EP2586969A2 - Rotor à disques pour un moteur à turbine à gaz - Google Patents
Rotor à disques pour un moteur à turbine à gaz Download PDFInfo
- Publication number
- EP2586969A2 EP2586969A2 EP12190261.3A EP12190261A EP2586969A2 EP 2586969 A2 EP2586969 A2 EP 2586969A2 EP 12190261 A EP12190261 A EP 12190261A EP 2586969 A2 EP2586969 A2 EP 2586969A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- blades
- recited
- interface
- spoke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 5
- 230000036316 preload Effects 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 description 16
- 230000008901 benefit Effects 0.000 description 8
- 238000005050 thermomechanical fatigue Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/06—Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
- F01D5/084—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
- F01D11/006—Sealing the gap between rotor blades or blades and rotor
- F01D11/008—Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/30—Fixing blades to rotors; Blade roots ; Blade spacers
- F01D5/3061—Fixing blades to rotors; Blade roots ; Blade spacers by welding, brazing
Definitions
- the present disclosure relates to a gas turbine engine, and more particularly to a rotor system therefor.
- Gas turbine rotor systems include successive rows of blades, which extend from respective rotor disks that are arranged in an axially stacked configuration.
- the rotor stack may be assembled through a multitude of systems such as fasteners, fusion, tie-shafts and combinations thereof.
- TMF thermo-mechanical fatigue
- a rotor for a gas turbine engine includes a plurality of blades which extend from a rotor disk. Each of the plurality of blades extends from the rotor disk at an interface, the interface defined along a spoke.
- the rotor disk may be axially assymetric.
- a spool for a gas turbine engine includes a compressor rotor disk defined along an axis of rotation.
- a plurality of compressor blades extend from the compressor rotor disk.
- Each of the plurality of compressor blades extends from compressor rotor disk at an interface, said interface defined along a spoke.
- a spool for a gas turbine engine includes a rotor disk defined along an axis of rotation.
- a plurality of blades extend from the rotor disk. Each of the plurality of blades extend from the rotor disk at a blade interface, the blade interface defined along a spoke radially inboard of a blade platform.
- a rotor ring is defined about the axis of rotation, the rotor ring axially adjacent to the rotor disk.
- a plurality of core gas path seals extend from the rotor ring. Each of the plurality of core gas path seals extend from the rotor ring at a seal interface, the seal interface defined along a spoke, the plurality of core gas path seals axially adjacent to the blade platform.
- FIG. 1 schematically illustrates a gas turbine engine 20.
- the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28.
- Alternative engines might include an augmentor section (not shown) among other systems or features.
- the fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath for compression and communication into the combustor section 26 then expansion through the turbine section 28.
- FIG. 1 schematically illustrates a gas turbine engine 20.
- the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28.
- Alternative engines might include an augmentor section (not shown) among other systems or features.
- the fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath for compression and communication into the combustor section 26
- the engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
- the low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46.
- the inner shaft 40 may be connected to the fan 42 directly or through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30 which in one disclosed non-limiting embodiment includes a gear reduction ratio of, for example, at least 2.4:1.
- the high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor (HPC) 52 and high pressure turbine (HPT) 54.
- a combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54.
- the inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.
- the core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46.
- the turbines 54, 46 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
- the gas turbine engine 20 is typically assembled in build groups or modules ( Figure 2 ).
- the high pressure compressor 52 includes eight stages and the high pressure turbine 54 includes two stages in a stacked arrangement. It should be appreciated, however, that any number of stages will benefit hereform as well as other engine sections such as the low pressure compressor 44 and the low pressure turbine 46. Further, other gas turbine architectures such as a three-spool architecture with an intermediate spool will also benefit herefrom as well.
- the high pressure compressor (HPC) 52 is assembled from a plurality of successive HPC rotors 60C which alternate with HPC spacers 62C arranged in a stacked configuration.
- the rotor stack may be assembled in a compressed tie-shaft configuration, in which a central shaft (not shown) is assembled concentrically within the rotor stack and secured with a nut (not shown), to generate a preload that compresses and retains the HPC rotors 60C with the HPC spacers 62C together as a spool. Friction at the interfaces between the HPC rotor 60C and the HPC spacers 62C is solely responsible to prevent rotation between adjacent rotor hardware.
- each HPC rotor 60C generally includes a plurality of blades 64 circumferentially disposed around a rotor disk 66.
- the rotor disk 66 generally includes a hub 68, a rim 70, and a web 72 which extends therebetween.
- Each blade 64 generally includes an attachment section 74, a platform section 76 and an airfoil section 78 ( Figure 5 ).
- the HPC rotor 60C may be a hybrid dual alloy integrally bladed rotor (IBR) in which the blades 64 are manufactured of one type of material and the rotor disk 66 is manufactured of different material.
- IBR integrally bladed rotor
- Bi-metal construction provides material capability to separately address different temperature requirements.
- the blades 64 are manufactured of a single crystal nickel alloy that are transient liquid phase bonded with the rotor disk 66 which is manufactured of a different material such as an extruded billet nickel alloy.
- the blades 64 may be subject to a first type of heat treat and the rotor disk 66 to a different heat treat. That is, the Bi-metal construction as defined herein includes different chemical compositions as well as different treatments of the same chemical compositions such as that provided by differential heat treatment.
- a spoke 80 is defined between the rim 70 and the attachment section 74.
- the spoke 80 is a circumferentially reduced section defined by interruptions which produce axial or semi-axial slots which flank each spoke 80.
- the spokes 80 may be machined, cut with a wire EDM or other processes to provide the desired shape.
- An interface 80I that defines the transient liquid phase bond and or heat treat transition between the blades 64 and the rotor disk 66 are defined within the spoke 80. That is, the spoke 80 contains the interface 80I.
- Heat treat transition as defined herein is the transition between differential heat treatments.
- the spoke 80 provides a reduced area subject to the thermo-mechanical fatigue (TMF) across the relatively high temperature gradient between the blades 64 which are within the relatively hot core gas path and the rotor disk 66 which is separated therefrom and is typically cooled with a secondary cooling airflow.
- TMF thermo-mechanical fatigue
- the HPC spacers 62C provide a similar architecture to the HPC rotor 60C in which a plurality of core gas path seals 82 are bonded or otherwise separated from a rotor ring 84 at an interface 861 defined along a spoke 86.
- the seals 82 may be manufactured of the same material as the blades 64 and the rotor ring 84 may be manufactured of the same material as the rotor disk 66. That is, the HPC spacers 62C may be manufactured of a hybrid dual alloy which are transient liquid phase bonded at the spoke 86.
- the HPC spacers 62C may be manufactured of a single material but subjected to the differential heat treat which transitions within the spoke 86.
- a relatively low-temperature configuration will benefit from usage of a single material such that the spokes 86 facilitate a weight reduction.
- low-temperature bi-metal designs may further benefit from dissimilar materials for weight reduction where, for example, low density materials may be utilized where load carrying capability is less critical.
- the rotor geometry provided by the spokes 80, 86 reduces the transmission of core gas path temperature via conduction to the rotor disk 66 and the seal ring 84.
- the spokes 80, 86 enable an IBR rotor to withstand increased T3 levels with currently available materials. Rim cooling may also be reduced from conventional allocations.
- the overall configuration provides weight reduction at similar stress levels to current configurations.
- the spokes 80, 86 in the disclosed non-limiting embodiment are oriented at a slash angle with respect to the engine axis A to minimize windage and the associated thermal effects. That is, the spokes are non-parallel to the engine axis A.
- the passages which flank the spokes 80, 86 may also be utilized to define airflow paths to receive an airflow from an inlet HPC spacer 62CA.
- the inlet HPC spacer 62CA includes a plurality of inlets 88 which may include a ramped flow duct 90 to communicate an airflow into the passages defined between the spokes 80, 86.
- the airflow may be core gas path flow which is communicated from an upstream, higher pressure stage for use in a later section within the engine such as the turbine section 28.
- various flow paths may be defined through combinations of the inlet HPC spacers 62CA to include but not limited to, core gas path flow communication, secondary cooling flow, or combinations thereof.
- the airflow may be communicated not only forward to aft toward the turbine section, but also aft to forward within the engine 20. Further, the airflow may be drawn from adjacent static structure such as vanes to effect boundary flow turbulence as well as other flow conditions. That is, the HPC spacers 62C and the inlet HPC spacer 62CA facilitate through-flow for use in rim cooling, purge air for use downstream in the compressor, turbine, or bearing compartment operation.
- the inlets 88' may be located through the inner diameter of an inlet HPC spacer 62CA' ( Figure 8 ).
- the inlet HPC spacer 62CA' may be utilized to, for example, communicate a secondary cooling flow along the spokes 80, 86 to cool the spokes 80, 86 as well as communicate secondary cooling flow to other sections of the engine 20.
- the inlets 88, 88' may be arranged with respect to rotation to essentially "scoop" and further pressurize the flow. That is, the inlets 88, 88' include a circumferential directional component.
- each rotor ring 84 defines a forward circumferential flange 92 and an aft circumferential flange 94 which is captured radially inboard of the associated adjacent rotor rim 70. That is, each rotor ring 84 is captured therebetween in the stacked configuration.
- the stacked configuration is arranged to accommodate the relatively lower-load capability alloys on the core gas path side of the rotor hardware, yet maintain the load-carrying capability between the seal rings 84 and the rims 70 to transmit rotor torque.
- the alternating rotor rim 70 to seal ring 84 configuration carries the rotor stack preload - which may be upward of 150,000 lbs (66.7 kN) - through the high load capability material of the rotor rim 70 to seal ring 84 interface, yet permits the usage of a high temperature resistant, yet lower load capability materials in the blades 64 and the seal surface 82 which are within the high temperature core gas path. Divorce of the sealing area from the axial rotor stack load path facilitates the use of a disk-specific alloy to carry the stack load and allows for the high-temp material to only seal the rotor from the flow path.
- the inner diameter loading and outer diameter sealing permits a segmented airfoil and seal platform design which facilitates relatively inexpensive manufacture and highly contoured airfoils.
- the disclosed rotor arrangement facilitates a compressor inner diameter bore architectures in which the reduced blade/platform pull may be taken advantage of in ways that produce a larger bore inner diameter to thereby increase shaft clearance.
- the HPC spacers 62C and HPC rotors 60C of the IBR may also be axially asymmetric to facilitate a relatively smooth axial rotor stack load path ( Figure 10 ).
- the asymmetry may be located within particular rotor rims 70A and/or seal rings 84A.
- the seal ring 84A includes a thinner forward circumferential flange 92 compared to a thicker aft circumferential flange 94 with a ramped interface 84Ai.
- the ramped interface 84Ai provides a smooth rotor stack load path.
- the load path along the spool may be designed in a more efficient manner as compared to the heretofore rather torturous conventional rotor stack load path ( Figure 11 ; RELATED ART).
- the blades 64 and seal surface 82 may be formed as segments that include tangential wire seals 96 between each pair of the multiple of seal surfaces 82 and each pair of the multiple of blades 64 as well as axial wire seals 98 between the adjacent HPC spacers 62C and HPC rotors 60C.
- the tangential wire seals 96 and the axial wire seals 98 are located within teardrop shaped cavities 100 ( Figure 13 ) such that centrifugal forces increase the seal interface forces.
- the high pressure compressor (HPC) 52 is discussed in detail above, it should be appreciated that the high pressure turbine (HPT) 54 ( Figure 14 ) is similarly assembled from a plurality of successive respective HPT rotor disks 60T which alternate with HPT spacers 62T ( Figure 15 ) arranged in a stacked configuration and the disclosure with respect to the high pressure compressor (HPC) 52 is similarly applicable to the high pressure turbine (HPT) 54 as well as other spools of the gas turbine engine 20 such as a low spool and an intermediate spool of a three-spool engine architecture. That is, it should be appreciated that other sections of a gas turbine engine may alternatively or additionally benefit herefrom.
- each HPT rotor 60T generally includes a plurality of blades 102 circumferentially disposed around a rotor disk 124.
- the rotor disk 124 generally includes a hub 126, a rim 128, and a web 130 which extends therebetween.
- Each blade 102 generally includes an attachment section 132, a platform section 134, and an airfoil section 136 ( Figure 16 ).
- the blades 102 may be bonded to the rim 128 along a spoke 136 at an interface 1361 as with the high pressure compressor (HPC) 52.
- Each spoke 136 also includes a cooling passage 138 generally aligned with each turbine blade 102.
- the cooling passage 138 communicates a cooling airflow into internal passages (not shown) of each turbine blade 102.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/283,733 US8944762B2 (en) | 2011-10-28 | 2011-10-28 | Spoked spacer for a gas turbine engine |
US13/283,689 US9938831B2 (en) | 2011-10-28 | 2011-10-28 | Spoked rotor for a gas turbine engine |
US13/283,710 US8784062B2 (en) | 2011-10-28 | 2011-10-28 | Asymmetrically slotted rotor for a gas turbine engine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2586969A2 true EP2586969A2 (fr) | 2013-05-01 |
EP2586969A3 EP2586969A3 (fr) | 2017-05-03 |
EP2586969B1 EP2586969B1 (fr) | 2020-03-25 |
Family
ID=47148609
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12190264.7A Active EP2586970B1 (fr) | 2011-10-28 | 2012-10-26 | Espaceur de disque échelé pour un moteur à turbine à gaz |
EP12190261.3A Active EP2586969B1 (fr) | 2011-10-28 | 2012-10-26 | Rotor à disques pour un moteur à turbine à gaz |
EP12190276.1A Active EP2586971B1 (fr) | 2011-10-28 | 2012-10-26 | Joints d'étanchéité, rotor, axe et procédé d'orientation des flux de force lors de l'assemblage du rotor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12190264.7A Active EP2586970B1 (fr) | 2011-10-28 | 2012-10-26 | Espaceur de disque échelé pour un moteur à turbine à gaz |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12190276.1A Active EP2586971B1 (fr) | 2011-10-28 | 2012-10-26 | Joints d'étanchéité, rotor, axe et procédé d'orientation des flux de force lors de l'assemblage du rotor |
Country Status (1)
Country | Link |
---|---|
EP (3) | EP2586970B1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3009596A1 (fr) * | 2014-09-17 | 2016-04-20 | United Technologies Corporation | Système de passage de flux secondaire pour un ensemble rotor d'un moteur à turbine à gaz |
EP2987953A3 (fr) * | 2014-08-20 | 2016-05-25 | United Technologies Corporation | Rotors de turbine à gaz |
US10287896B2 (en) | 2013-09-17 | 2019-05-14 | United Technologies Corporation | Turbine blades and manufacture methods |
US10851661B2 (en) | 2017-08-01 | 2020-12-01 | General Electric Company | Sealing system for a rotary machine and method of assembling same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9664058B2 (en) * | 2014-12-31 | 2017-05-30 | General Electric Company | Flowpath boundary and rotor assemblies in gas turbines |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE675222C (de) * | 1937-02-09 | 1939-05-03 | Rheinmetall Borsig Akt Ges | Turbinenlaufrad und Verfahren zu dessen Herstellung |
US2369051A (en) * | 1942-07-10 | 1945-02-06 | Sulzer Ag | Welded turbine rotor |
DE913836C (de) * | 1945-04-10 | 1954-06-21 | Maschf Augsburg Nuernberg Ag | Innengekuehlter Hohltrommellaeufer fuer Gasturbinen |
BE469282A (fr) * | 1945-11-20 | |||
GB612097A (en) * | 1946-10-09 | 1948-11-08 | English Electric Co Ltd | Improvements in and relating to the cooling of gas turbine rotors |
CH257836A (de) * | 1947-08-07 | 1948-10-31 | Sulzer Ag | Läufer für Kreiselmaschinen, insbesondere für Gasturbinen. |
FR1138797A (fr) * | 1954-09-10 | 1957-06-19 | Henschel & Sohn Gmbh | Rotor pour turbine à gaz et à vapeur |
GB1266505A (fr) * | 1968-09-17 | 1972-03-08 | ||
DE2514208A1 (de) * | 1975-04-01 | 1976-10-14 | Kraftwerk Union Ag | Gasturbine der scheibenbauart |
US4483054A (en) * | 1982-11-12 | 1984-11-20 | United Technologies Corporation | Method for making a drum rotor |
US4784572A (en) * | 1987-10-14 | 1988-11-15 | United Technologies Corporation | Circumferentially bonded rotor |
DE19650260A1 (de) * | 1996-12-04 | 1998-06-10 | Asea Brown Boveri | Rotor für Turbomaschinen |
US6666653B1 (en) * | 2002-05-30 | 2003-12-23 | General Electric Company | Inertia welding of blades to rotors |
DE10340823A1 (de) * | 2003-09-04 | 2005-03-31 | Rolls-Royce Deutschland Ltd & Co Kg | Schaufel für einen Verdichter oder eine Turbinenscheibe einer Gasturbine |
DE102007050142A1 (de) * | 2007-10-19 | 2009-04-23 | Mtu Aero Engines Gmbh | Verfahren zur Herstellung einer Blisk oder eines Blings, damit hergestelltes Bauteil und Turbinenschaufel |
DE102008057160A1 (de) * | 2008-11-13 | 2010-05-20 | Mtu Aero Engines Gmbh | Verfahren zum Austausch eines inneren Scheibenelements einer integral beschaufelten Scheibe |
US8287242B2 (en) * | 2008-11-17 | 2012-10-16 | United Technologies Corporation | Turbine engine rotor hub |
DE102009011965A1 (de) * | 2009-03-05 | 2010-09-09 | Mtu Aero Engines Gmbh | Integral beschaufelter Rotor für eine Strömungsmaschine |
JP5193960B2 (ja) * | 2009-06-30 | 2013-05-08 | 株式会社日立製作所 | タービンロータ |
US20110164982A1 (en) * | 2010-01-06 | 2011-07-07 | General Electric Company | Apparatus and method for a low distortion weld for rotors |
-
2012
- 2012-10-26 EP EP12190264.7A patent/EP2586970B1/fr active Active
- 2012-10-26 EP EP12190261.3A patent/EP2586969B1/fr active Active
- 2012-10-26 EP EP12190276.1A patent/EP2586971B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10287896B2 (en) | 2013-09-17 | 2019-05-14 | United Technologies Corporation | Turbine blades and manufacture methods |
US11008875B2 (en) | 2013-09-17 | 2021-05-18 | Raytheon Technologies Corporation | Turbine blades and manufacture methods |
EP2987953A3 (fr) * | 2014-08-20 | 2016-05-25 | United Technologies Corporation | Rotors de turbine à gaz |
US10006364B2 (en) | 2014-08-20 | 2018-06-26 | United Technologies Corporation | Gas turbine rotors |
EP3009596A1 (fr) * | 2014-09-17 | 2016-04-20 | United Technologies Corporation | Système de passage de flux secondaire pour un ensemble rotor d'un moteur à turbine à gaz |
US10837288B2 (en) | 2014-09-17 | 2020-11-17 | Raytheon Technologies Corporation | Secondary flowpath system for a gas turbine engine |
US10851661B2 (en) | 2017-08-01 | 2020-12-01 | General Electric Company | Sealing system for a rotary machine and method of assembling same |
Also Published As
Publication number | Publication date |
---|---|
EP2586969A3 (fr) | 2017-05-03 |
EP2586971B1 (fr) | 2019-06-12 |
EP2586971A3 (fr) | 2017-05-24 |
EP2586970A2 (fr) | 2013-05-01 |
EP2586971A2 (fr) | 2013-05-01 |
EP2586970A3 (fr) | 2017-05-24 |
EP2586969B1 (fr) | 2020-03-25 |
EP2586970B1 (fr) | 2019-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10760423B2 (en) | Spoked rotor for a gas turbine engine | |
US9790792B2 (en) | Asymmetrically slotted rotor for a gas turbine engine | |
US8961132B2 (en) | Secondary flow arrangement for slotted rotor | |
US8944762B2 (en) | Spoked spacer for a gas turbine engine | |
EP3594452B1 (fr) | Joint segmenté pour un moteur à turbine à gaz | |
US9476305B2 (en) | Impingement-cooled turbine rotor | |
US10837288B2 (en) | Secondary flowpath system for a gas turbine engine | |
EP2586968B1 (fr) | Agencement d'écoulement secondaire pour rotor rainuré | |
EP2586992B1 (fr) | Étanchéité d'une aube tournante comportant des passages d'air de refroidissement | |
US10663036B2 (en) | Gas turbine engine with rotating reversing compound gearbox | |
EP2586970B1 (fr) | Espaceur de disque échelé pour un moteur à turbine à gaz | |
US10934845B2 (en) | Dual cooling airflow to blades | |
CN108691568B (zh) | 用于燃气涡轮发动机的涡轮级间框架 | |
US20200353577A1 (en) | Turbine wheels, turbine engines including the same, and methods of fabricating turbine wheels with improved bond line geometry | |
EP3043031B1 (fr) | Agencement d'aubes de redresseur, set d'aubes de redresseur et procédé de fabrication d'un agencement d'aubes de redresseur | |
US20220090504A1 (en) | Rotor blade for a gas turbine engine having a metallic structural member and a composite fairing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNITED TECHNOLOGIES CORPORATION |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/08 20060101AFI20170328BHEP Ipc: F01D 25/12 20060101ALI20170328BHEP Ipc: F01D 5/30 20060101ALI20170328BHEP Ipc: F01D 11/00 20060101ALI20170328BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171102 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180503 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190522 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SUCIU, GABRIEL L. Inventor name: NORRIS, JAMES W. Inventor name: DYE, CHRISTOPHER M. Inventor name: SALVE, ARTHUR M. Inventor name: ALVANOS, IOANNIS Inventor name: MURON, STEPHEN P. Inventor name: MERRY, BRIAN D. |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20191018 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1248791 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012068696 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200626 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200818 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200725 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1248791 Country of ref document: AT Kind code of ref document: T Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012068696 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201026 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602012068696 Country of ref document: DE Owner name: RAYTHEON TECHNOLOGIES CORPORATION (N.D.GES.D.S, US Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORPORATION, FARMINGTON, CONN., US |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230920 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240919 Year of fee payment: 13 |