EP2585037A1 - Topical ophthalmic suspensions containing tobramycin and dexamethasone - Google Patents
Topical ophthalmic suspensions containing tobramycin and dexamethasoneInfo
- Publication number
- EP2585037A1 EP2585037A1 EP10726406.1A EP10726406A EP2585037A1 EP 2585037 A1 EP2585037 A1 EP 2585037A1 EP 10726406 A EP10726406 A EP 10726406A EP 2585037 A1 EP2585037 A1 EP 2585037A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- xanthan gum
- tobramycin
- viscosity
- compositions
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 title claims abstract description 89
- 229960000707 tobramycin Drugs 0.000 title claims abstract description 81
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 title claims abstract description 59
- 229960003957 dexamethasone Drugs 0.000 title claims abstract description 55
- 230000000699 topical effect Effects 0.000 title claims abstract description 11
- 239000000725 suspension Substances 0.000 title abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 198
- 229920001285 xanthan gum Polymers 0.000 claims abstract description 95
- 239000000230 xanthan gum Substances 0.000 claims abstract description 93
- 229940082509 xanthan gum Drugs 0.000 claims abstract description 93
- 235000010493 xanthan gum Nutrition 0.000 claims abstract description 93
- 230000003993 interaction Effects 0.000 claims abstract description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 68
- 235000002639 sodium chloride Nutrition 0.000 claims description 37
- 239000011780 sodium chloride Substances 0.000 claims description 34
- 238000001727 in vivo Methods 0.000 claims description 23
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 16
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 16
- 235000011152 sodium sulphate Nutrition 0.000 claims description 16
- 238000000338 in vitro Methods 0.000 claims description 14
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 208000015181 infectious disease Diseases 0.000 claims description 9
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 8
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 7
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 6
- 239000006172 buffering agent Substances 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000001103 potassium chloride Substances 0.000 claims description 5
- 235000011164 potassium chloride Nutrition 0.000 claims description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 4
- 229910021538 borax Inorganic materials 0.000 claims description 4
- 239000001110 calcium chloride Substances 0.000 claims description 4
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 4
- 235000011148 calcium chloride Nutrition 0.000 claims description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 4
- 235000011147 magnesium chloride Nutrition 0.000 claims description 4
- 239000001632 sodium acetate Substances 0.000 claims description 4
- 235000017281 sodium acetate Nutrition 0.000 claims description 4
- 239000001509 sodium citrate Substances 0.000 claims description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 4
- 235000011083 sodium citrates Nutrition 0.000 claims description 4
- 239000001488 sodium phosphate Substances 0.000 claims description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 4
- 235000011008 sodium phosphates Nutrition 0.000 claims description 4
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 4
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 claims description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 4
- 230000004968 inflammatory condition Effects 0.000 claims description 3
- 239000001508 potassium citrate Substances 0.000 claims description 3
- 229960002635 potassium citrate Drugs 0.000 claims description 3
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 claims description 3
- 235000011082 potassium citrates Nutrition 0.000 claims description 3
- 229910000160 potassium phosphate Inorganic materials 0.000 claims description 3
- 235000011009 potassium phosphates Nutrition 0.000 claims description 3
- 238000009472 formulation Methods 0.000 abstract description 63
- 238000003860 storage Methods 0.000 abstract description 10
- 238000001556 precipitation Methods 0.000 abstract description 6
- 230000014759 maintenance of location Effects 0.000 abstract description 3
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 3
- 241000894007 species Species 0.000 description 17
- 239000000243 solution Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 13
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229940035274 tobradex Drugs 0.000 description 8
- 229940100654 ophthalmic suspension Drugs 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000011550 stock solution Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 210000001742 aqueous humor Anatomy 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000006196 deacetylation Effects 0.000 description 5
- 238000003381 deacetylation reaction Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000008213 purified water Substances 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000002924 anti-infective effect Effects 0.000 description 3
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 3
- 229940092705 beclomethasone Drugs 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 230000000850 deacetylating effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- MDYZKJNTKZIUSK-UHFFFAOYSA-N tyloxapol Chemical compound O=C.C1CO1.CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 MDYZKJNTKZIUSK-UHFFFAOYSA-N 0.000 description 2
- 229960004224 tyloxapol Drugs 0.000 description 2
- 229920001664 tyloxapol Polymers 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 241000283977 Oryctolagus Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229960002344 dexamethasone sodium phosphate Drugs 0.000 description 1
- PLCQGRYPOISRTQ-FCJDYXGNSA-L dexamethasone sodium phosphate Chemical compound [Na+].[Na+].C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP([O-])([O-])=O)(O)[C@@]1(C)C[C@@H]2O PLCQGRYPOISRTQ-FCJDYXGNSA-L 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- FABPRXSRWADJSP-MEDUHNTESA-N moxifloxacin Chemical compound COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 FABPRXSRWADJSP-MEDUHNTESA-N 0.000 description 1
- 229960003702 moxifloxacin Drugs 0.000 description 1
- 238000002552 multiple reaction monitoring Methods 0.000 description 1
- 201000005111 ocular hyperemia Diseases 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/7036—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin having at least one amino group directly attached to the carbocyclic ring, e.g. streptomycin, gentamycin, amikacin, validamycin, fortimicins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
- A61K9/0051—Ocular inserts, ocular implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2121/00—Preparations for use in therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- the present invention is directed to the field of ophthalmic anti-infective/anti- infiammatory compositions and associated methods of treatment in mammals, particularly humans. More specifically, the present invention is directed to new ocular anti-infective/anti-inflammatory compositions containing tobramycin and dexamethasone.
- tobramycin and dexamethasone in combination to treat ophthalmic infections and attendant inflammation
- these compounds in combination to treat inflammation and prophylactically treat (i.e., prevent or ameliorate) infections, such as in conjunction with an ocular surgical procedure
- a product of this type is marketed by Alcon Laboratories, Inc. in the United States and other countries as TOBRADEX ® (tobramycin 0.3%/dexamethasone 0.1%) Ophthalmic Suspension. This product has been available in the United States since 1988. It has been widely accepted as being the state-of-the-art ophthalmic anti-infective/anti-inflammatory product for many years. Further details regarding the composition of TOBRADEX ® brand ophthalmic suspension are provided in U.S. Patent No. 5,149,694.
- the present invention is directed to the provision of improved tobramycin/dexamethasone compositions for topical ocular application.
- the invention is directed to the provision of compositions that contain xanthan gum and have a pH in the range 5 to 6.
- the viscosities of the compositions at the time of manufacture and during storage in a container prior to use are considerably less than would normally be expected based on the concentrations of xanthan gum utilized. This lowering of the viscosity prior to use is advantageous relative to dispensing of the compositions from a dropper bottle (e.g., DROPTAINERTM, Alcon Laboratories, Inc.) or other container when administering the compositions to a patient.
- a dropper bottle e.g., DROPTAINERTM, Alcon Laboratories, Inc.
- the reduction of the viscosities of the compositions at the time of manufacture and during storage prior to application to the eye is attributable to ionic interactions between the tobramycin and xanthan gum which occur at a pIT of 5 to 6. Those interactions, if left uncontrolled, lead to the formation of clumps of tobramycin and xanthan gum and/or precipitation of the xanthan gum.
- the present invention is based in part on the discovery of formulation components and parameters that have been shown to be effective in controlling the tobramycin/xanthan gum interactions.
- compositions of the present invention contain xanthan gum.
- xanthan gum as a component of ophthalmic compositions is described in U.S. Patent No. 4,136, 177; U.S. Patent No. 6,352,978; U.S. Patent No. 6,174,524; and U.S. Patent No. 6, 261, 547.
- the '978 patent describes the use of xanthan gum in combination with tobramycin. It indicates that xanthan gum and tobramycin are incompatible at a pH of 5.0 to 7.8, and teaches that this incompatibility problem can be avoided by formulating tobramycin/xanthan gum compositions to have a pH in the range of 7.9 to 8.6.
- a product based on the invention described in the '978 patent is marketed by affiliates of Alcon Laboratories, Inc. in Europe and several other countries.
- the '524 and '547 patents describe xanthan-based ophthalmic compositions formulated as non-gelled liquids that gel upon topical application to the eye.
- the compositions of the '524 and '547 patents are formulated so that their total ionic strength is approximately 120 mM or less, and preferably about 94 mM or less.
- the compositions of the '524 and '547 patents that have a total ionic strength greater than about 120 mM do not gel upon contact with the eye.
- the compositions of '524 and '547 patents are generally viscous and gel upon topical application to the eye.
- the compositions of the present invention generally have lower viscosities in the bottle, but the viscosities increase significantly following application to the eye, as interactions between tobramycin and xanthan gum are broken down.
- the tobramycin/dexamethasone compositions of the present invention are formulated at a pH of 5 to 6. This pH range is necessary in order to maintain the stability of dexamethasone.
- the use of a pH in this range for an ophthalmic tobramycin/dexamethasone composition is described in U.S. Patent No. 5,149,694.
- TOBRADEX ® tobramycin 0.3%/dexamethasone 0.1%) Ophthalmic Suspension also has a pH in this range.
- the present invention resulted from an effort to create improved tobramycin/dexamethasone formulations, particularly compositions that provide for enhanced bioavailability of tobramycin and/or dexamethasone upon topical application to the eye, via the use of xanthan gum as a vehicle for tobramycin and dexamethasone.
- xanthan gum as a vehicle for tobramycin and dexamethasone.
- ionic interactions between tobramycin and xanthan gum at a pH of 5 to 6 lead to clumping and/or precipitation of the xanthan gum.
- xanthan gum slowly undergoes deacetylation during storage, thereby resulting in a stability 5 problem.
- the present invention is based on the discovery of solutions to these problems.
- the present invention is directed to the provision of improved pharmaceutical compositions that contain tobramycin and dexamethasone and are suitable for topical application to the eyes of human patients.
- the compositions of the present invention are based in-part on the discovery of formulation parameters that control ionic interactions between tobramycin and xanthan gum, while maintaining the stability of is dexamethasone.
- the control of those interactions has enabled the present inventors to provide compositions having physical properties that are very advantageous. More specifically, the compositions of the present invention have advantageous rheological properties, as a result of the controlled interactions between tobramycin and xanthan gum, and those properties enhance the bioavailability of drugs0 administered topically to the eye, particularly tobramycin and dexamethasone.
- compositions provide significant improvements relative to the suspension of relatively insoluble forms of dexamethasone therein (i.e., dexamethasone alcohol), such that even if a patient occasionally fails to comply with instructions to shake a bottle containing the compositions prior to application to the5 eye, the availability of dexamethasone suspended in the compositions is not significantly diminished.
- dexamethasone alcohol relatively insoluble forms of dexamethasone therein
- Solutions or suspensions containing xanthan gum at the concentrations utilized in the present invention are normally very viscous.
- the present invention is based in part on the finding that tobramycin, which is a cationic molecule, interacts ionically with the negatively charged xanthan gum molecules, thereby lowering the viscosity of the compositions.
- the viscosity of the tobramycin/xanthan gum compositions of the present invention is restored (i.e., increases), as a result of disruption of the ionic5 interactions between tobramycin and xanthan gum, thereby resulting in increased ocular retention and enhanced ocular bioavailability.
- the ionic interactions between tobramycin and xanthan gum must be controlled, so as to avoid the formation of precipitates and clumping, and maintain a uniform dispersion of the xanthan gum in the compositions.
- the present invention is based in-part on the identification of formulation features and parameters that control the ionic interaction between tobramycin and xanthan gum during the manufacturing and storage phase while maintaining the stability of dexamethasone.
- the precipitation or clumping effect of tobramycin on xanthan gum results in a loss of the viscosity-enhancing effect of the xanthan gum on the composition, such that the viscosity of the composition may revert to a value equivalent to water (i.e., about 1 centipoise).
- U.S. Patent No. 6,352,978 is based in-part on the discovery that these ionic interactions may be controlled by utilizing an alkaline pH (i.e., a pH of 8.0 or greater).
- an alkaline pH i.e., a pH of 8.0 or greater.
- the use of an alkaline pH is not possible in the tobramycin/dexamethasone compositions of the present invention, because dexamethasone is not stable at this pH level.
- Dexamethasone is stable at a pH of 5 to 6, but at this pH the negatively charged xanthan gum and positively charged tobramycin interact to form precipitates and/or agglomerated clumps of material.
- the ionic species utilized for this purpose can be any pharmaceutically acceptable agents that dissociate into anions and cations at a pH in the range of 5 to 6, but preferably are inorganic electrolytes or organic buffering agents, such as sodium chloride, potassium chloride or sodium sulfate.
- inorganic electrolytes or organic buffering agents such as sodium chloride, potassium chloride or sodium sulfate.
- the present invention is also based in-part on the discovery that the xanthan gum-based compositions of the present invention possess superior suspension properties. More specifically, dexamethasone particles remain suspended in the compositions of the present invention significantly longer, relative to the prior TOBRADEX ® formulation. This improvement provides important advantages, particularly with respect to patients who sometimes forget or overlook the instructions to "shake well before using” that apply to all ophthalmic suspension compositions.
- the present invention is also based in-part on a finding that xanthan gum is much more effective as a viscosity enhancing agent in the compositions of the present invention if it is at least partially deacetylated. More specifically, xanthan gum slowly undergoes deacetylation in aqueous solutions. It has been determined that such deacetylation further lowers the pH of the compositions, thereby increasing ionic interactions between tobramycin and dexamethasone. These interactions initially result in a loss of viscosity and ultimately cause clumping and/or precipitation of xanthan gum and tobramycin. The present inventors have determined that this problem can be overcome by deacetylating xanthan gum prior to its inclusion in the compositions of the present invention.
- Figure 1 is a graph showing the effect of sodium chloride concentration on the viscosity of a representative formulation of the present invention, as described in Example 3
- Figure 2 is a graph showing the effect of pH on the viscosity of a representative formulation of the present invention, as described in Example 3;
- Figure 4 is a graph illustrating the relationship between sodium chloride equivalent concentration and viscosity, as described in Example 4.
- Figure 5 is a graph showing ocular bioavailability data for three representative formulations of the present invention, in comparison to a prior art formulation, as described in Example 5.
- the ionic species utilized in the present invention can be any pharmaceutically acceptable compound that dissociates into cationic and anionic components at a pH in the range of 5 to 6.
- the compounds may be inorganic or0 organic, but will preferably be inorganic electrolytes, organic buffering agents or combinations thereof.
- examples of such ionic species include sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium sulfate, sodium citrate, potassium citrate, sodium phosphate, potassium phosphate, sodium acetate, sodium borate, boric acid/mannitol complexes, boric acid/sorbitol complexes and5 combinations thereof.
- the total amount of ionizable species present in the compositions of the present invention affects the viscosity of the compositions.
- the compositions must contain one or more ionizable compounds in an amount sufficient to reduce or preclude ionic interactions between tobramycin and xanthan gum, such that the formation of precipitates or clumping in the compositions is avoided, without exceeding the viscosity ranges specified above.
- compositions therefore must contain ionic species in an amount sufficient to provide the compositions with a viscosity at the time of manufacture (referred to herein as "initial viscosity") of at least 10 cps, preferably an amount sufficient to provide an initial viscosity of 15 cps or greater, and most preferably an amount sufficient to provide an initial viscosity of 25 cps or greater.
- the initial viscosity of the compositions is preferably in the range of 25 to 175 cps.
- the effect of ionic species on ionic strength and viscosity is dependent on the particular ionic species selected. For example, the effect of sodium sulfate on ionic strength and viscosity is about 5.3 times greater than the effect of sodium chloride.
- the relative effect of different ionized salts maybe determined by means of routine experimentation, within the pH range, tobramycin concentrations, xanthan gum concentrations and viscosity ranges specified herein.
- compositions of the present invention are concerned.
- amount of ionizable salts must be sufficient to avoid formation of precipitates or clumping of tobramycin and xanthan gum, without elevating the viscosity of the composition above 700 cps or, more preferably, 300 cps.
- the viscosities of the ophthalmic suspensions of the present invention may increase somewhat over time, due to loss of moisture from the compositions.
- the suspensions are therefore formulated so as to maintain the viscosities thereof within the range of 10 to 700 cps, preferably 10 to 300 cps, over a period of 18 months.
- the viscosity of the compositions of the present invention from the time of manufacture until application to the eye is referred to herein as the "in vitro viscosity" of the compositions.
- the viscosity values expressed herein are based on the use of a Brookfield viscometer at a shear rate of approximately 6 sec " 1 and at a temperature of 25°C.
- a shear rate of approximately 6 sec " ' can be achieved using spindle CP-52 at 3 revolutions per minute ("rpm"), spindle CP-51 at 1.5 rpm, spindle CP-42 at 1.5 rpm or spindle CP-41 at 3 rpm.
- Spindles CP-52 and CP-51 are typically used to measure viscosities greater than 300 centipoise (“cps").
- Spindles CP-42 and CP-41 are generally typically used to measure viscosities less than 300 cps.
- compositions of the present invention preferably have an in vitro/in vivo
- the foregoing ratio may also be expressed in terms of percentages, i.e., the in vitro viscosity divided by the simulated in vivo viscosity multiplied by 100.
- the foregoing range for the ratio of in vitro to simulated in vivo viscosity is therefore equivalent to a range wherein the in vitro viscosity of a composition of the present invention is from 1% to 65% of the simulated in vivo viscosity of said composition.
- the relative viscosity values may also be expressed as a ratio of in vivo viscosity to in vitro viscosity.
- the compositions of the present invention preferably have an in vivo/in vitro viscosity ratio of to , which is equivalent to a range wherein the in vivo viscosity of a composition is from about 1.5 to 100 times greater than the in vitro viscosity of said composition.
- sodium chloride for purposes of adjusting osmolality increases the ionic species concentration beyond a level that is acceptable (i.e., relative to the targeted viscosity value), it may be necessary to replace all or part of the sodium chloride with a non- ionic osmolality-adjusting agent, such as propylene glycol.
- a non- ionic osmolality-adjusting agent such as propylene glycol
- compositions of the present invention may contain various other ingredients that are typically utilized in ophthalmic pharmaceutical compositions, such as antimicrobial preservatives (e.g., benzalkonium chloride) and wetting agents.
- antimicrobial preservatives e.g., benzalkonium chloride
- the compositions are preferably formulated and packaged as multi-dose products, but may also be formulated without a conventional antimicrobial preservative and packaged in a sealed, unit dose vial.
- compositions of the present invention are useful in the treatment of ocular inflammatory conditions wherein either an infection or a risk of infection exists.
- treatment encompasses both active treatment of an existing condition and prophylactic treatment of a patient that is at risk of developing a condition (e.g., infection).
- the compositions of the present invention are particularly useful in treating ocular inflammation associated with injuries to the eye resulting from trauma, as well as inflammation associated with ocular surgical procedures (e.g., cataract surgery, retinal surgery, LASI surgery) and ocular injections (e.g., retrobulbar injections, posterior juxtascleral injections and anterior juxtascleral injections).
- Such treatments can be performed by applying a small amount (e.g., one to two drops) of a composition of the present invention to the affected eye or eyes of a patient from two to four times per day.
- a small amount e.g., one to two drops
- both the amount of the dose and the dosing frequency may be modified by clinicians.
- a select few therapeutic agents other than tobramycin can interact with xanthan gum in substantially the same manner as tobramycin and can be employed in the present invention.
- a therapeutic agent molecule having two or more positive or cationic charges within the molecule can interact with xanthan gum in the same manner as tobramycin.
- fluoroquinolone therapeutic agents can interact with xanthan gum in a manner similar to tobramycin.
- the inventors have found that ionic species can be used to control interactions between moxifloxacin and xanthan gum to provide in vitro/in vivo viscosity ratios substantially similar to those discussed above.
- Table 1A The formulations described in Table 1A were subjected to accelerated stability testing. As shown in Table IB, below, the pH and viscosities of the formulations, which were prepared using xanthan gum that has not been deacetylated, decrease upon storage. This eventually makes the formulations unusable. Specifically, the uniform nature of the suspensions was lost. Table IB
- Hot water was added to a vessel.
- Xanthan gum was weighed and slowly added to the vessel while mixing.
- 2.5 ml of 1 N NaOH or equivalent per 1 g of xanthan gum was added and then mixed for 20 minutes.
- 1.66 ml of IN HC1 or equivalent per 1 g of xanthan gum was then added.
- Purified water was added to adjust the target weight followed by mixing for 15 minutes.
- the deacetylated xanthan gum was then filtered through an appropriate filter e.g., 1.2 um filter.
- a second formulation which was identical to the formulation shown in Table 3A, except for the omission of tobramycin, was also prepared.
- the second formulation was determined to have an initial viscosity of 836 cps.
- FIG. 1 shows that the viscosity of the formulation described in Table 3 A increases from 42 cps to over 1,000 cps upon addition of 0.2 g of sodium chloride to 100 mL of the formulation.
- Figure 2 shows that the viscosity of the formulation increases from 42 cps at pH 5.7 to over 1, 100 cps when pH is adjusted upward to 6.2, and to 1,300 cps when pH is at 6.4.
- Figure 3 shows that the viscosity of the formulation increases from 42 cps to 1,059 cps upon addition of 10 mL of the above-described PBS solution to 100 mL of the suspension.
- the viscosity of the formulation did not increase after mixing with the PBS solution.
- a modified version of the formulation, without tobramycin was determined to have a viscosity of 667 cps when 10 ml of phosphate buffered saline solution was added to 100 ml of the formulation.
- the viscosity of the modified formulation was actually reduced from an initial viscosity of 836 cps to a simulated in vivo viscosity of 667 cps, following addition of the phosphate buffered saline solution.
- the viscosity of the compositions of the present invention is affected by the ionic strength of the compositions and pH, as well as the amounts of tobramycin and xanthan gum selected within the specified ranges of 0.1 to 0.5 w/v % and 0.3 to 0.9 w/v %, respectively.
- the formulations and associated data presented in Tables 4A - 4E are provided to further illustrate and explain the interaction of these factors.
- a comparison of Formulations A-D and the respective viscosity values for these compositions illustrates the impact of tobramycin on the viscosity of a composition containing xanthan gum at a concentration of 0.6 w/v %.
- Formulation A which contains tobramycin at a concentration of 0.3 w/v %, has an initial viscosity of 15 centipoise ("cps")
- Formulation C which is identical to Formulation A except for the absence of tobramycin, has an initial viscosity of 919 cps.
- cps centipoise
- Formulation C which is identical to Formulation A except for the absence of tobramycin
- Formulations A and B do not contain dexamethasone, but are otherwise representative examples of the tobramycin/dexamethasone compositions of the present invention.
- Formulations C and D are provided for comparative purposes and are not representative examples of the compositions of the present invention.
- the viscosity of the compositions of the present invention can be stabilized using sodium chloride or sodium sulfate.
- concentration of sodium sulfate required is much smaller than the concentration of sodium chloride.
- Approximately ImM of sodium sulfate is equivalent to 5.3 mM of sodium chloride. This is demonstrated by Examples A, B and E though L.
- the viscosities of Formulations A, B and E though L versus sodium chloride equivalent ionic concentration is plotted in Figure 4.
- the sodium chloride equivalent ionic concentration for these formulations is defined as "sodium chloride concentration (mM) + 5.3 sodium sulfate concentration (mM)".
- the viscosities of the formulations containing 0.3% tobramycin and 0.6% xanthan gum increases as the sodium chloride equivalent ionic concentration increases.
- the viscosity is in the preferred range of 10 to 300 cps for sodium chloride equivalent ionic concentration range of 134 to 150 mM.
- the sodium chloride equivalent ionic concentration range that provides relatively low viscosity depends on pH and xanthan gum concentration.
- Formulations M and N show that a higher sodium chloride equivalent ionic concentration is required to provide the similar viscosity at lower pH of 5.5 compared to that at pH of 5.75.
- Formulations O, P and Q show that at a fixed pH (5.5), lower sodium chloride equivalent ionic concentrations are required as xanthan gum concentration is increased from 0.6% to 0.9%.
- compositions were administered to both eyes of male New Zealand rabbits. Following administration of the formulations, aqueous humor samples were collected from both eyes at 0.5, 0.75, 1, 2, and 3 hours and concentrations of dexamethasone were determined using the LC-MS/MS procedure described below.
- Concentrations of dexamethasone in the rabbit aqueous humor were measured using a validated HPLC tandem mass spectrometry (HPLC/SM/MS) method.
- HPLC/SM/MS HPLC tandem mass spectrometry
- a 25.0 microliter aliquot of aqueous humor is spiked with beclomethasone as internal standard and extracted using methyl-t-butyl ether.
- the organic layer is evaporated to dryness and reconstituted in 20:80 10 mM ammonium formate:methanol and injected on a reversed-phase HPLC column under isocratic conditions with a mobile phase of the same composition as used for sample reconstitution.
- the column effluent is subjected to positive ion electrospray ionization and the protonated molecular ions of dexamethasone and beclomethasone subjected to collisional fragmentation.
- the working range of the procedure is 1.00 to 200 ng/mL.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Ophthalmology & Optometry (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2010/039618 WO2011162752A1 (en) | 2010-06-23 | 2010-06-23 | Topical ophthalmic suspensions containing tobramycin and dexamethasone |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2585037A1 true EP2585037A1 (en) | 2013-05-01 |
Family
ID=44080140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10726406.1A Withdrawn EP2585037A1 (en) | 2010-06-23 | 2010-06-23 | Topical ophthalmic suspensions containing tobramycin and dexamethasone |
Country Status (10)
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201208080D0 (en) * | 2012-05-09 | 2012-06-20 | Norton Healthcare Ltd | Tobramycin formulation |
JP6527315B2 (ja) * | 2014-08-08 | 2019-06-05 | Dsp五協フード&ケミカル株式会社 | 速溶性増粘剤、咀嚼・嚥下困難者用増粘剤及び咀嚼・嚥下困難者用飲食品 |
CN109260219B (zh) | 2018-11-30 | 2021-03-09 | 山东省药学科学院 | 一种关节腔注射制剂及其应用 |
IT202000002296A1 (it) * | 2020-02-06 | 2021-08-06 | Sifi Spa | Formulazioni topiche oftalmiche a base di xantano con ridotta posologia |
JP7654014B2 (ja) * | 2020-05-12 | 2025-03-31 | プロバイオティカル・ソシエタ・ペル・アチオニ | 細菌株を含む組成物、ならびに眼の疾患および病変の処置のための同組成物の使用 |
IT202200000821A1 (it) * | 2022-01-19 | 2023-07-19 | Sifi Spa | Formulazioni topiche oftalmiche a base di xantano con ridotta posologia |
CN115006412B (zh) * | 2022-05-20 | 2023-11-10 | 北京诺康达医药科技股份有限公司 | 一种复方妥布霉素滴眼液及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136177A (en) | 1977-01-31 | 1979-01-23 | American Home Products Corp. | Xanthan gum therapeutic compositions |
US5149694A (en) | 1988-03-09 | 1992-09-22 | Alcon Laboratories, Inc. | Combination of tobramycin and dexamethasone for topical ophthalmic use |
DK1348427T3 (da) * | 1997-07-29 | 2008-06-30 | Alcon Lab Inc | Oftalmiske sammensætninger indeholdende galactomannanpolymerer og borater |
US6261547B1 (en) | 1998-04-07 | 2001-07-17 | Alcon Manufacturing, Ltd. | Gelling ophthalmic compositions containing xanthan gum |
NZ506921A (en) * | 1998-04-07 | 2002-02-01 | Alcon Lab Inc | Gelling ophthalmic compositions containing xanthan gum |
US6174524B1 (en) | 1999-03-26 | 2001-01-16 | Alcon Laboratories, Inc. | Gelling ophthalmic compositions containing xanthan gum |
BR0112787B1 (pt) * | 2000-07-28 | 2013-03-05 | composiÇço de soluÇço topicamente administrÁvel. |
-
2010
- 2010-06-23 AU AU2010356098A patent/AU2010356098B2/en not_active Ceased
- 2010-06-23 WO PCT/US2010/039618 patent/WO2011162752A1/en active Application Filing
- 2010-06-23 EP EP10726406.1A patent/EP2585037A1/en not_active Withdrawn
- 2010-06-23 JP JP2013516553A patent/JP5728082B2/ja not_active Expired - Fee Related
- 2010-06-23 BR BR112012033052A patent/BR112012033052A2/pt not_active IP Right Cessation
- 2010-06-23 MX MX2012015051A patent/MX2012015051A/es active IP Right Grant
- 2010-06-23 CA CA2801731A patent/CA2801731A1/en not_active Abandoned
- 2010-06-23 CN CN201080067666.9A patent/CN102946855B/zh not_active Expired - Fee Related
- 2010-06-23 KR KR1020137000258A patent/KR20130094280A/ko not_active Abandoned
-
2012
- 2012-12-06 ZA ZA2012/09240A patent/ZA201209240B/en unknown
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2011162752A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011162752A1 (en) | 2011-12-29 |
CA2801731A1 (en) | 2011-12-29 |
JP2013529632A (ja) | 2013-07-22 |
ZA201209240B (en) | 2014-02-26 |
BR112012033052A2 (pt) | 2019-09-24 |
JP5728082B2 (ja) | 2015-06-03 |
AU2010356098A1 (en) | 2013-01-10 |
AU2010356098B2 (en) | 2014-08-14 |
CN102946855B (zh) | 2016-01-06 |
KR20130094280A (ko) | 2013-08-23 |
MX2012015051A (es) | 2013-02-15 |
CN102946855A (zh) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8101582B2 (en) | Topical ophthalmic compositions containing tobramycin and dexamethasone | |
AU2010356098B2 (en) | Topical ophthalmic suspensions containing tobramycin and dexamethasone | |
US20070110812A1 (en) | Ophthalmic composition for dry eye therapy | |
EP2437743A1 (en) | Ophthalmic formulations of fluticasone and methods of use | |
TWI486178B (zh) | 含有羧基乙烯基聚合物之奈米粒子懸浮液 | |
EP2408453A1 (en) | Ophthalmic formulations of cetirizine and methods of use | |
JP2022516099A (ja) | 眼科用医薬組成物及び癌表面疾患の処置方法 | |
WO2017159586A1 (ja) | ドルゾラミドとチモロールと界面活性剤を含有する医薬組成物 | |
JPH03133936A (ja) | 蛋白質ゲル状眼用賦形剤 | |
EP1283043B1 (en) | Ophthalmic solution | |
Malhotra et al. | In vivo ocular availability of ketorolac following ocular instillations of aqueous, oil, and ointment formulations to normal corneas of rabbits: a technical note | |
EP4216966B1 (en) | Formulation based on polyhexamethylene biguanide for use in the treatment of acanthamoeba keratitis and/or fungal infections | |
US20080306039A1 (en) | Loteprednol Etabonate Aqueous Suspension | |
WO2017097432A1 (en) | Preservative free pharmaceutical composition for ophthalmic administration containing dexamethasone | |
CA2835013C (en) | Eye drops for treatment of conjunctivochalasis | |
WO2022238251A2 (en) | Ophthalmic pharmaceutical composition comprising atropine | |
EP4088714A1 (en) | Ophthalmic pharmaceutical composition comprising atropine | |
CN116847826A (zh) | 包含左氧氟沙星和酮咯酸的眼用组合物、其制备方法和用途 | |
WO2024092085A1 (en) | Aqueous pharmaceutical compositions of prostaglandins | |
EA047258B1 (ru) | Композиция на основе полигексаметиленбигуанида для применения в лечении акантамебного кератита и/или грибковых инфекций |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20151218 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOVARTIS AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61K 47/36 20060101ALI20170427BHEP Ipc: A61K 31/573 20060101ALI20170427BHEP Ipc: A61K 47/02 20060101ALI20170427BHEP Ipc: A61K 9/10 20060101AFI20170427BHEP Ipc: A61K 31/7036 20060101ALI20170427BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170519 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170930 |