EP2591917B1 - Method and device for ink-jet printing on curved container surfaces - Google Patents

Method and device for ink-jet printing on curved container surfaces Download PDF

Info

Publication number
EP2591917B1
EP2591917B1 EP12191421.2A EP12191421A EP2591917B1 EP 2591917 B1 EP2591917 B1 EP 2591917B1 EP 12191421 A EP12191421 A EP 12191421A EP 2591917 B1 EP2591917 B1 EP 2591917B1
Authority
EP
European Patent Office
Prior art keywords
printing
print
container
nozzle row
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12191421.2A
Other languages
German (de)
French (fr)
Other versions
EP2591917B2 (en
EP2591917A1 (en
Inventor
Andreas Kraus
Andreas Sonnauer
Martin Kammerl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47146234&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2591917(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krones AG filed Critical Krones AG
Publication of EP2591917A1 publication Critical patent/EP2591917A1/en
Publication of EP2591917B1 publication Critical patent/EP2591917B1/en
Application granted granted Critical
Publication of EP2591917B2 publication Critical patent/EP2591917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • B41J3/40733Printing on cylindrical or rotationally symmetrical objects, e. g. on bottles

Definitions

  • the invention relates to a method and apparatus for inkjet printing on curved surfaces of containers, in particular PET bottles or glass bottles.
  • Inkjet printing on containers is advantageous because of the freedom of design in the implementation of complex print motifs and the rapid adaptability to different products. Due to the mostly curved container surfaces and the use of line-like printheads, which are common because of the required rapid throughput in beverage filling lines, however, occur unwanted deviations of the generated print image of the respective template, in particular an imprecise printing, which leads to unclean contours in the printed image.
  • the stated object is achieved by a method according to claim 1.
  • the curved surface to be printed is moved relative to at least one row of nozzles aligned transversely or obliquely to the direction of relative movement.
  • ink drops are ejected at ejection timings set for the individual ink droplets depending on the respective pressure distance of the ejecting nozzle.
  • the ejection times can be adjusted in particular by moving individual pixels on an image template to be printed in or against the print feed. Pixels which are shifted against the direction of printing, which is to be understood in the sense of a printing advance, are printed at an earlier time than non-shifted pixels and vice versa. It is therefore only the print template to adapt without having to adjust the ejection timing of individual nozzles by means of separate control signals individually. The latter, however, is also possible in principle.
  • PET bottles and glass bottles can have dimensional tolerances due to the production, which can be compensated according to the invention by adjusting the ejection times in order nevertheless to ensure a desired printed image. For cans, especially from sheet metal, this may also be the case.
  • the relative movement here corresponds essentially to a pressure movement between the print head and the surface to be printed in the sense of a feed in the column direction or row direction.
  • the pressure interval can be identical for all nozzles of the nozzle row.
  • the ejection times of a nozzle row can then also be identical.
  • At least two rows of nozzles are provided one behind the other in the direction of movement, and the ejection timings are set in dependence on a distance between the rows of nozzles.
  • runtime differences of the nozzle rows can be compensated for until a predetermined printing position is reached over the object surface, as can deviations of the trajectories from an idealized, vertical direction of incidence of the ink droplets on the object surface.
  • the ejection times are furthermore set as a function of an incidence angle of the ink droplets formed in each case with the surface.
  • At least two rows of nozzles in the direction of movement are arranged one behind the other and on both sides of a center position radially aligned with respect to the main axis of the container, and the discharge timings of the ink drops are further dependent on a distance between a transport path of the containers and the center position, a distance between the respective nozzle row and the center position, and set the respective radius of the container.
  • These distances essentially define the catheters of a right-angled triangle whose hypotenuse is formed by an imaginary connecting line from the main axis of the container to the respective row of nozzles.
  • the transport path is, for example, an orbit of a bottle table.
  • the distance between the center position and the transport path is defined, for example, with respect to the pitch circle of an orbit and / or the trajectory of the container main axes.
  • the center position corresponds to the imaginary position of a radially aligned nozzle row. Based on the above distances, the pressure control can be particularly easily adapted to different container dimensions and container tables.
  • the transport path of the container surface to be printed may differ from the transport path of an associated holder for the container about a machine axis of rotation, depending on the position of the axis of rotation of the container with respect to its cross section.
  • the axis of rotation is equal to the longitudinal axis / major axis of the container.
  • relative movement preferably takes place only by rotation of the container about its longitudinal axis. It would also be conceivable that the print heads are transported at a different peripheral speed than the containers. It is therefore also possible in this regard, a combined relative movement.
  • At least two rows of nozzles in the direction of movement are provided one behind the other, and the rows of nozzles are offset transversely to the direction of movement, in particular by half, for example, in a printhead with two rows of nozzles, or a third, for example, in a printhead with three rows of nozzles, the respective printing resolution along the nozzle rows.
  • the nozzles thus print in the intermediate pressure spaces of the respective leading nozzles. This allows the print quality to be further optimized.
  • the surface in front of the nozzle row is moved about a rotation axis, and the pressure separation is defined with respect to a developable outer surface formed around the rotation axis. This simplifies the calculation of a geometric offset of the individual nozzle rows.
  • a printing original for driving the at least one row of nozzles is created on a development of the lateral surface. This facilitates the adaptation of a two-dimensional print template to the curved printing surface.
  • the row of nozzles is moved along the surface, and the printing distance is defined with respect to at least one developable surface, which is aligned parallel to an axis of symmetry of the object to be printed.
  • the printing distance is defined with respect to at least one developable surface, which is aligned parallel to an axis of symmetry of the object to be printed.
  • non-rotationally symmetrical surfaces can also be printed with improved accuracy.
  • the ejection timings are set by shifting pixels of a print motif on a print original in the direction of movement or against the direction of movement, and the at least one nozzle row is driven on the basis of the shifted pixels.
  • offset pixels are printed at different times.
  • the associated ink drops are thus ejected at different times.
  • the ejection times could be adjusted by assigning individual nozzles or individual pixels of a print original in each case a time offset and the ink droplets are ejected taking into account the respective associated time offset.
  • a time offset can be assigned to individual nozzles or nozzle rows independently of the print template.
  • a central row of nozzles is provided in a center position radially aligned with respect to the main axis of the container, and the pixels assigned to the central row of nozzles on the master are not displaced or reduced with respect to the direction of movement as pixels associated with rows of nozzles preceding or behind the direction of movement ,
  • the central nozzle row can then be used as a reference position with respect to the direction of movement and the adaptation of the ejection times can be simplified.
  • the pixels on the artwork which are associated with a nozzle row located farther away from the center position at the time of printing or ink ejection are further shifted than the pixels associated with a nozzle row closer to the center position ,
  • the pixels on the artwork which are associated with a nozzle row located farther away from the container surface at the time of printing or ink ejection are further shifted than the pixels associated with a nozzle row located closer to the container surface.
  • the latter also applies in particular Nozzles of a row of nozzles, for example, in each case adjacent nozzles of a row of nozzles, ie nozzles with a distance in the longitudinal direction of the container.
  • This principle applies to printheads with even numbers of rows of nozzles as well as printheads having an odd number of rows of nozzles.
  • this principle can be used in particular in containers which have elevations and / or depressions whose surface deviates from a nominal diameter of the outer surface of the container.
  • the printhead has two, four or some other integer multiple of two rows of nozzles, then there is preferably no central row of nozzles.
  • the ejection timings of the ink droplets are adapted to convex and concave radii of curvature along the circumference of the container. This allows even structured surfaces with elevations and depressions to be printed variably and precisely.
  • the ejection times could also be adjusted depending on the duration of flight of the ink drops and depending on the speed of the surface to be printed in the direction of movement.
  • external disturbances such as due to air turbulence, gravity and friction can be considered.
  • a different relative movement of the surface with respect to the nozzle row for different pressure intervals can be compensated with a separate correction function.
  • ink droplets are preferably ejected the sooner the greater the printing distance.
  • the droplet size could be adapted to an angle of incidence of the ink droplets formed with the object surface.
  • the desired optical density of the ink on the surface can also be achieved for different angles of incidence.
  • the drops are the larger the more oblique the ink drops hit the surface.
  • the smallest droplet size results here at right angles of incidence.
  • the pressure separation is 0.5 to 20 mm, in particular 1 to 7 mm. This allows most commercially available containers to be printed with improved quality.
  • a further preferred development of the method according to the invention further comprises a step for producing a printing original, in which: a predetermined image grid is laid on the surface to be printed; a print motif is rasterized on the basis of the image raster; and projecting the rasterized print motif onto at least one developable surface to assign print coordinates to projected pixels of the print subject on a surface finish.
  • the pressure can be optimized on the basis of the print motif screened onto the object. This simplifies the calculation and adaptation of individual correction functions, for example for compensating a geometric offset of individual nozzle rows, differences in flight time, variations in the pressure separation caused by container contours, and the like.
  • the step of producing the print template can solve a separate task, namely to be able to create print templates predominantly in an object-oriented manner. This is achieved by the fact that the print motif can first be adapted to the object to be printed from a design point of view, and subsequently a specifically distorted print original is produced. In other words, the printed image can still be examined and optimized in the undistorted state together with the object to be printed.
  • the screened print motif is projected onto at least one lateral surface, wherein the projection origin lies on the rotational axis of the lateral surface. This makes it easier to create print templates and adjust the artwork to different print margins.
  • the step of producing the printing original is carried out by means of a three-dimensional computer model of the surface to be printed. This makes it possible, from a design point of view, to optimize the print image in a particularly comfortable and versatile manner and to save resources.
  • a preferred embodiment of the method according to the invention for ink jet printing on container 1, such as beverage bottles, will be described.
  • it is also generally suitable for printing on other objects with curved surfaces.
  • a surface 2 is in the Fig. 1 schematically illustrated as a portion of the side wall of the container 1.
  • the surface 2 is rotatably positioned in front of a print head 3 with nozzle rows 4 about the main axis 1 'of the container 1.
  • Printers with corresponding rows of nozzles 4 and positioning units for carrying out a printing movement between the print head 3 and the surface 2 to be printed can in this case be arranged in a known manner. According to the invention, these are combined with a control unit (not shown) and / or evaluation unit in order to set the printing times of the rows of nozzles 4 and / or individual nozzles 4a provided on them as a function of the respective printing distance.
  • Fig. 2 can be seen, for example, at least two rows of nozzles 4 in the printing direction 5 are arranged one behind the other, so that in the Fig. 1 only one of the rows of nozzles 4 can be seen. Also indicated is an optional central row of nozzles 4 ', which is aligned in a central position M radially with respect to the main axis 1' of the container 1.
  • the individual nozzles 4a of the nozzle rows 4, 4 ' are each arranged with an individual pressure separation 6 to the surface 2.
  • nozzle rows 4, 4' and the nozzle 4a are merely an example.
  • several printheads 3 could be provided. These are then preferably arranged in alignment with each other parallel to the main axis 1 ', in particular in such a way that the nozzle rows 4 are aligned symmetrically to the center position M or an optionally provided middle row of nozzles 4' is aligned exactly radially in the middle position M, as shown in FIG Fig. 2 is indicated.
  • the printing direction 5 is defined in terms of a printing feed by the relative movement between the print head 3 and the surface 2 to be printed in the region of the print head 3, in the example shown by the tangent to a circumferential line 2 'of the surface 2 at the printing position of a pixel P below the print head. 3
  • the ejection timings of the ink droplets 9 can be adjusted, for example, depending on a distance between a conveying path of the containers 1 and the center position M, a distance between the respective nozzle row 4 and the center position M, and the respective radius r x of the container 1.
  • These distances essentially define the catheters of a right-angled triangle whose hypotenuse is formed by an imaginary connecting line from the main axis 1 'of the container 1 to the respective nozzle row 4. In the Fig. 2 these catheters correspond to the distance r N + d N or the distance X / 2.
  • an alternative perimeter line 2 "representing a container surface having concave and convex curvatures
  • the pressure distance 6 varies along the circumference of the rotating container 1.
  • the ejection can be achieved the ink drops 9 according to the invention to specifically adapt to depressions and elevations along the container circumference.
  • the printing distance 6 can be defined directly as a distance to the surface 2 to be printed. As more fully described below with reference to FIGS FIGS. 5 and 6
  • the printing distance 6 ' can also be defined as a virtual size with respect to a developable surface 7, which is, for example, a virtual lateral surface around the main axis 1' of the container 1 to be printed. Suitable lateral surfaces are cylinders, cones, truncated cones and any combinations thereof.
  • the printhead 3 could be moved along the surface 2 along (not shown), in particular if the container to be printed does not have a rotationally symmetrical cross-section but, for example an elliptical cross-section.
  • the generatrix of a developable surface used to define the printing distance and / or as a printing original could run along an ellipse or the like.
  • the unwindable surface would then be aligned parallel to an axis of symmetry of the container and parallel to the nozzle row 4, 4 '.
  • Fig. 2 is the developable surface 7 defined by its radius r N about the main axis 1 'of the container 1, the position of a pixel P on the surface to be printed 2 by the radius r X. Further, the print head 3 is positioned at a distance d N from the unwindable surface 7. In this case, by definition, the printing distance 6 of the pixel P on the radius r X is equal to d N + r N -r x .
  • a distance X is provided in the pressure direction 5 by design. This can be used to achieve standard print resolutions of, for example, 300 to 600 dpi. Due to the curvature of the surface 2, ink droplets 9 can not impinge on the surface 2 at the same time orthogonally from a plurality of nozzle rows 4 lying one behind the other. This results in a geometric offset of the drops 9 from the nozzle rows 4 caused by the distance X of the rows of nozzles 4. This effect is the stronger the smaller the ratio of the radius of curvature r X at the printing position to the distance X of the rows of nozzles 4. The problem and its solution will be on hand in the Fig.
  • the geometric print offset .DELTA.x g results from the fact that the ink drops 9 then do not hit the surface 2 perpendicularly.
  • the pressure offset ⁇ x g is thus dependent on the pressure separation 6, 6 'and the distance X of the nozzle rows 4. If, for this purpose, a virtual printing distance 6 'is defined with the aid of the developable surface 7, this preferably also serves as a projection surface for producing the associated printing original 8.
  • the virtual printing distance 6' is equal to r N - r X in the example.
  • a correction function for the respective nozzle row 4 can be calculated.
  • This correction function can optionally be supplemented by a zero point correction by taking into account the printing offset ⁇ x N on the developable surface 7, for example by subtraction of the printing offset ⁇ x g on the surface 2 to be printed. This additionally improves the print quality.
  • the correction then takes place by means of an adaptation of the ejection time of the ink droplets 9, ie by deliberately delayed or preferred ejection from the rows of nozzles 4 offset from one another in the printing direction 5.
  • the ejection time is determined by moving individual pixels on the printing original 8 in or against the direction of movement 5 , ie the printing direction, reached.
  • This correction is to be calculated separately for each nozzle row 4, for example for corresponding print lines in the printing original 8.
  • the printing offset .DELTA.x g would be in the example of Fig. 2 for printing an arbitrary pixel with the left nozzle row 4 to add to its printing direction specific image coordinate to subtract for printing the same pixel with the right nozzle row 4 of the image coordinate.
  • the center position M can be used as a reference for compensation of the geometrical pressure offset ⁇ x g .
  • the image coordinates of the central nozzle row 4 ' would then not have to be shifted relative to the geometric print offset, but only the image coordinates of the outer nozzle rows 4.
  • the pressure offset ⁇ x g can nonetheless be calculated separately for individual nozzles 4a.
  • the ejection times can then be adjusted for individual nozzles 4a according to the above scheme by shifting image coordinates.
  • Another correction function can compensate flight times of the ink drops 9 of different lengths.
  • a correction of different pressure intervals 6, 6 ' which during the relative movement between the surface 2 and the rows of nozzles 4 effect that, despite approximately the same drop speed v T and the same ejection time of the droplets 9, different printing positions P are printed in the printing direction 5. This causes a distorted and / or blurred print image.
  • Fig. 3 flies an ink droplet 9 to the surface 2, for example by the distance .DELTA.y further than the unwindable surface 7 and thus requires the time .DELTA.t longer to the surface 2.
  • the surface to be printed 2 moves at the speed v O on .
  • the resulting displacement Ax t is analogous to the geometrically caused print offset Ax g in a correction function for delayed or early ejection of the ink droplets 9 are integrated, for example by appropriate displacement of the corresponding picture elements on the master 8.
  • the speed of the surface 2 can preferably also as a relative value regarding the speed of unwindable Define area 7. This correction is dependent on the printing speed v O and should be adjusted accordingly.
  • correction functions can be carried out before the loading of the print motif, but also after the separation of the color channels, for example.
  • individual or all correction functions could also be realized by specifying an explicitly defined time offset for the delayed or early activation of individual nozzle rows 4, 4 'and / or nozzles 4a for varying the ejection times or else only be supplemented by such a correction period.
  • the correction then takes place by shifting the pixel P from x to x '.
  • Correction functions or individual correction values can also be determined empirically by suitably shaped test bodies and / or test patterns. Sign and formula of the correction functions are dependent on the location of the nozzle row relative to the virtual printing position.
  • the virtual printing position is defined, for example, by the position of the axis of rotation of the unwinding under the print head.
  • the ink application to curved surfaces is preferably dependent on their local inclination relative to one in the position I of Fig. 4 indicated flat container surface 2 corrected to ensure a uniform optical density of the ink.
  • the Fig. 4 illustrated at the position II for an inclined surface portion for example, an oblique impact of the ink drops 9 may not or insufficiently ink-filled gaps in the imprint on the surface 2 cause.
  • Factors for the wetting of the surface 2 can preferably be determined empirically under real conditions. For example, surface sections are printed at defined angles of incidence ⁇ and associated correction values for the drop size and / or the screen r are determined. In this case, the outflow of the ink along the inclination can be taken into account.
  • the Fig. 5 shows a curved surface 2 to be printed, on which ink droplets 9 are to be placed at a print resolution A, and a developable surface 7, on the development of which, for example, a printing original 8 for printing the surface 2 can be created.
  • individual in the Fig. 5 represented by ink drops 9 pixels of the curved surface 2, starting from a projection center 10, for example the main axis 1 'of the container to be printed 1 corresponds projecting onto the unwindable surface 7. Due to deviating radial distances from the projection center 10, the local printing resolution A 'of the ink droplets 9 on the developable surface 7 differs in places from the local printing resolution A on the curved surface 2.
  • the position of individual pixels on the printing original 8 independently of one another, and thus also the local resolution A ', can be selectively varied in order to produce the most uniform possible printing resolution A on the surface 2, as in US Pat Fig. 5 is indicated.
  • the radial auxiliary lines 9 'in the Fig. 5 the theoretical trajectories of the ink drops 9 at the respective printing positions on the surface of the second
  • the virtual printing distance 6 ' can be defined as the difference between the radial distances of the pixels (ink droplets in the Fig. 5 ) on the unwindable surface 7 and the associated areas on the surface 2 to be printed.
  • a print motif 12 is designed and / or edited based on the grid 11 in a three-dimensional model of the surface 2.
  • the grid points of the grid 11 are then projected onto the developable surface 7, which results in a spatially different screen ruling or printing resolution A 'on the developable surface 7, depending on the local curvature of the surface 2.
  • the pressure separation 6, 6 ' is determined from the three-dimensional model of the surface 2 and the developable projection surface 7. For this purpose, the path lengths between the intersections of the pot trajectory with the surface 2 and the projection surface 7 are determined. As data of the individual pixels, for example, the printing distance 6, 6 ', the pixel coordinates and the associated values of the color channels are stored. The determined pressure distance 6, 6 'can then also be used for the correction functions described above.
  • the present invention specifically against the print motif 12 distorted artwork templates 8 provide additional creative freedom, and it is a particularly precise printing of the subject 12 allows.
  • the final printed image can already be assessed visually especially well in the design and modified in a simple manner.
  • the printing originals 8 according to the invention can be created in computing units separately from the described printing methods on curved object surfaces 2. Thus, a separate technical problem can be solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ink Jet (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung für den Tintenstrahldruck auf gekrümmte Oberflächen von Behältern, insbesondere von PET-Flaschen oder Glasflaschen.The invention relates to a method and apparatus for inkjet printing on curved surfaces of containers, in particular PET bottles or glass bottles.

Der Tintenstrahldruck auf Behälter, wie Getränkeflaschen und dergleichen, ist aufgrund der Gestaltungsfreiheit bei der Umsetzung komplexer Druckmotive und der schnellen Anpassbarkeit an unterschiedliche Produkte vorteilhaft. Aufgrund der meist gekrümmten Behälteroberflächen und bei Verwendung zeilenartiger Druckköpfe, die wegen des geforderten schnellen Durchsatzes in Getränkeabfülllinien üblich sind, treten jedoch unerwünschte Abweichungen des erzeugten Druckbilds von der jeweiligen Vorlage auf, insbesondere ein unpräziser Druck, der zu unsauberen Konturen im Druckbild führt.Inkjet printing on containers, such as beverage bottles and the like, is advantageous because of the freedom of design in the implementation of complex print motifs and the rapid adaptability to different products. Due to the mostly curved container surfaces and the use of line-like printheads, which are common because of the required rapid throughput in beverage filling lines, however, occur unwanted deviations of the generated print image of the respective template, in particular an imprecise printing, which leads to unclean contours in the printed image.

Wie aus der EP 1 435 296 A1 , der EP 0 385 624 A1 und der WO 03 002349 hervorgeht, wurde bereits versucht, den Tintenstrahldruck auf gekrümmte Behälteroberflächen durch präzises Führen der Druckköpfe und Oberflächen zu verbessern. Ungelöst bleiben jedoch Probleme beim Druck auf unebene Behälterkonturen und bei Verwendung von Druckköpfen mit mehreren hintereinander angeordneten Düsenzeilen. Insbesondere Probleme durch unterschiedliche Druckabstände und versetzte sowie bezüglich der Behälteroberfläche verkippte Düsenzeilen bleiben bei den beschriebenen Lösungsansätzen bestehen. Ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 ist aus der US 2007/0019017 A1 bekannt.Like from the EP 1 435 296 A1 , of the EP 0 385 624 A1 and the WO 03 002349 It has already been attempted to improve inkjet printing on curved container surfaces by precisely guiding the printheads and surfaces. However, problems remain unresolved when printing on uneven container contours and when using printheads with several rows of nozzles arranged one behind the other. In particular, problems due to different pressure intervals and staggered and with respect to the container surface tilted nozzle lines remain in the described approaches. A method according to the preamble of claim 1 is known from US 2007/0019017 A1 known.

Es besteht daher der Bedarf für in dieser Hinsicht verbesserte Druckverfahren und entsprechende Vorrichtungen.There is therefore a need for improved printing methods and apparatus in this regard.

Die gestellte Aufgabe wird mit einem Verfahren nach Anspruch 1 gelöst. Demnach wird die zu bedruckende gekrümmte Oberfläche relativ zu wenigstens einer Düsenreihe bewegt, die quer oder schräg zur Richtung der Relativbewegung ausgerichtet ist. Ferner werden Tintentropfen zu Ausstoßzeitpunkten ausgestoßen, die für die einzelnen Tintentropfen in Abhängigkeit des jeweiligen Druckabstands der ausstoßenden Düse eingestellt werden.The stated object is achieved by a method according to claim 1. Thus, the curved surface to be printed is moved relative to at least one row of nozzles aligned transversely or obliquely to the direction of relative movement. Further, ink drops are ejected at ejection timings set for the individual ink droplets depending on the respective pressure distance of the ejecting nozzle.

Die Ausstoßzeitpunkte lassen sich insbesondere durch Verschieben einzelner Bildpunkte auf einer zu druckenden Bildvorlage in oder entgegen des Druckvorschubs einstellen. Bildpunkte, die entgegen der Druckrichtung, die im Sinne eines Druckvorschubs zu verstehen ist, verschoben sind, werden zu einem früheren Zeitpunkt gedruckt als nicht verschobene Bildpunkte und umgekehrt. Es ist daher lediglich die Druckvorlage anzupassen, ohne die Ausstoßzeitpunkte einzelner Düsen mittels separater Steuersignale individuell verstellen zu müssen. Letzteres ist jedoch prinzipiell ebenso möglich.The ejection times can be adjusted in particular by moving individual pixels on an image template to be printed in or against the print feed. Pixels which are shifted against the direction of printing, which is to be understood in the sense of a printing advance, are printed at an earlier time than non-shifted pixels and vice versa. It is therefore only the print template to adapt without having to adjust the ejection timing of individual nozzles by means of separate control signals individually. The latter, however, is also possible in principle.

Dadurch können Fehler beim Umsetzen zweidimensionaler Druckvorlagen in einen dreidimensionalen Druck auf einfache Weise und bei flächig homogener Druckqualität reduziert oder kompensiert werden. Derartige Fehler können von der Relativbewegung zwischen Druckkopf und zu bedruckender Oberfläche verursacht werden, durch eine unterschiedliche Flugdauer der Tintentropfen, durch unregelmäßige Oberflächen und/oder einen bauartbedingten Versatz und schräges Auftreffen von Tintenstrahlen bezüglich einer vorgegebenen Druckposition. Insbesondere PET-Flaschen und Glasflaschen können durch die Herstellung bedingt Maßtoleranzen aufweisen, die erfindungsgemäß durch Anpassen der Ausstoßzeitpunkte kompensiert werden können, um dennoch ein gewünschtes Druckbild zu gewährleisten. Bei Dosen, insbesondere aus Blech, kann dies auch der Fall sein.As a result, errors in converting two-dimensional print templates into a three-dimensional print can be reduced or compensated for in a simple manner and in the case of flat homogeneous print quality. Such errors can be caused by the relative movement between the print head and the surface to be printed, by a different flight time of the ink drops, by irregular surfaces and / or a design-related offset and oblique impact of ink jets with respect to a predetermined printing position. In particular, PET bottles and glass bottles can have dimensional tolerances due to the production, which can be compensated according to the invention by adjusting the ejection times in order nevertheless to ensure a desired printed image. For cans, especially from sheet metal, this may also be the case.

Die Relativbewegung entspricht hierbei im Wesentlichen einer Druckbewegung zwischen Druckkopf und zu bedruckender Oberfläche im Sinne eines Vorschubs in Spaltenrichtung oder Zeilenrichtung. Der Druckabstand kann für alle Düsen der Düsenreihe identisch sein. Die Ausstoßzeitpunkte einer Düsenreihe können dann ebenfalls identisch sein.The relative movement here corresponds essentially to a pressure movement between the print head and the surface to be printed in the sense of a feed in the column direction or row direction. The pressure interval can be identical for all nozzles of the nozzle row. The ejection times of a nozzle row can then also be identical.

Vorzugsweise sind wenigstens zwei Düsenreihen in der Bewegungsrichtung hintereinander liegend vorgesehen, und die Ausstoßzeitpunkte werden in Abhängigkeit von einem Abstand zwischen den Düsenreihen eingestellt. Dadurch können Laufzeitunterschiede der Düsenreihen bis zum Erreichen einer vorgegebenen Druckposition über der Objektoberfläche ausgeglichen werden, ebenso Abweichungen der Flugbahnen von einer idealisierten, senkrechten Einfallsrichtung der Tintentropfen auf die Objektoberfläche.Preferably, at least two rows of nozzles are provided one behind the other in the direction of movement, and the ejection timings are set in dependence on a distance between the rows of nozzles. As a result, runtime differences of the nozzle rows can be compensated for until a predetermined printing position is reached over the object surface, as can deviations of the trajectories from an idealized, vertical direction of incidence of the ink droplets on the object surface.

Bei einer besonders günstigen Weiterbildung werden die Ausstoßzeitpunkte ferner in Abhängigkeit von einem jeweils mit der Oberfläche gebildeten Auftreffwinkel der Tintentropfen eingestellt. Dadurch kann ein geometrischer Versatz einzelner Düsenreihen bezüglich einer vorgegebenen Druckposition besonders genau berechnet und im Druckbild kompensiert werden.In a particularly favorable development, the ejection times are furthermore set as a function of an incidence angle of the ink droplets formed in each case with the surface. As a result, a geometric offset of individual nozzle rows with respect to a predetermined printing position can be calculated particularly accurately and compensated in the printed image.

Vorzugsweise sind wenigstens zwei Düsenreihen in der Bewegungsrichtung hintereinander liegend und beidseitig einer bezüglich der Hauptachse des Behälters radial ausgerichteten Mittelposition vorgesehen, und die Ausstoßzeitpunkte der Tintentropfen werden ferner in Abhängigkeit von einem Abstand zwischen einer Transportbahn der Behälter und der Mittelposition, einem Abstand zwischen der jeweiligen Düsenreihe und der Mittelposition, und dem jeweiligen Radius des Behälters eingestellt. Diese Abstände definieren im Wesentlichen die Katheten eines rechtwinkligen Dreiecks, dessen Hypothenuse durch eine gedachte Verbindungslinie von der Hauptachse des Behälters zur jeweiligen Düsenreihe ausgebildet wird.Preferably, at least two rows of nozzles in the direction of movement are arranged one behind the other and on both sides of a center position radially aligned with respect to the main axis of the container, and the discharge timings of the ink drops are further dependent on a distance between a transport path of the containers and the center position, a distance between the respective nozzle row and the center position, and set the respective radius of the container. These distances essentially define the catheters of a right-angled triangle whose hypotenuse is formed by an imaginary connecting line from the main axis of the container to the respective row of nozzles.

Die Transportbahn ist beispielsweise eine Umlaufbahn eines Flaschentischs. Der Abstand zwischen der Mittelposition und der Transportbahn ist beispielsweise bezüglich des Teilkreises einer Umlaufbahn und/oder der Bewegungsbahn der Behälterhauptachsen definiert. Die Mittelposition entspricht der gedachten Position einer radial ausgerichteten Düsenreihe. Anhand der oben genannten Abstände lässt sich die Drucksteuerung besonders einfach an unterschiedliche Behälterabmessungen und Behältertische anpassen.The transport path is, for example, an orbit of a bottle table. The distance between the center position and the transport path is defined, for example, with respect to the pitch circle of an orbit and / or the trajectory of the container main axes. The center position corresponds to the imaginary position of a radially aligned nozzle row. Based on the above distances, the pressure control can be particularly easily adapted to different container dimensions and container tables.

Die Transportbahn der zu bedruckenden Behälteroberfläche kann sich von der Transportbahn einer zugehörigen Halterung für den Behälter um eine Maschinendrehachse unterscheiden, je nach Lage der Drehachse des Behälters bezüglich seines Querschnitts. Bei Behältern mit im Wesentlichen kreisförmigem Querschnitt ist die Drehachse gleich der Längsachse / Hauptachse des Behälters. Wenn die Maschine taktweise betrieben wird, kann der Behälter vor einem stationären Druckkopf angehalten werden und sich vor diesem drehen, was die oben genannte Relativbewegung verursacht. Es kann auch zu Überschneidungen der beiden Bewegungen kommen, wenn sich sowohl die Maschine als auch der auf Ihr befindliche Behälter gleichzeitig drehen.The transport path of the container surface to be printed may differ from the transport path of an associated holder for the container about a machine axis of rotation, depending on the position of the axis of rotation of the container with respect to its cross section. For containers of substantially circular cross section, the axis of rotation is equal to the longitudinal axis / major axis of the container. When the machine is operated in cycles, the container may be stopped in front of a stationary printhead and rotate in front of it, causing the above relative movement. It can also be overlapping of the two movements, when both the machine and the container located on your turn at the same time.

Wenn die Druckköpfe auf der sich drehenden Maschine angebracht sind, findet eine Relativbewegung bevorzugt nur durch Drehung des Behälters um seine Längsachse statt. Es wäre aber auch denkbar, dass die Druckköpfe mit einer anderen Umfangsgeschwindigkeit als die Behälter transportiert werden. Es ist somit auch diesbezüglich eine kombinierte Relativbewegung denkbar.When the printheads are mounted on the rotating machine, relative movement preferably takes place only by rotation of the container about its longitudinal axis. It would also be conceivable that the print heads are transported at a different peripheral speed than the containers. It is therefore also possible in this regard, a combined relative movement.

Vorzugsweise sind wenigstens zwei Düsenreihen in der Bewegungsrichtung hintereinander liegend vorgesehen, und die Düsenreihen sind quer zur Bewegungsrichtung versetzt, insbesondere um die Hälfte, beispielsweise bei einem Druckkopf mit zwei Düsenreihen, oder ein Drittel, beispielsweise bei einem Druckkopf mit drei Düsenreihen, der jeweiligen Druckauflösung entlang der Düsenreihen. Die Düsen drucken somit in die Druckzwischenräume der jeweils vorlaufenden Düsen. Damit lässt sich die Druckqualität weiter optimieren.Preferably, at least two rows of nozzles in the direction of movement are provided one behind the other, and the rows of nozzles are offset transversely to the direction of movement, in particular by half, for example, in a printhead with two rows of nozzles, or a third, for example, in a printhead with three rows of nozzles, the respective printing resolution along the nozzle rows. The nozzles thus print in the intermediate pressure spaces of the respective leading nozzles. This allows the print quality to be further optimized.

Vorzugsweise wird die Oberfläche vor der Düsenreihe um eine Drehachse bewegt, und der Druckabstand wird bezüglich einer um die Drehachse gebildeten abwickelbaren Mantelfläche definiert. Dies vereinfacht die Berechnung eines geometrischen Versatzes der einzelnen Düsenreihen.Preferably, the surface in front of the nozzle row is moved about a rotation axis, and the pressure separation is defined with respect to a developable outer surface formed around the rotation axis. This simplifies the calculation of a geometric offset of the individual nozzle rows.

Bei einer besonders günstigen Ausgestaltung wird eine Druckvorlage zum Ansteuern der wenigstens einen Düsenreihe auf einer Abwicklung der Mantelfläche erstellt. Dies erleichtert die Anpassung einer zweidimensionalen Druckvorlage an die gekrümmte Druckfläche.In a particularly advantageous embodiment, a printing original for driving the at least one row of nozzles is created on a development of the lateral surface. This facilitates the adaptation of a two-dimensional print template to the curved printing surface.

Bei einer weiteren bevorzugten Weiterbildung der Erfindung wird die Düsenreihe entlang der Oberfläche bewegt, und der Druckabstand wird bezüglich wenigstens einer abwickelbaren Fläche definiert, die parallel zu einer Symmetrieachse des zu bedruckenden Objekts ausgerichtet ist. Damit lassen sich insbesondere auch nicht-rotationssymmetrische Oberflächen mit verbesserter Genauigkeit bedrucken.In a further preferred embodiment of the invention, the row of nozzles is moved along the surface, and the printing distance is defined with respect to at least one developable surface, which is aligned parallel to an axis of symmetry of the object to be printed. In particular, non-rotationally symmetrical surfaces can also be printed with improved accuracy.

Erfindungsgemäß werden die Ausstoßzeitpunkte eingestellt, indem Bildpunkte eines Druckmotivs auf einer Druckvorlage in der Bewegungsrichtung oder gegen die Bewegungsrichtung verschoben werden und die wenigstens eine Düsenreihe auf Grundlage der verschobenen Bildpunkte angesteuert wird. Auf der Druckvorlage in Bewegungsrichtung zueinander versetzte Bildpunkte werden zu unterschiedlichen Zeitpunkten gedruckt. Die zugehörigen Tintentropfen werden folglich zu unterschiedlichen Zeitpunkten ausgestoßen. Somit können unterschiedliche Druckabstände der Düsen durch ein gezieltes Verzerren des Druckmotivs auf der Druckvorlage in Bewegungsrichtung kompensiert werden.According to the invention, the ejection timings are set by shifting pixels of a print motif on a print original in the direction of movement or against the direction of movement, and the at least one nozzle row is driven on the basis of the shifted pixels. On the print original in the direction of movement offset pixels are printed at different times. The associated ink drops are thus ejected at different times. Thus, different pressure intervals of the nozzles can be compensated by a targeted distortion of the print motif on the print original in the direction of movement.

Ergänzend könnten die Ausstoßzeitpunkte angepasst werden, indem einzelnen Düsen oder einzelnen Bildpunkten einer Druckvorlage jeweils ein Zeitversatz zugeordnet wird und die Tintentropfen unter Berücksichtigung des jeweils zugeordneten Zeitversatzes ausgestoßen werden. Dadurch lässt sich ein Zeitversatz unabhängig von der Druckvorlage einzelnen Düsen oder Düsenreihen zuordnen.In addition, the ejection times could be adjusted by assigning individual nozzles or individual pixels of a print original in each case a time offset and the ink droplets are ejected taking into account the respective associated time offset. As a result, a time offset can be assigned to individual nozzles or nozzle rows independently of the print template.

Vorzugsweise ist eine mittlere Düsenreihe in einer bezüglich der Hauptachse des Behälters radial ausgerichteten Mittelposition vorgesehen, und die der mittleren Düsenreihe zugeordneten Bildpunkte auf der Druckvorlage werden bezüglich der Bewegungsrichtung nicht oder weniger verschoben werden als Bildpunkte, die bezüglich der Bewegungsrichtung davor oder dahinter liegenden Düsenreihen zugeordnet sind. Die mittlere Düsenreihe kann dann als Referenzposition bezüglich der Bewegungsrichtung verwendet und die Anpassung der Ausstoßzeitpunkte vereinfacht werden.Preferably, a central row of nozzles is provided in a center position radially aligned with respect to the main axis of the container, and the pixels assigned to the central row of nozzles on the master are not displaced or reduced with respect to the direction of movement as pixels associated with rows of nozzles preceding or behind the direction of movement , The central nozzle row can then be used as a reference position with respect to the direction of movement and the adaptation of the ejection times can be simplified.

Erfindungsgemäß werden die Bildpunkte auf der Druckvorlage, welche einer Düsenreihe zugeordnet sind, die zum Zeitpunkt des Druckens bzw. Tintenausstoßes weiter weg von der Mittelposition gelegen ist, weiter verschoben, als die Bildpunkte, welche einer Düsenreihe zugeordnet sind, die sich näher an der Mittelposition befindet.According to the invention, the pixels on the artwork which are associated with a nozzle row located farther away from the center position at the time of printing or ink ejection are further shifted than the pixels associated with a nozzle row closer to the center position ,

Insbesondere werden die Bildpunkte auf der Druckvorlage, welche einer Düsenreihe zugeordnet sind, die zum Zeitpunkt des Druckens bzw. Tintenausstoßes weiter weg von der Behälteroberfläche gelegen ist, weiter verschoben, als die Bildpunkte, welche einer Düsenreihe zugeordnet sind, die sich näher an Behälteroberfläche befindet. Letzteres betrifft insbesondere auch Düsen einer Düsenreihe, beispielsweise jeweils benachbarte Düsen einer Düsenreihe, also Düsen mit einem Abstand in Längsrichtung des Behälters. Dieses Prinzip trifft sowohl auf Druckköpfe mit gerader Anzahl von Düsenreihen als auch auf Druckköpfe mit ungerader Anzahl von Düsenreihen zu. Weiterhin kann dieses Prinzip insbesondere bei Behältern eingesetzt werden, welche Erhebungen und/oder Vertiefungen aufweisen, deren Oberfläche von einem Nenndurchmesser der Außenoberfläche des Behälters abweicht.Specifically, the pixels on the artwork which are associated with a nozzle row located farther away from the container surface at the time of printing or ink ejection are further shifted than the pixels associated with a nozzle row located closer to the container surface. The latter also applies in particular Nozzles of a row of nozzles, for example, in each case adjacent nozzles of a row of nozzles, ie nozzles with a distance in the longitudinal direction of the container. This principle applies to printheads with even numbers of rows of nozzles as well as printheads having an odd number of rows of nozzles. Furthermore, this principle can be used in particular in containers which have elevations and / or depressions whose surface deviates from a nominal diameter of the outer surface of the container.

Weist der Druckkopf zwei, vier oder ein anderes ganzzahliges Vielfaches von zwei Düsenreihen auf, so gibt es bevorzugt keine mittlere Düsenreihe.If the printhead has two, four or some other integer multiple of two rows of nozzles, then there is preferably no central row of nozzles.

Es kann auch vorkommen, dass die Bildpunkte auf der Druckvorlage, welche einer Düsenreihe zugeordnet sind, in eine andere Richtung, insbesondere in die entgegen gesetzte Richtung, verschoben werden als die Bildpunkte auf der Druckvorlage, welche einer anderen Düsenreihe zugeordnet sind. Insbesondere sind diese zwei Düsenreihen dann auf entgegen gesetzten Seiten der Mittelposition angeordnet.It can also happen that the pixels on the print original, which are assigned to one nozzle row, are shifted in a different direction, in particular in the opposite direction, than the pixels on the print master, which are assigned to another nozzle row. In particular, these two rows of nozzles are then arranged on opposite sides of the central position.

Vorzugsweise werden die Ausstoßzeitpunkte der Tintentropfen an entlang des Behälterumfangs vorgesehene konvexe und konkave Krümmungsradien angepasst. Damit lassen sich auch strukturierte Oberflächen mit Erhebungen und Vertiefungen variabel und exakt bedrucken.Preferably, the ejection timings of the ink droplets are adapted to convex and concave radii of curvature along the circumference of the container. This allows even structured surfaces with elevations and depressions to be printed variably and precisely.

Die Ausstoßzeitpunkte könnten ferner auch in Abhängigkeit von der Flugdauer der Tintentropfen und in Abhängigkeit von der Geschwindigkeit der zu bedruckenden Oberfläche in Bewegungsrichtung eingestellt werden. Ebenso lassen sich äußere Störeinflüsse, wie beispielsweise auf Grund von Luftverwirbelungen, Gravitation und Reibung berücksichtigen. Insbesondere kann eine unterschiedlich weite Relativbewegung der Oberfläche bezüglich der Düsenreihe für unterschiedliche Druckabstände mit einer eigenen Korrekturfunktion ausgeglichen werden. Tintentropfen werden auf Grund dieser Korrekturfunktion vorzugsweise um so eher ausgestoßen je größer der Druckabstand ist.The ejection times could also be adjusted depending on the duration of flight of the ink drops and depending on the speed of the surface to be printed in the direction of movement. Likewise, external disturbances, such as due to air turbulence, gravity and friction can be considered. In particular, a different relative movement of the surface with respect to the nozzle row for different pressure intervals can be compensated with a separate correction function. As a result of this correction function, ink droplets are preferably ejected the sooner the greater the printing distance.

Ferner könnte die Tropfengröße an einen mit der Objektoberfläche gebildeten Auftreffwinkel der Tintentropfen angepasst werden. Dadurch lässt sich die gewünschte optische Dichte der Tinte auf der Oberfläche auch für unterschiedliche Auftreffwinkel erzielen. Insbesondere sind die Tropfen umso größer je schräger die Tintentropfen auf die Oberfläche treffen. Die kleinste Tropfengröße ergibt sich hier bei rechtwinkliger Einfallsrichtung.Furthermore, the droplet size could be adapted to an angle of incidence of the ink droplets formed with the object surface. As a result, the desired optical density of the ink on the surface can also be achieved for different angles of incidence. In particular, the drops are the larger the more oblique the ink drops hit the surface. The smallest droplet size results here at right angles of incidence.

Bei einer bevorzugten Ausgestaltung beträgt der Druckabstand 0,5 bis 20 mm, insbesondere 1 bis 7 mm. Damit lassen sich die meisten handelsüblichen Behälter mit einer verbesserten Qualität bedrucken.In a preferred embodiment, the pressure separation is 0.5 to 20 mm, in particular 1 to 7 mm. This allows most commercially available containers to be printed with improved quality.

Eine weitere bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens umfasst ferner einen Schritt zum Herstellen einer Druckvorlage, bei dem: ein vorgegebenen Bildraster auf die zu bedruckende Oberfläche gelegt wird; ein Druckmotiv auf Grundlage des Bildrasters gerastert wird; und das gerasterte Druckmotiv auf wenigstens eine abwickelbare Fläche projiziert wird, um projizierten Bildpunkten des Druckmotivs Druckkoordinaten auf einer Abwicklung der Fläche zuzuweisen. Dadurch lässt sich der Druck ausgehend von dem auf das Objekt gerasterten Druckmotiv optimieren. Dies vereinfacht die Berechnung und Anpassung einzelner Korrekturfunktionen beispielsweise zur Kompensation eines geometrischen Versatzes einzelner Düsenreihen, von Flugzeitunterschieden, durch Behälterkonturen verursachte Variationen des Druckabstands und dergleichen.A further preferred development of the method according to the invention further comprises a step for producing a printing original, in which: a predetermined image grid is laid on the surface to be printed; a print motif is rasterized on the basis of the image raster; and projecting the rasterized print motif onto at least one developable surface to assign print coordinates to projected pixels of the print subject on a surface finish. As a result, the pressure can be optimized on the basis of the print motif screened onto the object. This simplifies the calculation and adaptation of individual correction functions, for example for compensating a geometric offset of individual nozzle rows, differences in flight time, variations in the pressure separation caused by container contours, and the like.

Mit dem Schritt zum Herstellen der Druckvorlage lässt sich außerdem eine eigenständige Aufgabe lösen, nämlich Druckvorlagen überwiegend objektorientiert erstellen zu können. Dies wird dadurch erzielt, dass das Druckmotiv zuerst aus gestalterischer Sicht an das zu bedruckende Objekt angepasst werden kann und anschließend eine demgegenüber gezielt verzerrte Druckvorlage erzeugt wird. Anders gesagt kann das Druckbild im noch unverzerrten Zustand gemeinsam mit dem zu bedruckenden Objekt begutachtet und optimiert werden.In addition, the step of producing the print template can solve a separate task, namely to be able to create print templates predominantly in an object-oriented manner. This is achieved by the fact that the print motif can first be adapted to the object to be printed from a design point of view, and subsequently a specifically distorted print original is produced. In other words, the printed image can still be examined and optimized in the undistorted state together with the object to be printed.

Vorzugsweise wird das gerasterte Druckmotiv auf wenigstens eine Mantelfläche projiziert, wobei der Projektionsursprung auf der Rotationsachse der Mantelfläche liegt. Dadurch werden das Erstellen von Druckvorlagen und das Anpassen der Druckvorlagen an unterschiedliche Druckabstände erleichtert.Preferably, the screened print motif is projected onto at least one lateral surface, wherein the projection origin lies on the rotational axis of the lateral surface. This makes it easier to create print templates and adjust the artwork to different print margins.

Bei einer besonders günstigen Weiterbildung der Erfindung wird der Schritt zum Herstellen der Druckvorlage mittels eines dreidimensionalen Rechenmodells der zu bedruckenden Oberfläche ausgeführt. Dies ermöglicht eine aus gestalterischer Sicht besonders komfortable und vielseitige sowie eine Ressourcen schonende Optimierung des Druckbilds.In a particularly favorable development of the invention, the step of producing the printing original is carried out by means of a three-dimensional computer model of the surface to be printed. This makes it possible, from a design point of view, to optimize the print image in a particularly comfortable and versatile manner and to save resources.

Die gestellte Aufgabe wird ferner gelöst mit einer Vorrichtung für den Tintenstrahldruck auf gekrümmte Objektoberflächen, insbesondere Behälteroberflächen, mit den Merkmalen des Anspruchs 16. Bevorzugte Weiterbildungen der Vorrichtung sind ferner zum Ausführen der erfindungsgemäßen Weiterbildungen des beschriebenen Verfahrens ausgebildet.The stated object is also achieved with an apparatus for the ink-jet printing on curved object surfaces, in particular container surfaces, having the features of claim 16. Preferred developments of the device are further designed for carrying out the developments according to the invention of the described method.

Bevorzugte Ausführungsformen der Erfindung sind in der Zeichnung dargestellt. Es zeigen:

  • Fig. 1 eine schematische Ansicht eines Behälters und einer Düsenzeile eines Druckkopfs, gesehen in Druckrichtung;
  • Fig. 2 eine gegenüber der Fig. 1 um 90° seitlich geschwenkte Ansicht des Behälters und des Druckkopfs;
  • Fig. 3 ein Schema zur Verdeutlichung unterschiedlicher Druckabstände und Flugzeiten der Tintentropfen;
  • Fig. 4 ein Schema zur Verdeutlichung unterschiedlicher Druckdichten in Abhängigkeit des Auftreffwinkels und der Tropfengröße;
  • Fig. 5 eine schematische Darstellung einer Rasterprojektion auf eine abwickelbare Fläche; und
  • Fig. 6 eine Seitenansicht eines Behälters mit einem schematisch gerasterten Druckmotiv.
Preferred embodiments of the invention are shown in the drawing. Show it:
  • Fig. 1 a schematic view of a container and a nozzle line of a printhead, seen in the printing direction;
  • Fig. 2 one opposite the Fig. 1 90 ° laterally swiveled view of the container and the print head;
  • Fig. 3 a scheme to illustrate different pressure intervals and flight times of the ink drops;
  • Fig. 4 a scheme to illustrate different pressure densities as a function of the angle of incidence and the droplet size;
  • Fig. 5 a schematic representation of a raster projection on a developable surface; and
  • Fig. 6 a side view of a container with a schematically screened print motif.

Unter Bezugnahme auf die Fig. 1 und 2 wird nachfolgend eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens zum Tintenstahldruck auf Behälter 1, wie beispielsweise Getränkeflaschen, beschrieben. Es eignet sich jedoch generell auch zum Bedrucken anderer Objekte mit gekrümmten Oberflächen. Eine derartige Oberfläche 2 ist in der Fig. 1 schematisch als Abschnitt der Seitenwand des Behälters 1 dargestellt. Die Oberfläche 2 ist vor einem Druckkopf 3 mit Düsenreihen 4 um die Hauptachse 1' des Behälters 1 drehbar positioniert. Drucker mit entsprechenden Düsenreihen 4 und Positioniereinheiten zum Ausführen einer Druckbewegung zwischen dem Druckkopf 3 und der zu bedruckenden Oberfläche 2 können hierbei in bekannter Weise angeordnet werden. Erfindungsgemäß werden diese mit einer (nicht dargestellten) Steuereinheit und/oder Auswerteeinheit kombiniert, um die Druckzeitpunkte der Düsenreihen 4 und/oder einzelner an diesen vorgesehener Düsen 4a abhängig vom jeweiligen Druckabstand einzustellen.With reference to the Fig. 1 and 2 Hereinafter, a preferred embodiment of the method according to the invention for ink jet printing on container 1, such as beverage bottles, will be described. However, it is also generally suitable for printing on other objects with curved surfaces. Such a surface 2 is in the Fig. 1 schematically illustrated as a portion of the side wall of the container 1. The surface 2 is rotatably positioned in front of a print head 3 with nozzle rows 4 about the main axis 1 'of the container 1. Printers with corresponding rows of nozzles 4 and positioning units for carrying out a printing movement between the print head 3 and the surface 2 to be printed can in this case be arranged in a known manner. According to the invention, these are combined with a control unit (not shown) and / or evaluation unit in order to set the printing times of the rows of nozzles 4 and / or individual nozzles 4a provided on them as a function of the respective printing distance.

Wie die Fig. 2 erkennen lässt, sind beispielsweise wenigstens zwei Düsenreihen 4 in Druckrichtung 5 hintereinander angeordnet, so dass in der Fig. 1 nur eine der Düsenreihen 4 erkennbar ist. Angedeutet ist ferner eine optionale mittlere Düsenreihe 4', die in einer Mittelposition M radial bezüglich der Hauptachse 1' des Behälters 1 ausgerichtet ist. Die einzelnen Düsen 4a der Düsenreihen 4, 4' sind jeweils mit einem individuellen Druckabstand 6 zur Oberfläche 2 angeordnet. Die Düsenreihen 4, 4' sind quer oder schräg, insbesondere orthogonal, zur Druckrichtung 5 ausgerichtet und definieren eine maximale Druckbreite B des Druckkopfs 3. Die Anzahl der dargestellten Düsenreihen 4, 4' und der Düsen 4a ist hierbei lediglich beispielhaft. Ebenso könnten mehrere Druckköpfe 3 vorgesehen sein. Diese sind dann vorzugsweise parallel zur Hauptachse 1' miteinander fluchtend angeordnet, insbesondere derart, dass die Düsenreihen 4 symmetrisch zur Mittelposition M ausgerichtet sind bzw. eine gegebenenfalls vorgesehene mittlere Düsenreihe 4' exakt radial in der Mittelposition M ausgerichtet ist, wie dies in der Fig. 2 angedeutet ist.As the Fig. 2 can be seen, for example, at least two rows of nozzles 4 in the printing direction 5 are arranged one behind the other, so that in the Fig. 1 only one of the rows of nozzles 4 can be seen. Also indicated is an optional central row of nozzles 4 ', which is aligned in a central position M radially with respect to the main axis 1' of the container 1. The individual nozzles 4a of the nozzle rows 4, 4 'are each arranged with an individual pressure separation 6 to the surface 2. The rows of nozzles 4, 4 'are transversely or obliquely, in particular orthogonal, aligned to the printing direction 5 and define a maximum printing width B of the print head 3. The number of illustrated nozzle rows 4, 4' and the nozzle 4a is merely an example. Likewise, several printheads 3 could be provided. These are then preferably arranged in alignment with each other parallel to the main axis 1 ', in particular in such a way that the nozzle rows 4 are aligned symmetrically to the center position M or an optionally provided middle row of nozzles 4' is aligned exactly radially in the middle position M, as shown in FIG Fig. 2 is indicated.

Wie die Fig. 2 ferner verdeutlicht, ist die Druckrichtung 5 im Sinne eines Druckvorschubs durch die Relativbewegung zwischen dem Druckkopf 3 und der zu bedruckenden Oberfläche 2 im Bereich des Druckkopfs 3 definiert, in gezeigten Beispiel durch die Tangente an eine Umfangslinie 2' der Oberfläche 2 an der Druckposition eines Bildpunkts P unterhalb des Druckkopfs 3.As the Fig. 2 Furthermore, the printing direction 5 is defined in terms of a printing feed by the relative movement between the print head 3 and the surface 2 to be printed in the region of the print head 3, in the example shown by the tangent to a circumferential line 2 'of the surface 2 at the printing position of a pixel P below the print head. 3

Die Ausstoßzeitpunkte der Tintentropfen 9 können beispielsweise in Abhängigkeit von einem Abstand zwischen einer Transportbahn der Behälter 1 und der Mittelposition M, einem Abstand zwischen der jeweiligen Düsenreihe 4 und der Mittelposition M, und dem jeweiligen Radius rx des Behälters 1 eingestellt werden. Diese Abstände definieren im Wesentlichen die Katheten eines rechtwinkligen Dreiecks, dessen Hypothenuse durch eine gedachte Verbindungslinie von der Hauptachse 1' des Behälters 1 zur jeweiligen Düsenreihe 4 ausgebildet wird. In der Fig. 2 entsprechen diese Katheten der Strecke rN + dN bzw. der Strecke X/2.The ejection timings of the ink droplets 9 can be adjusted, for example, depending on a distance between a conveying path of the containers 1 and the center position M, a distance between the respective nozzle row 4 and the center position M, and the respective radius r x of the container 1. These distances essentially define the catheters of a right-angled triangle whose hypotenuse is formed by an imaginary connecting line from the main axis 1 'of the container 1 to the respective nozzle row 4. In the Fig. 2 these catheters correspond to the distance r N + d N or the distance X / 2.

In einem umfänglichen Teilbereich ist ferner eine alternative Umfangslinie 2" beispielhaft angedeutet, die eine Behälteroberfläche mit konkaven und konvexen Krümmungen repräsentiert. In diesem Fall variiert der Druckabstand 6 entlang des Umfangs des sich drehenden Behälters 1. Bei bekannter Drehlage des Behälters 1 lässt sich der Ausstoß der Tintentropfen 9 erfindungsgemäß an Vertiefungen und Erhebungen entlang des Behälterumfangs gezielt anpassen.In a peripheral portion, there is further exemplified an alternative perimeter line 2 "representing a container surface having concave and convex curvatures In this case, the pressure distance 6 varies along the circumference of the rotating container 1. With a known rotational position of the container 1, the ejection can be achieved the ink drops 9 according to the invention to specifically adapt to depressions and elevations along the container circumference.

Wie die Fig. 1 andeutet, kann der Druckabstand 6 unmittelbar als Abstand zur zu bedruckenden Oberfläche 2 definiert werden. Wie nachfolgend noch ausführlicher unter Bezugnahme auf die Fig. 5 und 6 beschrieben wird, kann der Druckabstand 6' aber auch als virtuelle Größe in Bezug auf eine abwickelbare Fläche 7 definiert werden, die beispielsweise eine virtuelle Mantelfläche um die Hauptachse 1' des zu bedruckenden Behälters 1 ist. Geeignete Mantelflächen sind Zylinder, Kegel, Kegelstümpfe und beliebige Kombinationen daraus.As the Fig. 1 indicates, the printing distance 6 can be defined directly as a distance to the surface 2 to be printed. As more fully described below with reference to FIGS FIGS. 5 and 6 However, the printing distance 6 'can also be defined as a virtual size with respect to a developable surface 7, which is, for example, a virtual lateral surface around the main axis 1' of the container 1 to be printed. Suitable lateral surfaces are cylinders, cones, truncated cones and any combinations thereof.

Alternativ zu der in den Fig. 1 und 2 angedeuteten Drehung des Behälters 1 könnte der Druckkopf 3 an der Oberfläche 2 entlang bewegt werden (nicht gezeigt), insbesondere falls der zu bedruckenden Behälter keinen rotationssymmetrischen Querschnitt aufweist sondern beispielsweise einen elliptischen Querschnitt. In diesem Fall könnte die Erzeugende einer zur Definition des Druckabstands und/oder als Druckvorlage verwendeten abwickelbaren Fläche entlang einer Ellipse verlaufen oder dergleichen. Die abwickelbare Fläche wäre dann parallel zu einer Symmetrieachse des Behälters und parallel zur Düsenreihe 4, 4' auszurichten.Alternatively to the in the Fig. 1 and 2 indicated rotation of the container 1, the printhead 3 could be moved along the surface 2 along (not shown), in particular if the container to be printed does not have a rotationally symmetrical cross-section but, for example an elliptical cross-section. In this case, the generatrix of a developable surface used to define the printing distance and / or as a printing original could run along an ellipse or the like. The unwindable surface would then be aligned parallel to an axis of symmetry of the container and parallel to the nozzle row 4, 4 '.

Im Beispiel der Fig. 2 ist die abwickelbare Fläche 7 durch ihren Radius rN um die Hauptachse 1' des Behälters 1 definiert, die Lage eines Bildpunkts P auf der zu bedruckenden Oberfläche 2 durch den Radius rX. Ferner ist der Druckkopf 3 in einem Abstand dN von der abwickelbaren Fläche 7 positioniert. In diesem Fall ist der Druckabstand 6 des Bildpunkts P auf dem Radius rX definitionsgemäß gleich dN + rN - rx.In the example of Fig. 2 is the developable surface 7 defined by its radius r N about the main axis 1 'of the container 1, the position of a pixel P on the surface to be printed 2 by the radius r X. Further, the print head 3 is positioned at a distance d N from the unwindable surface 7. In this case, by definition, the printing distance 6 of the pixel P on the radius r X is equal to d N + r N -r x .

Nachfolgend werden Korrekturfunktionen zur Korrektur von Druckzeitpunkten in Abhängigkeit vom Druckabstand anhand der in der Fig. 2 dargestellten Koordinaten beschrieben. Entsprechende Berechnungen in Abhängigkeit des jeweiligen tatsächlichen oder virtuellen Druckabstands 6, 6' ließen sich jedoch auch unter Verwendung anderer Koordinatensysteme durchführen. Das gezeigte Beispiel hat allerdings den Vorteil, dass sich die abwickelbare Fläche 7 sowohl zur Definition des virtuellen Druckabstands 6' eignet als auch zur Definition einer Druckvorlage 8.The following are correction functions for correcting printing times as a function of the printing distance on the basis of the Fig. 2 described coordinates. However, corresponding calculations depending on the respective actual or virtual pressure separation 6, 6 'could also be carried out using other coordinate systems. However, the example shown has the advantage that the developable surface 7 is suitable both for defining the virtual printing distance 6 'and for defining a printing original 8.

Zwischen den Düsenreihen 4 ist in der Druckrichtung 5 bauartbedingt ein Abstand X vorzusehen. Damit lassen sich übliche Druckauflösungen von beispielsweise 300 bis 600 dpi erreichen. Auf Grund der Krümmung der Oberfläche 2 können Tintentropfen 9 nicht aus mehreren hintereinander liegenden Düsenreihen 4 gleichzeitig orthogonal auf die Oberfläche 2 auftreffen. Daraus folgt ein durch den Abstand X der Düsenreihen 4 verursachter geometrischer Versatz der Tropfen 9 aus den Düsenreihen 4. Dieser Effekt ist umso stärker je kleiner das Verhältnis des Krümmungsradius rX an der Druckposition zum Abstand X der Düsenreihen 4 ist. Das Problems und dessen Lösung werden an Hand des in der Fig. 2 angedeuteten geometrischen Druckversatzes Δxg in Druckrichtung 5 eines Bildpunkts P auf dem Radius rX mit den folgenden Formeln (1) bis (3) beschrieben: c 2 = r N + d N 2 + X 2 2 1 ʹ c = r N + d N + X 2 2

Figure imgb0001
α = arctan X 2 r N + d N
Figure imgb0002
Δ x g = c - r x sin α
Figure imgb0003

(1'), (2) in (3) Δ x g = r N + d N + X 2 2 - r x sin arctan X 2 r N + d N
Figure imgb0004
Between the rows of nozzles 4, a distance X is provided in the pressure direction 5 by design. This can be used to achieve standard print resolutions of, for example, 300 to 600 dpi. Due to the curvature of the surface 2, ink droplets 9 can not impinge on the surface 2 at the same time orthogonally from a plurality of nozzle rows 4 lying one behind the other. This results in a geometric offset of the drops 9 from the nozzle rows 4 caused by the distance X of the rows of nozzles 4. This effect is the stronger the smaller the ratio of the radius of curvature r X at the printing position to the distance X of the rows of nozzles 4. The problem and its solution will be on hand in the Fig. 2 indicated geometric pressure offset Δx g in the printing direction 5 of a pixel P on the radius r X described with the following formulas (1) to (3): c 2 = r N + d N 2 + X 2 2 1 ' c = r N + d N + X 2 2
Figure imgb0001
α = arctan X 2 r N + d N
Figure imgb0002
Δ x G = c - r x sin α
Figure imgb0003

(1 '), (2) in (3) Δ x G = r N + d N + X 2 2 - r x sin arctan X 2 r N + d N
Figure imgb0004

Wie die Fig. 2 erkennen lässt, resultiert der geometrische Druckversatz Δxg daraus, dass die Tintentropfen 9 dann nicht senkrecht auf die Oberfläche 2 treffen. Der Druckversatz Δxg ist somit vom Druckabstand 6, 6' und dem Abstand X der Düsenreihen 4 abhängig. Wird zu diesem Zweck ein virtueller Druckabstand 6' mit Hilfe der abwickelbaren Fläche 7 definiert, dient diese vorzugsweise auch als Projektionsfläche zur Herstellung der zugehörigen Druckvorlage 8. Der virtuelle Druckabstand 6' ist im Beispiel gleich rN - rX.As the Fig. 2 As can be seen, the geometric print offset .DELTA.x g results from the fact that the ink drops 9 then do not hit the surface 2 perpendicularly. The pressure offset Δx g is thus dependent on the pressure separation 6, 6 'and the distance X of the nozzle rows 4. If, for this purpose, a virtual printing distance 6 'is defined with the aid of the developable surface 7, this preferably also serves as a projection surface for producing the associated printing original 8. The virtual printing distance 6' is equal to r N - r X in the example.

Ausgehend von dem Druckversatz Δxg kann eine Korrekturfunktion für die jeweilige Düsenreihe 4 berechnet werden. Diese Korrekturfunktion kann optional durch eine Nullpunktkorrektur ergänzt werden, indem der Druckversatz ΔxN auf der abwickelbaren Fläche 7 berücksichtigt wird, beispielsweise durch Differenzbildung mit dem Druckversatz Δxg auf der zu bedruckenden Oberfläche 2. Dadurch lässt sich die Druckqualität zusätzlich verbessern.Starting from the pressure offset Δx g , a correction function for the respective nozzle row 4 can be calculated. This correction function can optionally be supplemented by a zero point correction by taking into account the printing offset Δx N on the developable surface 7, for example by subtraction of the printing offset Δx g on the surface 2 to be printed. This additionally improves the print quality.

Die Korrektur erfolgt dann mittels einer Anpassung des Ausstoßzeitpunktes der Tintentropfen 9, also durch gezielt verzögertes oder vorgezogenes Ausstoßen aus den in Druckrichtung 5 zueinander versetzten Düsenreihen 4. Erfindungsgemäß wird der Ausstoßzeitpunkt insbesondere durch ein Verschieben einzelner Bildpunkte auf der Druckvorlage 8 in oder entgegen der Bewegungsrichtung 5, also der Druckrichtung, erreicht. Diese Korrektur ist für jede Düsenreihe 4 separat zu berechnen, beispielsweise für entsprechende Druckzeilen in der Druckvorlage 8. Der Druckversatz Δxg wäre im Beispiel der Fig. 2 zum Drucken eines beliebigen Bildpunkts mit der linken Düsenreihe 4 zu dessen druckrichtungsspezifischer Bildkoordinate zu addieren, zum Drucken desselben Bildpunkts mit der rechten Düsenreihe 4 von dessen Bildkoordinate zu subtrahieren.The correction then takes place by means of an adaptation of the ejection time of the ink droplets 9, ie by deliberately delayed or preferred ejection from the rows of nozzles 4 offset from one another in the printing direction 5. According to the invention, the ejection time is determined by moving individual pixels on the printing original 8 in or against the direction of movement 5 , ie the printing direction, reached. This correction is to be calculated separately for each nozzle row 4, for example for corresponding print lines in the printing original 8. The printing offset .DELTA.x g would be in the example of Fig. 2 for printing an arbitrary pixel with the left nozzle row 4 to add to its printing direction specific image coordinate to subtract for printing the same pixel with the right nozzle row 4 of the image coordinate.

Ist eine mittlere Düsenreihe 4' in radialer Ausrichtung an der Mittelposition M vorgesehen, so kann die Mittelposition M als Referenz zur Kompensation des geometrischen Druckversatzes Δxg verwendet werden. Die Bildkoordinaten der mittleren Düsenreihe 4' müssten bezüglich des geometrischen Druckversatzes dann nicht verschoben werden, sondern lediglich die Bildkoordinaten der außen liegenden Düsenreihen 4.If a middle row of nozzles 4 'is provided in radial alignment at the middle position M, then the center position M can be used as a reference for compensation of the geometrical pressure offset Δx g . The image coordinates of the central nozzle row 4 'would then not have to be shifted relative to the geometric print offset, but only the image coordinates of the outer nozzle rows 4.

Ist der Druckabstand 6, 6' aufgrund der Kontur der Behälterseitenwand für einzelne Düsen 4a unterschiedlich, so kann der Druckversatz Δxg nichtsdestoweniger für einzelne Düsen 4a separat berechnet werden. Die Ausstoßzeitpunkte können dann für einzelne Düsen 4a nach obigem Schema durch Verschieben von Bildkoordinaten angepasst werden.If the pressure separation 6, 6 'differs for individual nozzles 4a due to the contour of the container sidewall, the pressure offset Δx g can nonetheless be calculated separately for individual nozzles 4a. The ejection times can then be adjusted for individual nozzles 4a according to the above scheme by shifting image coordinates.

Eine weitere Korrekturfunktion kann unterschiedlich lange Flugzeiten der Tintentropfen 9 kompensieren. Auch hier erfolgt grundsätzlich eine Korrektur unterschiedlicher Druckabstände 6, 6', die während der Relativbewegung zwischen der Oberfläche 2 und den Düsenreihen 4 bewirken, dass trotz näherungsweise gleicher Tropfengeschwindigkeit vT und gleichem Ausstoßzeitpunkt der Tropfen 9 unterschiedliche Druckpositionen P in Druckrichtung 5 bedruckt werden. Dies verursacht ein verzerrtes und/oder unscharfes Druckbild. Ohne Rücksichtnahme auf Reibungsverluste und damit verbundene Verzögerungen der Tropfen 9 können Flugzeitunterschiede Δt wie folgt mit den Formeln (4) und (5) berücksichtigt und ein dadurch verursachter Druckversatz Δxt berechnet und bei Bedarf korrigiert werden: Δ x t = Δ t v O

Figure imgb0005
Δ t = Δ y v T ; Δ y = r N - r x
Figure imgb0006
Δ t = r N - r x v T
Figure imgb0007
i n 4 Δ x t = r N - r x v T v O
Figure imgb0008
Another correction function can compensate flight times of the ink drops 9 of different lengths. Here, too, a correction of different pressure intervals 6, 6 ', which during the relative movement between the surface 2 and the rows of nozzles 4 effect that, despite approximately the same drop speed v T and the same ejection time of the droplets 9, different printing positions P are printed in the printing direction 5. This causes a distorted and / or blurred print image. Without regard to friction losses and associated delays of the drops 9 flight time differences .DELTA.t may be as follows with the formulas (4) and (5) taken into account and a pressure offset caused thereby Ax t is calculated and corrected if necessary: Δ x t = Δ t v O
Figure imgb0005
Δ t = Δ y v T ; Δ y = r N - r x
Figure imgb0006
Δ t = r N - r x v T
Figure imgb0007
i n 4 Δ x t = r N - r x v T v O
Figure imgb0008

Wie die Fig. 3 andeutet, fliegt ein Tintentropfen 9 bis zur Oberfläche 2 beispielsweise um die Strecke Δy weiter als bis zur abwickelbaren Fläche 7 und benötigt somit die Zeit Δt länger bis zur Oberfläche 2. In dieser Zeitspanne bewegt sich die zu bedruckende Oberfläche 2 mit der Geschwindigkeit vO weiter. Der resultierende Versatz Δxt kann analog zum geometrisch verursachten Druckversatz Δxg in eine Korrekturfunktion zum verzögerten oder vorgezogenen Ausstoßen der Tintentropfen 9 integriert werden, beispielsweise durch entsprechendes Verschieben der zugehörigen Bildpunkte auf der Druckvorlage 8. Die Geschwindigkeit der Oberfläche 2 lässt sich vorzugsweise auch als Relativwert bezüglich der Geschwindigkeit der abwickelbaren Fläche 7 definieren. Diese Korrektur ist abhängig von der Druckgeschwindigkeit vO und ist entsprechend hierfür anzupassen.As the Fig. 3 indicates, flies an ink droplet 9 to the surface 2, for example by the distance .DELTA.y further than the unwindable surface 7 and thus requires the time .DELTA.t longer to the surface 2. In this period, the surface to be printed 2 moves at the speed v O on , The resulting displacement Ax t is analogous to the geometrically caused print offset Ax g in a correction function for delayed or early ejection of the ink droplets 9 are integrated, for example by appropriate displacement of the corresponding picture elements on the master 8. The speed of the surface 2 can preferably also as a relative value regarding the speed of unwindable Define area 7. This correction is dependent on the printing speed v O and should be adjusted accordingly.

Unter realen Bedingungen treten ferner Reibungsverluste der Tropfen in der Luft auf. Abhängig vom Tropfendurchmesser können Kalibrierfunktionen, beispielsweise zur Abhängigkeit der Tropfengeschwindigkeit von der Flugzeit, bestimmt werden und in die Korrektur einfließen.Under real conditions, friction losses of the droplets in the air also occur. Depending on the droplet diameter, calibration functions, for example for the dependence of the drop velocity on the time of flight, can be determined and incorporated into the correction.

Auch Luftströmungen und andere Umwelteinflüsse, wie beispielsweise Temperaturschwankungen, elektrostatische Potentiale, Magnetfelder und dergleichen, können je nach Tropfengröße, Tintenart und Druckkopftyp eine Deplatzierung der Tintentropfen 9 verursachen. Weitere Korrekturfunktionen können hierzu auch empirisch ermittelt werden und die erfindungsgemäße Korrektur des Druckversatzes durch Koordinatenverschiebung in der Druckvorlage einfließen.Also, air currents and other environmental influences, such as temperature fluctuations, electrostatic potentials, magnetic fields and the like, may cause depletion of the ink droplets 9 depending on drop size, ink type and printhead type. Further correction functions can also be determined empirically for this purpose and the correction according to the invention of the printing offset by means of coordinate shift can be incorporated in the print original.

Die beschriebenen Korrekturfunktionen können vor dem Laden des Druckmotivs ausgeführt werden, beispielsweise aber auch nach der Separierung der Farbkanäle. Alternativ könnten einzelne oder alle Korrekturfunktionen auch durch Vorgabe eines explizit definierten Zeitversatzes für die verzögerte oder vorgezogene Ansteuerung einzelner Düsenreihen 4, 4' und/oder Düsen 4a zur Veränderung der Ausstoßzeitpunkte realisiert oder auch nur durch einen derartige Korrekturzeitspanne ergänzt werden.The described correction functions can be carried out before the loading of the print motif, but also after the separation of the color channels, for example. Alternatively, individual or all correction functions could also be realized by specifying an explicitly defined time offset for the delayed or early activation of individual nozzle rows 4, 4 'and / or nozzles 4a for varying the ejection times or else only be supplemented by such a correction period.

Eine Gesamtkorrekturfunktion in Abhängigkeit des tatsächlichen oder virtuellen Druckabstands 6, 6' könnte beispielsweise folgende Terme umfassen, wobei der Druckabstand 6, 6' hier zugunsten einer besseren Lesbarkeit mit "d" bezeichnet ist:

  • fΔxg(d) geometrische Korrektur;
  • fΔxt(d) Flugzeitkorrektur; und
  • fΔxu(d) Korrektur von Umwelteinflüssen, Luftströmungen und dergleichen
An overall correction function as a function of the actual or virtual pressure separation 6, 6 'could comprise, for example, the following terms, wherein the pressure separation 6, 6' is here denoted by "d" for better readability:
  • fΔx g (d) geometric correction;
  • fΔx t (d) time-of-flight correction; and
  • fΔx u (d) correction of environmental influences, air currents and the like

Für jede Düsenreihe 4 und/oder einzelne Düsen 4a kann die Korrektur der x-Koordinate eines Bildpunkts P in Druckrichtung 5 beispielsweise wie folgt allgemein beschrieben werden: P x ʹ , y d = P x y d + f Δ x g d + f Δ x t d + f Δ x u d

Figure imgb0009
For each nozzle row 4 and / or individual nozzles 4a, the correction of the x-coordinate of a pixel P in the printing direction 5 can be generally described as follows, for example: P x ' . y d = P x y d + f Δ x G d + f Δ x t d + f Δ x u d
Figure imgb0009

Die Korrektur erfolgt dann durch Verschieben des Bildpunkts P von x nach x'.The correction then takes place by shifting the pixel P from x to x '.

Korrekturfunktionen oder einzelne Korrekturwerte können auch empirisch durch geeignet geformte Testkörper und/oder Testmuster ermittelt werden. Vorzeichen und Formel der Korrekturfunktionen sind von der Lage der Düsenreihe relativ zur virtuellen Druckposition abhängig. Die virtuelle Druckposition ist definiert z.B. durch die Position der Rotationsachse der Abwicklung unter dem Druckkopf.Correction functions or individual correction values can also be determined empirically by suitably shaped test bodies and / or test patterns. Sign and formula of the correction functions are dependent on the location of the nozzle row relative to the virtual printing position. The virtual printing position is defined, for example, by the position of the axis of rotation of the unwinding under the print head.

Eine außerdem mögliche Anpassung der Farbdichte oder Tintendichte des Aufdrucks an eine dreidimensionale Kontur der zu bedruckenden Oberfläche 2 ist nachfolgend unter Bezugnahme auf die Fig. 4 beschrieben.An additional possible adaptation of the color density or ink density of the imprint to a three-dimensional contour of the surface 2 to be printed is described below with reference to FIGS Fig. 4 described.

Demnach wird der Tintenauftrag auf gekrümmte Flächen vorzugsweise abhängig von deren lokaler Neigung gegenüber einer in der Position I der Fig. 4 angedeuteten ebenen Behälteroberfläche 2 korrigiert, um eine gleichmäßige optische Dichte der Tinte zu gewährleisten. Wie die Fig. 4 an der Position II für einen geneigten Oberflächenabschnitt verdeutlicht, kann beispielsweise ein schräges Auftreffen der Tintentropfen 9 nicht oder nur unzureichend von Tinte bedeckte Lücken im Aufdruck auf der Oberfläche 2 verursachen.Accordingly, the ink application to curved surfaces is preferably dependent on their local inclination relative to one in the position I of Fig. 4 indicated flat container surface 2 corrected to ensure a uniform optical density of the ink. As the Fig. 4 illustrated at the position II for an inclined surface portion, for example, an oblique impact of the ink drops 9 may not or insufficiently ink-filled gaps in the imprint on the surface 2 cause.

Dem kann durch ein Anpassen der Tropfengröße, beispielsweise im Raster Image Processor, in Abhängigkeit vom Auftreffwinkel λ der Tintentropfen 9 entgegen gewirkt werden. Alternativ kann durch gezielte Erhöhung der Farbsättigung in der Druckvorlage ein ähnlicher Effekt erzielt werden. Es lässt sich somit die Tintendichte auf einen Sollwert korrigieren, wie in der Figur 4 an der Position III angedeutet ist. Alternativ kann durch Verringern der Rasterweite R auf R' ein vergleichbarer Effekt erzielt werden, wie in der Fig. 3 an der Position IV angedeutet ist.This can be counteracted by adjusting the drop size, for example in the raster image processor, depending on the angle of incidence λ of the ink drops 9. Alternatively, a similar effect can be achieved by deliberately increasing the color saturation in the artwork. It is thus possible to correct the ink density to a target value, as in the FIG. 4 is indicated at position III. Alternatively, by reducing the raster width R to R ', a comparable effect can be obtained as in the US Pat Fig. 3 is indicated at position IV.

Faktoren für die Benetzung der Oberfläche 2, wie beispielsweise die Oberflächenspannung, lassen sich vorzugsweise empirisch unter realen Bedingungen ermitteln. Beispielsweise werden Oberflächenabschnitte unter definierten Auftreffwinkeln λ bedruckt und zugehörige Korrekturwerte für die Tropfengröße und/oder die Rasterweite R ermittelt. Hierbei kann auch das Abfließen der Tinte entlang der Neigung berücksichtigt werden.Factors for the wetting of the surface 2, such as the surface tension, can preferably be determined empirically under real conditions. For example, surface sections are printed at defined angles of incidence λ and associated correction values for the drop size and / or the screen r are determined. In this case, the outflow of the ink along the inclination can be taken into account.

Unter Bezugnahme auf die Fig. 5 und 6 wird nachfolgend ferner ein erfindungsgemäßes Verfahren zum Herstellen einer Druckvorlage für gekrümmte Oberflächen auf einer abwickelbaren Fläche beschrieben, die vorzugsweise der vorstehend beschriebenen abwickelbaren Fläche 7 entspricht.With reference to the FIGS. 5 and 6 Furthermore, a method according to the invention for producing a printed surface for curved surfaces on a developable surface, which preferably corresponds to the unwindable surface 7 described above, is described below.

Die Fig. 5 zeigt eine zu bedruckende gekrümmte Oberfläche 2, auf der Tintentropfen 9 mit einer Druckauflösung A platziert werden sollen, sowie eine abwickelbare Fläche 7, auf deren Abwicklung beispielsweise eine Druckvorlage 8 zum Bedrucken der Oberfläche 2 erstellt werden kann. Zu diesem Zweck lassen sich einzelne in der Fig. 5 durch Tintentropfen 9 repräsentierte Bildpunkte der gekrümmten Oberfläche 2 ausgehend von einem Projektionszentrum 10, das beispielsweise der Hauptachse 1' des zu bedruckenden Behälters 1 entspricht, auf die abwickelbare Fläche 7 projizieren. Aufgrund abweichender radialer Abstände vom Projektionszentrum 10 unterscheidet sich die lokale Druckauflösung A' der Tintentropfen 9 auf der abwickelbaren Fläche 7 stellenweise von der lokalen Druckauflösung A auf der gekrümmten Oberfläche 2.The Fig. 5 shows a curved surface 2 to be printed, on which ink droplets 9 are to be placed at a print resolution A, and a developable surface 7, on the development of which, for example, a printing original 8 for printing the surface 2 can be created. For this purpose, individual in the Fig. 5 represented by ink drops 9 pixels of the curved surface 2, starting from a projection center 10, for example the main axis 1 'of the container to be printed 1 corresponds projecting onto the unwindable surface 7. Due to deviating radial distances from the projection center 10, the local printing resolution A 'of the ink droplets 9 on the developable surface 7 differs in places from the local printing resolution A on the curved surface 2.

Erfindungsgemäß kann die Lage einzelner Bildpunkte auf der Druckvorlage 8 unabhängig voneinander, und somit auch die lokale Auflösung A', gezielt variiert werden, um eine möglichst einheitliche Druckauflösung A auf der Oberfläche 2 herzustellen, wie in der Fig. 5 angedeutet ist. Hierbei entsprechen die radialen Hilfslinien 9' in der Fig. 5 den theoretischen Flugbahnen der Tintentropfen 9 an den jeweiligen Druckpositionen auf der Oberfläche 2.According to the invention, the position of individual pixels on the printing original 8 independently of one another, and thus also the local resolution A ', can be selectively varied in order to produce the most uniform possible printing resolution A on the surface 2, as in US Pat Fig. 5 is indicated. Here correspond to the radial auxiliary lines 9 'in the Fig. 5 the theoretical trajectories of the ink drops 9 at the respective printing positions on the surface of the second

Entsprechend lässt sich der virtuelle Druckabstand 6' als Differenz der radialen Abstände der Bildpunkte (Tintentropfen in der Fig. 5) auf der abwickelbaren Oberfläche 7 und den zugehörigen Bereichen auf der zu bedruckenden Oberfläche 2 darstellen.Accordingly, the virtual printing distance 6 'can be defined as the difference between the radial distances of the pixels (ink droplets in the Fig. 5 ) on the unwindable surface 7 and the associated areas on the surface 2 to be printed.

Bei Verwendung herkömmlicher Druckvorlagen mit einheitlicher Auflösung würden unterschiedliche Druckabstände 6' dagegen eine uneinheitliche Druckauflösung A auf der Oberfläche 2 verursachen. Einige Tintentropfen 9 würden dann beispielsweise überlappen, zwischen anderen Tintentropfen 9 würden nicht bedruckte Lücken entstehen.On the other hand, using conventional printing templates with uniform resolution, different printing distances 6 'would cause a non-uniform printing resolution A on the surface 2. Some ink drops 9 would then overlap, for example, between other ink drops 9 would arise unprinted gaps.

Wie die Fig. 6 schematisch andeutet, wird dem erfindungsgemäß entgegen gewirkt, indem ein der gewünschten Druckauflösung A entsprechendes Raster 11 auf die zu bedruckende Oberfläche 2 des Behälters 1 gelegt wird. Vorzugsweise wird ein Druckmotiv 12 basierend auf dem Raster 11 in einem dreidimensionalen Modell der Oberfläche 2 entworfen und/oder editiert. Die Rasterpunkte des Rasters 11 werden dann auf die abwickelbare Fläche 7 projiziert, wodurch je nach örtlicher Krümmung der Oberfläche 2 eine örtlich unterschiedliche Rasterweite oder Druckauflösung A' auf der abwickelbaren Fläche 7 resultiert. Durch Projektion ausgehend von der Hauptachse 1' des Behälters 1 und/oder einer anderen geeigneten Symmetrieachse der abwickelbaren Fläche 7 wird das Druckmotiv 12 gezielt auf der Druckvorlage 8 verzerrt und die Lage einzelner Bildpunkte dadurch korrigiert.As the Fig. 6 indicates schematically, is counteracted according to the invention by one of the desired printing resolution A corresponding grid 11 is placed on the surface to be printed 2 of the container 1. Preferably, a print motif 12 is designed and / or edited based on the grid 11 in a three-dimensional model of the surface 2. The grid points of the grid 11 are then projected onto the developable surface 7, which results in a spatially different screen ruling or printing resolution A 'on the developable surface 7, depending on the local curvature of the surface 2. By projection, starting from the main axis 1 'of the container 1 and / or another suitable symmetry axis of the developable surface 7, the print motif 12 is purposefully distorted on the printing original 8 and the position of individual pixels is thereby corrected.

Beispielsweise wird aus dem dreidimensionalen Modell der Oberfläche 2 und der abwickelbaren Projektionsfläche 7 der Druckabstand 6, 6' ermittelt. Dazu werden die Weglängen zwischen den Schnittpunkten der Topfenflugbahn mit der Oberfläche 2 und der Projektionsfläche 7 ermittelt. Als Daten der einzelnen Bildpunkte werden beispielsweise der Druckabstand 6, 6', die Bildpunktkoordinaten und die zugehörigen Werte der Farbkanäle gespeichert. Der ermittelte Druckabstand 6, 6' kann dann auch für die vorstehend beschriebenen Korrekturfunktionen verwendet werden.For example, the pressure separation 6, 6 'is determined from the three-dimensional model of the surface 2 and the developable projection surface 7. For this purpose, the path lengths between the intersections of the pot trajectory with the surface 2 and the projection surface 7 are determined. As data of the individual pixels, for example, the printing distance 6, 6 ', the pixel coordinates and the associated values of the color channels are stored. The determined pressure distance 6, 6 'can then also be used for the correction functions described above.

Die erfindungsgemäß gezielt gegenüber dem Druckmotiv 12 verzerrten Druckvorlagen 8 bieten zusätzliche gestalterische Freiräume, und es wird ein besonders präziser Druck des Motivs 12 ermöglicht. Insbesondere mit Hilfe des dreidimensionalen Modells der Oberfläche 2 oder des zugehörigen Behälters 1 kann das finale Druckbild bereits im Entwurf visuell besonders gut beurteilt und auf einfache Weise abgeändert werden.The present invention specifically against the print motif 12 distorted artwork templates 8 provide additional creative freedom, and it is a particularly precise printing of the subject 12 allows. In particular, with the help of the three-dimensional model of the surface 2 or the associated container 1, the final printed image can already be assessed visually especially well in the design and modified in a simple manner.

Die erfindungsgemäßen Druckvorlagen 8 lassen sich in Recheneinheiten gesondert von den beschriebenen Druckverfahren an gekrümmten Objektoberflächen 2 erstellen. Somit kann ein eigenständiges technisches Problem gelöst werden.The printing originals 8 according to the invention can be created in computing units separately from the described printing methods on curved object surfaces 2. Thus, a separate technical problem can be solved.

Besonders vorteilhaft ist jedoch eine Kombination mit den erfindungsgemäßen Druckverfahren basierend auf einer Korrektur des Ausstoßzeitpunkts in Abhängigkeit von dem Druckabstand 6, 6'. Mit Hilfe abwickelbarer Flächen lassen sich die beschriebenen Verfahren besonders effizient kombinieren.However, a combination with the printing method according to the invention based on a correction of the ejection time as a function of the printing distance 6, 6 'is particularly advantageous. With the help of developable surfaces, the described methods can be combined particularly efficiently.

Die beschriebenen Verfahren und Korrekturfunktionen lassen sich hierbei beliebig in technisch sinnvoller Weise kombinieren.The described methods and correction functions can be combined as desired in a technically meaningful way.

Claims (16)

  1. Method for ink-jet printing on curved surfaces (2) of containers (1), in particular PET bottles or glass bottles, whereby:
    the surface to be printed is moved relative to at least one nozzle row (4, 4') which is oriented transversely or obliquely to the direction of movement (5); and
    ink drops (9) are ejected at ejection times which are set for the individual ink drops as a function of the respective printing distance (6, 6') of the ejecting nozzle (4a),
    characterised in that
    the ejection times are set by shifting image pixels of an associated print motif (12) on a print master (8) in or opposite the direction of movement (5) and the at least one nozzle row (4, 4') is activated on the basis of the shifted image pixels, and
    the image pixels on the print master (8) assigned to a nozzle row which is at a greater distance away from a middle position (M) oriented radially with respect to a main axis (1') of the container at an instant of printing are shifted farther than the image pixels assigned to a nozzle row which is disposed closer to the middle position (M).
  2. Method as claimed in claim 1, whereby at least two nozzle rows (4) are provided lying one after the other in the direction of movement (5) and the ejection times are also set as a function of a distance (X) between the nozzle rows.
  3. Method as claimed in claim 1 or 2, whereby the ejection times are also set as a function of an impact angle (λ) of the ink drops (9) subtended respectively with the surface (2).
  4. Method as claimed in claim 1, whereby at least two nozzle rows (4) are provided lying one after the other in the direction of movement (5) and on either side of a middle position (M) oriented radially with respect to the main axis (1') of the container (1), and the ejection times of the ink drops (9) are also set as a function of a distance between a transport path of the container (1) and the middle position (M), a distance between the respective nozzle row (4) and the middle position (M), and the respective radius (rx) of the container (1).
  5. Method as claimed in at least one of the preceding claims, whereby at least two nozzle rows (4, 4') are provided lying one after the other in the direction of movement (5), and the nozzle rows are offset transversely to the direction of movement, in particular by half or a third of the respective print resolution along the nozzle rows.
  6. Method as claimed in at least one of the preceding claims, whereby the surface (2) is moved in front of the nozzle row (4, 4') about an axis of rotation (1') and the printing distance (6') is defined with reference to a lateral surface area (7) formed around the axis of rotation that can be developed.
  7. Method as claimed in claim 6, whereby a print master (8) is set up for activating the at least one nozzle row (4, 4') on a development of the lateral surface area (7).
  8. Method as claimed in at least one of the preceding claims, whereby the nozzle row (4, 4') is moved along the surface (2) and the printing distance is defined by reference to at least one surface that can be developed which is oriented parallel with an axis of symmetry of the object to be printed.
  9. Method as claimed in claim 1, whereby a middle nozzle row (4') is provided in a middle position (M) oriented radially with respect to the main axis (1') of the container (1), and the image pixels on the print master (8) assigned to the middle nozzle row are not shifted or are shifted less relative to the direction of movement (5) than image pixels assigned to nozzle rows (4) lying in front of or behind it relative to the direction of movement.
  10. Method as claimed in claim 1 or 9, whereby the image pixels on the print master assigned to a nozzle row, which is disposed farther away from the container surface at an instant of printing, are shifted farther than the image pixels assigned to a nozzle row disposed closer to the container surface.
  11. Method as claimed in at least one of the preceding claims, whereby the ejection times of the ink drops (9) are adapted to convex and concave radii of curvature disposed along the container circumference (2").
  12. Method as claimed in at least one of the preceding claims, whereby the printing distance (6) is 0.5 to 20 mm, in particular 1 to 7 mm.
  13. Method as claimed in at least one of the preceding claims, further comprising a step for producing a print master (8), comprising the sub-steps: laying a predefined raster (11) on the surface (2) to be printed; scanning a print motif (12) on the basis of the raster; and projecting the scanned print motif onto at least one surface (7) that can be developed in order to assign projected image pixels of the print motif to print co-ordinates on a development.
  14. Method as claimed in claim 13, whereby the scanned print motif (12) is projected onto at least a lateral surface area (7) and the projection origin (10) lies on the axis of rotation (1') of the lateral surface area.
  15. Method as claimed in claim 13 or 14, whereby the step of creating the print master (8) is implemented by means of a three-dimensional computer model of the surface (2) to be printed.
  16. Device for ink-jet printing on curved surfaces (2) of containers, in particular PET bottles or glass bottles, comprising:
    - at least one row (4, 4') of ink-jet nozzles (4a) disposed transversely or obliquely with respect to the printing direction (5);
    - a positioning unit for mutually moving a surface to be printed and the ink-jet nozzles; and
    - a control unit for activating the ink-jet nozzles which is configured so that ink drops (9) can be ejected at times which are set for the individual ink drops as a function of the respective printing distance (6, 6') of the ejecting nozzle in accordance with the method as claimed in claim 1.
EP12191421.2A 2011-11-09 2012-11-06 Method and device for ink-jet printing on curved container surfaces Active EP2591917B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011086015A DE102011086015A1 (en) 2011-11-09 2011-11-09 Method and apparatus for ink jet printing on curved object surfaces

Publications (3)

Publication Number Publication Date
EP2591917A1 EP2591917A1 (en) 2013-05-15
EP2591917B1 true EP2591917B1 (en) 2014-12-17
EP2591917B2 EP2591917B2 (en) 2018-09-19

Family

ID=47146234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12191421.2A Active EP2591917B2 (en) 2011-11-09 2012-11-06 Method and device for ink-jet printing on curved container surfaces

Country Status (3)

Country Link
EP (1) EP2591917B2 (en)
CN (1) CN103144442B (en)
DE (1) DE102011086015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215429A1 (en) 2017-09-04 2019-03-07 Krones Ag Direct printing and direct printing machine for printing on containers with direct printing

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214980A1 (en) * 2013-07-31 2015-02-05 Krones Ag Printing machine with printhead control
DE102013215638A1 (en) 2013-08-08 2015-02-12 Krones Ag Device for printing on containers
DE102013016006A1 (en) * 2013-09-26 2015-04-09 Heidelberger Druckmaschinen Ag Machine for inkjet printing of three-dimensional objects
MX2016004092A (en) * 2013-10-04 2016-06-06 Procter & Gamble Process for decorating articles of manufacture.
DE102015203798A1 (en) * 2014-03-27 2015-10-01 Heidelberger Druckmaschinen Ag Apparatus for printing a curved surface of an object
CN103862866A (en) * 2014-04-05 2014-06-18 晏石英 Printing method and printer
DE102014108092A1 (en) * 2014-06-10 2015-12-17 Krones Ag Direct printing machine for printing on containers
WO2015193138A1 (en) * 2014-06-18 2015-12-23 Till Gmbh Method and device for printing on hollow bodies
DE102015215224A1 (en) 2015-08-10 2017-02-16 Krones Ag Container treatment machine and method for printing on containers
DE102016225967A1 (en) * 2016-02-17 2017-08-17 Heidelberger Druckmaschinen Ag A method of ink jet printing at least one curved portion of the surface of an object
EP3243805A1 (en) * 2016-05-12 2017-11-15 Anheuser-Busch InBev S.A. A glass container having an inkjet printed image and a method for the manufacturing thereof
MX2018013688A (en) 2016-05-12 2019-07-18 Anheuser Busch Inbev Sa A glass container having an inkjet printed image and a method for the manufacturing thereof.
EP3243806A1 (en) * 2016-05-12 2017-11-15 Anheuser-Busch InBev S.A. A glass container having an inkjet printed image and a method for the manufacturing thereof
CN106218236B (en) * 2016-09-13 2017-10-13 北京翔瑞科泰汽车部件有限公司 A kind of automotive seat polyurethane foam reviews coding external form self-reacting device
DE102016220970B4 (en) * 2016-10-25 2022-12-08 Kba-Kammann Gmbh Printing machine for printing at least one print image on a substrate surface
EP3330095A1 (en) * 2016-12-02 2018-06-06 Anheuser-Busch InBev S.A. A glass container having an inkjet printed image and a method for the manufacturing thereof
DE102016225323A1 (en) * 2016-12-16 2018-06-21 Krones Ag Method and direct printing machine for printing on circular containers with direct printing
CN106585151B (en) * 2016-12-19 2018-10-30 攀钢集团攀枝花钢钒有限公司 A method of spraying coil of strip with hot continuous rolling jet printing
US9975327B1 (en) 2017-05-18 2018-05-22 Xerox Corporation System and method for adjusting printhead operations in a direct-to-object printer having a fixed printhead array
DE102017114280B4 (en) * 2017-06-26 2024-04-11 Jörg R. Bauer Method for printing a curved surface and device for printing three-dimensional surfaces
US10214026B1 (en) 2017-08-11 2019-02-26 Xerox Corporation System and method for rotating a three-dimensional (3D) object during printing of the object
US10639908B2 (en) 2017-09-22 2020-05-05 Xerox Corporation System and method for producing an image on an article
FR3084282B1 (en) * 2018-07-24 2020-07-31 Centre Techn Ind Mecanique PROCESS FOR MARKING A TRANSPARENT CONTAINER AND CONTAINER MARKED ACCORDING TO THE PROCEDURE
CN109572207B (en) * 2018-10-31 2020-08-04 重庆宏劲印务有限责任公司 Device and method for printing three-dimensional pattern on bottle body in gloss oil spraying mode
GB2579050B (en) * 2018-11-16 2021-12-01 Global Inkjet Systems Ltd Control methods and systems
CN110202950A (en) * 2019-05-08 2019-09-06 西安工程大学 It is a kind of for realizing that multiple groups etc. divide the mechanism of coding on cylindrical outer surface
CN110254055A (en) * 2019-06-28 2019-09-20 佛山市科自智能系统技术有限公司 A kind of continuous printing equipment of cylindrical body outer surface and method
AT522737B1 (en) * 2019-07-08 2021-07-15 Franz Neuhofer Process for digital printing on a profile strip
CN111439031A (en) * 2020-05-13 2020-07-24 苏州新锐发科技有限公司 Printing apparatus and method
DE102020120290A1 (en) 2020-07-31 2022-02-03 Krones Aktiengesellschaft Device for printing or labeling containers
DE102020124403A1 (en) 2020-09-18 2022-03-24 Krones Aktiengesellschaft Method for gluing a label in a labeling machine, computer-readable medium and labeling machine for applying labels to containers
CN112497932A (en) * 2020-11-28 2021-03-16 上海景定电子科技有限公司 Method for improving digital printing precision of cylinder
CN112721447B (en) * 2020-12-29 2022-02-08 东莞市图创智能制造有限公司 Cylindrical medium surface printing method, device, equipment and storage medium
DE102021133044A1 (en) 2021-12-14 2023-06-15 Homag Gmbh Process for printing a workpiece, printing device and computer program

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2230233A (en) 1989-03-02 1990-10-17 Mb Group Plc An apparatus for, and method of printing on an article having an endless surface
US5043740A (en) * 1989-12-14 1991-08-27 Xerox Corporation Use of sequential firing to compensate for drop misplacement due to curved platen
ES2116023T3 (en) 1995-09-08 1998-07-01 Hewlett Packard Co METHOD TO OPERATE AN INK JET PRINTER AND INK JET PRINTER USING THE METHOD.
US5923348A (en) 1997-02-26 1999-07-13 Lexmark International, Inc. Method of printing using a printhead having multiple rows of ink emitting orifices
JP2001191514A (en) * 1999-10-25 2001-07-17 Seiko Epson Corp Recording method and recorder
US6360656B2 (en) * 2000-02-28 2002-03-26 Minolta Co., Ltd. Apparatus for and method of printing on three-dimensional object
JP2001328254A (en) 2000-05-19 2001-11-27 Seiko Epson Corp Recording method and recording device
GB2376920A (en) 2001-06-27 2002-12-31 Inca Digital Printers Ltd Inkjet printing on a three-dimensional object including relative movement of a printhead and the object during printing about a rotational axis
SE524371C2 (en) * 2002-07-10 2004-08-03 Nolato Ab Method and apparatus for applying a two-dimensional image to a three-dimensional surface
WO2004009360A1 (en) 2002-07-22 2004-01-29 Sealed Air Limited Printing process and apparatus
WO2004016438A1 (en) 2002-08-19 2004-02-26 Creo Il. Ltd. Continuous flow inkjet utilized for 3d curved surface printing
ITMO20020369A1 (en) 2002-12-30 2004-06-30 Tecno Europa Srl SYSTEM FOR PRINTING OBJECTS.
US7360853B2 (en) * 2004-03-04 2008-04-22 Fujifilm Dimatix, Inc. Morphology-corrected printing
JP4533811B2 (en) 2005-07-04 2010-09-01 株式会社ミマキエンジニアリング Inkjet printer for spherical media printing and printing method using the same
US7611216B2 (en) * 2005-07-22 2009-11-03 Pitney Bowes Inc. Method and system for correcting print image distortion due to irregular print image space topography
DE102005060785A1 (en) * 2005-12-16 2007-06-28 Man Roland Druckmaschinen Ag Method for operating an inkjet printing device
DE102006001223A1 (en) * 2006-01-10 2007-07-12 Khs Ag Apparatus for printing on bottles or similar containers
US7625059B2 (en) * 2006-11-22 2009-12-01 Plastipak Packaging, Inc. Digital printing plastic containers
DE102006034060B4 (en) * 2006-07-20 2009-01-15 Ball Packaging Europe Gmbh Method and device for decorating an uneven surface on a dimensionally stable object
JP2008100485A (en) 2006-07-25 2008-05-01 Ricoh Co Ltd Image forming apparatus, liquid discharge head, image forming method, recorded matter, and recording liquid
DE102006038247A1 (en) * 2006-08-16 2008-02-21 Khs Ag Process for the circumferential printing of containers
EP2229281A2 (en) 2007-12-31 2010-09-22 Exatec, LLC. Method for printing high quality images on curved substrates
JP5171711B2 (en) 2009-03-26 2013-03-27 富士フイルム株式会社 Droplet discharge head and image forming apparatus
JP5576481B2 (en) 2009-06-04 2014-08-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multi-color electronic device and method for forming multi-color electronic device by printing
DE102009033810A1 (en) * 2009-07-18 2011-01-27 Till, Volker, Dipl.-Ing. Plant for printing on containers
AT509149A3 (en) * 2009-11-27 2012-03-15 Durst Phototechnik Digital Technology Gmbh METHOD FOR ADAPTIVELY ADAPTING THE VOLUME FLOW OF THE EMITTED INK
DE102010001120A1 (en) * 2010-01-22 2011-07-28 Bericap GmbH & Co. KG, 55257 Printed container closure and method of printing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215429A1 (en) 2017-09-04 2019-03-07 Krones Ag Direct printing and direct printing machine for printing on containers with direct printing
WO2019042632A1 (en) 2017-09-04 2019-03-07 Krones Ag Direct printing method and direct printing machine for printing containers with a direct print
EP3679466B1 (en) * 2017-09-04 2023-10-11 Krones AG Direct printing method and direct printing machine for printing containers with a direct print

Also Published As

Publication number Publication date
CN103144442B (en) 2016-05-25
EP2591917B2 (en) 2018-09-19
DE102011086015A1 (en) 2013-05-16
EP2591917A1 (en) 2013-05-15
CN103144442A (en) 2013-06-12

Similar Documents

Publication Publication Date Title
EP2591917B1 (en) Method and device for ink-jet printing on curved container surfaces
EP3208746B1 (en) Method for inkjet printing of at least one curved area of the surface of an object
DE102015218035B4 (en) Three-dimensional object printer and method of operating a three-dimensional printer to compensate for radial velocity changes
DE60025582T2 (en) Printer with simplified manufacturing process and manufacturing process
EP3847029B1 (en) Distortion-free coating of vehicle interior surfaces
JP4533805B2 (en) Inkjet printer for 3D media printing and printing method using the same
EP3040205B1 (en) Method and device for ink-jet printing on containers
EP3679466B1 (en) Direct printing method and direct printing machine for printing containers with a direct print
EP2830883A1 (en) Method and arrangement for printing a three-dimensional surface
EP1839884B1 (en) Device for contour-exact printing of patterns on flat workpieces
EP3445590B1 (en) Method and device for digitally printing on three-dimensional objects
EP2639069A1 (en) Method for detecting errors in the alignment of printed images and printing station for carrying out the method
DE102018111658A1 (en) SYSTEM AND METHOD FOR REGULATING PRINT HEAD OPERATIONS IN A PRINTER PRINTED HEAD PRINTER PRINTING DIRECTLY ON OBJECTS
DE102014108092A1 (en) Direct printing machine for printing on containers
DE69928634T2 (en) Apparatus for multi-zone ink-jet printing
EP3196031A1 (en) Method for printing an object
DE102014206730A1 (en) Apparatus and method for ink jet printing on containers
EP2054232B2 (en) Method for circumferentially printing containers
DE102018207245A1 (en) Printing machine and a method for operating a printing press
DE102005034029A1 (en) Serial high-speed printing using printheads
EP3847028B1 (en) Method for distortion-free and homogeneous coating of workpieces having bidirectionally curved surfaces
WO2002011987A1 (en) Ink-jet printer and method for printing image material in an ink-jet printer
EP2958754B1 (en) Method for reducing banding effects
DE69918355T2 (en) inkjet
DE102020105704A1 (en) Process for the digital coating of three-dimensional workpiece surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131115

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 3/407 20060101AFI20140430BHEP

INTG Intention to grant announced

Effective date: 20140523

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 701586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012001838

Country of ref document: DE

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012001838

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

26 Opposition filed

Opponent name: KHS GMBH

Effective date: 20150917

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20180919

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502012001838

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 701586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230929

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231010

Year of fee payment: 12

Ref country code: DE

Payment date: 20230929

Year of fee payment: 12