EP2594803A1 - Friction vacuum pump - Google Patents

Friction vacuum pump Download PDF

Info

Publication number
EP2594803A1
EP2594803A1 EP12190912.1A EP12190912A EP2594803A1 EP 2594803 A1 EP2594803 A1 EP 2594803A1 EP 12190912 A EP12190912 A EP 12190912A EP 2594803 A1 EP2594803 A1 EP 2594803A1
Authority
EP
European Patent Office
Prior art keywords
sleeve
hub
vacuum pump
gap
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12190912.1A
Other languages
German (de)
French (fr)
Other versions
EP2594803B1 (en
Inventor
Jan Hofmann
Michael Schweighöfer
Tobias Stoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47143656&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2594803(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to JP2012252248A priority Critical patent/JP5898050B2/en
Publication of EP2594803A1 publication Critical patent/EP2594803A1/en
Application granted granted Critical
Publication of EP2594803B1 publication Critical patent/EP2594803B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/642Mounting; Assembling; Disassembling of axial pumps by adjusting the clearances between rotary and stationary parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/323Arrangement of components according to their shape convergent

Definitions

  • the invention relates to a vacuum pump according to the preamble of the first claim.
  • turbomolecular pumps which have been successful on the market for decades in many different industrial applications, for example in gas analysis and semiconductor manufacturing, are partly designed as so-called compound pumps. This term clarifies that in addition to the turbomolecular pumping section, a molecular pumping stage is provided on the rotor of the pump.
  • a successful design of such molecular pumping stages is the Holweck pumping stage named after its inventor.
  • a generally smooth sleeve rotates in a stator arranged inside or outside the sleeve, which usually has a plurality of helical grooves on the side facing the sleeve.
  • There is a gap between the stator and the sleeve which is usually less than a millimeter wide, often only fractions of a millimeter, for example a few tenths of a millimeter.
  • the gap width of the gap between sleeve and stator varies, wherein the gap width of the gap preferably changes in the axial direction of the vacuum pump and assumes different values at different axial heights.
  • the non-constant gap width can be adjusted in a simple manner to the expected in the region of the respective axial height maximum radial deflection of the rotor, whereby the pump efficiency is increased.
  • the sleeve may have a first end and a free second end remote from the hub.
  • the rotor of the vacuum pump is rotatably supported by a rolling bearing and decreases the gap width in the direction of the rolling bearing. Due to its low clearance, a narrow gap is achieved, which significantly improves the vacuum data. For example, with light gases such as helium, the compression can be improved by a good decade.
  • a permanent magnet bearing can be used to support the rotor.
  • the claimed gap design is particularly advantageous, since permanent magnet bearings have a large game and thus require large gaps.
  • the gap is then preferably narrow in the direction of the permanent magnet bearing and in the direction of the rolling bearing or has a gap width increasing in the direction of the permanent bearing.
  • the gap would be sized after the clearance of the permanent magnet bearing.
  • the sleeve and the stator are preferably part of a Holweckpumpprocess or form a Holweckpumpmeasure.
  • the sleeve may be carried by the hub.
  • the sleeve is preferably concentric and in particular rotationally symmetrical to the axis of rotation of the vacuum pump and preferably has the shape of a coaxial with the axis of rotation cylinder jacket.
  • the gap width does not decrease in the direction of the roller bearing but, for example, increases steadily or stepwise in the direction of the rolling bearing.
  • the vacuum pump comprises two sleeves arranged one behind the other in the axial direction, which in particular together form a common Holweckpumpmeasure or may be part of a common Holweckpumpcut.
  • the two sleeves can together form at least part of a particular cylinder jacket-shaped and / or smooth surface of the rotor, which defines the gap together with a stator.
  • the hub, to which at least one of the sleeves is attached, may be in the axial direction between the sleeves and the sleeves may extend in opposite axial directions with respect to the hub.
  • the two sleeves can in principle be arranged on the same hub or carried by the same hub.
  • the sleeves may also be carried by different hubs, with the two hubs spaced apart axially and / or with one of the two hubs interposed between the other hub and a permanent magnet bearing of the vacuum pump.
  • a sleeve of the vacuum pump may also be connected to the hub or carried by the hub in a region spaced from its axial ends or in an area located between its axial ends, the sleeve extending in opposite axial directions from the hub.
  • the vacuum pump may include a stator concentrically disposed within the sleeve and a stator concentrically disposed outside the sleeve, each stator forming a gap with the sleeve and having the two gaps preferably parallel to one another, ie, converged at their downstream ends.
  • the gap formed by the inner stator can be accessible via one or more openings of the hub for the gas to be delivered, which each form a gas inlet for the gap.
  • the two columns can each be part of a Holweckcut.
  • the gap width of the gap formed by the outer stator and / or the gap width of the gap formed by the inner stator can, in particular in the axial direction, vary and in particular decrease towards the rolling bearing.
  • the gap width of the gap formed by the inner stator varies more strongly and in particular increases more towards the rolling bearing than the gap width of the gap formed by the outer stator.
  • the minimum gap width of the gap formed by the inner stator may be less than the minimum gap width of the gap formed by the outer stator.
  • a gap width which decreases towards the roller bearing also has an effect on a parallel-pumping arrangement of the outer and inner surfaces of a sleeve or a plurality of sleeves.
  • the gap width decrease allows a very accurate tuning of the compressions of the different parallel pumping column, for example, the influence of different relative velocities between stationary and stationary components can be compensated for the compression.
  • the gap width increases or decreases linearly or stepwise.
  • the gap width can in principle vary over part of the gap length or the entire gap length.
  • the gap width can e.g. vary in a first section and be constant in a second section.
  • the gap width in different sections vary differently and, for example, in a first section steadily and in particular linearly and in a second section gradually increase or decrease.
  • the gap width can increase or decrease over its entire length in the same axial direction, but it can also increase in a first portion in the axial direction and decrease in another portion in the same axial direction.
  • the various sections are preferably formed by different axial lengths of the gap.
  • a variation of the gap width in the axial direction which is present over a part of the axial length or the entire axial length of the sleeve can be present over the entire circumference of the sleeve, which is not mandatory.
  • the gap may be formed at least over a part of its axial length and in particular over substantially its entire axial length substantially conical or truncated cone-shaped.
  • Fig. 1 are shown in a schematic representation of the rotor 2 and the stator 20 of a vacuum pump.
  • the rotor 2 has a hub 8, which carries a sleeve 10.
  • the rotor 2 is rotatably supported by a rolling bearing 4, which is located at a distance 102 to the hub 8.
  • a second rolling bearing 6 may be provided for further support of the rotor 2.
  • a stator 20 Concentric with the sleeve 10, a stator 20 is provided, which surrounds the sleeve 10 to form a gap 30.
  • the stator 20 has on its radially inner surface helical grooves 24 or similar pump structures suitable for achieving a pumping effect. Between the grooves remain webs 22 stand.
  • the gap 30 has a width 100 which determines between the sleeve 10 facing surface of the webs 22 and the surface of the sleeve 10 becomes.
  • the sleeve 10 may also have pump structures suitable for achieving a pumping effect, the gap width 100 of the gap 30 also referring in this case to the surface of the webs of the pump structures.
  • the rotor 2 is rotated by a drive, wherein the drive stator side, a motor coil 42 and the rotor side, a drive magnet 44 may include.
  • the speed is such that in the gap 30 between the sleeve 10 and the stator 20, a molecular pumping effect is effected.
  • gas is pumped in the direction 104, which is oriented towards the rolling bearing 4.
  • the sleeve has a first end 12 to which it may be attached to the hub 8. This may be an adhesive connection, which advantageously facilitates the choice of material pairing of hub 8 and sleeve 10.
  • a second end 14 is remote from the hub 8 and free. Depending on the length of the sleeve 10, this second end 14 may be arranged between the hub 8 and rolling bearing 4. Alternatively, the rolling bearing 4 between hub 8 and second end 14 may be located.
  • the sleeve 10 expands. Therefore, it is advantageous to make sleeve 10 and disc 8 of different materials, the sleeve 10, for example made of a carbon fiber reinforced plastic (CFRP), the hub 8 made of aluminum.
  • CFRP carbon fiber reinforced plastic
  • the hub 8 expands more strongly under the influence of centrifugal force and temperature than the sleeve 10.
  • the expansion of the hub 8 is the determining factor. It is now proposed not to define the gap 30 after this expansion but to make it so that the gap width 100 decreases to the rolling bearing 4 back.
  • This conical gap 30 causes the vacuum data to become better in the pumping direction. Especially for light gases For example, the compression improved by a good decade. Due to the small clearance of the rolling bearing 4, the gap width 100 may be the lowest there.
  • the second end 14 is arranged at an axial height in a range between 0.8 times and 1.2 times the distance 102 between the hub 8 and rolling bearing 4.
  • the advantage of improving the vacuum data is hereby pronounced, because in this range of axial height, the deflection of the sleeve 10 is low and it can be very narrow column 30 are selected.
  • the second end 14 is therefore at the height of the rolling bearing 4, since then highest working pressure within the gap 30 and smallest gap width 100 coincide.
  • the Fig. 2 shows a development in which instead of the second rolling bearing 6, a permanent magnet bearing 40 is provided to support the rotor 2.
  • the advantage of such a bearing 40 is the high vacuum capability and freedom from wear.
  • permanent magnet bearings 40 have a lower rigidity in the radial direction than a rolling bearing 4, 6, even if modern magnetic materials are used. This means, depending on the operating conditions, for example installation position, a greater radial deflection of the rotor 2 on the permanent magnet bearing 40, but also Therefore, the gap width 100 of the gap 30 between the stator 20 and the sleeve 10 was determined according to the prior art knowledge over its entire length after the deflection of the hub 8.
  • the gap width 100 decreases towards the rolling bearing 4.
  • the vacuum data are due to the pumping effect increased in the pumping direction 104 due to the decreasing dimensions improved.
  • the permanent magnet bearing 40 is assigned to the first end 12 of the sleeve 10, ie is spaced apart in particular in the axial direction from the sleeve 10 and is less far away from the first end 12 of the sleeve 10 than from the latter second end 14.
  • the sleeve 10 is made of a carbon fiber reinforced plastic (CFRP), whereby the rolling bearing 4 towards, in particular at the height of the rolling bearing 4, a very small gap 30 is achieved.
  • CFRP carbon fiber reinforced plastic
  • the first end 12 of the sleeve 10 may be connected to the hub 8, for example, by an adhesive, clamping or shrinking connection.
  • the sleeve 10 may be pulled out beyond the hub 8 in the axial direction as shown in FIG Fig. 3 is shown by dashed lines.
  • the hub 8 is arranged between the dotted illustrated first end 12 'of the hub 8 beyond the extended sleeve 10 and the second end 14 of the sleeve 10.
  • the stator 20 may then be extended accordingly, also shown dotted. It is also conceivable to simplify the production, to separate the stator 20 along a Stator notorioussline 110 and perform several pieces.
  • the change in the gap width may also extend in sections.
  • the division into a first and a second section 90 and 92 is shown by way of example.
  • the gap width first decreases linearly and then changes continuously into a constant part.
  • the reduction of the gap width occurs stepwise, the gap width decreases in jumps from the second end 14 to the first end 12.
  • the training after Fig. 4 shows a supported by a roller bearing 4 and a permanent magnet bearing 40 rotor 2. Between the hub 8 and the permanent magnet bearing a turbomolecular pumping structure 50 is provided which can surround components of the permanent magnet bearing 40.
  • the hub 8 carries a first sleeve 10 and in addition to this, a second sleeve 16 which is fixed to the hub 8 or integral with her and arranged on one of the first sleeve 10 from facing side of the hub.
  • a stator 20 concentrically surrounds the first and second sleeves 16 to form a gap. This over the lengths of both sleeves 10, 16 extending gap is designed according to the aspects already shown. In particular, the gap width decreases over the gap length 108 in the direction of the rolling bearing 4. This arrangement allows the use of a metal as material for the second sleeve 16, since the gap then has the largest gap width in the region of the largest centrifugal force expansion.
  • the hub 8 may be divided along a hub pitch line 112 in the direction of the rotor longitudinal axis to form a second hub 8b which may be spaced from the first.
  • sleeve 18 may be provided to form a molecular pumping section, for example a third sleeve 18 concentrically disposed within the first sleeve 10.
  • Fig. 5 it is proposed to provide the hub 8 fixed to the rotor 2 with at least one opening 60 and an intermediate stator 62 concentric with the first sleeve 10 and to arrange radially within this.
  • the intermediate stator 62 forms with the first sleeve 10 a pump-active inner gap 64.
  • the first sleeve 10 also interacts with a concentrically surrounding the first sleeve 10 stator 20 to form the gap 30 pumping together.
  • This arrangement creates a parallel pumping stage or two parallel pumping stages, in which or in which along the outside and along the inside of the first sleeve 10 gas is promoted.
  • the pumping action depends on the relative speeds of the moving components to the stationary components. Therefore, it is not easy to create an effectively parallel pumping arrangement.
  • the gap width 100 of the gap 30 and the gap width 106 of the gap 64 to the rolling bearing 4 decreases towards. By selecting the gap width change, this decrease allows a fine adjustment of the compression achieved by the respective gap 30, 64, that is to say the pressure ratio between the beginning of the gap and the end of the gap. This fine tuning results in a very effective parallel pumping Holweck stage with better performance data than in the prior art.
  • a third sleeve 18 may be disposed concentric with the first and radially within the intermediate stator 62. This creates another pumping channel.

Abstract

The pump has a rotor (2) rotatably supported by a rolling bearing (4), and comprising a case (10) that is fastened at a hub (8). A stator (20) is concentrically arranged to the case under formation of a gap (30) with a gap width (100), where the gap width is decreased to the rolling bearing. A permanent magnet bearing is attached to an end (12) of the case for supporting the rotor, where another end (14) of the case is arranged at height of the rolling bearing. A turbo-molecular pumping structure is provided between the hub and the permanent magnet bearing.

Description

Die Erfindung betrifft eine Vakuumpumpe nach dem Oberbegriff des ersten Anspruchs.The invention relates to a vacuum pump according to the preamble of the first claim.

Die am Markt seit Jahrzehnten in vielen verschiedenen industriellen Anwendungen, beispielsweise bei Gasanalyse und Halbleiterherstellung, erfolgreichen Turbomolekularpumpen werden zum Teil als so genannte Compoundpumpen gestaltet. Mit diesem Begriff wird verdeutlicht, dass neben dem turbomolekularen Pumpabschnitt eine molekulare Pumpstufe auf dem Rotor der Pumpe vorgesehen ist.The turbomolecular pumps, which have been successful on the market for decades in many different industrial applications, for example in gas analysis and semiconductor manufacturing, are partly designed as so-called compound pumps. This term clarifies that in addition to the turbomolecular pumping section, a molecular pumping stage is provided on the rotor of the pump.

Eine erfolgreiche Bauart solcher molekularen Pumpstufen ist die nach ihrem Erfinder benannte Holweckpumpstufe. Eine meist glatte Hülse rotiert in einem innerhalb oder außerhalb der Hülse angeordneten Stator, welcher auf der der Hülse zugewandten Seite in der Regel mehrere schraubenlinienartige Nuten besitzt. Zwischen Stator und Hülse befindet sich ein Spalt, der in der Regel weniger als ein Millimeter weit ist, oft sogar nur Bruchteile von Millimetern, beispielsweise einige Zehntel Millimeter.A successful design of such molecular pumping stages is the Holweck pumping stage named after its inventor. A generally smooth sleeve rotates in a stator arranged inside or outside the sleeve, which usually has a plurality of helical grooves on the side facing the sleeve. There is a gap between the stator and the sleeve, which is usually less than a millimeter wide, often only fractions of a millimeter, for example a few tenths of a millimeter.

Bestimmend für die Bemessung des Spaltes sind geometrische Daten, beispielsweise Fertigungstoleranzen, der Einfluss der Fliehkräfte auf den Hülsendurchmesser und die thermische Ausdehnung während des Betriebes. Diese Einflüsse führen zu einem weiten Spaltmaß, welches die Güte der Vakuumdaten, beispielsweise die Kompression, begrenzt.Decisive for the dimensioning of the gap are geometric data, for example manufacturing tolerances, the influence of the centrifugal forces on the core diameter and the thermal expansion during operation. These influences lead to a wide gap, which limits the quality of the vacuum data, for example the compression.

Es ist daher Aufgabe, eine Holweckpumpstufe mit verbesserten Vakuumdaten vorzustellen.It is therefore an object to present a Holweckpumpstufe with improved vacuum data.

Diese Aufgabe wird gelöst durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 1. Die abhängigen Ansprüche 2 bis 13 geben vorteilhafte Weiterbildungen der Erfindung an.This object is achieved by a vacuum pump with the features of claim 1. The dependent claims 2 to 13 indicate advantageous developments of the invention.

Die Spaltweite des Spaltes zwischen Hülse und Stator variiert, wobei sich die Spaltweite des Spalts vorzugsweise in axialer Richtung der Vakuumpumpe ändert und in verschiedenen axialen Höhen verschiedene Werte annimmt. Die nicht konstante Spaltweite kann in einfacher Weise auf die im Bereich der jeweiligen axialen Höhe zu erwartende maximale radiale Auslenkung des Rotors abgestimmt werden, wodurch die Pumpeffizienz erhöht wird.The gap width of the gap between sleeve and stator varies, wherein the gap width of the gap preferably changes in the axial direction of the vacuum pump and assumes different values at different axial heights. The non-constant gap width can be adjusted in a simple manner to the expected in the region of the respective axial height maximum radial deflection of the rotor, whereby the pump efficiency is increased.

Die Hülse kann ein erstes Ende und ein freies, der Nabe abgewandtes zweites Ende aufweisen.The sleeve may have a first end and a free second end remote from the hub.

Gemäß einer bevorzugten Ausführungsform ist der Rotor der Vakuumpumpe von einem Wälzlager drehbar unterstützt und nimmt die Spaltweite in Richtung zum Wälzlager ab. Aufgrund dessen geringen Spiels wird ein enger Spalt erreicht, wodurch die Vakuumdaten erheblich verbessert werden. Bei leichten Gasen wie beispielsweise Helium kann beispielsweise die Kompression um eine gute Dekade verbessert werden.According to a preferred embodiment, the rotor of the vacuum pump is rotatably supported by a rolling bearing and decreases the gap width in the direction of the rolling bearing. Due to its low clearance, a narrow gap is achieved, which significantly improves the vacuum data. For example, with light gases such as helium, the compression can be improved by a good decade.

Neben dem Wälzlager kann ein Permanentmagnetlager zum Stützen des Rotors zum Einsatz kommen. In diesem Fall kommt die beanspruchte Spaltgestaltung besonders vorteilhaft zur Geltung, da Permanentmagnetlager ein großes Spiel besitzen und damit große Spalte erfordern. Der Spalt ist dann vorzugsweise in Richtung Permanentmagnetlager weit und in Richtung Wälzlager eng bzw. weist eine in Richtung zu dem Permanentlager zunehmende Spaltweite auf. Im Stand der Technik würde der Spalt jedoch nach dem Spiel des Permanentmagnetlagers bemessen. Durch Anwendung der Merkmale der Ansprüche 1 bis 13 wird von diesem jahrzehntelang genutzten Vorgehen abgewichen und wenigstens abschnittweise ein Spalt erreicht, der auf das Spiel im Permanentmagnetlager keine Rücksicht nimmt. Bei einer Lagerung des Rotors mit Permanentmagnetlager und Wälzlager erfolgt daher eine besonders vorteilhafte Leistungssteigerung.In addition to the rolling bearing, a permanent magnet bearing can be used to support the rotor. In this case, the claimed gap design is particularly advantageous, since permanent magnet bearings have a large game and thus require large gaps. The gap is then preferably narrow in the direction of the permanent magnet bearing and in the direction of the rolling bearing or has a gap width increasing in the direction of the permanent bearing. However, in the prior art, the gap would be sized after the clearance of the permanent magnet bearing. By applying the features of claims 1 to 13 is of this deviated from decades used procedure and achieved at least in sections, a gap that takes no account of the game in the permanent magnet bearing. When storing the rotor with permanent magnet bearings and bearings therefore a particularly advantageous performance increase.

Die Hülse und der Stator sind vorzugsweise Teil einer Holweckpumpstufe oder bilden eine Holweckpumpstufe. Die Hülse kann von der Nabe getragen sein. Die Hülse ist vorzugsweise konzentrisch und insbesondere rotationssymmetrisch zu der Rotationsachse der Vakuumpumpe ausgebildet und weist vorzugsweise die Form eines zu der Rotationsachse koaxialen Zylindermantels auf.The sleeve and the stator are preferably part of a Holweckpumpstufe or form a Holweckpumpstufe. The sleeve may be carried by the hub. The sleeve is preferably concentric and in particular rotationally symmetrical to the axis of rotation of the vacuum pump and preferably has the shape of a coaxial with the axis of rotation cylinder jacket.

Prinzipiell ist im Rahmen der Erfindung auch eine Ausgestaltung denkbar, bei der die Spaltweite nicht in Richtung des Wälzlagers abnimmt, sondern z.B. stetig oder stufenförmig in Richtung des Wälzlagers zunimmt.In principle, within the scope of the invention, a configuration is also conceivable in which the gap width does not decrease in the direction of the roller bearing but, for example, increases steadily or stepwise in the direction of the rolling bearing.

Gemäß einer Ausführungsform umfasst die Vakuumpumpe zwei in Axialrichtung hintereinander angeordnete Hülsen, welche insbesondere zusammen eine gemeinsame Holweckpumpstufe bilden oder Teil einer gemeinsamen Holweckpumpstufe sein können. Die zwei Hülsen können dabei zusammen zumindest einen Teil einer insbesondere zylindermantelförmigen und/oder glatten Oberfläche des Rotors bilden, welche zusammen mit einem Stator den Spalt definiert. Die Nabe, an der zumindest eine der Hülsen befestigt ist, kann sich dabei in axialer Richtung zwischen den Hülsen befinden und die Hülsen können sich in Bezug auf die Nabe in entgegengesetzte axiale Richtungen erstrecken. Die beiden Hülsen können prinzipiell auf derselben Nabe angeordnet bzw. von derselben Nabe getragen sein. Die Hülsen können auch von verschiedenen Naben getragen sein, wobei die zwei Naben in axialer Richtung voneinander beabstandet sind und/oder wobei eine der zwei Naben zwischen der anderen Nabe und einem Permanentmagnetlager der Vakuumpumpe angeordnet ist.According to one embodiment, the vacuum pump comprises two sleeves arranged one behind the other in the axial direction, which in particular together form a common Holweckpumpstufe or may be part of a common Holweckpumpstufe. The two sleeves can together form at least part of a particular cylinder jacket-shaped and / or smooth surface of the rotor, which defines the gap together with a stator. The hub, to which at least one of the sleeves is attached, may be in the axial direction between the sleeves and the sleeves may extend in opposite axial directions with respect to the hub. The two sleeves can in principle be arranged on the same hub or carried by the same hub. The sleeves may also be carried by different hubs, with the two hubs spaced apart axially and / or with one of the two hubs interposed between the other hub and a permanent magnet bearing of the vacuum pump.

Eine Hülse der Vakuumpumpe kann auch in einem von ihren axialen Enden beabstandeten Bereich bzw. in einem zwischen ihren axialen Enden angeordneten Bereich mit der Nabe verbunden oder von der Nabe getragen sein, wobei sich die Hülse ausgehend von der Nabe in entgegengesetzte axiale Richtungen erstreckt.A sleeve of the vacuum pump may also be connected to the hub or carried by the hub in a region spaced from its axial ends or in an area located between its axial ends, the sleeve extending in opposite axial directions from the hub.

Die Vakuumpumpe kann einen konzentrisch innerhalb der Hülse angeordneten Stator und einen konzentrisch außerhalb der Hülse angeordneten Stator umfassen, wobei jeder Stator mit der Hülse einen Spalt mit einer Spaltweite bildet und wobei die beiden Spalte vorzugsweise parallel zueinander pumpen, d.h. z.B. an ihren stromabwärtigen Enden zusammengeführt sind. Der durch den inneren Stator gebildete Spalt kann dabei über eine oder mehrere Öffnungen der Nabe für das zu fördernde Gas zugänglich sein, welche jeweils einen Gaseinlass für den Spalt bilden. Die beiden Spalte können jeweils Teil einer Holweckstufe sein. Die Spaltweite des durch den äußeren Stator gebildeten Spalts und/oder die Spaltweite des durch den inneren Stator gebildeten Spalts kann, insbesondere in axialer Richtung, variieren und insbesondere zum Wälzlager hin abnehmen. Gemäß einer vorteilhaften Ausführungsform variiert die Spaltweite des durch den inneren Stators gebildeten Spalts stärker und nimmt insbesondere zum Wälzlager hin stärker zu als die Spaltweite des durch den äußeren Stator gebildeten Spalts. Alternativ oder zusätzlich kann die minimale Spaltweite des durch den inneren Stator gebildeten Spalts geringer sein als die minimale Spaltweite des durch den äußeren Stator gebildeten Spalts. Dadurch lässt sich ein unterschiedliches Pumpverhalten der beiden Pumpstufen, welches durch die verschiedenen radialen Abstände der beiden Spalte von der Drehachse und die dadurch hervorgerufenen verschiedenen Relativgeschwindigkeiten bedingt ist, ausgleichen, wodurch insbesondere bei dem parallelen Betrieb der Pumpstufen ein verbessertes Pumpverhalten erzielt wird. Die Spaltweite eines der Spalte, insbesondere des durch den äußeren Stator gebildeten Spalts, kann prinzipiell auch konstant sein.The vacuum pump may include a stator concentrically disposed within the sleeve and a stator concentrically disposed outside the sleeve, each stator forming a gap with the sleeve and having the two gaps preferably parallel to one another, ie, converged at their downstream ends. The gap formed by the inner stator can be accessible via one or more openings of the hub for the gas to be delivered, which each form a gas inlet for the gap. The two columns can each be part of a Holweckstufe. The gap width of the gap formed by the outer stator and / or the gap width of the gap formed by the inner stator can, in particular in the axial direction, vary and in particular decrease towards the rolling bearing. According to an advantageous embodiment, the gap width of the gap formed by the inner stator varies more strongly and in particular increases more towards the rolling bearing than the gap width of the gap formed by the outer stator. Alternatively or additionally, the minimum gap width of the gap formed by the inner stator may be less than the minimum gap width of the gap formed by the outer stator. This makes it possible to compensate for a different pumping behavior of the two pumping stages, which is due to the different radial distances of the two gaps from the axis of rotation and the different relative speeds produced thereby, whereby an improved pumping behavior is achieved, in particular in the parallel operation of the pumping stages. The gap width of one of the gaps, in particular of the gap formed by the outer stator, can in principle also be constant.

Vorteilhaft wirkt sich eine zum Wälzlager hin abnehmende Spaltweite auch bei einer parallel pumpenden Anordnung von äußerer und innerer Oberfläche einer Hülse oder mehreren Hülsen aus. Hierbei erlaubt die Spaltweitenabnahme eine sehr genaue Abstimmung der Kompressionen der unterschiedlichen parallel zueinander pumpenden Spalte, beispielsweise kann der Einfluss der unterschiedlichen Relativgeschwindigkeiten zwischen ruhenden und stehenden Komponenten auf die Kompression ausgeglichen werden.Advantageously, a gap width which decreases towards the roller bearing also has an effect on a parallel-pumping arrangement of the outer and inner surfaces of a sleeve or a plurality of sleeves. In this case, the gap width decrease allows a very accurate tuning of the compressions of the different parallel pumping column, for example, the influence of different relative velocities between stationary and stationary components can be compensated for the compression.

Gemäß einer vorteilhaften Ausführungsform nimmt die Spaltweite linear oder stufenweise ab oder zu. Die Spaltweite kann prinzipiell über einen Teil der Spaltlänge oder die gesamte Spaltlänge hinweg variieren. Die Spaltweite kann z.B. in einem ersten Abschnitt variieren und in einem zweiten Abschnitt konstant sein. Ebenso kann die Spaltweite in verschiedenen Abschnitten unterschiedlich variieren und beispielsweise in einem ersten Abschnitt stetig und insbesondere linear und in einem zweiten Abschnitt stufenweise zu- oder abnehmen. Die Spaltweite kann über ihre gesamte Länge in derselben axialen Richtung zu- oder abnehmen, sie kann aber auch in einem ersten Abschnitt in axialen Richtung zunehmen und in einem anderen Abschnitt in derselben axialen Richtung abnehmen. Die verschiedenen Abschnitte sind vorzugsweise durch verschiedene axiale Längenabschnitte des Spalts gebildet. Eine über einen Teil der axialen Länge oder die gesamte axiale Länge der Hülse vorhandene Variation der Spaltweite in axialer Richtung kann über den gesamten Umfang der Hülse gegeben sein, was aber nicht zwingend ist.According to an advantageous embodiment, the gap width increases or decreases linearly or stepwise. The gap width can in principle vary over part of the gap length or the entire gap length. The gap width can e.g. vary in a first section and be constant in a second section. Likewise, the gap width in different sections vary differently and, for example, in a first section steadily and in particular linearly and in a second section gradually increase or decrease. The gap width can increase or decrease over its entire length in the same axial direction, but it can also increase in a first portion in the axial direction and decrease in another portion in the same axial direction. The various sections are preferably formed by different axial lengths of the gap. A variation of the gap width in the axial direction which is present over a part of the axial length or the entire axial length of the sleeve can be present over the entire circumference of the sleeve, which is not mandatory.

Der Spalt kann zumindest über einen Teil seiner axialen Länge und insbesondere über im Wesentlichen seine gesamte axiale Länge im Wesentlichen konisch oder kegelstumpfmantelförmig ausgebildet sein.The gap may be formed at least over a part of its axial length and in particular over substantially its entire axial length substantially conical or truncated cone-shaped.

An Hand eines Ausführungsbeispiels und seiner Weiterbildungen soll die Erfindung näher erläutert und die Darstellung ihrer Vorteile vertieft werden.With reference to an embodiment and its developments, the invention will be explained in more detail and the representation of its benefits to be deepened.

Es zeigen:

Fig. 1:
Schematische Schnittdarstellung von Rotor und Stator einer Holweckstufe mit zwei Wälzlagern;
Fig. 2:
Schematische Schnittdarstellung von Rotor und Stator einer Holweckstufe, gelagert mit einem Wälzlager und einem Permanentmagnetlager;
Fig. 3:
Schematische Schnittdarstellung von Hülse und Stator der Holweckstufe;
Fig. 4:
Schematische Schnittdarstellung eines Rotors mit turbomolekularen Pumpelementen und mehreren Hülsen sowie Stator;
Fig. 5:
Schematische Schnittdarstellung eines Rotors mit parallel wirkenden Hülsen.
Show it:
Fig. 1:
Schematic sectional view of rotor and stator of a Holweck stage with two rolling bearings;
Fig. 2:
Schematic sectional view of rotor and stator of a Holweckstufe, mounted with a rolling bearing and a permanent magnet bearing;
3:
Schematic sectional view of sleeve and stator of Holweckstufe;
4:
Schematic sectional view of a rotor with turbomolecular pumping elements and multiple sleeves and stator;
Fig. 5:
Schematic sectional view of a rotor with parallel acting sleeves.

In Fig. 1 sind in einer schematischen Darstellung der Rotor 2 und der Stator 20 einer Vakuumpumpe gezeigt. Der Rotor 2 weist eine Nabe 8 auf, welche eine Hülse 10 trägt.In Fig. 1 are shown in a schematic representation of the rotor 2 and the stator 20 of a vacuum pump. The rotor 2 has a hub 8, which carries a sleeve 10.

Der Rotor 2 wird von einem Wälzlager 4 drehbar unterstützt, welches sich in einem Abstand 102 zur Nabe 8 befindet. Zur weiteren Stützung des Rotors 2 kann ein zweites Wälzlager 6 vorgesehen sein.The rotor 2 is rotatably supported by a rolling bearing 4, which is located at a distance 102 to the hub 8. For further support of the rotor 2, a second rolling bearing 6 may be provided.

Konzentrisch zur Hülse 10 ist ein Stator 20 vorgesehen, der die Hülse 10 unter Bildung eines Spaltes 30 umgibt. Der Stator 20 besitzt auf seiner radial inneren Oberfläche schraubenlinienartige Nuten 24 oder vergleichbare zum Erzielen eines Pumpeffektes geeignete Pumpstrukturen. Zwischen den Nuten bleiben Stege 22 stehen. Der Spalt 30 besitzt eine Weite 100, die zwischen der der Hülse 10 zugewandten Oberfläche der Stege 22 und der Oberfläche der Hülse 10 bestimmt wird. Zusätzlich oder alternativ zu statorseitigen Pumpstrukturen kann auch die Hülse 10 zum Erzielen eines Pumpeffektes geeignete Pumpstrukturen aufweisen, wobei sich die Spaltweite 100 des Spalts 30 auch in diesem Fall auf die Oberfläche der Stege der Pumpstrukturen bezieht.Concentric with the sleeve 10, a stator 20 is provided, which surrounds the sleeve 10 to form a gap 30. The stator 20 has on its radially inner surface helical grooves 24 or similar pump structures suitable for achieving a pumping effect. Between the grooves remain webs 22 stand. The gap 30 has a width 100 which determines between the sleeve 10 facing surface of the webs 22 and the surface of the sleeve 10 becomes. In addition or as an alternative to stator-side pump structures, the sleeve 10 may also have pump structures suitable for achieving a pumping effect, the gap width 100 of the gap 30 also referring in this case to the surface of the webs of the pump structures.

Der Rotor 2 wird von einem Antrieb in Drehung versetzt, wobei der Antrieb statorseitig eine Motorspule 42 und rotorseitig einen Antriebsmagneten 44 umfassen kann. Die Drehzahl ist so bemessen, dass in dem Spalt 30 zwischen Hülse 10 und Stator 20 ein molekularer Pumpeffekt bewirkt wird. Hierdurch wird Gas in Richtung 104 gepumpt, die zum Wälzlager 4 hin orientiert ist.The rotor 2 is rotated by a drive, wherein the drive stator side, a motor coil 42 and the rotor side, a drive magnet 44 may include. The speed is such that in the gap 30 between the sleeve 10 and the stator 20, a molecular pumping effect is effected. As a result, gas is pumped in the direction 104, which is oriented towards the rolling bearing 4.

Die Hülse besitzt ein erstes Ende 12, an welchem sie an der Nabe 8 befestigt sein kann. Hierbei kann es sich um eine Klebeverbindung handeln, welche vorteilhaft die Wahl der Materialpaarung von Nabe 8 und Hülse 10 erleichtert. Ein zweites Ende 14 ist der Nabe 8 abgewandt und frei. Je nach Länge der Hülse 10 kann dieses zweite Ende 14 zwischen Nabe 8 und Wälzlager 4 angeordnet sein. Alternativ kann sich das Wälzlager 4 zwischen Nabe 8 und zweitem Ende 14 befinden.The sleeve has a first end 12 to which it may be attached to the hub 8. This may be an adhesive connection, which advantageously facilitates the choice of material pairing of hub 8 and sleeve 10. A second end 14 is remote from the hub 8 and free. Depending on the length of the sleeve 10, this second end 14 may be arranged between the hub 8 and rolling bearing 4. Alternatively, the rolling bearing 4 between hub 8 and second end 14 may be located.

Durch die Drehung weitet sich die Hülse 10 auf. Daher ist es vorteilhaft, Hülse 10 und Scheibe 8 aus unterschiedlichen Materialen zu gestalten, die Hülse 10 beispielsweise aus einem kohlenstofffaserverstärktem Kunststoff (CFK), die Nabe 8 aus einem Aluminium. Hierbei wird beobachtet, dass sich die Nabe 8 unter Einwirkung von Fliehkraft und Temperatur stärker aufweitet als die Hülse 10. Bei Verwendung eines zweiten Wälzlagers 6 ist die Ausdehnung der Nabe 8 die bestimmende Größe. Es wird nun vorgeschlagen, den Spalt 30 nicht nach dieser Ausdehnung festzulegen sondern so zu gestalten, dass die Spaltweite 100 zum Wälzlager 4 hin abnimmt. Mit diesem konischen Spalt 30 wird bewirkt, dass in Pumprichtung die Vakuumdaten besser werden. Gerade für leichte Gase wird beispielsweise die Kompression um eine gute Dekade verbessert. Aufgrund des kleinen Spiels des Wälzlagers 4 kann dort die Spaltweite 100 am geringsten sein.By the rotation, the sleeve 10 expands. Therefore, it is advantageous to make sleeve 10 and disc 8 of different materials, the sleeve 10, for example made of a carbon fiber reinforced plastic (CFRP), the hub 8 made of aluminum. Here, it is observed that the hub 8 expands more strongly under the influence of centrifugal force and temperature than the sleeve 10. When using a second rolling bearing 6, the expansion of the hub 8 is the determining factor. It is now proposed not to define the gap 30 after this expansion but to make it so that the gap width 100 decreases to the rolling bearing 4 back. This conical gap 30 causes the vacuum data to become better in the pumping direction. Especially for light gases For example, the compression improved by a good decade. Due to the small clearance of the rolling bearing 4, the gap width 100 may be the lowest there.

In einer vorteilhaften Weiterbildung ist das zweite Ende 14 auf einer axialen Höhe in einem Bereich zwischen dem 0,8fachen und dem 1,2fachen des Abstandes 102 zwischen Nabe 8 und Wälzlager 4 angeordnet. Der Vorteil der Verbesserung der Vakuumdaten ist hierdurch ausgeprägt, denn in diesem Bereich der axialen Höhe ist die Auslenkung der Hülse 10 gering und es können sehr enge Spalte 30 gewählt werden.In an advantageous development, the second end 14 is arranged at an axial height in a range between 0.8 times and 1.2 times the distance 102 between the hub 8 and rolling bearing 4. The advantage of improving the vacuum data is hereby pronounced, because in this range of axial height, the deflection of the sleeve 10 is low and it can be very narrow column 30 are selected.

In einer nächsten vorteilhaften Weiterbildung befindet sich das zweite Ende 14 daher auf Höhe des Wälzlagers 4, da dann höchster Arbeitsdruck innerhalb des Spaltes 30 und geringster Spaltweite 100 zusammenfallen.In a next advantageous development, the second end 14 is therefore at the height of the rolling bearing 4, since then highest working pressure within the gap 30 and smallest gap width 100 coincide.

Die Fig. 2 zeigt eine Weiterbildung, bei der statt des zweiten Wälzlagers 6 ein Permanentmagnetlager 40 zur Unterstützung des Rotors 2 vorgesehen ist. Der Vorteil eines solchen Lagers 40 liegt in der Hochvakuumtauglichkeit und Verschleißfreiheit. Allerdings besitzen Permanentmagnetlager 40 bei den in Vakuumpumpen möglichen Baugrößen auch bei Einsatz modernster Magnetmaterialien eine geringere Steifigkeit in radialer Richtung als ein Wälzlager 4, 6. Dies bedeutet je nach Betriebsbedingungen, beispielsweise Einbaulage, eine größere radiale Auslenkung des Rotors 2 am Permanentmagnetlager 40, aber auch im Bereich der im Abstand 102 zum Wälzlager 4 befindlichen Nabe 8. Daher wurde die Spaltweite 100 des Spaltes 30 zwischen Stator 20 und Hülse 10 nach bisherigem Stand des Fachwissens über seine gesamte Länge nach der Auslenkung der Nabe 8 bestimmt. Je nach Hülsenmaterial kam hier noch die Fliehkraftausdehnung der Hülse 10 hinzu. Es wird nun vorgeschlagen, dass die Spaltweite 100 zum Wälzlager 4 hin abnimmt. Hierdurch werden die Vakuumdaten aufgrund des in Pumprichtung 104 durch die kleiner werdenden Abmessungen gesteigerten Pumpeffekts verbessert. Dies wird insbesondere erreicht, wenn gemäß einer Weiterbildung des Gedankens das Permanentmagnetlager 40 dem ersten Ende 12 der Hülse 10 zugeordnet ist, d.h. insbesondere in axialer Richtung von der Hülse 10 beabstandet und von dem ersten Ende 12 der Hülse 10 weniger weit entfernt ist als von deren zweitem Ende 14.The Fig. 2 shows a development in which instead of the second rolling bearing 6, a permanent magnet bearing 40 is provided to support the rotor 2. The advantage of such a bearing 40 is the high vacuum capability and freedom from wear. However, even with the use of state-of-the-art magnetic materials, permanent magnet bearings 40 have a lower rigidity in the radial direction than a rolling bearing 4, 6, even if modern magnetic materials are used. This means, depending on the operating conditions, for example installation position, a greater radial deflection of the rotor 2 on the permanent magnet bearing 40, but also Therefore, the gap width 100 of the gap 30 between the stator 20 and the sleeve 10 was determined according to the prior art knowledge over its entire length after the deflection of the hub 8. Depending on the sleeve material was still the centrifugal expansion of the sleeve 10 added. It is now proposed that the gap width 100 decreases towards the rolling bearing 4. As a result, the vacuum data are due to the pumping effect increased in the pumping direction 104 due to the decreasing dimensions improved. This is achieved, in particular, if, according to an embodiment of the idea, the permanent magnet bearing 40 is assigned to the first end 12 of the sleeve 10, ie is spaced apart in particular in the axial direction from the sleeve 10 and is less far away from the first end 12 of the sleeve 10 than from the latter second end 14.

Vorteilhaft ist eine Weiterbildung, nach der die Hülse 10 aus einem kohlenstofffaserverstärktem Kunststoff (CFK) hergestellt ist, wodurch zum Wälzlager 4 hin, insbesondere auf Höhe des Wälzlagers 4, ein sehr kleiner Spalt 30 erreicht wird.Advantageously, a further development, according to which the sleeve 10 is made of a carbon fiber reinforced plastic (CFRP), whereby the rolling bearing 4 towards, in particular at the height of the rolling bearing 4, a very small gap 30 is achieved.

Weitergehende Gestaltungsmerkmale, die mit den bereits genannten Merkmalen kombiniert werden können, sollen anhand von Fig. 3 verdeutlicht werden. Dargestellt sind Rotor 2 und Stator 20 sowie im rechten Teil der Abbildung der Verlauf der Spaltweite 100 über die Spaltlänge.Additional design features that can be combined with the features already mentioned, are based on Fig. 3 be clarified. Shown are rotor 2 and stator 20 and in the right part of the figure, the course of the gap width 100 over the gap length.

Das erste Ende 12 der Hülse 10 kann entweder beispielsweise durch eine Klebe-, Klemm- oder Schrumpfverbindung mit der Nabe 8 verbunden sein. Alternativ kann die Hülse 10 über die Nabe 8 in axialer Richtung hinausgezogen sein, wie es in Fig. 3 durch gestrichelte Linien dargestellt ist. Die Nabe 8 ist dabei zwischen dem gepunktet dargestellten ersten Ende 12' der über die Nabe 8 hinausgezogenen Hülse 10 und dem zweiten Ende 14 der Hülse 10 angeordnet. Der Stator 20 kann dann entsprechend verlängert sein, ebenfalls gepunktet dargestellt. Denkbar ist auch zur Vereinfachung der Fertigung, den Stator 20 entlang einer Statorteilungslinie 110 zu trennen und mehrstückig auszuführen.The first end 12 of the sleeve 10 may be connected to the hub 8, for example, by an adhesive, clamping or shrinking connection. Alternatively, the sleeve 10 may be pulled out beyond the hub 8 in the axial direction as shown in FIG Fig. 3 is shown by dashed lines. The hub 8 is arranged between the dotted illustrated first end 12 'of the hub 8 beyond the extended sleeve 10 and the second end 14 of the sleeve 10. The stator 20 may then be extended accordingly, also shown dotted. It is also conceivable to simplify the production, to separate the stator 20 along a Statorteilungslinie 110 and perform several pieces.

Anstelle einer durchgehend linearen Änderung der Spaltweite über die Spaltlänge 108 kann die Änderung der Spaltweite auch abschnittsweise verlaufen. Beispielhaft gezeigt ist die Teilung in einen ersten und einen zweiten Abschnitt 90 und 92. Gemäß erstem beispielhaften Verlauf 94 nimmt die Spaltweite zunächst linear ab und geht dann stetig in einen konstanten Teil über. Gemäß einem zweiten beispielhaften Verlauf 96 erfolgt die Verringerung der Spaltweite stufenweise, die Spaltweite nimmt in Sprüngen von zweitem Ende 14 zu erstem Ende 12 ab.Instead of a continuous linear change of the gap width over the gap length 108, the change in the gap width may also extend in sections. The division into a first and a second section 90 and 92 is shown by way of example. According to the first exemplary curve 94, the gap width first decreases linearly and then changes continuously into a constant part. According to a second exemplary profile 96, the reduction of the gap width occurs stepwise, the gap width decreases in jumps from the second end 14 to the first end 12.

Die Weiterbildung nach Fig. 4 zeigt einen von einem Wälzlager 4 und einem Permanentmagnetlager 40 gestützten Rotor 2. Zwischen der Nabe 8 und dem Permanentmagnetlager ist eine turbomolekulare Pumpstruktur 50 vorgesehen, welche Komponenten des Permanentmagnetlagers 40 umgeben kann.The training after Fig. 4 shows a supported by a roller bearing 4 and a permanent magnet bearing 40 rotor 2. Between the hub 8 and the permanent magnet bearing a turbomolecular pumping structure 50 is provided which can surround components of the permanent magnet bearing 40.

Die Nabe 8 trägt eine erste Hülse 10 und zusätzlich zu dieser eine zweite Hülse 16, die an der Nabe 8 befestigt oder einstückig mit ihr ausgeführt und auf einer der ersten Hülse 10 ab gewandten Seite der Nabe angeordnet ist. Ein Stator 20 umgibt die erste und zweite Hülse 16 konzentrisch unter Bildung eines Spaltes. Dieser sich über die Längen beider Hülsen 10, 16 erstreckende Spalt ist nach den bereits dargestellten Gesichtspunkten gestaltet. Insbesondere nimmt die Spaltweite über die Spaltlänge 108 in Richtung des Wälzlagers 4 ab. Diese Anordnung erlaubt den Einsatz eines Metalls als Material für die zweite Hülse 16, da der Spalt dann im Bereich der größten Fliehkraftaufweitung auch die größte Spaltweite aufweist.The hub 8 carries a first sleeve 10 and in addition to this, a second sleeve 16 which is fixed to the hub 8 or integral with her and arranged on one of the first sleeve 10 from facing side of the hub. A stator 20 concentrically surrounds the first and second sleeves 16 to form a gap. This over the lengths of both sleeves 10, 16 extending gap is designed according to the aspects already shown. In particular, the gap width decreases over the gap length 108 in the direction of the rolling bearing 4. This arrangement allows the use of a metal as material for the second sleeve 16, since the gap then has the largest gap width in the region of the largest centrifugal force expansion.

Die Nabe 8 kann entlang einer Nabenteilungslinie 112 in Richtung der Rotorlängsachse geteilt sein, so dass eine zweite Nabe 8b entsteht, die von der ersten beabstandet sein kann.The hub 8 may be divided along a hub pitch line 112 in the direction of the rotor longitudinal axis to form a second hub 8b which may be spaced from the first.

Weitere Hülsen zur Bildung eines molekularen Pumpabschnittes können vorhanden sein, beispielsweise eine dritte Hülse 18, die konzentrisch innerhalb der ersten Hülse 10 angeordnet ist.Other sleeves may be provided to form a molecular pumping section, for example a third sleeve 18 concentrically disposed within the first sleeve 10.

Gemäß der Weiterbildung, die in Fig. 5 im schematischen Schnitt dargestellt ist, wird vorgeschlagen, die auf dem Rotor 2 befestigte Nabe 8 mit wenigstens einer Öffnung 60 zu versehen und einen Zwischenstator 62 konzentrisch zur ersten Hülse 10 und radial innerhalb dieser anzuordnen. Der Zwischenstator 62 bildet mit der ersten Hülse 10 einen pumpaktiven Innenspalt 64 aus. Die erste Hülse 10 wirkt zudem mit einem konzentrisch die erste Hülse 10 umgebenden Stator 20 unter Bildung des Spaltes 30 pumpaktiv zusammen. Durch diese Anordung entsteht eine parallel arbeitende Pumpstufe bzw. zwei parallel arbeitende Pumpstufen, in der bzw. in denen entlang der Außenseite und entlang der Innenseite der ersten Hülse 10 Gas gefördert wird. Bei molekularem Pumpen hängt die Pumpwirkung von den Relativgeschwindigkeiten der bewegten Bauteile zu den ruhenden Bauteilen ab. Daher ist es nicht einfach, eine effektiv parallel pumpende Anordnung zu schaffen. Es wird nun vorgeschlagen, dass die Spaltweite 100 des Spaltes 30 und die Spaltweite 106 des Spaltes 64 zum Wälzlager 4 hin abnimmt. Diese Abnahme erlaubt durch Wahl der Spaltweitenänderung ein feines Einstellen der durch den jeweiligen Spalt 30, 64 erreichten Kompression, also dem Druckverhältnis zwischen Spaltbeginn und Spaltende. Dieses feine Einstellen ergibt eine sehr effektiv parallel pumpende Holweckstufe mit besseren Leistungsdaten als im Stand der Technik.According to the training, which in Fig. 5 is shown in schematic section, it is proposed to provide the hub 8 fixed to the rotor 2 with at least one opening 60 and an intermediate stator 62 concentric with the first sleeve 10 and to arrange radially within this. The intermediate stator 62 forms with the first sleeve 10 a pump-active inner gap 64. The first sleeve 10 also interacts with a concentrically surrounding the first sleeve 10 stator 20 to form the gap 30 pumping together. By this arrangement creates a parallel pumping stage or two parallel pumping stages, in which or in which along the outside and along the inside of the first sleeve 10 gas is promoted. In molecular pumping, the pumping action depends on the relative speeds of the moving components to the stationary components. Therefore, it is not easy to create an effectively parallel pumping arrangement. It is now proposed that the gap width 100 of the gap 30 and the gap width 106 of the gap 64 to the rolling bearing 4 decreases towards. By selecting the gap width change, this decrease allows a fine adjustment of the compression achieved by the respective gap 30, 64, that is to say the pressure ratio between the beginning of the gap and the end of the gap. This fine tuning results in a very effective parallel pumping Holweck stage with better performance data than in the prior art.

Zusätzlich zur ersten Hülse 10 kann eine dritte Hülse 18 konzentrisch zur ersten und radial innerhalb des Zwischenstators 62 angeordnet sein. So entsteht ein weiterer Pumpkanal. Weitere Hülsen, auch gemäß Fig. 4, können kombiniert werden.In addition to the first sleeve 10, a third sleeve 18 may be disposed concentric with the first and radially within the intermediate stator 62. This creates another pumping channel. Other pods, also according to Fig. 4 , can be combined.

Claims (13)

Vakuumpumpe mit einem Rotor (2), welcher wenigstens eine Nabe (8) und wenigstens eine an der Nabe befestigte Hülse (10) aufweist, und mit wenigstens einem Stator (20), der unter Bildung eines Spaltes (30, 64) mit einer Spaltweite (100, 106) konzentrisch zur Hülse (10) angeordnet ist, dadurch gekennzeichnet, dass die Spaltweite (100, 106) variiert.A vacuum pump comprising a rotor (2) having at least one hub (8) and at least one sleeve (10) attached to the hub, and at least one stator (20) forming a gap (30, 64) with a gap width (100, 106) is arranged concentrically to the sleeve (10), characterized in that the gap width (100, 106) varies. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Rotor (2) von einem Wälzlager (4) drehbar unterstützt ist und die Spaltweite (100, 106) zum Wälzlager (4) hin abnimmt.Vacuum pump according to claim 1, characterized in that the rotor (2) by a rolling bearing (4) is rotatably supported and the gap width (100, 106) to the rolling bearing (4) decreases towards. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Permanentmagnetlager (40) zur Stützung des Rotors (2) vorgesehen ist.Vacuum pump according to claim 1 or 2, characterized in that a permanent magnet bearing (40) for supporting the rotor (2) is provided. Vakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, dass das Permanentmagnetlager (40) einem ersten Ende (12, 12') der Hülse (10) zugeordnet ist.Vacuum pump according to claim 3, characterized in that the permanent magnet bearing (40) is associated with a first end (12, 12 ') of the sleeve (10). Vakuumpumpe nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass ein freies, der Nabe (8) abgewandtes zweites Ende (14) der Hülse (10) auf Höhe des Wälzlagers (4) angeordnet ist.Vacuum pump according to one of claims 2 to 4, characterized in that a free, the hub (8) remote from the second end (14) of the sleeve (10) at the height of the rolling bearing (4) is arranged. Vakuumpumpe nach einem der Ansprüche 2 bis 5 dadurch gekennzeichnet, dass ein freies, der Nabe (8) abgewandtes zweites Ende (14) der Hülse (10) auf einer axialen Höhe in einem Bereich zwischen dem 0,8fachen und dem 1,2fachen eines Abstandes (102) zwischen Nabe (8) und Wälzlager (4) angeordnet ist.Vacuum pump according to one of claims 2 to 5, characterized in that a free, the hub (8) facing away from the second end (14) of the sleeve (10) at an axial height in a range between 0.8 times and 1.2 times a distance (102) between the hub (8) and roller bearings (4) is arranged. Vakuumpumpe nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass zwischen Nabe (8) und Permanentmagnetlager (40) eine turbomolekulare Pumpstruktur (50) vorgesehen ist.Vacuum pump according to one of claims 3 to 6, characterized in that a turbomolecular pumping structure (50) is provided between the hub (8) and the permanent magnetic bearing (40). Vakuumpumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein erstes Ende (12, 12') der Hülse (10) an der Nabe (8) befestigt ist.Vacuum pump according to one of claims 1 to 7, characterized in that a first end (12, 12 ') of the sleeve (10) is fixed to the hub (8). Vakuumpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine zweite Hülse (16) an der Nabe (8) befestigt und auf einer der ersten Hülse (10) abgewandten Seite der Nabe (8) angeordnet ist.Vacuum pump according to one of claims 1 to 8, characterized in that a second sleeve (16) attached to the hub (8) and on a side facing away from the first sleeve (10) side of the hub (8) is arranged. Vakuumpumpe nach Anspruch 9, dadurch gekennzeichnet, dass die zweite Hülse (16) an einer zweiten Nabe (8b) befestigt ist, welche zwischen der Nabe (8) und einem Permanentmagnetlager (40) der Vakuumpumpe angeordnet ist.Vacuum pump according to claim 9, characterized in that the second sleeve (16) is fixed to a second hub (8b) which is arranged between the hub (8) and a permanent magnet bearing (40) of the vacuum pump. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hülse (10) mittels einer Klebeverbindung mit der Nabe (8) verbunden ist.Vacuum pump according to one of the preceding claims, characterized in that the sleeve (10) is connected by means of an adhesive connection with the hub (8). Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nabe (8) wenigstens eine Öffnung (60) aufweist, welche Gas zwischen der Hülse (10) und einem konzentrisch innerhalb der Hülse (10) angeordneten Zwischenstator (62) eintreten lässt, der mit der Hülse (10) einen pumpaktiven Innenspalt (64) ausbildet, dessen Spaltweite (106) variiert und insbesondere zu einem Wälzlager (4) der Vakuumpumpe hin abnimmt.Vacuum pump according to one of the preceding claims, characterized in that the hub (8) has at least one opening (60) which allows gas to enter between the sleeve (10) and an intermediate stator (62) arranged concentrically within the sleeve (10) with the sleeve (10) forms a pump-active inner gap (64), the gap width (106) varies and in particular decreases to a rolling bearing (4) of the vacuum pump out. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spaltweite (100, 106) linear oder stufenweise zunimmt oder abnimmt.Vacuum pump according to one of the preceding claims, characterized in that the gap width (100, 106) increases or decreases linearly or stepwise.
EP12190912.1A 2011-11-16 2012-10-31 Friction vacuum pump Active EP2594803B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012252248A JP5898050B2 (en) 2011-11-16 2012-11-16 Friction vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011118661A DE102011118661A1 (en) 2011-11-16 2011-11-16 Friction vacuum pump

Publications (2)

Publication Number Publication Date
EP2594803A1 true EP2594803A1 (en) 2013-05-22
EP2594803B1 EP2594803B1 (en) 2016-07-20

Family

ID=47143656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12190912.1A Active EP2594803B1 (en) 2011-11-16 2012-10-31 Friction vacuum pump

Country Status (3)

Country Link
EP (1) EP2594803B1 (en)
JP (1) JP5898050B2 (en)
DE (1) DE102011118661A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212730A1 (en) * 2023-01-31 2023-07-19 Pfeiffer Vacuum Technology AG Vacuum pump with optimized holweck pump stage to compensate for temperature-related loss of performance
EP4273405A1 (en) * 2023-09-20 2023-11-08 Pfeiffer Vacuum Technology AG Vacuum pump with a holweck pumping stage with a varying holweck geometry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105582A1 (en) * 2014-04-17 2015-10-22 Pfeiffer Vacuum Gmbh vacuum pump
JP6666696B2 (en) 2015-11-16 2020-03-18 エドワーズ株式会社 Vacuum pump
CN112412875B (en) * 2020-12-08 2022-05-06 杭州贝丰科技有限公司 Axial fan with blade edge folding structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730297A (en) * 1950-04-12 1956-01-10 Hartford Nat Bank & Trust Co High-vacuum molecular pump
JPH0191096U (en) * 1987-12-07 1989-06-15
JP2001032789A (en) * 1999-07-23 2001-02-06 Anelva Corp Molecular pump
EP1318309A2 (en) * 2001-12-04 2003-06-11 BOC Edwards Technologies, Limited Vacuum pump
DE102009021620A1 (en) * 2009-05-16 2010-11-18 Pfeiffer Vacuum Gmbh vacuum pump
DE102009035332A1 (en) * 2009-07-30 2011-02-03 Pfeiffer Vacuum Gmbh vacuum pump
WO2011070856A1 (en) * 2009-12-11 2011-06-16 エドワーズ株式会社 Cylindrical fixed member of thread-groove exhaust unit and vacuum pump using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641582B1 (en) * 1989-01-09 1991-03-22 Cit Alcatel GAEDE CHANNEL TYPE VACUUM PUMP
JPH0538389U (en) * 1991-10-24 1993-05-25 セイコー精機株式会社 Vacuum pump
DE19915307A1 (en) * 1999-04-03 2000-10-05 Leybold Vakuum Gmbh Turbomolecular friction vacuum pump, with annular groove in region of at least one endface of rotor
DE10043235A1 (en) 2000-09-02 2002-03-14 Leybold Vakuum Gmbh vacuum pump
JP2002155891A (en) * 2000-11-22 2002-05-31 Seiko Instruments Inc Vacuum pump
DE10224604B4 (en) 2002-06-04 2014-01-30 Oerlikon Leybold Vacuum Gmbh evacuation device
DE102009021642B4 (en) * 2009-05-16 2021-07-22 Pfeiffer Vacuum Gmbh Vacuum pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730297A (en) * 1950-04-12 1956-01-10 Hartford Nat Bank & Trust Co High-vacuum molecular pump
JPH0191096U (en) * 1987-12-07 1989-06-15
JP2001032789A (en) * 1999-07-23 2001-02-06 Anelva Corp Molecular pump
EP1318309A2 (en) * 2001-12-04 2003-06-11 BOC Edwards Technologies, Limited Vacuum pump
DE102009021620A1 (en) * 2009-05-16 2010-11-18 Pfeiffer Vacuum Gmbh vacuum pump
DE102009035332A1 (en) * 2009-07-30 2011-02-03 Pfeiffer Vacuum Gmbh vacuum pump
WO2011070856A1 (en) * 2009-12-11 2011-06-16 エドワーズ株式会社 Cylindrical fixed member of thread-groove exhaust unit and vacuum pump using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212730A1 (en) * 2023-01-31 2023-07-19 Pfeiffer Vacuum Technology AG Vacuum pump with optimized holweck pump stage to compensate for temperature-related loss of performance
EP4273405A1 (en) * 2023-09-20 2023-11-08 Pfeiffer Vacuum Technology AG Vacuum pump with a holweck pumping stage with a varying holweck geometry

Also Published As

Publication number Publication date
EP2594803B1 (en) 2016-07-20
DE102011118661A1 (en) 2013-05-16
JP2013104430A (en) 2013-05-30
JP5898050B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
EP2295812B1 (en) Vacuum pump
EP2594803B1 (en) Friction vacuum pump
DE3932228C2 (en)
WO1994025760A1 (en) Friction vacuum pump with pump sections of different designs
EP2458222A2 (en) Turbomolecular pump
EP1851440B1 (en) Holweck vacuum pump
EP3112688B2 (en) Split flow vacuum pump and vacuum system with a split flow vacuum pump
DE60313493T2 (en) VACUUM PUMP
EP1918588B1 (en) Stator disc for a turbo molecular pump
EP3112689B1 (en) Split flow vacuum pump
DE102014105582A1 (en) vacuum pump
EP2565464B1 (en) Vacuum pump
EP2148094B1 (en) Vacuum pump
EP3320788B1 (en) Machine for producing rod-shaped products for the tobacco processing industry and related forming set
EP2368043A1 (en) Vacuum pump
DE602004000666T2 (en) A method of manufacturing a stator for a vacuum pump and stator produced by this method
EP1030432B1 (en) Electric motor
EP3032106B1 (en) Vacuum pump
EP2886870B1 (en) Vacuum pump with improved inlet geometry
WO2011032867A1 (en) Fan for an internal combustion engine
EP2902637B1 (en) Vacuum pump
DE102015111049B4 (en) vacuum pump
DE102013209199A1 (en) Tilting segment and radial plain bearings
EP3845764B1 (en) Vacuum pump and vacuum pump system
EP3767109B1 (en) Vacuum system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130829

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/64 20060101ALI20151029BHEP

Ipc: F04D 29/52 20060101ALI20151029BHEP

Ipc: F04D 29/059 20060101ALI20151029BHEP

Ipc: F04D 29/32 20060101ALN20151029BHEP

Ipc: F04D 19/04 20060101ALI20151029BHEP

Ipc: F04D 29/058 20060101AFI20151029BHEP

INTG Intention to grant announced

Effective date: 20151127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012007702

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04D0019040000

Ipc: F04D0029058000

INTG Intention to grant announced

Effective date: 20160202

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/52 20060101ALI20160122BHEP

Ipc: F04D 29/058 20060101AFI20160122BHEP

Ipc: F04D 19/04 20060101ALI20160122BHEP

Ipc: F04D 29/32 20060101ALN20160122BHEP

Ipc: F04D 29/059 20060101ALI20160122BHEP

Ipc: F04D 29/64 20060101ALI20160122BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 814341

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007702

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012007702

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502012007702

Country of ref document: DE

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20180113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121031

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 814341

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 12

Ref country code: CZ

Payment date: 20231023

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 12