EP2600636A1 - Réduction de la distorsion pour petits haut-parleurs par la limitation de bandes - Google Patents

Réduction de la distorsion pour petits haut-parleurs par la limitation de bandes Download PDF

Info

Publication number
EP2600636A1
EP2600636A1 EP11191329.9A EP11191329A EP2600636A1 EP 2600636 A1 EP2600636 A1 EP 2600636A1 EP 11191329 A EP11191329 A EP 11191329A EP 2600636 A1 EP2600636 A1 EP 2600636A1
Authority
EP
European Patent Office
Prior art keywords
loudspeaker
attenuation
audio
signal
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11191329.9A
Other languages
German (de)
English (en)
Other versions
EP2600636B1 (fr
EP2600636B8 (fr
Inventor
Clemen Boje Larsen
Thomas Beierholm
Peter Theilgaard Hounum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goertek Europe ApS
Original Assignee
AM3D AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AM3D AS filed Critical AM3D AS
Priority to EP11191329.9A priority Critical patent/EP2600636B8/fr
Publication of EP2600636A1 publication Critical patent/EP2600636A1/fr
Publication of EP2600636B1 publication Critical patent/EP2600636B1/fr
Application granted granted Critical
Publication of EP2600636B8 publication Critical patent/EP2600636B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/002Damping circuit arrangements for transducers, e.g. motional feedback circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the present invention relates to the field of signal processing, especially audio signal processing, and more specifically processing of audio signals for playback by small loudspeakers. More specifically, the invention provides a processor and a method for reducing distortion produced by small loudspeakers, and/or increasing the possible acoustic output for such loudspeakers, and/or possibly reducing the risk of damaging the loudspeakers.
  • Small loudspeaker units are used in many devices today for reproducing audio signals in compact portable audio devices, e.g. mobile phones, media players, car audio systems and the like. Due to the small size, such loudspeakers have a limited maximum acoustic output, a limited dynamic range, and especially a limited low frequency output. When the dynamic capability of a small loudspeaker is exceeded, the result is a severely distorted audio signal. Especially, the distortion is clearly audible on audio signal including a few pure tones, e.g. as popular ring tones used by many Japanese in their mobile phones.
  • the goal is to maintain an acoustic output while lower the distortion.
  • the invention provides a device arranged for application to an associated loudspeaker acoustically mounted such that it exhibits a lower resonance frequency.
  • the device comprises
  • Such device is advantageous, since it allows reproduction of sound with a miniature or micro-speaker with reduced distortion.
  • Typical loudspeakers where the invention is advantageous are loudspeaker with a small diaphragm area and which are mounted such that its lower resonance frequency Fc is rather high, e.g. 1 kHz, as in many mobile phones and the like.
  • the free air resonance frequency of the loudspeaker is typically lower, but due to a small back volume the resulting lower resonance frequency Fc often becomes rather high.
  • the invention is based on the insight that by attenuating a limited frequency band including the Fc, e.g.
  • Such as 3-6 dB of attenuation at high signal levels in said frequency band can dramatically reduce distortion from a small loudspeaker, thus leading to either improved sound quality and/or increased effective acoustic output from the small loudspeaker at audio frequencies above Fc, but in many cases also below Fc.
  • the invention should preferably be present just prior to digital to analog conversion resulting in the analog signal to drive the loudspeaker.
  • the limited frequency band has a bandwidth of less than 2 octaves, such as less than 1 octave, such as less than 2/3 octaves, such as less than 1/3 octave.
  • the limited frequency band may be centred around said lower resonance frequency of the associated loudspeaker.
  • the bandwidth optimal in each case will depend on the loudspeaker and the acoustical environment where it is mounted. A more effective distortion protection can be achieved with a rather wide bandwidth, whereas the most inaudible processing is obtained with a narrow bandwidth.
  • Preferred embodiments comprise a gain control unit arranged to control said attenuation in the limited frequency band.
  • the gain control unit may be arranged to detect a level of the audio input signal within the limited frequency band and to provide said attenuation according to a predetermined attenuation scheme.
  • Said scheme may include detecting whether a peak level of the audio input signal within the limited frequency band exceeds a predetermined maximum level, and determining said attenuation accordingly to ensure that the modified audio signal does not exceed the predetermined maximum level.
  • Said predetermined maximum level is preferably selected such in relation to the associated loudspeaker that the audio output signal will not cause the loudspeaker to perform a diaphragm excursion exceeding its limit.
  • the gain control unit is preferably designed such, that zero attenuation is provided most of the time when signal levels are low enough to ensure that the loudspeaker diaphragm will not reach excursions causing severe distortion.
  • ML 100 dB
  • P 110 dB
  • ML can be selected according to the application to include a safety margin to ensure that the loudspeaker is never overloaded, or it can be set to a more aggressive value allowing slightly overloading the loudspeaker.
  • the attenuation will preferably be zero, thus leaving the processing inactive.
  • the attenuation can effectively ensure that severe audible distortion is avoided.
  • the filter section may be implemented in various ways, using various types of filters with various cut off slope steepness etc.
  • the filter section may comprise a band pass filter arranged to band pass filter the audio input signal to said limited frequency band, and a band stop filter arranged to band stop filter the audio input signal with the stop band being said limited frequency band. Outputs from the band pass filter and the band stop filter may then be summed to generate the audio output signal.
  • the device may be designed to accept an audio input signal with a plurality of audio channels, such as a stereo signal, and wherein the audio channels are processed to form an audio output signal with a corresponding plurality of audio channels.
  • the audio input signal may be analog or digital, and also the audio output signal may be analog or digital.
  • the filter section and the attenuation is implemented by means of a digital processor programmed to perform the required signal processing.
  • the device may comprise a loudspeaker acoustically mounted such that it exhibits said lower resonance frequency, and a power amplifier connected to drive the loudspeaker according to the audio output signal.
  • the device may be a mobile device, such as portable audio device, portable video devices, and portable players. More specifically, the device may be one of: a mobile phone, a tablet, a laptop, and a personal navigation device.
  • the invention may be useful in combination to any application where an acoustic output from a small loudspeaker is required with a minimum of audible distortion.
  • the loudspeaker is small, i.e.
  • the loudspeaker may be further acoustically mounted, e.g. a closed or vented cabinet, such that the lower resonance frequency is above 100 Hz, such as above 300 Hz, such as above 500 Hz, such as above 800 Hz, such as above 1 kHz.
  • the lower resonance frequency may be between 500 Hz and 2 kHz, such as between 700 Hz and 1.5 kHz.
  • the invention provides a method for reducing distortion from an associated loudspeaker acoustically mounted such that it exhibits a lower resonance frequency, the method comprising attenuating a limited frequency band of an audio input signal, wherein the limited frequency band includes said lower resonance frequency.
  • the invention provides a computer executable program code arranged to perform the method according to the second aspect, such as a computer executable program code stored on a data carrier.
  • the program code may be implemented on any type of audio processing platform, e.g. a sound card in a computer, a general processor in a mobile device e.g.
  • Fig. 1 illustrates a device embodiment in block diagram form taking an audio signal A_in as input.
  • a miniature loudspeaker L with lower resonance frequency Fc 1 kHz, e.g. resulting from the loudspeaker L being mounted in a mobile device cabinet which causes the lower resonance frequency Fc to be higher than the free air resonance frequency of the loudspeaker L.
  • the large box illustrates the signal processing which is preferably implemented as program code of a processor system, e.g. the main processor of a mobile device. This processing is preferably the last part of a digital audio processing chain, since it is important that the correct signal level is detected to ensure that the resulting output signal A_out is the actual signal reaching the loudspeaker L, e.g. taking into account a possible gain in an intermediate power amplifier PA driving the loudspeaker L.
  • the signal processing according to the invention can be interpreted as a "band limiter", since it basically detects and attenuates, i.e. limits signal level, in a narrow frequency band around the lower resonance frequency Fc of the loudspeaker L.
  • this narrow frequency range e.g. 1/3-2/3 octave wide
  • control the signal level in this range to ensure that the large diaphragm excursions which occur around Fc will be limited such that the diaphragm will not reach its maximum amplitude - not even during onsets of demanding sound signals with high energy level in the range around Fc. This reduces distortion of the loudspeaker L.
  • the band limiter is implemented as a band pass filter BPF and a band stop filter BSF, both operating on the same frequency range, namely a frequency range with a bandwidth BW of less than 1 octave, e.g. 2/3 octaves, and centred around Fc.
  • the input signal A_in is applied to both filters BPF, BSF, and a gain control unit GC detects a peak level of an output of the band pass filter BPF, i.e. the peak level of the signal present within the frequency range around Fc.
  • a predetermined maximum allowed band pass peak level MBPP e.g. -10 dB re.
  • the gain control unit GC determines the gain factor to be applied to the output of the band pass filter BPF so as to obtain a resulting attenuation of the signal level within this band according to a predetermined attenuation scheme.
  • the rest of the input signal A_in i.e. the output of the band stop filter BSF, is finally added to the attenuated version of the output of the band pass filter BPF to form the output signal A_out.
  • This output signal A_out is then digital to analog converted and applied to the power amplifier PA driving the loudspeaker L.
  • a simple scheme is to apply zero attenuation at low signal levels and then apply a fixed attenuation, e.g. 10 dB attenuation, when the detected peak level exceeds MBPP.
  • the attenuation will thus be zero dB, i.e. the resulting processing is inactive and thus does not influence sound quality.
  • the processing will effectively protect the loudspeaker L from large diaphragm excursions, and thus severe audible distortion can be eliminated.
  • Fig. 2 shows an example with a band limiter BL as explained in connection with Fig. 2 with Fc, BW, and MBPP as input parameters.
  • the band limiter BL is here implemented on a processor P which also handles a pre-equalizing Eq, e.g. to compensate unequal frequency response of the loudspeakers used, of the audio input signal, here shown as a stereo PCM signal.
  • the band limiter BL has separate path ways for the two stereo signals, here illustrated as a stereo PCM output signal to be applied to a stereo power amplifier PA which drives a set of stereo loudspeakers.
  • Fig. 3 shows an example of different curves of attenuation of an embodiment of a band limiter.
  • the upper curve show zero attenuation (0 dB), whereas the lowest curve illustrates 10 dB attenuation (-10 dB).
  • the loudspeaker plays a single tone with a duration of 200 ms, i.e. a tone burst.
  • the maximum distortion about 7.5 %, occurs for tones with a frequency near Fc, i.e. a clearly audible distortion.
  • attenuation of the input signal to the loudspeaker in this frequency range helps to reduce the resulting distortion.
  • the invention provides a method and a device for reducing distortion from an associated loudspeaker acoustically mounted such that it exhibits a lower resonance frequency Fc.
  • a limited frequency band, including Fc, of an audio input signal is attenuated.
  • the amount of attenuation to be applied to this limited signal frequency range is determined in response to the peak signal level in this limited signal frequency range so as to only apply an attenuation when the signal level in this frequency range exceeds a predetermined level.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
EP11191329.9A 2011-11-30 2011-11-30 Réduction de la distorsion pour petits haut-parleurs par la limitation de bandes Active EP2600636B8 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11191329.9A EP2600636B8 (fr) 2011-11-30 2011-11-30 Réduction de la distorsion pour petits haut-parleurs par la limitation de bandes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11191329.9A EP2600636B8 (fr) 2011-11-30 2011-11-30 Réduction de la distorsion pour petits haut-parleurs par la limitation de bandes

Publications (3)

Publication Number Publication Date
EP2600636A1 true EP2600636A1 (fr) 2013-06-05
EP2600636B1 EP2600636B1 (fr) 2017-03-22
EP2600636B8 EP2600636B8 (fr) 2017-05-03

Family

ID=45063041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11191329.9A Active EP2600636B8 (fr) 2011-11-30 2011-11-30 Réduction de la distorsion pour petits haut-parleurs par la limitation de bandes

Country Status (1)

Country Link
EP (1) EP2600636B8 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289682A1 (en) * 2016-03-30 2017-10-05 Dolby Laboratories Licensing Corporation Dynamic suppression of non-linear distortion
EP3226412A3 (fr) * 2016-03-30 2018-01-24 Dolby Laboratories Licensing Corp. Suppression dynamique de distorsion non linéaire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253484A (ja) * 1999-03-02 2000-09-14 Sony Corp スピーカ駆動装置及びこれを具備した音響機器
EP1915026A2 (fr) * 2006-10-18 2008-04-23 Sony Corporation Appareil de reproduction audio
EP2369852A1 (fr) * 2010-03-17 2011-09-28 Harman International Industries, Incorporated Système de gestion de puissance audio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253484A (ja) * 1999-03-02 2000-09-14 Sony Corp スピーカ駆動装置及びこれを具備した音響機器
EP1915026A2 (fr) * 2006-10-18 2008-04-23 Sony Corporation Appareil de reproduction audio
EP2369852A1 (fr) * 2010-03-17 2011-09-28 Harman International Industries, Incorporated Système de gestion de puissance audio

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289682A1 (en) * 2016-03-30 2017-10-05 Dolby Laboratories Licensing Corporation Dynamic suppression of non-linear distortion
EP3226412A3 (fr) * 2016-03-30 2018-01-24 Dolby Laboratories Licensing Corp. Suppression dynamique de distorsion non linéaire
US10142731B2 (en) 2016-03-30 2018-11-27 Dolby Laboratories Licensing Corporation Dynamic suppression of non-linear distortion

Also Published As

Publication number Publication date
EP2600636B1 (fr) 2017-03-22
EP2600636B8 (fr) 2017-05-03

Similar Documents

Publication Publication Date Title
JP5602309B2 (ja) オーディオ信号の臨界周波数帯域における歪みを制御する方法とシステム
JP6436934B2 (ja) 動的閾値を用いた周波数帯域圧縮
US9197181B2 (en) Loudness enhancement system and method
JP5704470B2 (ja) オーディオ明瞭度増大方法および装置とコンピュータ装置
TWI535299B (zh) 低音強化系統及其方法
JP5488389B2 (ja) 音響信号処理装置
JP4940158B2 (ja) 音補正装置
US20110002467A1 (en) Dynamic enhancement of audio signals
US20120128178A1 (en) Sound reproducing apparatus, sound reproducing method, and program
US9344051B2 (en) Apparatus, method and storage medium for performing adaptive audio equalization
WO2014078096A1 (fr) Système de commande de correction physiologique audio
KR20080034734A (ko) 청각특성을 이용한 저음 음향 신호 보강 처리 방법 및 장치
JPWO2007119362A1 (ja) オーディオ回路
EP2031902A2 (fr) Appareil et procédé de traitement d'un signal audio
KR20140055932A (ko) 상이한 이퀄라이저 모드들 사이에 출력음 크기와 음질을 유지하기 위한 장치 및 방법
JP5682539B2 (ja) 音響再生装置
EP2600636B1 (fr) Réduction de la distorsion pour petits haut-parleurs par la limitation de bandes
US20100278353A1 (en) System and Method For Intelligibility Enhancement of Audio Information
US20210384879A1 (en) Acoustic signal processing device, acoustic signal processing method, and non-transitory computer-readable recording medium therefor
CN113031904B (zh) 一种控制方法及电子设备
US9240764B2 (en) Apparatus and method for preventing acoustic shock of portable terminal
JP2005184154A (ja) 自動利得制御装置及び自動利得制御方法
JP3594910B2 (ja) 音声処理装置及び該音声処理装置を有する電子機器
CN116778949A (zh) 个性化响度补偿方法、装置、计算机设备和存储介质
CN116634221A (zh) 基于Android系统的多路音频源自动混音方法、系统、装置及介质

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131205

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 3/00 20060101AFI20160812BHEP

Ipc: H04R 3/04 20060101ALI20160812BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GOERTEK EUROPE APS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 878796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011036160

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 878796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011036160

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011036160

Country of ref document: DE

Owner name: GN AUDIO A/S, DK

Free format text: FORMER OWNER: GOERTEK EUROPE APS, NORDHAVN, DK

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210812 AND 20210818

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231115

Year of fee payment: 13

Ref country code: DE

Payment date: 20231121

Year of fee payment: 13