EP2593346B1 - System zur ortung von zügen mit echtzeitprüfung der integrität von positionsbestimmungen - Google Patents

System zur ortung von zügen mit echtzeitprüfung der integrität von positionsbestimmungen Download PDF

Info

Publication number
EP2593346B1
EP2593346B1 EP11770506.1A EP11770506A EP2593346B1 EP 2593346 B1 EP2593346 B1 EP 2593346B1 EP 11770506 A EP11770506 A EP 11770506A EP 2593346 B1 EP2593346 B1 EP 2593346B1
Authority
EP
European Patent Office
Prior art keywords
train
satellites
railway route
basis
railway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11770506.1A
Other languages
English (en)
French (fr)
Other versions
EP2593346A1 (de
Inventor
Antonio Saitto
Paolo Bellofiore
Andrea Bolle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telespazio SpA
Original Assignee
Telespazio SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telespazio SpA filed Critical Telespazio SpA
Priority to EP11770506.1A priority Critical patent/EP2593346B1/de
Publication of EP2593346A1 publication Critical patent/EP2593346A1/de
Application granted granted Critical
Publication of EP2593346B1 publication Critical patent/EP2593346B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/02Global system for mobile communication - railways [GSM-R]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. global positioning system [GPS]

Definitions

  • the present invention relates, in general, to localization of trains and, in particular, to a system designed for estimating the position of a train and for checking in real time the integrity of the estimation of the position.
  • SBASs Satellite-Based Augmentation Systems
  • SBASs are designed for supplying also a "safety of life" signal and hence can be used for supporting air-traffic control systems.
  • SBASs guarantee a precision around two metres in the estimate of position.
  • SBASs guarantee also the reliability of the data received from the Global Positioning System (GPS) and enable a much more precise calculation of the height, which in future may be used also for air navigation.
  • GPS Global Positioning System
  • SBASs in order to supply information that enables refinement of the estimate of position made on the basis of the signals received from the GPS and in order to supply "safety of life” signals, exploit:
  • SBASs in order to determine the errors made in the position estimate based upon the signals received from the GPS, operate in the way described hereinafter.
  • the ground stations detect the error of the data transmitted by the GPS satellites (which can for the most part be put down to the ionization of the lowest layers of the atmosphere). For this purpose, the ground stations compare their own position calculated on the basis of the signals received from the GPS satellites with the data of the orbits of the GPS satellites and with the respective certified positions.
  • GPS receivers base calculation of their own position on the delay with which they receive the signal from the GPS satellites.
  • each ground station Since each ground station knows the respective exact position and the positions of the GPS satellites from which it has received the GPS signals (said positions being determined not on the basis of the signals received, but rather on the basis of the data of the orbits of the satellites themselves), each ground station is hence able to determine easily the error caused by propagation of the GPS signals through the atmosphere. Each ground station can hence generate, on the basis of the errors calculated, a respective lattice of surrounding points and detect the error margin for each of these points, thus widening the area in which the GPS errors calculated are valid. Consequently, in this way, each ground station determines a respective error model that is valid for a respective area of competence.
  • the data generated by the ground stations are then sent to at least one data-processing base station, which generates a very dense lattice of corrective factors. It corresponds, in practice, to a large number of points of known position, for each of which the correction data for the signal received from each GPS satellite is processed. These data are updated in real time, in so far as the conditions of propagation of the GPS signal through the atmosphere obviously change according to the conditions of the atmosphere itself.
  • These corrective factors are then sent to the SBAS satellites so that they can be finally retransmitted to ground using the same frequency as that of the GPS signals (i.e., the frequency L1) and then be received by the user terminals enabled.
  • the terminal that receives the SBAS signals selects the data valid for the points of the lattice closest thereto, applies them to the satellites that it is receiving at that moment, and uses them for calculation of its own position.
  • the ERTMS-ETCS integrated system is an advanced system for management, control, protection, and signalling of rail traffic designed to replace the multiple and mutually incompatible systems of circulation and safety of the various European railways in order to guarantee the interoperability of the trains on the various European railway networks and maximize the levels of performance of the European railway networks, both the high-speed ones and those of greatest commercial interest.
  • ERTMS-ETCS is made up of different equipment, which has the purpose of implementing the aforesaid functions and is characterized by three different functional levels, specifically a first functional level, a second functional level, and a third functional level.
  • the definition of each functional level depends upon how the railway line is equipped and upon how the information is exchanged between the train and the monitoring stations.
  • trains are equipped with on-board odometers, which are configured for measuring the speed of the trains on which they are installed and for estimating the position of said trains by integration of the speed measured.
  • the Eurobalises are used for calibrating the on-board odometers, i.e., for correcting the estimates of position supplied by the on-board odometers on the basis of certified positions supplied by the Eurobalises.
  • the first-level ERTMS-ETCS supplies an on-board signalling that can be added to traditional signalling systems currently installed on railway lines, leaving the latter in operation for circulation of traditional trains.
  • Figure 1 shows a scenario of example in which a first-level ERTMS-ETCS operates.
  • Figure 1 illustrates schematically:
  • the control centre 12 sends to the line unit 113 information regarding the section of railway line 11, such as, for example, authorizations for movement of the trains, slowing down thereof, and maximum speeds allowed.
  • the line unit 113 supplies to the Eurobalises 111 and 112 the information received from the control centre 12 together with other information supplied by fixed signalling systems (not shown in Figure 1 for simplicity) installed along the section of railway line 11.
  • Each of the two Eurobalises 111 and 112 is georeferenced, i.e., knows the respective exact position, and transmits upon passage of the trains, via inductive means or via radio, the respective position together with the information received from the line unit 113.
  • the receiver 132 When the train 13 passes over the Eurobalises 111 and 112, the receiver 132 receives the information transmitted by said Eurobalises 111 and 112 and supplies it to the on-board computer 131.
  • the on-board computer 131 displays on the control panel 133 the information received via the receiver 132 together with further information (for example, the current braking profile of the train 13) obtained via processing of said received information and of other information regarding the train 13 (for example, the speed, weight, and length of the train 13).
  • the on-board computer 131 is connected to an on-board odometer (not shown in Figure 1 for reasons of simplicity) of the train 13 for receiving from the latter estimates of the position of the train 13.
  • the on-board computer 131 corrects said estimates on the basis of the positions received from the Eurobalises 111 and 112.
  • the on-board computer 131 displays on the control panel 133 the estimates of position supplied by the on-board odometer when it does not have available the exact positions supplied by the Eurobalises 111 and 112, whereas, when it receives the exact positions supplied by the Eurobalises 111 and 112, it displays said exact positions on the control panel 133.
  • the second-level ERTMS-ETCS this enables management of the distance between the trains via radio communications between the trains and a control base station referred to as "Radio Block Centre” (RBC), which, knowing the state of the line and of the other trains, continuously sends to the trains information regarding the line (such as, for example, authorizations for movement of the trains, slowing down thereof, and maximum speeds allowed) using a connection based upon the international mobile-phone standard for railway communications "Global System for Mobile Communications-Railway" (GSM-R).
  • GSM-R Global System for Mobile Communications-Railway
  • the trains can thus determine their own speed profile also on the basis of their own characteristics of weight and braking. The system intervenes in a timely way in the case of possible risks for safety.
  • the second-level ERTMS-ETCS is a system for signalling and protection of the train based upon a radio transmission of digital data.
  • the driving cab of trains displayed on purposely provided control panels is the information regarding the route and authorizations for movement of the trains received directly from the RBC.
  • the positions of the trains, the direction of travel, together with all the other necessary information, are transmitted automatically by the trains to the RBC at given intervals. The movement of the trains is thus monitored continuously by the RBC.
  • Figure 2 shows a scenario of example in which a second-level ERTMS-ETCS operates.
  • Figure 2 illustrates schematically:
  • the RBC 22 sends to the GSM-R terminal 233 information regarding the section of railway line 21, such as, for example, authorizations for movement of the trains, slowing down thereof, and maximum speeds allowed.
  • the GSM-R terminal 233 supplies the information received from the RBC 22 to the on-board computer 231.
  • the on-board computer 231 displays on the control panel 234 the information received from the RBC 22 via the GSM-R terminal 233 together with other information (for example, the current braking profile of the train 23) obtained via processing of said information received from the RBC 22 and of other information regarding the train 23 (for example, the speed, weight, and length of the train 23).
  • each of the two Eurobalises 211 and 212 is georeferenced, i.e., knows the respective exact position, and transmits upon passage of the trains, via inductive means or via radio, the respective position.
  • the receiver 232 receives the positions transmitted by said Eurobalises 211 and 212 and supplies them to the on-board computer 231.
  • the on-board computer 231 is connected to an on-board odometer (not shown in Figure 2 for reasons of simplicity) of the train 23 in order to receive from the latter estimates of the position of the train 23.
  • the on-board computer 231 corrects said estimates on the basis of the positions received from the Eurobalises 211 and 212.
  • the on-board computer 231 displays on the control panel 234 the estimates of position supplied by the on-board odometer when it does not have available the exact positions supplied by the Eurobalises 211 and 212, whereas, when it receives the exact positions supplied by the Eurobalises 211 and 212, it displays said exact positions on the control panel 234.
  • the position of the train 23, the direction of travel of the train 23, together with all the other necessary information, are transmitted automatically by the on-board computer 231 to the RBC 22 via the GSM-R terminal 233. In this way, the RBC 22 monitors the movement of the train 23.
  • the third-level ERTMS-ETCS envisages elimination of many ground apparatuses and entrusting of location and control of integrity of the trains to purposely designed on-board transmitting apparatuses that dialogue continuously with a centre for processing and control of the data regarding travel of the trains over the stretch.
  • the third-level ERTMS-ETCS will surpass the concept of fixed block section introducing that of dynamic block section not modelled on a pre-set physical space, but created according to the circulation requirements and to the possibilities afforded by the radio transmitting system.
  • EP 1 705 095 A1 discloses a train traffic block system on one track of a railroad line, wherein said block system comprises an onboard block signalling aid unit per vehicle, in turn including:
  • the centralized traffic control CTC center according to EP 1 705 095 A1 comprises:
  • the GNSS-based RUNE described in the aforesaid article exploits navigation data coming from GPS with differential EGNOS corrections to determine train's position and velocity and integrates the use of GNSS signals with inertial sensors and on-board odometers in an intelligent system of mutual calibration, error filtering and error correction.
  • the present applicant has decided to tackle the need for reliable positioning systems for control of trains in movement and, consequently, has conducted an in-depth study aimed at developing an innovative system for locating trains that is able to meet said need of the railway sector and to guarantee safety of rail traffic.
  • the aim of the present invention is hence to provide a system for locating trains that will be able to supply a reliable location and to guarantee safety of rail traffic.
  • the aforesaid aim is achieved by the present invention in so far as it regards a satellite terminal and a system for locating trains according to what is defined in the annexed claims.
  • the present invention stems from the idea of the present applicant to exploit one or more Global Navigation Satellite Systems (GNSSs), such as, for example, the GPS, the European navigation satellite system Galileo, the Russian navigation satellite system GLONASS, etc., in order to locate a train.
  • GNSSs Global Navigation Satellite Systems
  • the present applicant has had the intuition that use of a GNSS for controlling travel of trains would enable considerable simplification of the track infrastructure, drastically reducing the number of balises and consequently the maintenance costs of the infrastructure, which are currently particularly high.
  • the present applicant has likewise had the intuition that thanks to the use of the satellite-positioning information it would be possible to switch to a concept of continuous balise since the satellite datum can potentially be used at any point of railway networks.
  • the present applicant has also understood that, at the moment when a GNSS is exploited for location of trains, it is necessary, in order to guarantee safety of the rail traffic, to have available also a certification of the satellite position datum, i.e., information on the integrity of the estimate of position.
  • a first aspect of the present invention regards a satellite terminal that is designed to be installed on board a train and is configured for:
  • the integrity level is indicative of a maximum error associated to the calculated position.
  • said satellite terminal determines the position of the train, also supplying in real time a certification, i.e., an integrity level, thereof, it is able to guarantee safety of the rail traffic.
  • said satellite terminal in order to certify the position of the train calculated on the basis of the navigation signals received from a plurality of GNSS satellites, verifies in real time proper operation of said GNSS satellites.
  • a train can usually move along pre-set paths. This characteristic enables exploitation of a reduced number of GNSS satellites for calculating the position of a train. In particular, it is possible to calculate the position of a train using the navigation signals received from just two GNSS satellites. If more than two GNSS satellites are available, it is possible to obtain also information on the integrity of the satellite datum itself.
  • GDOP Geometric Dilution of Precision
  • VDOP Vertical DOP
  • HDOP Horizontal DOP
  • the uncertainty sDOP corresponding to the curvilinear abscissa s can be estimated by projecting the components of the positional error known in the classic approach on the direction of the path followed by the train, which constitutes an integration of the datum supplied by a possible inertial navigator on board the train, for example an odometer.
  • the calculation itself of the DOP undergoes in any case a modification with respect to what occurs according to the classic approach in the field of aeronautic navigation.
  • the presence of the geometrical constraint imposed by the tracks reduces the number of degrees of freedom, and hence the number of GNSS satellites necessary for evaluating the position.
  • the number of GNSS satellites necessary for evaluation of said curvilinear abscissa s and correction of the time offset drops to two. This means that, in the presence of a number of GNSS satellites, it is always possible to identify the best pair of, or set of three, GNSS satellites for the purposes of minimization of the sDOP, hence improving the precision in addition to the check on integrity.
  • the satellite terminal according to the present invention is conveniently designed for:
  • said satellite terminal conveniently uses a cartesian reference system positioned in such a way that the axis z coincides with the local vertical to the Earth's surface, the axes y and x, which are perpendicular to one another, lie in a plane tangential to the Earth's surface, and the axis y is oriented in a direction concordant with the curvilinear abscissa s.
  • Two GNSS satellites are hence sufficient to solve the system of two pseudo-range equations in two unknowns; namely, it is possible to calculate the value of the curvilinear co-ordinate s and the time offset ⁇ t on the basis of the positioning data corresponding to just two GNSS satellites, whereas if positioning data corresponding to three or more GNSS satellites are available, it is also possible to introduce a criterion for evaluating the error committed in the determination of the curvilinear co-ordinate s.
  • said satellite terminal in order to calculate the position of the train and evaluate the error, can conveniently carry out the following operations:
  • the satellite terminal can thus exclude the two GNSS satellites that cause the greatest error and hence consider only the combination or combinations formed by the GNSS satellites that cause the least error. In this way, the GNSS satellites with markedly erroneous data can be excluded from the calculation of the position of the train.
  • the mean error corresponding to the co-ordinate x is also indicative of the mean error corresponding to the co-ordinate y, i.e., corresponding to the curvilinear co-ordinate s.
  • the satellite terminal rejects, on the basis of the levels of protection L P calculated for the various sets of three GNSS satellites, the GNSS satellites that, when taken into account for calculating the position of the train, determine the highest levels of protection L P , choosing for determining the position of the train the set or sets of three GNSS satellites that is/are formed only by the GNSS satellites that yield the lowest levels of protection L P .
  • the satellite terminal can conveniently determine the position of the train on the basis of the calculated position (0, y, h ) that is associated to the minimum level of protection L P , the integrity level associated to said position of the train hence being determined on the basis of said minimum level of protection L P .
  • the satellite terminal can conveniently:
  • a satellite terminal that receives navigation signals from five GNSS satellites is able to identify up to two "erroneous" GNSS satellites; namely, it cannot be used for calculation of the position of the train.
  • the satellite terminal still manages to choose the best configuration, but the error cannot be completely eliminated, and the value of the level of protection increases.
  • the satellite terminal no longer manages to determine the integrity, but supplies a higher level of protection.
  • Table 1 which summarizes a first scenario of example in which the satellite terminal receives the navigation signals from five GNSS satellites none of which causes errors (the satellites that do not cause errors being associated in the five tables below to the symbol " ⁇ "), i.e., in which all five GNSS satellites can be used by the satellite terminal to determine the position of the train with a minimum level of protection, i.e., committing a minimum error (said minimum level of protection being designated in the following tables by 1); • Table 2, which summarizes a second scenario of example in which the satellite terminal receives the navigation signals from five GNSS satellites of which only one causes errors (the satellites that cause errors being associated in the following tables to the symbol "X"), i.e., in which four GNSS satellites can be used by the satellite terminal to determine the position of the train with the level of protection 1; • Table 3, which summarizes a third scenario of example in which the satellite terminal receives the navigation signals from five GNSS satellites of which two cause errors
  • the examples just described all regard the case where the satellite terminal receives navigation signals from five GNSS satellites, which represents the most frequent case for a GNSS receiver.
  • the methodology of calculation of the position of a train just described can be applied, obviously, also to the case where the satellite terminal receives navigation signals from four GNSS satellites.
  • the sets of three GNSS satellites that can be considered are four and, hence, it is possible to identify just one satellite with error.
  • the methodology of calculation of the position of a train just described can be applied, obviously, also to the cases where the satellite terminal receives navigation signals from more than five GNSS satellites. In these cases, the number of satellites with error that may be identified increases.
  • the satellite terminal described previously can be advantageously exploited with a first-level, second-level, and third-level ERTMS-ETCS.
  • the position of the train supplied by the satellite terminal can be advantageously exploited to correct the estimate of position supplied by the on-board odometer of a train.
  • the integral positioning datum supplied by the satellite terminal is substituted for and expands the concept of balise.
  • the use of the satellite position datum prevents the integration error of the odometer, which is based on the datum of angular velocity, and hence the satellite position datum, if associated to a notable point, constitutes a virtual balise.
  • the satellite position datum is much more representative: associated to a completely georeferenced railway line, it can be used at any instant along the route, hence revolutionizing the very idea of fixed notable points.
  • a technical advantage associated to the use of the satellite terminal previously described is represented by the fact that the latter enables use of on-board odometers that are less precise and hence less costly (both as product and from the standpoint of the service life).
  • Figure 3 is a schematic illustration of a system for locating trains according to a preferred embodiment of the present invention.
  • Figure 3 shows, by way of non-limiting example, integration of said positioning system in a second-level ERTMS-ETCS.
  • Figure 3 shows:
  • the RBC 32 sends to the GSM-R terminal 333 information regarding the section of railway line 31, such as, for example, authorizations for movement of the trains, slowing down thereof, and maximum speeds allowed.
  • the GSM-R terminal 333 supplies the information received from the RBC 32 to the on-board computer 331.
  • the on-board computer 331 displays on the control panel 335 the information received from the RBC 32 via the GSM-R terminal 333 together with other information (for example, the current braking profile of the train 33) obtained on the basis of processing of said information received from the RBC 32 and of other information regarding the train 33 (for example, the speed, weight, and length of the train 33).
  • the Eurobalise 311 is georeferenced, i.e., it knows its own exact position, and transmits upon passage of the trains, via inductive means or via radio, said exact position.
  • the receiver 332 receives the position transmitted by said Eurobalise 311 and supplies it to the on-board computer 331.
  • the on-board computer 331 is connected to an on-board odometer (not shown in Figure 3 for reasons of simplicity) of the train 33 to receive from the latter estimates of the position of the train 33.
  • the on-board computer 331 is configured for:
  • the specific conditions of railway safety can be conveniently stored by the on-board computer 331 and/or determined dynamically by the on-board computer 331 and/or supplied dynamically to the on-board computer 331 by the RBC 32 via the GSM-R terminal 333.
  • the on-board computer 331 can determine the specific conditions of railway safety on the basis of the information regarding the section of railway line 31 received from the RBC 32 and of data regarding the train 33, such as, for example, the speed, weight, and length of the train 33.
  • the on-board computer 331 can conveniently evaluate whether the current integrity level associated to the position supplied by the GNSS terminal 334 meets the conditions of railway safety for the section of railway line 31 in order to guarantee safety of rail transport on said section of railway line 31.
  • the position of the train 33, the direction of travel of the train 33, together with all the other necessary information, are transmitted automatically by the on-board computer 331 to the RBC 32 via the GSM-R terminal 333. In this way, the RBC 32 monitors the movement of the train 33.
  • the satellite location according to the present invention can be conveniently integrated in the ERTMS-ETCS architecture as an overlay level, as shown schematically in Figure 4 .
  • Figure 4 shows a block diagram, which illustrates an architecture of a system of an ERTMS-ETCS type, which integrates the satellite location according to the present invention.
  • the architecture shown in Figure 4 comprises:
  • the balises can be positioned with extreme precision (of the order of the metre) via a georeferencing (for example, using GPS receivers) having statistics that are quite long in time
  • the errors in the case of the ERTMS-ETCS principally depend upon the accuracy of the on-board odometer, the type of route that the train has covered (slipping on the rail, braking, etc.), and the distance between two consecutive balises.
  • Figure 5 is a plot representing the error of the odometer and the error of the odometer corrected on the basis of the position obtained via GNSS location as a function of the position of the train (assuming a speed of the train of 300 km/h and linear slipping errors).
  • the maximum error due to the odometer after 10 km is 300 m, whereas the error of the odometer corrected on the basis of the position obtained via GNSS location is always of the order of a few metres.
  • the error of the GNSS location basically depends upon the measurement of position and is of the order of some metres irrespective of the conditions of speed of the train since the position is obtained directly from satellite triangulation and not from integrations of the speed (as in the case of the odometer). It is moreover possible to decrease the ionospheric error using GNSS signals on two frequencies.
  • An important advantage of the present invention derives from the possibility of obtaining the information of error from the data of calculation of the position, exploiting the constraint for the train of having to follow the georeferenced track.
  • the unknowns for the train become two: the curvilinear co-ordinate and the time offset.
  • Figure 6 shows a cartesian reference system z s x s y s provided by way of example used in the calculation of the position of a train according to the present invention.
  • the axis y s represents the curvilinear abscissa s along which the train moves
  • the axis x s represents the direction normal to the curvilinear abscissa s
  • z s represents the local vertical to the Earth's surface.
  • Evaluation of these errors for each satellite enables calculation of the level of protection L P in such a way that said level of protection L P is always greater than the error on y s .
  • the algorithm developed moreover enables important information on the various components of the error to be obtained, not least of which the contribution of the ionosphere.
  • Figure 7 shows a typical plot of the error and of the level of protection L P on a route of approximately 60 km.
  • the error lies always within the level of protection L P that is calculated in real time for the best set of three GNSS satellites available.
  • the GNSS system for locating trains is able to identify malfunctioning of the GNSS satellites and eliminate from calculation of the position of the train the GNSS satellites that present malfunctioning.
  • the route of the train can be both rectilinear and curvilinear and can be approximated with a high degree of precision. From Figure 7 it may be noted that, as compared to the error of 300 m over 10 km, due to the on-board odometer (error shown in Figure 5 ), GNSS location introduces errors of less than 30 m over a route having in practice any length.
  • balises instead of one every 2-3 km, one every 50-60 km without altering the precision of the measurement and the safety of the rail transport. From this standpoint, it should be noted that a balise can be set in places that are readily accessible for maintenance and easily controllable also from the point of view of safety of the systems.
  • the system is able to signal it (absence of level of protection or error beyond the limit) and the odometer would be for that period the only source of information that can be used (procedure of merging of the data based upon the exclusiveness mechanism) to avoid multiple information sources.
  • the present invention can be advantageously integrated in current systems and future systems (i.e., ones already in the design stage) for management, control, protection, and signalling of the rail traffic; in particular, it can be advantageously exploited with all three levels of the ERTMS-ETCS.
  • the present invention can be advantageously integrated in current systems and future systems (i.e., ones already in the design stage) for management, control, protection, and signalling of the rail traffic; in particular, it can be advantageously exploited with all three levels of the ERTMS-ETCS.
  • the present invention can be advantageously integrated in current systems and future systems (i.e., ones already in the design stage) for management, control, protection, and signalling of the rail traffic; in particular, it can be advantageously exploited with all three levels of the ERTMS-ETCS.
  • the GNSS positioning datum associated to a georeferenced point along the track constitutes a virtual balise. This implies that the number of physical balises can be reduced to the advantage of a simpler and more economic management and maintenance of the system.
  • the real advantage of the satellite datum lies, however, in the possibility of not being tied down to a rigid, albeit virtual, positioning of the reference points, providing what can be called a continuous-balise system.
  • the concept of continuous balise is the turnkey towards the third level of the ERTMS-ETCS, which is not tied down to the fixed section of track.
  • the key element for adoption of the satellite datum in the ERTMS-ETCS architecture is hence that of the integrity of the datum itself in real time.
  • the present invention advantageously falls within the scenario of development of the Italian and European railways in which it has been hypothesized for the future to use the European navigation satellite system Galileo, which, as is known, will supply information of certification of operation of the satellites and of the error introduced on the position.
  • Galileo European navigation satellite system
  • it makes it possible to expand the scenario of use of the satellite datum in positioning of trains.
  • An important reason for using a system based not only on the Galileo system lies in the "control" factor. In fact, it would be unlikely for Russia, China, or India to use a non-proprietary system (i.e., Galileo) for a strategic and critical infrastructure such as the rail sector.
  • the present invention makes it possible to know at every instant not only the position of a train, but also the maximum error that is committed in this measurement and the check of proper operation of the satellites.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Claims (9)

  1. Satellitenterminal (334), das konstruiert ist, um an Bord eines Zugs (33) installiert zu werden, und konfiguriert ist, um:
    - Georeferenzdaten einer Eisenbahnroute des Zugs (33) zu speichern;
    - Navigationssignale von Satelliten zu empfangen, die zu einem oder mehreren Satellitennavigationssystemen gehören;
    - Positionsbestimmungsdaten, die den Satelliten entsprechen, die die Navigationssignale gesendet haben, aus den empfangenen Navigationssignalen zu extrahieren; und
    - auf der Basis der gespeicherten Georeferenzdaten und der empfangenen Navigationssignale eine Position des Zugs (33) entlang der Eisenbahnroute und einer Integritätsstufe, die zu der bestimmten Position gehört, zu bestimmen;
    dadurch gekennzeichnet, dass sie ferner konfiguriert ist, um:
    - wenn das Satellitenterminal (334) Navigationssignale von nur zwei Satelliten empfängt, die Position des Zugs (33) entlang der Eisenbahnroute durch Berechnen einer Position eines Zugs, der an die Eisenbahnroute gebunden ist, auf der Basis der gespeicherten Georeferenzdaten und der Positionsbestimmungsdaten, die den zwei Satelliten entsprechen, zu bestimmen; und
    - wenn das Satellitenterminal (334) Navigationssignale von drei oder mehr Satelliten empfängt,
    -- für jeden Satz von drei Satelliten, von denen Navigationssignale empfangen werden, eine entsprechende an die Eisenbahnroute gebundenen Position des Zugs auf der Basis der gespeicherten Georeferenzdaten und der Positionsbestimmungsdaten, die den drei Satelliten entsprechen, und eine entsprechende Schutzstufe auf der Basis der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs und der Positionsbestimmungsdaten, die den drei Satelliten entsprechen, zu berechnen, wobei die entsprechende Schutzstufe einen maximalen Fehler angibt, der zu der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs gehört,
    -- einen Satz von drei Satelliten gemäß einem Auswahlkriterium basierend auf den berechneten Schutzstufen auszuwählen, und
    -- die Position des Zugs (33) entlang der Eisenbahnroute und die Integritätsstufe, die zu der Position gehört, jeweils auf der Basis der an die Eisenbahnroute gebundenen Position des Zugs und der für den ausgewählten Satz von drei Satelliten berechneten Schutzstufe zu bestimmen.
  2. Satellitenterminal nach Anspruch 1, das konfiguriert ist, um, wenn das Satellitenterminal (334) Navigationssignale von nur zwei Satelliten empfängt, die Position des Zugs (33) entlang der Eisenbahnroute zu bestimmen, durch:
    - Berechnen einer ersten Koordinate einer an die Eisenbahnroute gebundenen Position des Zugs auf der Basis der gespeicherten Georeferenzdaten, wobei die erste Koordinate eine mittlere Höhe der Eisenbahnroute angibt;
    - Einführen, dass eine zweite Koordinate der an die Eisenbahnroute gebundenen Position des Zugs gleich null ist; und
    - Berechnen einer dritten Koordinate der an die Eisenbahnroute gebundenen Position des Zugs auf der Basis der ersten und zweiten Koordinaten der an die Eisenbahnroute gebundenen Position des Zugs und der Positionsbestimmungsdaten, die den zwei Satelliten entsprechen, wobei die dritte Koordinate einer kurvenförmigen Abszisse entspricht, die zu der Eisenbahnroute gehört;
    wobei das Satellitenterminal (334) konfiguriert ist, um, wenn sie Navigationssignale von drei oder mehr Satelliten empfängt, für jeden Satz von drei Satelliten, von denen Navigationssignale empfangen werden, zu berechnen:
    - eine entsprechende an die Eisenbahnroute gebundene Position des Zugs durch
    -- Berechnen einer ersten Koordinate der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs auf der Basis der gespeicherten Georeferenzdaten, wobei die erste Koordinate eine mittlere Höhe der Eisenbahnroute angibt;
    -- Einführen, dass eine zweite Koordinate der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs gleich null ist, und
    -- Berechnen einer dritten Koordinate der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs und eines entsprechenden Zeitversatzes, der zu den Navigationssignalen gehört, die von den drei Satelliten empfangen werden, auf der Basis der ersten und zweiten Koordinaten der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs und der Positionsbestimmungsdaten, die den drei Satelliten entsprechen, wobei die dritte Koordinate einer kurvenförmigen Abszisse entspricht, die zu der Eisenbahnroute gehört; und
    - einen entsprechenden mittleren Fehler, der zu der zweiten Koordinate der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs gehört, auf der Basis der ersten und dritten Koordinaten der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs, des entsprechenden berechneten Zeitversatzes und der Positionsbestimmungsdaten, die den drei Satelliten entsprechen; und
    - eine entsprechende Schutzstufe auf der Basis des entsprechenden mittleren Fehlers, so dass der maximale Fehler, der zu der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs gehört, niedriger als die entsprechende Schutzstufe ist.
  3. Satellitenterminal nach Anspruch 2, wobei:
    - die erste Koordinate jeder berechneten an die Eisenbahnroute gebundenen Position des Zugs einer ersten Bezugsachse entspricht, die in Bezug auf die Erdoberfläche vertikal ist; und
    - die zweiten und dritten Koordinaten jeder berechneten an die Eisenbahnroute gebundenen Position des Zugs jeweils einer zweiten Bezugsachse und einer dritten Bezugsachse entsprechen, die zueinander senkrecht sind und auf einer Ebene tangential an der Erdoberfläche liegen.
  4. Satellitenterminal nach Anspruch 2 oder 3, das ferner konfiguriert ist, um für jeden Satz von drei Satelliten, von denen Navigationssignale empfangen werden, zu berechnen:
    - eine entsprechende Abweichung, die zu dem entsprechenden mittleren Fehler gehört, auf der Basis einer vordefinierten Wahrscheinlichkeitsverteilung; und
    - die entsprechende Schutzstufe auf der Basis eines Vielfachen der entsprechenden Abweichung.
  5. Satellitenterminal nach jedem vorhergehenden Anspruch, das konfiguriert ist, um den Satz von drei Satelliten auszuwählen, für den die minimale Schutzstufe berechnet wurde.
  6. Satellitenterminal nach einem der Ansprüche 1 - 4, das konfiguriert ist, um:
    - für jeden Satz von drei Satelliten, von denen Navigationssignale empfangen werden, eine entsprechende Verwässerungskennzahl der Genauigkeit auf der Basis der entsprechenden an die Eisenbahnroute gebundenen Position des Zugs und der Positionsbestimmungsdaten, die den drei Satelliten entsprechen, und eine entsprechende Zuverlässigkeitskennzahl auf der Basis der entsprechenden Verwässerungskennzahl der Genauigkeit und der entsprechenden Schutzstufe zu berechnen; und
    - den Satz von drei Satelliten auf der Basis der berechneten Zuverlässigkeitskennzahlen auszuwählen.
  7. System zur Ortung von Zügen, das konstruiert ist, um an Bord eines Zugs (33) installiert zu werden, welches das Satellitenterminal (334) nach einem der vorhergehenden Ansprüche aufweist und konfiguriert ist, um:
    - von einem Entfernungsmesser, der an Bord des Zugs (33) installiert ist, eine aktuelle Schätzung der von dem Entfernungsmesser gelieferten Position zu erlangen;
    - exakte Positionen des Zugs (33) von einem entlang der Eisenbahnroute installieren Signalisierungssystem (311) zu empfangen;
    - wenn es von dem Signalisierungssystem (311) eine exakte Position des Zugs (33) empfängt, die exakte Position als aktuelle Position des Zugs (33) zu liefern und die von dem Entfernungsmesser gelieferte aktuelle Positionsschätzung auf der Basis der exakten Position zu korrigieren;
    - wenn es von dem Signalisierungssystem (311) keine exakte Position des Zugs (33) empfängt und das Satellitenterminal (334) eine aktuelle Position des Zugs (33) entlang der Eisenbahnroute bestimmt, welche mit einer Integritätsstufe verbunden ist, die vorgegebene Bedingungen für die Eisenbahnsicherheit erfüllt, die von dem Satellitenterminal (334) bestimmte aktuelle Position als aktuelle Position des Zugs (33) zu liefern und die von dem Entfernungsmesser gelieferte aktuelle Positionsschätzung auf der Basis der von dem Satellitenterminal (334) bestimmten aktuellen Position zu korrigieren;
    - wenn es von dem Signalisierungssystem (311) keine exakte Position des Zugs (33) empfängt und das Satellitenterminal (334) eine aktuelle Position des Zugs (33) entlang der Eisenbahnroute bestimmt, die zu einer Integritätsstufe gehört, die die vorgegebenen Bedingungen für die Eisenbahnsicherheit nicht erfüllt, die von dem Entfernungsmesser gelieferte aktuelle Positionsschätzung als die aktuelle Position des Zugs (33) zu liefern; und
    - wenn es von dem Signalisierungssystem (311) keine exakte Position des Zugs (33) empfängt und das Satellitenterminal (334) keine aktuelle Position des Zugs (33) entlang der Eisenbahnroute bestimmt, die von dem Entfernungsmesser gelieferte aktuelle Positionsschätzung als die aktuelle Position des Zugs (33) zu liefern.
  8. Softwareprodukt, das Softwarecodeabschnitte aufweist, die sind:
    - in einen Speicher eines Satellitenempfängers ladbar, der konstruiert ist, um an Bord eines Zugs (33) installiert zu werden und Navigationssignale von Satelliten zu empfangen, die zu einem oder mehreren Satellitennavigationssystemen gehören;
    - durch den Satellitenempfänger ausführbar; und
    - derart, dass sie, wenn sie ausgeführt werden, bewirken, dass der Satellitenempfänger als das Satellitenterminal (334) nach einem der Ansprüche 1 - 6 konfiguriert wird.
  9. Softwareprodukt, das Softwarecodeabschnitte aufweist, die sind:
    - in einen Speicher eines Positionsbestimmungssystems ladbar, wobei das Positionsbestimmungssystem konstruiert ist, um an Bord eines Zugs (33) installiert zu werden, das Satellitenterminal (334) nach einem der Ansprüche 1 - 6 aufweist und konfiguriert ist, um:
    -- von einem Entfernungsmesser, der an Bord des Zugs (33) installiert ist, eine von dem Entfernungsmesser gelieferte aktuelle Positionsschätzung zu erlangen, und
    -- durch das Positionsbestimmungssystem ausführbar; und
    -- exakte Positionen des Zugs (33) von einem entlang der Eisenbahnroute installierten Signalisierungssystem (311) zu empfangen;
    -- derart, dass sie, wenn sie ausgeführt werden, bewirken, dass das Positionsbestimmungssystem als das System zur Ortung von Zügen nach Anspruch 7 konfiguriert wird.
EP11770506.1A 2010-07-12 2011-07-12 System zur ortung von zügen mit echtzeitprüfung der integrität von positionsbestimmungen Active EP2593346B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11770506.1A EP2593346B1 (de) 2010-07-12 2011-07-12 System zur ortung von zügen mit echtzeitprüfung der integrität von positionsbestimmungen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10425235 2010-07-12
EP11770506.1A EP2593346B1 (de) 2010-07-12 2011-07-12 System zur ortung von zügen mit echtzeitprüfung der integrität von positionsbestimmungen
PCT/IB2011/001623 WO2012007822A1 (en) 2010-07-12 2011-07-12 System for locating trains with real-time check on the integrity of the estimate of position

Publications (2)

Publication Number Publication Date
EP2593346A1 EP2593346A1 (de) 2013-05-22
EP2593346B1 true EP2593346B1 (de) 2017-10-18

Family

ID=44802319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11770506.1A Active EP2593346B1 (de) 2010-07-12 2011-07-12 System zur ortung von zügen mit echtzeitprüfung der integrität von positionsbestimmungen

Country Status (5)

Country Link
EP (1) EP2593346B1 (de)
CN (1) CN103221291B (de)
ES (1) ES2651011T3 (de)
RU (1) RU2584957C2 (de)
WO (1) WO2012007822A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220185345A1 (en) * 2019-03-04 2022-06-16 Central Queensland University Control system for operating long vehicles
US11965753B2 (en) 2018-08-06 2024-04-23 Transportation Ip Holdings, Llc Positioning data verification system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477067B2 (en) 2011-06-24 2013-07-02 Thales Canada Inc. Vehicle localization system
US20130193276A1 (en) * 2012-01-31 2013-08-01 Sandor Wayne Shapery System for inductive power transfer and robust position sensing
CN102582665A (zh) * 2012-02-15 2012-07-18 华为技术有限公司 一种列车定位的方法、设备及系统
CN104002836B (zh) * 2013-02-22 2016-12-28 中兴通讯股份有限公司 一种交通位置信息实时获取显示的方法及装置
CN104711912B (zh) * 2013-12-11 2016-08-24 中航西安飞行自动控制技术有限公司 一种高速铁路里程对标方法
DE102013226718A1 (de) * 2013-12-19 2015-06-25 Siemens Aktiengesellschaft ETCS-Streckenausrüstung
CN103954290A (zh) * 2014-05-09 2014-07-30 成都可益轨道技术有限公司 铁路机车精确位置定位装置
CN104991266B (zh) * 2015-06-04 2017-03-29 北京交通大学 一种基于协同完好性监测的列车卫星定位方法及系统
CN105059325B (zh) * 2015-07-31 2017-03-08 株洲中车时代电气股份有限公司 一种机车定位方法与系统
CN105634578A (zh) * 2015-12-29 2016-06-01 九派逐浪(北京)网络通讯技术股份有限公司 用于波束赋形的装置、智能天线、无线通信设备
RU2644404C2 (ru) * 2016-06-27 2018-02-12 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ определения координат неизвестного источника сигналов на земной поверхности в системе спутниковой связи
JP6822800B2 (ja) * 2016-08-19 2021-01-27 株式会社東芝 列車位置検出装置及び方法
DE102017206446A1 (de) 2017-04-13 2018-10-18 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Fusion von infrastrukturbezogenen Daten, insbesondere von infrastrukturbezogenen Daten für Schienenfahrzeuge
DE102017212179A1 (de) * 2017-07-17 2019-01-17 Siemens Aktiengesellschaft Korrektur eines gemessenen Positionswerts eines schienengebundenen Fahrzeugs
ES2904835T3 (es) * 2017-11-09 2022-04-06 Track Machines Connected Ges M B H Sistema y procedimiento para la navegación dentro de una red de vías
CN108616591B (zh) * 2018-04-27 2020-06-26 北京全路通信信号研究设计院集团有限公司 一种用于进行数据交换的接口设备及方法
FR3080823B1 (fr) * 2018-05-03 2022-04-29 Thales Sa Systeme de localisation integre et autonome d'un train dans un referentiel de reseau ferroviaire
CN110588730B (zh) * 2019-10-23 2021-10-26 中铁第四勘察设计院集团有限公司 一种时速大于80km铁路联络线的C3转C2级列控方法及模型
CN111169512B (zh) * 2019-12-29 2021-11-26 合肥工业大学 一种轨道机车车辆编组完整性检查方法及系统
CN111267911B (zh) * 2020-02-10 2022-06-17 兰州交通大学 一种列车完整性检测方法
CN113619650A (zh) * 2021-08-09 2021-11-09 卡斯柯信号有限公司 一种基于卫星的列车定位装置和方法
CN114355419B (zh) * 2021-12-15 2023-04-25 中国科学院国家授时中心 一种分布式北斗位置服务中心rtk产品定位方法及定位装置
FR3135051B1 (fr) * 2022-04-28 2024-04-05 SNCF Voyageurs Système de contrôle comprenant au moins une brosse de contact connectée et véhicule ferroviaire équipé d’un tel système

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513244A1 (de) * 1995-04-07 1996-10-10 Honeywell Ag Fehlertolerante Zug-Plattform
DE19532104C1 (de) * 1995-08-30 1997-01-16 Daimler Benz Ag Verfahren und Vorrichtung zur Bestimmung der Position wenigstens einer Stelle eines spurgeführten Fahrzeugs
US5874914A (en) * 1995-10-09 1999-02-23 Snaptrack, Inc. GPS receiver utilizing a communication link
DE50209363D1 (de) * 2002-11-07 2007-03-15 Siemens Schweiz Ag Verfahren zur Lage- und Geschwindigkeitsbestimmung
EP1720754B1 (de) * 2004-03-05 2009-02-25 Alstom Belgium S.A. Verfahren und einrichtung zur sicheren bestimmung der position eines objekts
ES2297653T3 (es) * 2005-03-21 2008-05-01 Sener, Ingenieria Y Sistemas, S.A. Sistema y metodo de bloqueo con seguridad intrinseca, para lineas ferroviarias de baja densidad de trafico.
US20080231506A1 (en) * 2007-03-19 2008-09-25 Craig Alan Stull System, method and computer readable media for identifying the track assignment of a locomotive
CN101159091B (zh) * 2007-10-15 2010-06-02 北京交通大学 一种列车卫星定位与信息传输系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965753B2 (en) 2018-08-06 2024-04-23 Transportation Ip Holdings, Llc Positioning data verification system
US20220185345A1 (en) * 2019-03-04 2022-06-16 Central Queensland University Control system for operating long vehicles

Also Published As

Publication number Publication date
CN103221291B (zh) 2015-12-09
RU2584957C2 (ru) 2016-05-20
EP2593346A1 (de) 2013-05-22
ES2651011T3 (es) 2018-01-23
RU2013105692A (ru) 2014-08-20
CN103221291A (zh) 2013-07-24
WO2012007822A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
EP2593346B1 (de) System zur ortung von zügen mit echtzeitprüfung der integrität von positionsbestimmungen
US11623673B2 (en) Method for safely and autonomously determining the position information of a train on a track
CA2698053C (en) System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor
AU2005329078B2 (en) System and method for determining positioning solutions
US7966126B2 (en) Vital system for determining location and location uncertainty of a railroad vehicle with respect to a predetermined track map using a global positioning system and other diverse sensors
EP1705095B1 (de) Blocksystem und -Verfahren zum sicheren Fahrbetrieb von Bahnstrecken mit niedrigerer Verkehrsdichte
US20090043435A1 (en) Methods and systems for making a gps signal vital
JPH11513112A (ja) 整合性監視付き差動衛星位置把握システム地上局
CN111736192B (zh) 一种用于列车运行控制的卫星差分定位系统及方法
JP4426874B2 (ja) 列車位置検出管理用の運行サーバ及び列車位置検出管理用の車載機器
Neri et al. A train integrity solution based on GNSS double-difference approach
JP2007284013A (ja) 車両位置測位装置及び車両位置測位方法
RU94943U1 (ru) Устройство контроля за управлением поезда и бдительностью машиниста
Jiang Digital route model aided integrated satellite navigation and low-cost inertial sensors for high-performance positioning on the railways
Heirich et al. Measurement methods for train localization with onboard sensors
JPH09164952A (ja) 線路保守用車両の誤載線防止装置および線路保守用車両の誤載線防止方法
Neri Train control and rail traffic management systems
KR200228612Y1 (ko) 무선통신을 이용한 열차 자동제어시스템
Damy et al. GNSS-based high accuracy positioning for railway applications
CZ35799U1 (cs) Lokalizační zařízení pro stanovení polohy železničních kolejových vozidel
WO2021173085A1 (en) System for managing interconnected objects
CA2621659A1 (en) Vital system for determining location and location uncertainty of a railroad vehicle with respect to a predetermined track map using a global positioning system and other diverse sensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170503

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAITTO, ANTONIO

Inventor name: BOLLE, ANDREA

Inventor name: BELLOFIORE, PAOLO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 937660

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011042525

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2651011

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180123

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171018

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 937660

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011042525

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

26N No opposition filed

Effective date: 20180719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180712

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110712

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171018

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230710

Year of fee payment: 13

Ref country code: GB

Payment date: 20230725

Year of fee payment: 13

Ref country code: ES

Payment date: 20230816

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230726

Year of fee payment: 13