ce dernier) et d'une situation typique où l'aéronef vole à une altitude de 3km et la station au sol se trouve à une trentaine de kms.
  • La largeur angulaire en azimut du lobe principal est de plus de 120° ce qui autorise des communications à qualité de service élevée même lorsque la station au sol n'est pas dans l'alignement du cap de l'avion. Il n'est donc pas nécessaire d'effectuer une formation de faisceau dynamique pour pointer dans la direction de cette station.
  • En outre, le diagramme de rayonnement présente des lobes secondaires peu nombreux avec une forte réjection, ce qui réduit d'autant les risques d'interférence en réception.

Claims (8)

  1. Antenne de type Yagi-Uda comprenant un élément parasite réflecteur (310), un élément rayonnant (320) et au moins un élément parasite directeur (330) disposés dans cet ordre le long d'un axe longitudinal de l'antenne l'élément rayonnant étant formé par une plaque conductrice (321), disposée de manière sensiblement orthogonale à l'axe longitudinal de l'antenne et au-dessus d'un plan de masse (310) de manière à constituer un monopole, la plaque étant pourvue, du côté du plan de masse, d'une borne d'alimentation (322) pour appliquer ou recevoir un signal d'antenne, la plaque conductrice se présentant sous la forme circulaire, et étant équipée, à une extrémité opposée au plan de masse, d'un retour conducteur (325), le retour conducteur étant électriquement relié au plan de masse, de sorte que l'ensemble constitué par la plaque conductrice et le retour conducteur forment un monopole replié, la plaque conductrice se présentant comme un disque de diamètre de l'ordre de λ/4 où λ est une longueur d'onde correspondant à une borne inférieure d'une bande de fréquence de fonctionnement de l'antenne et que le retour conducteur se présentant comme une tige ou une bande de longueur sensiblement identique au diamètre du disque.
  2. Antenne de type Yagi-Uda selon la revendication 1, dans laquelle le retour conducteur s'étend parallèlement au disque et est situé derrière celui-ci, entre le disque et l'élément parasite réflecteur.
  3. Antenne de type Yagi-Uda selon la revendication 1, dans laquelle le retour conducteur s'étend parallèlement au disque et est situé devant celui-ci, entre le disque et l'élément parasite directeur.
  4. Antenne de type Yagi-Uda selon la revendication 1, dans laquelle l'élément parasite réflecteur présente, dans la direction perpendiculaire au plan de masse, une dimension supérieure à celle de la plaque conductrice selon cette même direction.
  5. Antenne de type Yagi-Uda selon l'une des revendications précédentes, dans laquelle l'élément parasite directeur est configuré comme un monopole replié, comprenant un premier segment conducteur et un second segment conducteur, parallèles entre eux et à la plaque conductrice, lesdits premier et second segments conducteurs étant reliés en une première extrémité commune, du côté opposé au plan de masse et n'étant pas reliés à leurs secondes extrémités, du côté du plan de masse.
  6. Antenne de type Yagi-Uda selon la revendication 5, dans laquelle les premier et second segments conducteurs ont une longueur inférieure au diamètre de ce disque.
  7. Antenne Yagi-Uda selon l'une des revendications précédentes, dans laquelle une bande passante de fonctionnement couvre plus d'une octave.
  8. Aéronef comportant une antenne Yagi-Uda selon l'une des revendications précédentes, ladite antenne étant montée sur une partie inférieure du fuselage de l'aéronef l'axe longitudinal de l'antenne étant sensiblement parallèle à un axe longitudinal de l'aéronef, et le plan de masse étant constitué par une peau du fuselage.
EP21163164.3A 2020-03-27 2021-03-17 Antenne directive large bande à émission longitudinale Active EP3902059B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2003063A FR3108797A1 (fr) 2020-03-27 2020-03-27 Antenne directive large bande à émission longitudinale

Publications (2)

Publication Number Publication Date
EP3902059A1 EP3902059A1 (fr) 2021-10-27
EP3902059B1 true EP3902059B1 (fr) 2023-03-01

Family

ID=71111586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21163164.3A Active EP3902059B1 (fr) 2020-03-27 2021-03-17 Antenne directive large bande à émission longitudinale

Country Status (4)

Country Link
US (1) US11552409B2 (fr)
EP (1) EP3902059B1 (fr)
CN (1) CN113451748A (fr)
FR (1) FR3108797A1 (fr)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218686A (en) * 1978-02-23 1980-08-19 Blonder-Tongue Laboratories, Inc. Yagi-type antennas and method
US5008681A (en) * 1989-04-03 1991-04-16 Raytheon Company Microstrip antenna with parasitic elements
US5220335A (en) * 1990-03-30 1993-06-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Planar microstrip Yagi antenna array
US6307524B1 (en) * 2000-01-18 2001-10-23 Core Technology, Inc. Yagi antenna having matching coaxial cable and driven element impedances
US8228254B2 (en) * 2001-06-14 2012-07-24 Heinrich Foltz Miniaturized antenna element and array
FR2850794A1 (fr) * 2003-01-30 2004-08-06 Thomson Licensing Sa Antenne large bande et a rayonnement omnidirectionnel
US8378903B2 (en) * 2009-09-09 2013-02-19 L-3 Communications Integrated Systems L.P. Antenna apparatus and methods of use therefor
US9444147B2 (en) * 2011-07-18 2016-09-13 The United States Of America As Represented By The Secretary Of The Army Ultra-wide-band (UWB) antenna assembly with at least one director and electromagnetic reflective subassembly and method
US20160189915A1 (en) * 2014-12-30 2016-06-30 Electronics And Telecelectroommunications Research Institute Antenna structure
CN110574234B (zh) * 2017-04-27 2022-06-10 Agc株式会社 天线和mimo天线
US20190280365A1 (en) * 2018-03-07 2019-09-12 GM Global Technology Operations LLC Vehicle integrated antenna with enhanced beam steering

Also Published As

Publication number Publication date
US11552409B2 (en) 2023-01-10
FR3108797A1 (fr) 2021-10-01
US20210305716A1 (en) 2021-09-30
EP3902059A1 (fr) 2021-10-27
CN113451748A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
EP0899814B1 (fr) Structure rayonnante
EP0372451B1 (fr) Dispositif rayonnant multifréquence
EP1407512B1 (fr) Antenne
EP3669422A1 (fr) Antenne plaquée présentant deux modes de rayonnement différents à deux fréquences de travail distinctes, dispositif utilisant une telle antenne
EP2564466A1 (fr) Element rayonnant compact a cavites resonantes
FR2810164A1 (fr) Perfectionnement aux antennes source d'emission/reception d'ondes electromagnetiques pour systemes de telecommunications par satellite
EP2532046A1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
CA2500990C (fr) Antenne reflecteur a structure 3d de mise en forme de faisceaux d'ondes appartenant a des bandes de frequences differentes
EP2610966B1 (fr) Antenne compacte large bande à très faible épaisseur et à double polarisations linéaires orthogonales opérant dans les bandes V/UHF
EP3902059B1 (fr) Antenne directive large bande à émission longitudinale
EP3175509B1 (fr) Antenne log-periodique a large bande de frequences
EP0520908B1 (fr) Antenne réseau linéaire
EP4046241B1 (fr) Antenne-reseau
EP0860894B1 (fr) Antenne miniature résonnante de type microruban de forme annulaire
EP0860895A1 (fr) Antenne résonnante pour l'émission ou la réception d'ondes polarisées
EP2610965B1 (fr) Antenne compacte à large bande à double polarisation linéaire
EP3155689B1 (fr) Antenne plate de telecommunication par satellite
EP2351148B1 (fr) Structure deployable et systeme antennaire a membranes comprenant une telle structure
WO2023031543A1 (fr) Antenne multi-bandes
EP4012839A1 (fr) Réseau antennaire à rayonnement directif
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
EP0850496B1 (fr) Dispositif d'emission a antenne omnidirectionnelle
EP1873864A1 (fr) Antenne symétrique en technologie micro-ruban

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20210317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210923

17Q First examination report despatched

Effective date: 20211005

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1551648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021001491

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230426

Year of fee payment: 3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1551648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230701

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602021001491

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

26N No opposition filed

Effective date: 20231204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 4