EP2607808B1 - Elément générateur de chaleur - Google Patents

Elément générateur de chaleur Download PDF

Info

Publication number
EP2607808B1
EP2607808B1 EP11010084.9A EP11010084A EP2607808B1 EP 2607808 B1 EP2607808 B1 EP 2607808B1 EP 11010084 A EP11010084 A EP 11010084A EP 2607808 B1 EP2607808 B1 EP 2607808B1
Authority
EP
European Patent Office
Prior art keywords
contact
heat generating
frame
elements
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11010084.9A
Other languages
German (de)
English (en)
Other versions
EP2607808A1 (fr
Inventor
Franz Bohlender
Michael Niederer
Christian Morgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Catem GmbH and Co KG
Original Assignee
Eberspaecher Catem GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberspaecher Catem GmbH and Co KG filed Critical Eberspaecher Catem GmbH and Co KG
Priority to EP11010084.9A priority Critical patent/EP2607808B1/fr
Priority to US13/723,444 priority patent/US9297551B2/en
Priority to DE102012025445A priority patent/DE102012025445A1/de
Priority to CN201210568641.8A priority patent/CN103179701B/zh
Publication of EP2607808A1 publication Critical patent/EP2607808A1/fr
Application granted granted Critical
Publication of EP2607808B1 publication Critical patent/EP2607808B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0072Special adaptations
    • F24H1/009Special adaptations for vehicle systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/50Systems for transmission between fixed stations via two-conductor transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/286Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/50Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system

Definitions

  • the present invention relates to a heat-generating element, in particular for an electrical heating device of a motor vehicle with a position frame which forms a receptacle in which at least one PTC element is received, and on two opposite sides of the PTC element contact plates.
  • the present invention relates to a heat generating element of an electric heating device for a motor vehicle with a frame which forms on opposite side openings for the passage of a medium to be heated.
  • a layer structure is arranged, which accommodates said heat-generating element in which in the layer structure usually respectively on opposite sides of the heat-generating element corrugated elements abut heat-conducting to heat generated by the heat generating elements heat to the medium to be heated regularly To dissipate air.
  • Such electrical heating device are for example from the DE 199 11 547 . US 5,854,471 . EP 0 350 528 or DE 197 06 199 known.
  • a heat generating element having the pre-characterizing features of claim 1 is known from EP 1 467 599 A2 known.
  • the position frame has a plurality of lugs for frictionally clamping the PTC element in the recess.
  • a corresponding disclosure contains the EP 0 705 055 A2 ,
  • the frame forms elastic arms, which clamp the PTC element in the recess in a force-locking manner.
  • the arms are surmounted on the inside by supports which engage over the PTC element inserted in the receptacle of the positioning frame on top or bottom side.
  • the receptacle formed by the position frame is covered on its inner circumference with a spacing means bridging an insulating gap to be provided between the plastic material of the position frame and the PTC element.
  • the insulating support means is formed in accordance with this prior art from a silicone strip which is attached via a tongue and groove connection to the inner peripheral surface of the position frame.
  • the present invention is based on the problem of providing a heat-generating element in which the PTC element is supported isolated in an improved manner.
  • the heat generating element of the type mentioned above is further developed by a plurality of support points provided in the circumferential direction of the receptacle. These support points project beyond the otherwise flat, and usually in the insertion direction extending and the inner peripheral surface of the receptacle usually forming surface portions of the recording.
  • the support points regularly form selective support positions by which the PTC element is kept at a distance from the surface portions of the peripheral surface which are formed by the positional frame.
  • the position frame may be made of an electrically highly insulating material, such as, for example, or other materials used in the art EP 1 768 457 A1 are called.
  • Meantime for the invention are the support points, which are preferably arranged such that the one or more, regularly all recorded in the one recording PTC elements are circumferentially spaced from the inner peripheral portions of the position frame.
  • the air and creepage distance is increased. Accordingly, it is prevented that the PTC elements, with their edges connecting the surfaces of opposite polarity, can abut flat against a contact partner, ie the positioning frame or a spacer means held by the positioning frame.
  • the creepage distance between the contact surfaces of different polarity for the contact plates is increased.
  • the creepage distance between the surfaces of the PTC element (s) energized with different polarity and the position frame is increased, so that the PTC elements are provided in an insulated manner in the receptacle in an improved manner.
  • the development accordingly allows a safer operation of the heat generating element at high currents.
  • At least two support points are provided on opposite side walls, on which the PTC element or elements are supported, so that the edges of the PTC elements extend substantially parallel to the inner peripheral portions of the receptacle.
  • the support points are usually fully formed on the receptacle in order to ensure at each peripheral portion of the inner peripheral surface of the receptacle a desired distance between the PTC element and the inner peripheral surface of the position frame.
  • the support points contour is proposed according to the present invention to form the support points tapered.
  • tip of the support point is usually halfway up the receptacle and thus of the PTC element.
  • the support points are formed tapering in two planes, so that a support of the PTC element can be done by a very small surface portion, usually a tip of the support point, whereby the creepage distance is reduced overall.
  • the support points are accordingly both in a cross-sectional view through the position frame as well as a plan view of the position frame and in the recording as a tapered configuration. In other words, the support points are formed tapering both in height and in the circumferential direction.
  • the support points have a curved surface.
  • the creepage distance is extended on the support points.
  • the support points are concavely curved, so that the best possible extension of the creepage also results in the support points.
  • the contact plates are spaced apart from the positional frame to arrange. The contact plates can be connected by pressing or non-positively and / or positively connected to the PTC elements and fixed on this. Usually, further means are provided which hold the contact plates at a distance from the position frame.
  • the contact plates are correspondingly substantially smaller than the receiving space formed by the receptacle for the PTC elements, so that there is a peripheral circumferential gap between the contact plates and the receptacle limiting inner peripheral surface portions of the position frame. Through this circumferential gap a direct contact between the energized contact plates and the positioning frame is prevented and thus increases the creepage distance.
  • the contact plates are covered on the outside with a sealing applied to the position of the frame sheet.
  • This film may be an adhesive film, which is glued to the associated contact plate and / or the position frame. This allows the PTC element to receive a certain fixation. Also, the film can be glued by their own adhesive layer with the position frame and thus sealed against it.
  • the positioning frame can usually circulate on the outside completely around the at least one receptacle or the plurality of receptacles, i. extend substantially parallel to an outer edge of the position frame, so that an inner, the PTC elements receiving portion of the position frame is sealed from the environment.
  • the contact sheets on the outside covering insulating layer of the heat generating element and the position frame is created only by this peripheral adhesive edge, resulting in a further increase in the creepage distance.
  • the contact sheets usually have a base area corresponding to the base areas occupied by the PTC element or elements within the position frame.
  • the insulating layer is surmounted on the outside and lies only near the outer edge of the position frame and on the adhesive edge indirectly on the position frame.
  • the previously discussed refinement preferably has an insulating layer which is supported relative to the position frame only by means of a circumferential adhesive edge formed on the position frame close to the edge. An additional contact between the insulating layer and the position frame usually does not exist.
  • At least one insulating layer is covered by a metal cover connected to the position frame.
  • the receptacle for the PTC elements or is provided with a shield so that a heat-generating element is given, which can justify an EMC problem only to a lesser extent.
  • the switching of the heat-generating element, in particular with high currents leads to corresponding electromagnetic disturbances, which are undesirable and particularly to be suppressed in a motor vehicle.
  • the sheet metal cover can be connected to the position frame, for example, and preferably via a frame substantially over a substantially completely surrounding the frame frame edge. This edge can be used to clip the sheet metal cover to the frame.
  • the edge usually extends over the entire height of the position frame, i. at least close to the opposite plant side.
  • the heat-generating element may be provided after installation in a heating block of an electric heater with a metal cover, which is associated with one or more corrugated fin elements. Accordingly, by the sheet metal cover associated with the position frame on the one hand and the metal cover associated with the corrugated fin elements on the other hand, a mutual shielding is generated which usually or almost completely surrounds the receptacle of the position frame so that the receptacle supports as best as possible and thus provides the best possible EMC protection is.
  • the contact plates are provided only within a predetermined by the positioning frame envelope surface.
  • the contact plates do not project beyond the position frame.
  • the present proposal differs from the disclosure of EP 1 768 457 A1 respectively.
  • EP 1 768 458 A1 the contact plates for forming of the position frame frontally superior terminal lugs are formed by punching and bending.
  • the base area of the contact plates in a plan view of the position frame is smaller than the base area of the position frame. The outer edge of the position frame and thus the predetermined by the positioning frame envelope surface is not surmounted by the contact plates. This requirement applies to both contact plates.
  • the position frame has outwardly projecting channels for receiving contact elements leading to the contact sheets.
  • These contact elements can be arranged within an electrical heater with the heat generating elements so that these contact elements are within a shield so that the entire current flow to the heat generating element is designed as best as possible in terms of EMC problems.
  • the outwardly projecting channels can also be formed to seal the heat generating elements with respect to a control or connection housing, which usually connects a plurality of provided in the heating block heat generating elements with their contact elements electrically.
  • the present invention With a view to the most economical production, it is proposed according to a preferred development of the present invention to form the contact sheets identically. The same applies to the insulating layers. Thus, it is not possible, by interchanging contact plates or insulating layers to their assigned areas of the heat generating element to assemble this wrong. With a view to the most economical production, it is proposed according to a preferred development of the present invention to connect the contact plates by means of clip connections with the position frame.
  • the positioning frame accordingly has usually clip webs, which are formed according to the dimensions of the contact elements, wherein the contact elements and the clip webs are provided in identically formed clip openings.
  • the corresponding clip connections are usually provided at the front ends of the contact plates.
  • the contact plate is correspondingly end connected on the one hand by a clip connection between the clip web, which is integrally formed on the position frame, and the contact element which is inserted into the channel.
  • the contact plates are each provided on the opposite sides with female clip element recordings. These are usually formed by punching and bending of the contact sheets forming material.
  • FIG. 1 shows an embodiment of an electric heater with a marked with reference numeral 2 power and a part marked with reference numeral 4 control part.
  • the power part 2 and the control part 4 form a structural unit of the electric heater.
  • the control part 4 is formed on the outside by a connection housing 6, which - in particular the representation according to FIG. 4 illustrates - from a shield 8, which is formed as, for example, deep-drawn or cast or deep-drawn metal shell, a plastic housing element 10, which is inserted into the metal shell 8, and a housing cover 12 is made.
  • the housing cover 12 may overlap a free flange of the sheet metal trough 8 in the assembled state and be formed of metal, so that the interior of the control part 4 completely by a metallic terminal housing 6 is shielded.
  • the housing cover 12 may also be formed of plastic.
  • the housing cover 12 carries a female connector housing 14 for the power current and another female and designed as a control connector housing 16 housing element. Both connector housings 14, 16 are connected as plastic elements with the metallic housing cover 12 and form guide and sliding surfaces for each unillustrated male connector element.
  • the plastic housing element 10 receives a printed circuit board 18 in itself, which is partially covered by a pressure element 20, which will be explained in more detail below.
  • the printed circuit board 18 is surmounted by a plus terminal plug contact 22 and a minus plug contact, which are exposed in the power plug housing and are electrically connected to the conductor track.
  • the circuit board 18 also carries a control contact element containing control contact element 26, which is accessible via the control connector housing 16 by means of cables. How out FIG. 4
  • the control connector housing 16 is arranged offset to the control contact element 26. This distance is due to the installation situation of the electric heater in the motor vehicle.
  • the housing cover is further surmounted in the mounted state by a connection pin 28 for the ground connection, which is electrically connected to the shielding housing 8.
  • the plastic housing member 10 forms two cooling channels 30 for heat sink 32, which in FIG. 4 just hinted at, while in the FIGS. 1 and 5 can be seen more clearly.
  • the free end of the heat sink 32 includes a plurality of cooling webs extending substantially parallel to each other, each defining air passageways 34.
  • the heat sink 32 are made of a good thermal conductivity material, such as aluminum or copper.
  • FIG. 5 omitted trough has - as in particular the FIGS. 1 and 4 illustrate, corresponding to the cooling channels 30 opposite passage openings 36 for air, which are provided as inlet and outlet openings to the cooling channels 30.
  • These passage openings 36 are in the metal shell 8 emerged.
  • the metal shell 8 also has on opposite end faces each mounting holes 42, which will be discussed in more detail below.
  • the power unit 2 has a frame 44, which in the embodiment according to FIG. 1 is circumferentially closed and a designated by reference numeral 46 layer structure, which is also referred to as a heating block, circumferentially surrounds.
  • the frame 44 is formed from two frame members 48, which are locked together by latching connections, the reference numeral 50 (male latching element) and reference numeral 52 (female latching element), in particular in FIG. 16 Marked are.
  • the frame 44 forms on opposite outer sides 54 each openings 56 for the passage of air to be heated of the air heater shown in the embodiment. These openings 56 are stiffened in the embodiment shown by transverse struts 58, the opposite side edges of the frame 44 interconnect.
  • the frame 44 defines in its interior a receiving space 60 which is adapted such that the layer structure 46 can be received in the frame 44 closely fitted.
  • the heating block or layer structure 46 is essentially made of the in the Figures 10 and 13 formed heating rods 62 which are stacked in the receptacle 60 are arranged.
  • the heating elements 62 consist of at least two corrugated fin elements 64, which receive a heat generating element 66 between them.
  • the corrugated rib elements consist of meandering curved metal strips 68, which are covered on one side by a metal cover 70 and also bordered by a curved edge 72 of the sheet metal cover 70.
  • the respective other upper side of the meandering bent sheet-metal strip 68 is free and is formed directly by arcuate free ends 74 of the sheet metal stiffener 68.
  • heater 62 are in the direction of passage of the air to be heated, ie perpendicular to the plane defined by the outer sides 54 surface of the frame 44 two corrugated fin elements 64 each provided side by side.
  • This arrangement of corrugated fins 64 provided in succession in the direction of flow forms a layer.
  • a corrugated fin element 64 per level E is provided in each position marked with the reference symbol L.
  • S the flow direction of the air flow to be heated in FIG. 11 located. This firstly meets the first plane E1, ie the corrugated rib elements 64 of the first layer L1 and the second layer L2 provided in the first plane, and only thereafter onto the corrugated rib elements 64 provided in the second plane E2.
  • the corrugated rib elements 64 are in the flow direction S. , ie perpendicular to the opening 56 defining Au .seite 54 arranged strictly one behind the other.
  • the heat-generating element 66 forms a planar contact surface for the corrugated rib elements 64.
  • the heat generating element 66 consists of several superimposed layers.
  • the heat-generating element 66 has a substantially symmetrical construction, wherein in the middle of a marked with reference numeral 76 position frame of an electrically insulating material, in particular plastic is provided.
  • the positioning frame 76 forms three receptacles 78 for PTC elements 80.
  • a receptacle 78 accommodates a plurality of at least two PTC elements 80.
  • the two outer receptacles 78 each receive four PTC elements 80.
  • On opposite sides of the PTC elements 80 contact plates 82 abut. These two contact plates 82 are identical and formed from punched electrically conductive sheet.
  • the contact plates 82 are placed on the PTC elements 80 as separate elements. These may additionally be provided with a vapor-deposited electrode layer, as is common practice. However, the electrode layer is not contact plate 82 in the sense of the invention.
  • FIG. 11 illustrates, the associated with a plane E1 PTC element 80 within the front and rear sides of the associated corrugated fin elements 64.
  • E1 PTC element 80 located between two provided in a layer L1 corrugated fin elements 64 no PTC element 80. This is a thermal interaction between the PTC elements of different levels E1, E2 avoided.
  • the contact plates 82 are dimensioned such that they are indeed received within the position frame 76, but circumferentially spaced from the position frame 78 are arranged.
  • the extent gap formed in this respect is in FIG. 11 with reference number 84 characterized.
  • an elastomeric adhesive edge 88 is filled as a torus.
  • This adhesive edge 88 surrounds all receptacles 78 fully circumferentially and serves to bond an insulating layer identified by reference numeral 90, which in the present case is formed from an insulating plastic film and which extends to an edge region of the positioning frame 76, in each case in the circumferential direction the adhesive edge 88 surmounted with excess.
  • connection pieces 92 Access to the interior of the positioning frame 76 are provided solely on an end face of the positioning frame 76 and through its material integrally formed thereon connecting pieces 92 which surround a channel 94 for receiving pin-shaped contact elements 96 full extent.
  • the connecting pieces 92 are made of a thermoplastic elastomer or PTFE sealing elements 98 formed with labyrinthine sealing structure, which can be connected by injection molding or plugging with the associated connection piece 92.
  • two connecting pieces 92 On the front side of each position frame 76, two connecting pieces 92 are provided with identical design and sealing for receiving two contact pins 96 for electrical contacting of the contact plates 82nd
  • the contact plates 82 have been made by punching and bending female clip element receptacles 100 which are formed on laterally offset projections 102 of the contact plate 82, which projections 102 terminate within the given by the adhesive edge 88 border and respectively assigned and by the positioning frame 76th cover formed clip openings 104, 106.
  • connection openings 92 opposite to the formed on the positioning frame 76 clip openings 106 are integrally formed thereon by the material of the positioning frame 76 clip webs 108 are provided.
  • the configuration and the diameter of these clip webs 108 correspond to the diameter of a contact pin 96.
  • the contact pins 96 are exposed in the clip openings 104 and are connected to the female clip element receptacles 100 of the contact plates 82, whereas on the opposite side the female clip element receptacles 100 project into the clip openings 106 and are locked with the clip webs 108.
  • the described Clip connections can be realized either by positioning the contact plates 82 in their installed position and subsequent insertion of the contact pins 96 through the channels 94 or by locking the female clip element receptacles 100 with the contact pins 96 already in position.
  • the heat generating element 66 is provided with a metal cover 110.
  • This metal cover 110 covers the entire, the sheet metal cover 110 associated insulating layer 90 and has a peripheral edge 112 which frictionally rests against a peripheral edge surface 114 of the position frame 76 and, accordingly, the sheet metal cover 110 by biasing force on the position frame 76 secures (see also Fig. 11 ). Furthermore, the edge 112 ensures accurate positioning of the sheet metal cover 110 relative to the outer periphery of the position frame.
  • the metal cover 110 has at the free end of the rim 112 a slight conical broadening, which acts as a funnel-shaped insertion opening for the position frame.
  • the peripheral edge 112 is broken only in the corner areas and at the height of the connecting piece 92 and forms a one-sided shield for the heat generating element 66th
  • the channels 94 adapted to the contact pins 96 are radially widened to form a groove-shaped test channel 116.
  • This test channel 116 extends from the front free end side of the connecting piece 92 to the associated clip opening 104 and accordingly forms an external access to the receptacles 78, which communicate with each other below the insulating layer 90 and the contact plates 82.
  • FIG. 3 Furthermore, illustrates the sheet metal cover 110 between the slightly upwardly arched shoulder portions 118 for the peripheral edge 112 a flat contact surface. Accordingly, these attachment areas 118 form a kind of centering for the corrugated rib elements 64 (see also FIG FIG. 11 ).
  • the layer structure 46 described above is held in the embodiment shown under spring tension in the frame 44.
  • the frame 44 formed by the two frame members 48 spring insertion openings 120 which in the FIGS. 4 and 5 can be seen and not yet mounted heater on the control side Face of power section 2 are exposed.
  • braced spring elements 121 are introduced, which in the Applicant going back EP 2 298 582 are described and their disclosure content is incorporated by this reference in the disclosure of the present application.
  • each of the frame members 48 each form a retainer member 122.
  • Each holding element part 122 formed by a frame element 48 is provided with an inclined ramp surface 124.
  • the holding element parts 122 are designed such that, when the frame 44 is joined, two holding element parts 122 respectively assigned to a frame element 48 form complete holding elements 126 on opposite end sides with the frame element parts 122 of the other frame element. These holding elements 126 have a design tapering towards the free end, so that the oblique ramp surfaces 24 serve for coarse positioning of the control part 4, namely a positioning opening 127 of the plastic housing element 10 relative to the power part 2 (cf. Fig. 5 ). Furthermore, grooves 128 extending transversely to the holding element parts 122 form a circumferentially closed bore 130 after joining the frame elements 48 (cf. Fig. 4 ). In this bore 130, a fastening screw can be introduced through the mounting hole 42 of the metal shell 8 to effect the positioning and fixing of the power section 2 to the control part 4 to achieve a structural unit of power section 2 and control section 4.
  • the plastic housing member 10 forms for each heat generating element 66 two cylindrical nozzle receivers 132, which are adapted such that the connecting pieces 42 can be introduced together with the sealing elements 98 each in associated nozzle receptacles 132 sealing.
  • the nozzle receptacles 132 are conically widened end and have first a widened cylinder portion for receiving the sealing element 98 and a cylinder portion located inside with a smaller diameter, which holds the front conically tapered connecting piece 92 with little play and thus the deformation of the sealing element 98 after limited to the assembly.
  • the contact pins 96 pass through respective contact surface elements 134, which are formed by stamping and bending sheet metal and group within the terminal housing 6 a plurality of pins 96 of the same polarity, so that they are assigned to a heating stage are.
  • This in FIG. 6 bottom contact surface element is a first plus pad element 134, whereas the upper contact surface element is a minus pad element 136.
  • FIG. 7 illustrates, the plastic housing member 10 receives another, second plus pad member 138.
  • the minus pad member 136 and the plus pad members 134, 138 are separated from one another by a separator bar 140. This separating web 140 projects beyond a bearing plane formed by the plastic housing element for the contact surface elements 134, 136, 138.
  • FIG. 6 Surfaces of the plastic housing element 10 that predetermine this bearing plane are in FIG. 6 designated by reference numeral 142.
  • the web 140 By the web 140, the leakage current path between the contact surface elements 134, 138 of the plus polarity and the contact surface element 136 of the negative polarity is extended, so that leakage currents between the two contacts are not to be feared. Also, the air gap between the contact surface elements 134 and 136 or 138 and 136 is laid.
  • the contact surface elements 134, 136, 138 have between the contact pins 96 to the divider 140 opening semicircular recesses 143. In FIG.
  • contact tongues 144, 146 can be seen, which protrude through the printed circuit board 18 and are integrally formed by stamping and bending on the contact surface elements 134 and 136 and which are held raised in contact tongue holding regions 148 relative to the contact surfaces 142.
  • the FIG. 8 lets see details in this way.
  • the respective contact surface elements 134, 136 have end-side connection tabs 145, which open into the contact tongues 144, 146.
  • the contact surface elements 134, 136, 138 for the individual contact pins 96 formed contact openings, which are made by punching and bending.
  • opposing contact protrusions 150 are elastically stretched against the outer periphery of the contact pins 96.
  • the plastic housing element 10 forms locking projections 152 which are inserted into locking openings 154 of the contact surface elements 134, 136, 138, which are bounded on opposite sides by sharp-edged clamping segments 156 of the sheet material forming the contact surface elements 134, 136, 138. Accordingly, these clamping segments 156 dig into the locking protrusions 152 and secure the contact surface elements 134, 136, 138 after sliding onto the locking protrusions.
  • FIG. 8 further shows the previously described heatsink 32, which are exposed within the plastic housing member 10 and project with a flat contact surface 158 the divider 140 on the upper side.
  • each fixing eyes 160 for the previously already generally introduced pressure element 20 can be seen. How the particular FIGS. 4 and 9 To illustrate, this is honeycombed with a plurality of perpendicular honeycomb webs 162 formed.
  • the sectional view according to FIG. 9 illustrates the installation of the heat sink 32 in the plastic housing element 10.
  • This has - like FIG. 8 can recognize - a plurality of distributed on the circumference of a raiseddeèveeinbringö réelle 164 of the plastic housing member 10 provided latching post 166 conically narrow the edge of thedeanalysiseinbringö réelle 164 and form latching shoulders 168, which engage over a formed on the heat sink 32 circumferential locking bar 170 and thus form-fitting against pushing out prevent above and in the direction of the terminal housing 6.
  • the contour of the recesses 143 of the contact surface elements 134, 136, 138 corresponds to the contour of the heat sink inlet opening 164, so that its raised edge is closely bounded by the contact surface elements 134, 136, 138.
  • the two plus pad elements 134, 138 are identically shaped so that they can be selectively used to form the first or second pad elements 134 or 138.
  • On the latching shoulder 168 opposite side of the latching web 170 is a sealing element 172, which surrounds the cooling body 32 circumferentially and on the latching web 170 facing away from the bottom in the circumferential direction by in FIG.
  • This seal receiver 174 is integrally formed by the plastic case member 10 and extends the heat sink insertion hole 164.
  • sealing element 172 is shown in a slightly compressed configuration. Meanwhile, the seal member 172 is compressible in the longitudinal direction of the seal receiver 174 such that the seal between the inner peripheral surface of the cylindrical seal receiver 174 and the outer peripheral surface of the heat sink 32 is lost.
  • sealing element 172 can be compressed by approximately 2/10 to 7/10 mm in lengthwise direction of sealing seat 174 due to migration of detent web 170.
  • the compensating movement is applied by screwing the pressure element 20 to the fastening eyes 160 after mounting the printed circuit board 18, which is provided on its the heat sink 32 facing bottom 176 with two semiconductor power switches 178. Each circuit breaker 178 is located on the flat contact surface 158 of the associated heat sink 32.
  • the circuit board has a bore 180 which is penetrated by pressure webs 182 of the pressure element 20. These pressure bars 182 are directly against the circuit breaker 178 and press it against the heat sink 32. Since the circuit breaker 178 may have considerable thickness tolerances due to manufacturing, provided in the embodiment sealing element 172 allows compensation by retreating of the heat sink 32 in the direction of the power unit 2 without the sealing of the heat sink 32 in the plastic housing element 10 is lost. As can be seen from the overall view, in particular of FIGS.
  • the insulating layer 174 is a ceramic insulating layer. Also, this insulating layer 184 extends beyond the heat sink 32 to increase the creepage significantly in the width direction (see. FIG. 9 ).
  • a second positive contact tongue 186 projecting from the second contact surface element 138 connects the heating circuit formed by the second plus pad member 138 and the minus pad member 136 to the board 18 (see FIG. FIG. 4 ).
  • FIG. 9 can recognize, contacts the semiconductor power switch 178 with the circuit board 18 and switches the power current to the associated circuit. In the present case, two heating stages are realized, which can be switched and controlled in each case via one of the semiconductor power switch 178.
  • the heat sink 32 is also sealed in the heat sink insertion opening 164.
  • the locking webs 170 lie directly below the locking shoulders 168.
  • a touch does not take place, so that the compression force caused by the slight compression of the sealing element 172 acts on the phase boundary between the heat sink 32 and the power switch 178.
  • This power switch 178 is applied regardless of the thickness tolerance on the underside 176 against the printed circuit board 18.
  • the pressure element 20 relieved with its pressure ribs 82 only the circuit board 18, so that the circuit breaker 178 is not clamped over the circuit board 18, but only between the pressure element 20 and the bias causing heat sink 32 with the interposition of the insulating layer 184.
  • the location of the power switch 178 and the circuit board 18 and the pressure element 20 does not change in a power switch 178 with greater strength. Rather, the heat sink 32 is urged in theisserWorkeinbringö réelle 164 in the direction of the power section 2, so that the sealing element 172 while maintaining the sealing of the heat sink 32 compressed more and - compared to the representation in FIG. 9 -
  • the locking webs 170 in a further lowered position, ie further spaced from the locking shoulders 168 are arranged.
  • the embodiment of an electric heater shown in the figures has heat-generating elements which are designed in a special way in order to lengthen creepage distances and to reduce the risk of leakage current transmission.
  • This particular design is described below with particular reference to FIGS Figures 2 and 11 clarified. So has - as in FIG. 2 to recognize each - defined by a basically flat inner peripheral surface of the position frame 76 receptacle 78 on opposite sides at least two marked with reference numeral 188 projections define within the receptacle 78 support points for each PTC element 80. These support points 188 prevents the PTC elements 80 directly to the receiving 78 predetermining smooth inner wall of the position frame 76 abut. Thus, the creepage distance of opposing surfaces of the PTC elements 80 is increased.
  • the support points 188 are formed substantially pyramid-shaped and then have a tapered design. Furthermore, the surfaces of the support points 188 are like the sectional view according to FIG FIG. 11 clarified - concavely curved. The creepage distance is further increased by the curvature of the surface. The previously mentioned and provided between the contact plates 82 and the position frame circumferential gap 84 also contributes to increase the creepage distances.
  • the heat generating elements 66 are particularly EMC protected.
  • the position frame 176 is basically completely surrounded by a shield, which are formed on the one hand by the sheet metal cover 110 of the position frame 76 and on the other hand by the sheet metal cover 70 of the corrugated fin elements 64.
  • FIG. 11 illustrates only a small edge-side gap between the various covers 70, 110 remains. Otherwise, the PTC elements 80 are completely enclosed by a metallic shield. Accordingly, the heat generating elements 66 can not emit substantial electromagnetic radiation.
  • All corrugated fin elements 64 are further connected to each other via integrally formed on the metal shell 8 locking elements, which are not shown in the drawing, however, may be formed as this, which goes back to the applicant EP 2 299 201 A1 describes the disclosure of which is incorporated in the disclosure of this application. It is only important that the metal shell 8 forms electrically connected projections that contact the corrugated fins 64 such that all corrugated fins 64 are electrically or indirectly connected directly to the metal shell 8 and grounded.
  • the embodiment discussed above has heat-generating elements 66 whose receptacle 78 is hermetically sealed from the environment, so that moisture and contamination can not reach the PTC elements 80.
  • a high insulation of the PTC elements 80 is created because any charge carriers affect the isolation of the PTC elements 80, which can get into the receptacle 78 in the prior art, the insulation.
  • all the heat-generating elements 66 are sealingly inserted into the terminal housing 6.
  • a test bell is placed, which is sealingly applied to the free edge of the plastic housing element 10.
  • the connected part of the electric heater is placed under increased hydrostatic pressure, for example, by compressed air. It maintains a certain level of pressure and checks whether it is reduced by possible leaks over time. If this is not the case, the component is rated as good.
  • the power part 2 is manufactured separately.
  • the heat generating elements 66 are mounted.
  • the thus prepared heat-generating elements 66 are inserted into a frame member 48 of the frame 44, in each case alternately to the arrangement of corrugated fin elements 64. As is apparent in particular from FIG.
  • FIG. 4 results are usually between two heat-generating elements 66 each two corrugated rib elements 64 at.
  • a layer L of corrugated fin elements abuts on each side of a heat-generating element 66.
  • FIG. 4 and FIG. 11 further illustrates that in the embodiment according to FIG. 4 in a position at least two corrugated rib elements 64 are arranged.
  • the frame 44 is closed by placing and locking the other frame member 48. Thereafter, via the spring insertion openings 120, the respective spring elements 121 are inserted between the layer structure 46 and an outer edge of the receptacle 60 created by the frame 44. Finally, the spring elements 121 are braced against each other, as shown in the EP 2 298 582 is described. Thereafter, the thus prepared power part 2 is joined to the metal shell 8 and the plastic housing member 10. Due to their tapering configuration, the ramp surfaces 124 serve as positioning and centering aids, so that the holding element 126 can be effectively introduced into the positioning opening 127. The holding element 126 is usually leading relative to the contact pins 96, so that a coarse positioning is carried out only on the holding elements 126 and then the contact pins 96 are inserted into the cylindrical receiving socket 132.
  • FIGS. 12 to 15 illustrate a further aspect of the present invention, which is that in a layer L in the flow direction provided corrugated fin elements 64 in a direction transverse to the flow direction S, however, are provided in their respective installation plane within the layer structure 46 offset from each other. Accordingly, in the in FIG. 12 shown enlarged side view of a Walkerstabes 62 the meandering bent metal strip 68 of the successively provided in a layer L corrugated fin elements 64 recognizable. These are identified by reference numerals 68.1 and 68.2 and thus distinguishable. It can be seen that the air to be heated, which flows in at right angles to the plane of the drawing, flows against almost completely separate meandering bent metal strips 68.1 and 68.2.
  • the rear sheet metal strip member is not shaded from the front. This results in a good heat transfer.
  • the air flow S to be heated is redeployed during the transition from the first plane E1 to the second plane E2, which is accompanied by turbulent flow, which also improves the heat transfer.
  • FIGS. 13 to 15 show a second embodiment according to the FIGS. 10 to 12 ,
  • the illustrated embodiment of a heating element only differs from the previously discussed embodiment, that in a position L1 and L2 three corrugated rib elements 64 are arranged one behind the other. Also in each case arranged in a plane E1, E2, E3 corrugated fin elements 64 are each strictly associated with a PTC element 80.
  • FIG. 15 clarifies, the air flowing through the heating element 62 is repeatedly redeployed.
  • FIG. 16 shows the previously described frame members 48 and a frame intermediate member 190 which is provided with female and male locking elements 50, 52 corresponding to the frame members 48, so that the frame intermediate member 190 can be easily locked between the frame members 48.
  • the provided in the frame receptacle 60 for the layer structure 46 is thus increased by exactly the width that contributes to a plane of corrugated fins 46.
  • the heat generating elements 66 are each formed uniformly, ie, whether two PTC elements 80 are arranged one behind the other in the flow direction S or three PTC elements 80; the PTC elements 80 are each received within a unitary position frame 76.
  • the corrugated fin elements 64 are identical.
  • An identical plastic housing element 10 can be used in each case for the heating elements 62 provided with three corrugated rib elements 64 arranged next to one another and the heating bars 62 provided with two corrugated rib elements 64.
  • the intermediate frame member 190 has holding element parts 122 which cooperate with the holding element parts 122 of one of the frame elements 48 in order to form a complete holding element 126, via which also the widened frame 44 follows FIG. 16 can be connected to the plastic housing element 10. If, for example, four corrugated rib elements 64 form a heating element in succession in the direction of flow, then a second frame intermediate element 190 can be installed in the frame 44.
  • FIGS 17 and 18 show a comparison with the embodiment described above slightly modified embodiment.
  • the same components are identified by the same reference numerals.
  • the shielding housing element 8 described above is turned away.
  • a shielding contact plate 192 is provided, which rests positively against outer contact surfaces of the plastic housing element 10. This also forms bulges 194, in which shielding contact tongues 196 of the shielding contact plate 192 are accommodated.
  • the Ablekingzept 196 are each provided at the level of a heat generating element 66 and contact the edge 112 of this element 66.
  • the Abletakingblech 192 formed by punching and bending molded spring bars 198 which abut each of the heatsink 32 at the front and contact with this , In particular FIG. 18 As can be seen, the Abprocessingblech 192 tightly surrounds the cylindrical nozzle receptacle 132 which is formed by the plastic housing element 10.
  • connection bolt 200 is held, for example, by encapsulation in the plastic housing element 10.
  • Ableking 192 forms a formed by punching and bending bolt receptacle 202, which bears under elastic circumferential stress on the terminal bolt 200 electrically conductive.
  • the heat sinks 32 are grounded via the shield contact plate 192, so that the reliable electrical isolation between the power switch 178 and the heat sink 32 can be checked by monitoring the ground potential at the terminal stud 200. Any defect in the electrical insulation may be detected and output to prevent the servicing potential from being electrocuted when servicing the electrical heater with insufficient electrical isolation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Resistance Heating (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Claims (12)

  1. Elément de production de chaleur ou élément chauffant, notamment destiné à un dispositif de chauffage électrique d'un véhicule automobile, comprenant un cadre de positionnement (76), qui forme un logement d'accueil (78) dans lequel est reçu au moins un élément PTC (80), ainsi que deux tôles de contact (82) s'appuyant sur deux faces opposées de l'élément PTC (80), et plusieurs zones d'appui (188) prévues dans la direction périphérique du logement d'accueil (78),
    caractérisé
    en ce que les zones d'appui (188) se rétrécissent en pointe dans la direction de la hauteur et la direction périphérique.
  2. Elément de production de chaleur selon la revendication 1, caractérisé en ce que sur des tronçons de surface périphérique intérieure mutuellement opposés du logement d'accueil (78), sont prévues au moins deux zones d'appui (188).
  3. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce que les zones d'appui (188) présentent des surfaces courbes.
  4. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce que les tôles de contact (82) sont agencées à distance du cadre de positionnement (76).
  5. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce que les tôles de contact (82) sont revêtues sur le côté extérieur, d'une couche d'isolation (90) s'appliquant de manière étanche contre le cadre de positionnement (76).
  6. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce qu'au moins l'une des couches d'isolation (90) est recouverte par un recouvrement de tôle (70; 110) relié au cadre de positionnement (76).
  7. Elément de production de chaleur selon la revendication 6, caractérisé en ce que le recouvrement de tôle (70; 110) possède un bord (72; 112) entourant le cadre de positionnement (76) sensiblement sur la totalité de la périphérie.
  8. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce que les tôles de contact (82) sont prévues uniquement à l'intérieur de la surface-enveloppe prédéterminée par le cadre de positionnement (76).
  9. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce que le cadre de positionnement (76) forme des canaux (94) faisant saillie vers l'extérieur et destinés à des éléments de contact menant aux tôles de contact (82).
  10. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce que les tôles de contact (82) et/ou les couches d'isolation (90) sont de configuration identique.
  11. Elément de production de chaleur selon l'une des revendications précédentes, caractérisé en ce que les tôles de contact (82) sont reliées au moyen de liaisons par clipsage avec le cadre de positionnement (76) et/ou les éléments de contact.
  12. Elément de production de chaleur selon la revendication 11, caractérisé en ce que la tôle de contact (82) est munie sur des côtés mutuellement opposés, d'un logement femelle d'élément de clipsage (100), et en ce que l'un des logements d'élément de clipsage est relié à l'élément de contact, et le logement d'élément de clipsage prévu sur le côté opposé est relié à une languette de clipsage (108) formée sur le cadre de positionnement (76).
EP11010084.9A 2011-12-22 2011-12-22 Elément générateur de chaleur Active EP2607808B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11010084.9A EP2607808B1 (fr) 2011-12-22 2011-12-22 Elément générateur de chaleur
US13/723,444 US9297551B2 (en) 2011-12-22 2012-12-21 Heat generating element
DE102012025445A DE102012025445A1 (de) 2011-12-22 2012-12-21 Elektrische Heizvorrichtung
CN201210568641.8A CN103179701B (zh) 2011-12-22 2012-12-24 生热元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11010084.9A EP2607808B1 (fr) 2011-12-22 2011-12-22 Elément générateur de chaleur

Publications (2)

Publication Number Publication Date
EP2607808A1 EP2607808A1 (fr) 2013-06-26
EP2607808B1 true EP2607808B1 (fr) 2017-09-27

Family

ID=45470187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11010084.9A Active EP2607808B1 (fr) 2011-12-22 2011-12-22 Elément générateur de chaleur

Country Status (3)

Country Link
US (1) US9297551B2 (fr)
EP (1) EP2607808B1 (fr)
CN (1) CN103179701B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490907B1 (ko) * 2013-06-07 2015-02-06 현대자동차 주식회사 차량용 냉시동 장치 및 냉시동 방법
JP6425525B2 (ja) * 2014-12-08 2018-11-21 株式会社日本クライメイトシステムズ 車両用空調装置の電気式ヒータ
US9472365B1 (en) * 2015-05-19 2016-10-18 Lear Corporation Relay system having dual relays configured as heat sinks for one another
AU2017244041B2 (en) 2016-03-30 2022-12-01 Marine Canada Acquisition Inc. Vehicle heater and controls therefor
US20170295613A1 (en) 2016-04-07 2017-10-12 Lg Electronics Inc. Heater assembly
DE102016224296A1 (de) * 2016-12-06 2018-06-07 Eberspächer Catem Gmbh & Co. Kg Elektrische heizvorrichtung
DE102017208086A1 (de) * 2017-05-12 2018-11-15 Mahle International Gmbh Elektrische Heizeinrichtung
DE102018101453A1 (de) * 2018-01-23 2019-07-25 Borgwarner Ludwigsburg Gmbh Heizvorrichtung und Verfahren zum Herstellung eines Heizstabes
EP3540326A1 (fr) * 2018-03-15 2019-09-18 Mahle International GmbH Chauffage électrique
DE102018221654A1 (de) * 2018-12-13 2020-06-18 Eberspächer Catem Gmbh & Co. Kg PTC-Heizelement und Verfahren zu dessen Herstellung
DE102020117366A1 (de) * 2020-07-01 2022-01-05 Eberspächer Catem Gmbh & Co. Kg Elektrische Steuervorrichtung, insbesondere für eine elektrische Heizvorrichtung
USD1011493S1 (en) * 2021-09-03 2024-01-16 Webasto SE Air heating apparatus
DE102022120360A1 (de) 2022-08-11 2024-02-22 Eberspächer Catem Gmbh & Co. Kg PTC-Heizvorrichtung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3869773C5 (de) 1988-07-15 2010-06-24 Dbk David + Baader Gmbh Radiator.
JPH0855673A (ja) 1994-08-10 1996-02-27 Murata Mfg Co Ltd 正特性サーミスタ発熱装置
DE4434613A1 (de) * 1994-09-28 1996-04-04 Behr Gmbh & Co Elektrische Heizeinrichtung, insbesondere für ein Kraftfahrzeug
DE19706199B4 (de) 1997-02-18 2005-11-10 Behr Gmbh & Co. Kg Elektrische Heizeinrichtung, insbesondere für ein Kraftfahrzeug
DE19911547C5 (de) 1999-03-16 2005-12-01 Behr Gmbh & Co. Kg Elektrische Heizeinrichtung für ein Kraftfahrzeug
FR2826829B1 (fr) * 2001-06-27 2004-04-02 Valeo Climatisation Echangeur de chaleur a barreaux chauffants contenant des elements resistifs
EP1467599B1 (fr) * 2003-04-12 2008-11-26 Eichenauer Heizelemente GmbH & Co.KG Dispositif pour l'admission des éléments de chauffe en céramique et procédé pour la production de tels
DE20305936U1 (de) * 2003-04-12 2003-07-24 Eichenauer Heizelemente Gmbh Vorrichtung zur Aufnahme von Keramik-Heizelementen
KR100445723B1 (ko) 2003-11-18 2004-08-26 우리산업 주식회사 Ptc 소자 모듈 및 이를 포함하는 차량용 프리히터
US7182654B1 (en) * 2005-09-02 2007-02-27 General Electric Company Method and apparatus for coupling a sheathed heater to a power harness
ES2303712T3 (es) * 2005-09-23 2008-08-16 CATEM GMBH & CO. KG Elemento generador de calor para un dispositivo de calefaccion.
ES2360884T3 (es) * 2005-09-23 2011-06-10 EBERSPÄCHER CATEM GMBH & CO. KG Elemento generador de calor de un dispositivo de calefacción.
ES2303167T3 (es) 2005-09-23 2008-08-01 CATEM GMBH & CO. KG Elemento generador de calor de un dispositivo calefactor.
KR100836852B1 (ko) 2006-09-28 2008-06-11 동우기연 주식회사 정특성 서미스터 소자를 이용한 히터
ES2370156T3 (es) * 2006-10-25 2011-12-13 Eberspächer Catem Gmbh & Co. Kg Dispositivo de calefacción eléctrico y procedimiento para la fabricación del mismo.
EP2190258A1 (fr) * 2008-11-20 2010-05-26 Behr France Rouffach SAS Caloporteur
EP2276321B1 (fr) * 2009-07-17 2017-04-05 Mahle Behr France Rouffach S.A.S Caloporteur
ES2372527T3 (es) 2009-09-22 2012-01-23 Eberspächer Catem Gmbh & Co. Kg Dispositivo de calefacción eléctrico y procedimiento para su fabricación.
EP2299201B1 (fr) 2009-09-22 2012-08-29 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2607808A1 (fr) 2013-06-26
CN103179701A (zh) 2013-06-26
CN103179701B (zh) 2015-11-25
US20130161316A1 (en) 2013-06-27
US9297551B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
EP2607808B1 (fr) Elément générateur de chaleur
EP2607121B1 (fr) Dispositif de chauffage électrique, en particulier pour un véhicule automobile
EP3079442B1 (fr) Dispositif de chauffage électrique et cadre associé
EP2608631B1 (fr) Elément générateur de chaleur
EP3334245B1 (fr) Dispositif de chauffage électrique et élément de chauffage ptc d'un dispositif de chauffage électrique
EP2608633B1 (fr) Elément générateur de chaleur
EP3493650B1 (fr) Dispositif de chauffage électrique
EP1768458B1 (fr) Elément chauffant d'un dispositif de chauffage
EP3772867B1 (fr) Dispositif de chauffage électrique et son procédé de fabrication
EP2884817B1 (fr) Dispositif de chauffage électrique et son procédé de fabrication
DE102012025445A1 (de) Elektrische Heizvorrichtung
EP1768457A1 (fr) Element chauffant d'un dispositif de chauffage
DE102021106299A1 (de) Elektrische Heizvorrichtung
EP3598847B1 (fr) Élément produisant de la chaleur et son procédé de fabrication
DE102020200639A1 (de) Elektrische Heizvorrichtung
DE102022116921A1 (de) Bauteil einer elektrischen Heizvorrichtung und elektrische Heizvorrichtung
DE102018221654A1 (de) PTC-Heizelement und Verfahren zu dessen Herstellung
DE102020117366A1 (de) Elektrische Steuervorrichtung, insbesondere für eine elektrische Heizvorrichtung
EP3557155A1 (fr) Dispositif de chauffage électrique
DE102020116654A1 (de) Batteriezellen-Verbindungselement, Batteriezellen-Verbindungsmodul, Batteriezellen-Verbindungsanordnung und Verfahren zum Temperieren und elektrischen Kontaktieren von Batteriezellen
DE102021110624A1 (de) Elektrische heizvorrichtung und verfahren zu deren herstellung

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20121207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 3/50 20060101ALI20170509BHEP

Ipc: F24H 3/04 20060101AFI20170509BHEP

Ipc: F24H 1/00 20060101ALI20170509BHEP

Ipc: B60H 1/22 20060101ALI20170509BHEP

Ipc: H05B 3/28 20060101ALI20170509BHEP

INTG Intention to grant announced

Effective date: 20170609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 932326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013044

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170927

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013044

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

26N No opposition filed

Effective date: 20180628

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 932326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111222

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 13

Ref country code: DE

Payment date: 20231214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 13