EP2581567A1 - Active acoustic baffler - Google Patents

Active acoustic baffler Download PDF

Info

Publication number
EP2581567A1
EP2581567A1 EP12184776.8A EP12184776A EP2581567A1 EP 2581567 A1 EP2581567 A1 EP 2581567A1 EP 12184776 A EP12184776 A EP 12184776A EP 2581567 A1 EP2581567 A1 EP 2581567A1
Authority
EP
European Patent Office
Prior art keywords
volume
housing
silencer according
active
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12184776.8A
Other languages
German (de)
French (fr)
Other versions
EP2581567B1 (en
Inventor
Jan Krüger
Manfred Nicolai
Michael Pommerer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Exhaust Technology GmbH and Co KG
Original Assignee
J Eberspaecher GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Eberspaecher GmbH and Co KG filed Critical J Eberspaecher GmbH and Co KG
Publication of EP2581567A1 publication Critical patent/EP2581567A1/en
Application granted granted Critical
Publication of EP2581567B1 publication Critical patent/EP2581567B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/06Silencing apparatus characterised by method of silencing by using interference effect
    • F01N1/065Silencing apparatus characterised by method of silencing by using interference effect by using an active noise source, e.g. speakers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/06Silencing apparatus characterised by method of silencing by using interference effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/10Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling in combination with sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/24Silencing apparatus characterised by method of silencing by using sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1888Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/112Ducts
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles

Definitions

  • the present invention relates to an active silencer for an exhaust system of an internal combustion engine, preferably a motor vehicle having the features of the preamble of claim 1.
  • An active silencer which has a housing and a connecting tube for acoustically and fluidically connecting the housing to the exhaust system.
  • a speaker is arranged, which comprises an active membrane and an actuator for vibrational excitation of the membrane.
  • the membrane separates in the housing a fluidly connected to the connecting tube Vorvolume of a back volume.
  • Active silencers of this kind are used to influence, preferably to damp, preferably to attenuate a mouth sound of the exhaust system by supplying a calculated sound, in particular counter sound or anti-sound.
  • the pre-volume via the connecting pipe in fluid communication with the exhaust system.
  • the pre-volume typically has no direct connection to the atmosphere outside the exhaust system, ie to the surroundings of the exhaust system.
  • the back volume is limited by the active diaphragm and the muffler body, so that the speaker works on the back of a closed volume and on the front of the exhaust system.
  • the membrane of such a loudspeaker with electro-dynamic actuator is sensitive to different static or quasi-static pressures in front of and behind the membrane.
  • the membrane becomes of the loudspeaker is deflected by a differential pressure from the central position, which reduces the performance of the loudspeaker, through its electro-dynamic drive (actuator) to generate dynamic alternating pressures in front of and behind the membrane.
  • the membrane can remain permanently deflected due to the creep behavior of individual components of the loudspeaker, in particular the membrane suspension, even without a pressure difference between the pre-volume and the back volume and acts on the membrane.
  • the differential pressures between the pre-volume and the return volume occurring in this context can be roughly distinguished from one another as follows.
  • a static pressure difference arises by changing the external air pressure in the atmosphere or environment of the exhaust system as a result of the weather, for example when changing from a low pressure area to an anticyclone area or as a result of a change in altitude above sea level, eg when traveling uphill.
  • These static pressure changes take place relatively slowly, for example with a time constant or period of more than 10 seconds, ie with a frequency of less than 0.1 Hz.
  • a quasi-static pressure difference is created by changing the flow conditions in the exhaust system, in particular by the Bernoulli effect at the junction between the connecting pipe and the exhaust system.
  • the flow conditions in the exhaust system change depending on the respective operating state of the internal combustion engine, for example.
  • These quasi-static pressure changes take place, for example, with a time constant or period between 0.1 sec. And 10 sec., Ie with a frequency between 0.1 Hz and 10 Hz.
  • dynamic pressure differences can arise, namely the intended purpose of the speaker generated alternating pressures, so the acoustic signals to influence the sound emission of the exhaust system.
  • These dynamic pressure fluctuations typically have a period or time constant less than 0.1 sec., Ie frequencies greater than 10 Hz.
  • Compensation or compensation of the static pressure differences ie the slow fluctuations of the atmospheric air pressure compared to the closed back volume, can be achieved by providing at least one relatively small pressure equalization opening, which fluidly connects the back volume to the surroundings of the silencer. Under certain circumstances, even a slight leakage of the housing may be sufficient to compensate for the static pressure differences.
  • a compensation of the quasi-static pressure fluctuations can according to the aforementioned DE 10 2009 049 280 A1 be made possible by at least one pressure equalization opening, which fluidly connects the back volume with the pre-volume.
  • Such a pressure compensation opening is comparatively small dimensioned to avoid an acoustic short circuit between Vorvolumen and back volume.
  • Such pressure equalization openings between the pre-volume and the rear volume are permeable to gas and open to diffusion, as a result of which exhaust gas, in particular, which enters the pre-volume via the connecting pipe from the exhaust system, can also enter the rear volume.
  • a temperature gradient occurs because the exhaust gas in the exhaust system is usually exposed to higher temperatures than in the rear volume. This creates the problem that condenses the moisture bound in the exhaust gas, ie steam, in the cooler rear volume.
  • the resulting condensate is relatively aggressive, in particular, the condensate may include sulfuric acid. The aggressive condensate can permanently damage the electro-dynamic actuator and connection cable.
  • the active silencer can be positioned on the exhaust system only in the area of a tailpipe, which can be ensured by constructive measures at each tailpipe that caused by the flow velocity quasi-static pressure difference between Vorvolumen and Back volume is then as small as possible. As a result, it is possible to dispense with the pressure compensation opening between the pre-volume and the return volume. However, this significantly restricts the design of the active silencer and obstructs or prevents the use of an active silencer at an area remote from the tailpipe upstream of the engine, although the acoustic effectiveness of the active silencer may be better there.
  • the present invention addresses the problem of providing an improved muffler for an improved embodiment, which is characterized in that on the one hand disadvantages caused by quasi-static differential pressures arise between pre-volume and back volume, reduced or eliminated or avoided, at the same time disadvantages that may be caused by condensation in the back volume, reduced or eliminated or avoided.
  • the invention is based on the general idea of fluidically connecting the back volume with the pre-volume via at least one condensation line.
  • this condensation line is designed so that it condenses contained in the exhaust steam, the condensation line then passes the resulting condensate to the pilot volume.
  • the respective condensation line supports the condensation in such a way that the condensate is obtained within the condensation line, that is, while the steam moves from the pre-volume in the direction of the rear volume. Since the back volume is closed, there is no flow through the condensation line, but only to diffusion processes or very slow volume shifts by the respective pressure compensation.
  • the long residence time of the steam in the condensation line which results on the one hand by the slow gas movements and on the other hand can be achieved by a correspondingly dimensioned line length, the condensation can take place substantially already within the condensation line, so that hardly steam enters the back volume.
  • this can easily lead the condensate accumulating in the pre-volume, where it evaporates again due to the prevailing temperatures there and can be taken from the exhaust stream.
  • the desired pressure equalization between Vorvolumen and back volume can be realized by the created with the help of the condensation line fluidic connection between Vorvolumen and back volume.
  • the condensation line replaces that of the prior art, compare the above DE 10 2009 049 280 A1 , known pressure equalization opening between Vorvolumen and back volume.
  • the condensation line can therefore fluidly connect the back volume for pressure equalization without an acoustic short circuit with the pre-volume.
  • the condensation line is dimensioned such that it is unsuitable for transmitting dynamic pressure fluctuations between the pilot volume and the return volume, in particular due to the friction occurring in the condensation line.
  • this is the condensation line significantly longer than its inner diameter.
  • the cable length is at least 10 times greater than the cable diameter, preferably the cable length is at least 100 times larger than the cable diameter.
  • the condensation line can basically be designed in a straight line.
  • the Kondesations ultimately is curved, for example, helical and / or helical, to realize a short length a large cable length.
  • the condensation line can be arranged completely inside the housing, so that it is an internal condensation line. This design reduces the risk of leaks.
  • a substantial portion of the condensation line running in the interior of the housing can now be arranged in the back volume.
  • at least 75% of the length of the condensation line are arranged in the back volume.
  • the condensation line may have a portion extending outside the housing.
  • This section may suitably connect an end section of the condensation line connected to the pre-volume to an end section of the condensation line connected to the rear volume. In this way, an at least partially externally extending condensation line is created, which opens up possibilities to support the formation of condensation within the condensation line.
  • the condensation line can be cooled according to a development of the arranged outside the housing portion of the condensation line. It is conceivable, for example, a purely passive cooling by the ruling in the environment of the muffler temperatures. Another passive cooling can be achieved by a flow around the muffler and the externally extending portion of the condensation line be caused, for example, by wind of a motor vehicle equipped with the internal combustion engine. Active cooling of the section of the condensation line extending outside the housing is likewise conceivable, for example with the aid of a blower which generates an air flow for acting on the section.
  • the section can be equipped with cooling fins or the like. It is also possible to incorporate said section in a heat exchanger, which is also involved in a cooling circuit, so that with the aid of the heat exchanger heat from the condensation line can be transferred to a coolant of the cooling circuit.
  • the condensation line may be a tube, which is in particular made of a metallic material and is characterized by a particularly high thermal conductivity.
  • the back volume may be hermetically sealed from an environment of the muffler.
  • the housing of the muffler in the region of the rear volume has no opening through which a fluid can enter the back volume or escape therefrom.
  • the back volume is completely encapsulated except for the fluidic connection with the pre-volume created by the condensation line.
  • neither a pressure equalization opening is present, which fluidly connects the back volume with the environment, nor a promptiger connection provided via which a fluid can be supplied to the back volume or discharged therefrom.
  • the present invention is based on the general idea to provide at least one pressure compensation chamber.
  • a pressure compensation chamber encloses a compensating volume, which is fluidically connected to the pre-volume via at least one connecting line is.
  • at least one passive membrane is provided, which is positioned such that it is exposed on the one hand to the pressure prevailing in the compensating volume and, on the other hand, to the pressure prevailing in the rear volume.
  • the passive membrane deforms depending on the pressure difference acting thereon, which ultimately corresponds to the pressure difference between the pre-volume and the return volume due to the fluidic coupling between the equalization volume and the pre-volume.
  • the passive membrane can transmit the pressure prevailing in the pre-volume to the back volume, whereby the desired pressure compensation is more or less realized. It is noteworthy that the connection of the passive membrane gas exchange between Vorvolume and back volume is no longer possible. In other words, in the second solution presented here, the pre-volume and the return volume are fluidically separated from one another. As a result, no condensate can accumulate in the back volume. Overall, the proposed measure opens the possibility to use the active muffler close to the engine, so that virtually any positionings for the active muffler on the exhaust system can be realized. If condensate accumulates in the compensation volume, this can be passed through the connecting line to the pilot volume.
  • the passive membrane is designed to be softer than the active membrane of the loudspeaker.
  • the passive membrane is at least twice as elastic as the active membrane.
  • the pressure compensation chamber may have a chamber arranged in the rear volume chamber housing, in which case the passive membrane forms at least a part of the chamber housing.
  • the passive membrane separates the equalization volume from the back volume within the housing of the muffler. This can reduce leakage problems.
  • the passive membrane can form the entire chamber housing.
  • the passive membrane is shaped so that it forms the chamber housing and encloses the compensation volume.
  • the housing may be configured as an elastic balloon or as an elastic bellows.
  • the passive membrane defines the elastic skin of the balloon or the elastic bellows body. If the passive membrane forms the entire chamber housing, depending on the pressure difference between the equalizing volume and the back volume, the chamber housing may expand or shrink to equalize the pressures between the equalizing volume and the back volume. A complete pressure equalization is not possible due to the internal tension of the passive membrane. The softer the passive membrane is, the closer the pressures between equalization volume and back volume can be.
  • the pressure compensation chamber can have a chamber housing arranged outside the return volume or outside the housing, in which case the passive membrane in the chamber housing separates the compensation volume from a coupling volume.
  • a coupling line then provides a fluidic connection between the coupling volume and the back volume.
  • a pressure difference between the pre-volume and the back volume thus leads to a corresponding pressure difference between the compensating volume and the coupling volume, which can be more or less compensated by a corresponding deformation of the passive membrane.
  • the pressure compensation chamber may be formed in the housing, in which case the passive membrane in the housing separates the compensation volume from the rear volume. This internal design also reduces leakage problems.
  • the connecting line can be arranged in the housing and extend through the rear volume. Additionally or alternatively it can be provided that due to a correspondingly selected positioning of the passive membrane within the housing, the compensation volume is distal to the pre-volume, so that in particular the back volume between the compensation volume and the pre-volume is arranged. Furthermore, the compensation volume within the housing is expediently arranged so that the passive membrane has no contact with the pre-volume.
  • the connecting line may be arranged so that it leads condensate possibly accumulating condensate to the pre-volume.
  • the connecting line is adapted to the intended installation situation so that it has a slope in the direction of the front volume.
  • a third solution of the invention is based on the general idea of compensating for the static deflection of the active membrane formed by a corresponding actuation of the actuator due to a pressure difference between the pre-volume and the back volume.
  • the active silencer with a sensor for measuring a pressure difference between Vorvolumen and back volume fitted.
  • This sensor system may, for example, include a differential pressure sensor which directly measures the pressure difference between the pre-volume and the back volume.
  • the use of two absolute pressure sensors is conceivable, one of which measures the absolute pressure in the pre-volume, while the other measures the absolute pressure in the back volume. The difference between the two absolute pressures then gives the desired differential pressure.
  • the sensor is further coupled to a controller which serves to drive the actuator.
  • This control is now programmed or designed so that it controls the actuator depending on the measured pressure difference so that it deflects the active membrane against the deflection caused by the pressure difference, whereby the deflection caused by the pressure difference of the active membrane more or less compensated can be. Since a control for actuating the actuator in the active speaker is present anyway, the solution presented here only requires a sensor suitable for measuring differential pressure and a corresponding coupling in conjunction with a suitable programming. Thus, this embodiment can be comparatively inexpensive and realize almost no design effort. In particular, such an embodiment comes without pressure equalization between Vorvolumen and back volume. In particular, this design can therefore be characterized in that the pre-volume and the back volume are fluidly separated from each other.
  • the proposed measure opens the possibility to use the active muffler close to the engine, so that virtually any positionings for the active muffler on the exhaust system can be realized.
  • the controller may superimpose a static control signal dependent on the measured pressure difference on dynamic control signals with which the controller drives the actuator activates the active membrane so that this counter-noise to influence, in particular for the damping of entrained in the exhaust air generated airborne.
  • the static control signal generated to compensate for the deflection of the active membrane caused by the pressure differential is modulated onto the dynamic control signals with which the controller drives the actuator to drive the active diaphragm to provide the desired pressure pulsations into the exhaust system can initiate.
  • a fourth solution of the invention is also based on the general idea of compensating for the static deflection of the active membrane formed by a corresponding actuation of the actuator due to a pressure difference between the pre-volume and the back volume. Notwithstanding the above-described third solution, the pressure difference is not measured in the fourth solution, but the resulting deflection of the active membrane is determined from its central position to use the deflection directly as a basis for the control of the actuator.
  • the silencer comprises a device for determining a deflection of the active membrane from its central position.
  • a control provided for driving the actuator is coupled to said device and controls the actuator depending on the determined diaphragm deflection for compensating the diaphragm deflection. In this way can be dispensed with a complex pressure measurement.
  • the device may have a sensor for measuring the diaphragm deflection.
  • the device can evaluate the current consumption of the actuator when it is actuated and determine the diaphragm deflection as a function of this.
  • This purely electronic measure does not require additional sensors.
  • the usual, occurring during the silencing operation current consumption of the actuator be evaluated. This measure is based on the consideration that the current consumption of the actuator changes depending on a deflection of the membrane, since the actuator optionally works with or against a bias of the membrane.
  • the device evaluates a microphone signal of a microphone which detects the sound emitted by the active membrane and determines the diaphragm deflection as a function of this.
  • This measure is based on the consideration that the sound emitted by the active membrane changes as a function of the prestressing of the membrane.
  • Such a microphone is already present in a conventional active sound damping system, so that even with this solution can be dispensed with an additional sensor. It is clear that, in principle, other measures are conceivable in order to determine the actual diaphragm deflection.
  • the present invention is based on the general idea of equalizing the pressure difference between the pre-volume and the back volume by means of a delivery device, which for this purpose is fluidically connected to the return volume. If the pressure in the back volume is higher than the pressure in the pre-volume, gas or air can be sucked out of the back volume and conveyed into the environment or into the pre-volume, for example, with the delivery device in order to bring about the pressure compensation. If, on the other hand, the pressure in the rear volume is lower than in the pre-volume, gas or air, for example from the environment or from the pre-volume, can be sucked in by means of the delivery device and supplied to the return volume in order to effect the pressure equalization. As an output signal for driving the conveyor can thereby serve a correlated with the pressure difference signal or correlated with the deflection of the diaphragm from the central position signal.
  • the corresponding devices are already described above.
  • At least one pressure equalization opening can be provided, which fluidly connects the back volume to an environment of the housing of the muffler.
  • a pressure equalization opening which can be designed with suitable measures, for example.
  • gas-permeable and liquid impermeable membrane, gas permeable and liquid-tight By means of a gas-permeable and liquid impermeable membrane, gas permeable and liquid-tight, the static pressure differences between the back volume and the atmospheric environment described above can be compensated.
  • the above-described first solution in which the pre-volume and the back volume are fluidly connected to one another by the condensation line, as well as the associated embodiments, can be configured such that the back volume is fluidically separated from the environment of the housing of the muffler. In these cases, it is thus possible to dispense with such a pressure compensation opening between the rear volume and the environment. In contrast, it seems to be useful in the other solutions described above, including the associated embodiments, to provide such a pressure compensation opening.
  • FIG. 1 an exhaust system 1 of an internal combustion engine, not shown here, an exhaust line 2 and at least one active muffler 3, which is connected to the exhaust line 2 and thus to the exhaust system 1.
  • the silencer 3 is connected to a in the operation of the internal combustion engine in FIG. 1 connected by an arrow indicated exhaust gas flow leading exhaust pipe 5, wherein in this example a Y-shaped connector 6 is used, the in FIG. 1 only half is shown.
  • the muffler 3 can in principle be connected to any component of the exhaust system 1, that is not necessarily to an exhaust pipe 5.
  • the active muffler 3 serves to dampen airborne sound that is carried in the exhaust gas flow 4 or in the Exhaust line 2 spreads.
  • the muffler 3 comprises a housing 7 and a connecting tube 8 for fluidically connecting the housing 7 with the exhaust system 1. Through this connecting tube 8 through the acoustic coupling between the Muffler 3 and the rest of the exhaust system 1.
  • the connecting pipe 8 is not traversed by the exhaust gas. However, the exhaust gas may enter the connection pipe 8.
  • the active muffler 3 includes a speaker 9 that includes an active diaphragm 10 and an actuator 11.
  • the active membrane 10 separates in the housing 7 a fluidly connected to the connecting tube 8 Vorvolumes 12 from a back volume 13, which is shown in the illustrations of FIGS. 2 to 8 is located on a side facing away from the connecting tube 8 side of the speaker 9. Accordingly, the pre-volume 11 faces the connecting pipe 8, while the rear volume 13 faces away from the connecting pipe 8.
  • the actuator 11 operates electromagnetically and serves for the vibration excitation of the active membrane 10.
  • the muffler 3 is also equipped with at least one condensation line 14, which is preferably formed from a metallic tubular body.
  • the condensation line 14 can also be designed as an elastic hose, in particular made of plastic.
  • the condensation line 14 leads to a fluidic connection of the rear volume 13 with the pre-volume 12, which results in a pressure equalization between the pre-volume 12 and the rear volume 13. So that this pressure compensation takes place only for static or quasi-static pressure differences and not for dynamic pressure differences, the condensation line 14 is designed so that it fluidly connects the back volume 13 with the pre-volume 12 without acoustic short circuit. This is achieved, for example, by a corresponding throttle effect, in particular by friction within the condensation line 14.
  • the condensation line 14 is also designed so that vapor, which is contained in the exhaust gas, which penetrates in particular by diffusion processes in the condensation line 14, condenses in the condensation line 14.
  • the condensation line 14 is arranged so that the condensate accumulating in it can flow to the pre-volume 12. Accordingly, in the installed state of the muffler 3, the condensation line 14 has a gradient in the direction of the front volume 12.
  • the condensation effect occurs in the condensation line 14 to the desired extent, according to the in FIG. 2
  • the condensation line 14 can be arranged completely inside the housing 7.
  • a substantial section 17, which extends over at least 50% of the total condensation line length 15, is expediently arranged in the rear volume 13.
  • a large part of the condensation line 14, namely the essential portion 17, is exposed to the temperatures prevailing in the rear volume 13, which are significantly lower than the temperatures of the exhaust gas entering the condensation line 14.
  • the desired condensation of steam in the condensation line 14 can be realized.
  • the condensation line 14 is arranged such that it has a section 18 extending outside the housing 7.
  • This outer section 18 connects a first end section 19 of the condensation line 14 connected to the pre-volume 12 to a second end section 20 of the condensation line 14, which is connected to the rear volume 13.
  • the outer portion 18 may, for example, be cooled by means of a cooling gas flow 21, which in FIG. 3 indicated by an arrow.
  • This can be the driving wind that arises during operation of a vehicle that is equipped with the internal combustion engine whose exhaust gases be discharged with the help of the exhaust system 1 presented here.
  • the cooling gas flow 21 can be realized, for example, with the aid of a blower 22.
  • the condensation line 14 in the outer portion 18 may have cooling fins 23. Additionally or alternatively, the condensation line 14 may be integrated in the outer portion 18 in a heat exchanger 24, which in turn is integrated into a cooling circuit 25, wherein a media separation between the cooling medium in the cooling circuit 25 and the exhaust gas is provided in the condensation line 14.
  • the silencer 3 may be equipped with at least one pressure compensation chamber 26, which encloses a compensation volume 27.
  • at least one connecting line 28 is present, which connects the compensating volume 27 fluidically with the pre-volume 12.
  • at least one passive membrane 29 is provided which is exposed on the one hand to the pressure prevailing in the compensating volume 27 and on the other hand to the pressure prevailing in the rear volume 13. Accordingly, the passive diaphragm 29 deforms depending on the pressure difference between the compensating volume 27 and the rear volume 13. Since the compensating volume 27 communicates with the pre-volume 12 through the connecting line 28, the pressure prevailing in the compensating volume 27 corresponds to the pressure prevailing in the pre-volume 12.
  • the passive membrane 29 deforms depending on the pressure difference between the back volume 13 and Vorvolumen 12.
  • FIGS. 4 to 7 is shown for the passive membrane 29 with a solid line an initial state, while at the same time is shown with a broken line, a state in which the passive membrane 29 is deformed due to the pressure difference between the pre-volume 12 and back volume 13.
  • the pressure compensation chamber 26 comprises a chamber housing 30, which is arranged in the rear volume 13 in the interior of the housing 7.
  • the passive membrane 29 forms at least a part of the chamber housing 30.
  • the passive membrane 29 separates the compensation volume 27 from the rear volume 13 in the interior of the housing 7, so that it is indirectly exposed to the pressure of the return volume 13.
  • the entire chamber housing 30 is formed by the passive membrane 29.
  • the chamber housing 30 is designed as an elastic balloon 30 '. This balloon 30 'or its skin or sheath is formed by the passive membrane 29.
  • the chamber housing 30 is designed as a bellows 30 ", whereby the bellows body is formed by the elastic passive membrane 29.
  • the pressure compensation chamber 26 is arranged outside the housing 7.
  • the chamber housing 30 is disposed outside of the housing 7.
  • the passive membrane 29 in the chamber housing 30 separates the equalizing volume 27 from a coupling volume 31.
  • a coupling line 32 provides a fluidic connection of the coupling volume 31 with the back volume 13.
  • the chamber housing 30 is arranged by the connecting line 28 and the coupling line 32 spaced from the housing 7 of the muffler 3.
  • the respective opening then penetrates either a wall of the housing 7 and a wall of the chamber housing 30 or a common wall of the housing 7 and the chamber housing 30.
  • the connection opening then provides for the fluidic coupling between the compensation volume 27 and Vorvolumen 12.
  • Die Coupling opening then provides for the fluidic coupling between coupling volume 31 and back volume 13.
  • the pressure compensation chamber 26 is again formed in the interior of the housing 7, in which case the passive diaphragm 29 in the housing 7 separates the compensation volume 27 from the back volume 13.
  • the passive diaphragm 29 in the housing 7 separates the compensation volume 27 from the back volume 13.
  • FIG. 7 reduces the structural complexity of the chamber housing 30 on a partition, which in FIG. 7 is also designated 30, which separates within the housing 7 a region containing the back volume 13 of an area containing the compensating volume 27.
  • the passive membrane 29 is mounted or suspended.
  • the connecting line 28 is also disposed within the housing 7, wherein it extends through the rear volume 13 to connect the compensating volume 27 with the Vorvolumen 12 can.
  • the connecting line 28 is in each case arranged in such a way that it conducts condensate, which may occur in the connecting line 28 or in the compensating volume 27, to the pilot volume 12.
  • the respective connecting line 28 in the installed state have a corresponding gradient in the direction of the pre-volume 12.
  • the silencer 3 may in all embodiments be equipped with a controller 33 which can actuate the actuator 11 via a corresponding control line 34.
  • the actuator 11 then drives the active membrane 10 to generate pressure waves, in particular sound waves, depending on its activation.
  • the in FIG. 8 shown embodiment of the muffler 3 have a sensor 35, with the help of a pressure difference between Pre-volume 12 and back volume 13 can be measured.
  • the sensor system 35 includes a differential pressure sensor 36, which is coupled on the one hand in a suitable manner, for example via a first sensor line 37, with the pre-volume 12 and on the other hand in a suitable manner, for example via a second sensor line 38, is coupled to the rear volume 13. Via a signal line 39, the sensor 35 is coupled to the controller 33, so that the controller 33 knows the pressure difference between the pre-volume 12 and back volume 13.
  • the controller 33 is now configured or programmed so that it controls the actuator 11 depending on the measured pressure difference.
  • the targeted control of the actuator 11 can now more or less compensated by the prevailing between the pre-volume 12 and back volume 13 pressure difference deflection of the active membrane 10. For example. causes an overpressure in the Vorvolumen 12 a deflection of the active membrane 10 in the direction of rear volume 13. By appropriate driving of the actuator 11, this can drive the active membrane 10 statically in the direction of Vorvolumen 12 and in particular intimidverstellen back to the starting position. Thus, the deflection of the active membrane 10 caused by the pressure difference between the pilot volume 12 and the back volume 13 is substantially neutralized or compensated.
  • the controller 33 is expediently configured so that it generates a dependent of the measured pressure difference static control signal to produce the desired static adjustment of the active membrane 10 to compensate for the pressure difference caused by the deflection of the active membrane 10.
  • the controller generates 33 for generating pressure oscillations, which are to be transmitted via the connecting pipe 8 in the exhaust line 2, dynamic control signals with which the controller 33, the actuator 11 for driving the active diaphragm 10 drives.
  • the active membrane 10 can now achieve the desired pressure oscillations produce. In particular, it is counter-noise to combat entrained in the exhaust airborne sound.
  • the static control signals, which are provided to compensate for the deflection caused by the pressure difference of the active membrane 10, are now superimposed on the dynamic control signals which are provided for generating the pressure oscillations or the counter-noise.
  • FIG. 9 shows an embodiment in which instead of a pressure difference, which has a deflection of the active membrane 10 from the center position result, the diaphragm deflection is determined directly and is used as input to the static control signal for compensation.
  • a device 42 may be provided, with the aid of which the diaphragm deflection can be determined.
  • the deflection of the active membrane 10 is determined from its central position, which it assumes when the pressures in the pre-volume 12 and in the rear volume 13 are the same.
  • the device 42 comprises a microphone 43, which can detect and measure the airborne sound emitted by the active membrane 10.
  • the microphone signals are supplied via a corresponding signal line 44 to the controller 33 in order to evaluate them.
  • the diaphragm deflection can be determined by a desired-actual comparison.
  • the device 42 according to FIG. 10 have a sensor 45, by means of which the deflection of the membrane 10 can be measured. A corresponding signal can then be returned to the controller 33 via a signal line 46.
  • FIG. 10 now shows an embodiment in which a conveyor 47 is provided which is fluidly connected to the rear volume 13.
  • a control line 48 connects the controller 33 with the conveyor 47.
  • the conveyor 47 for example, a pump can as over- or vacuum generator serve to be able to pressurize the back volume 13 with overpressure or negative pressure as needed, in such a way that the unwanted static diaphragm deflection is compensated in whole or in part.
  • the base signal for the actuation of the conveyor 47 can serve directly the diaphragm deflection, which can be determined again with the aid of the device 42.
  • the pressure difference between pre-volume 12 and back volume 13 can be used to control the conveyor 47, since the pressure difference correlates with the diaphragm displacement.
  • the sensor 35 can be used again.
  • the conveyor 47 is arranged on the outside of the housing 7. It is clear that the conveyor can also be arranged in the interior of the housing 7. Furthermore, the conveyor 47 in the example conveys into the environment 41 or sucks from the environment 41 in order to adjust the pressure in the back volume 13 to the pressure prevailing in the pilot volume 12.
  • the muffler 3 is also equipped with at least one pressure equalization opening 40 which is formed in the housing 7 or in a wall of the housing 7 and which connects the back volume 13 fluidly with an environment 41 of the muffler 3.
  • the pressure compensation opening 40 may well be designed so that it is permeable to gas, but impermeable to liquid.
  • the pressure compensation opening 40 can be closed with a gas-permeable membrane, which is not shown here.
  • such a pressure equalization opening 40 may also be present.
  • an embodiment in which such a pressure compensation opening 40 is dispensed with is preferred. In particular, therefore, in the embodiments of the FIGS. 2 and 3 the back volume 13 is decoupled from the environment 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Exhaust Silencers (AREA)

Abstract

The absorber has a connecting pipe (8) for acoustic and fluidic connection of a housing (7) with an exhaust system (1). An active membrane (10) separates front volume (12) from rear volume (13) in the housing, and is connected with the connecting pipe. An actuator stimulates vibration of the active membrane, and a condensation line (14) i.e. pipe, fluidically connects the rear volume with the front volume, in which vapor contained in the exhaust gas is condensed, where the condensated vapor is directed to the front volume.

Description

Die vorliegende Erfindung betrifft einen aktiven Schalldämpfer für eine Abgasanlage einer Brennkraftmaschine, vorzugweise eines Kraftfahrzeugs mit den Merkmalen des Oberbegriffs des Anspruchs 1.The present invention relates to an active silencer for an exhaust system of an internal combustion engine, preferably a motor vehicle having the features of the preamble of claim 1.

Aus der DE 10 2009 049 280 A1 ist ein aktiver Schalldämpfer bekannt, der ein Gehäuse aufweist sowie ein Verbindungsrohr zum akustischen und fluidischen Verbinden des Gehäuses mit der Abgasanlage. Im Gehäuse ist ein Lautsprecher angeordnet, der eine aktive Membran sowie einen Aktuator zur Schwingungsanregung der Membran umfasst. Die Membran trennt im Gehäuse ein fluidisch mit dem Verbindungsrohr verbundenes Vorvolumen von einem Rückvolumen.From the DE 10 2009 049 280 A1 An active silencer is known, which has a housing and a connecting tube for acoustically and fluidically connecting the housing to the exhaust system. In the housing, a speaker is arranged, which comprises an active membrane and an actuator for vibrational excitation of the membrane. The membrane separates in the housing a fluidly connected to the connecting tube Vorvolume of a back volume.

Derartige aktive Schalldämpfer werden dazu verwendet, durch Einspeisen eines berechneten Schalls, insbesondere Gegenschall oder Antischall, ein Mündungsgeräusch der Abgasanlage in gewünschter Weise zu beeinflussen, vorzugsweise zu dämpfen. Hierzu steht das Vorvolumen über das Verbindungsrohr in fluidischer Verbindung mit der Abgasanlage. Das Vorvolumen hat typischerweise keine direkte Verbindung zur Atmosphäre außerhalb der Abgasanlage, also zur Umgebung der Abgasanlage. Das Rückvolumen wird durch die aktive Membran und das Gehäuse des Schalldämpfers begrenzt, so dass der Lautsprecher rückseitig auf ein geschlossenes Volumen und vorderseitig auf die Abgasanlage arbeitet.Active silencers of this kind are used to influence, preferably to damp, preferably to attenuate a mouth sound of the exhaust system by supplying a calculated sound, in particular counter sound or anti-sound. For this purpose, the pre-volume via the connecting pipe in fluid communication with the exhaust system. The pre-volume typically has no direct connection to the atmosphere outside the exhaust system, ie to the surroundings of the exhaust system. The back volume is limited by the active diaphragm and the muffler body, so that the speaker works on the back of a closed volume and on the front of the exhaust system.

Bauartbedingt ist die Membran eines derartigen Lautsprechers mit elektro-dynamischem Aktuator empfindlich gegenüber unterschiedlichen statischen bzw. quasi-statischen Drücken vor und hinter der Membran. Abhängig von der Fläche der Membran und der Steifigkeit einer Membranaufhängung wird die Membran des Lautsprechers durch einen Differenzdruck aus der Mittellage ausgelenkt, was die Leistungsfähigkeit des Lautsprechers herabsetzt, durch seinen elektro-dynamischen Antrieb (Aktuator) dynamische Wechseldrücke vor und hinter der Membran zu erzeugen. Hält diese Auslenkung aus der Mittellage außerdem über einen längeren Zeitraum und zusätzlich unter thermischer Belastung des Lautsprechers an, kann aufgrund des Kriechverhaltens einzelner Bauteile des Lautsprechers, insbesondere der Membranaufhängung, die Membran dauerhaft ausgelenkt bleiben, auch ohne dass weiterhin ein Druckunterschied zwischen Vorvolumen und Rückvolumen besteht und auf die Membran wirkt.Due to the design of the membrane of such a loudspeaker with electro-dynamic actuator is sensitive to different static or quasi-static pressures in front of and behind the membrane. Depending on the area of the membrane and the rigidity of a membrane suspension, the membrane becomes of the loudspeaker is deflected by a differential pressure from the central position, which reduces the performance of the loudspeaker, through its electro-dynamic drive (actuator) to generate dynamic alternating pressures in front of and behind the membrane. If this deflection from the central position also persists over a longer period of time and additionally under thermal stress on the loudspeaker, the membrane can remain permanently deflected due to the creep behavior of individual components of the loudspeaker, in particular the membrane suspension, even without a pressure difference between the pre-volume and the back volume and acts on the membrane.

Die in diesem Zusammenhang auftretenden Differenzdrücke zwischen Vorvolumen und Rückvolumen können grob wie folgt voneinander unterschieden werden. Zum einen entsteht ein statischer Druckunterschied durch Änderung des äußeren Luftdrucks in der Atmosphäre bzw. Umgebung der Abgasanlage infolge des Wetters, z.B. bei einem Wechsel von einem Tiefdruckgebiet zu einem Hochdruckgebiet oder infolge einer Änderung der Höhe über dem Meeresspiegel, z.B. bei einer Bergfahrt. Diese statischen Druckänderungen vollziehen sich relativ langsam, bspw. mit einer Zeitkonstante oder Periodendauer von mehr als 10 Sek., d.h. mit einer Frequenz von weniger als 0,1 Hz. Ferner entsteht ein quasistatischer Druckunterschied durch Änderung der Strömungsbedingungen in der Abgasanlage, insbesondere durch den Bernoulli-Effekt an der Verbindungsstelle zwischen dem Verbindungsrohr und der Abgasanlage. Die Strömungsbedingungen in der Abgasanlage ändern sich abhängig vom jeweiligen Betriebszustand der Brennkraftmaschine, bspw. bei einem Wechsel von Leerlaufbetrieb zu höheren Lasten oder Volllast, was mit höheren Massenströmen und Abgastemperaturen einhergeht. Diese quasi-statischen Druckänderungen vollziehen sich bspw. mit einer Zeitkonstante oder Periodendauer zwischen 0,1 Sek. und 10 Sek., d.h. mit einer Frequenz zwischen 0,1 Hz und 10 Hz. Schließlich können auch dynamische Druckunterschiede entstehen, nämlich die bestimmungsgemäß vom Lautsprecher erzeugten Wechseldrücke, also die akustischen Signale zur Beeinflussung der Schallabstrahlung der Abgasanlage. Diese dynamischen Druckschwankungen besitzen typischerweise eine Periodendauer bzw. Zeitkonstante kleiner als 0,1 Sek., d.h. Frequenzen größer als 10 Hz.The differential pressures between the pre-volume and the return volume occurring in this context can be roughly distinguished from one another as follows. On the one hand, a static pressure difference arises by changing the external air pressure in the atmosphere or environment of the exhaust system as a result of the weather, for example when changing from a low pressure area to an anticyclone area or as a result of a change in altitude above sea level, eg when traveling uphill. These static pressure changes take place relatively slowly, for example with a time constant or period of more than 10 seconds, ie with a frequency of less than 0.1 Hz. Furthermore, a quasi-static pressure difference is created by changing the flow conditions in the exhaust system, in particular by the Bernoulli effect at the junction between the connecting pipe and the exhaust system. The flow conditions in the exhaust system change depending on the respective operating state of the internal combustion engine, for example. When changing from idle mode to higher loads or full load, which is associated with higher mass flows and exhaust gas temperatures. These quasi-static pressure changes take place, for example, with a time constant or period between 0.1 sec. And 10 sec., Ie with a frequency between 0.1 Hz and 10 Hz. Finally, dynamic pressure differences can arise, namely the intended purpose of the speaker generated alternating pressures, so the acoustic signals to influence the sound emission of the exhaust system. These dynamic pressure fluctuations typically have a period or time constant less than 0.1 sec., Ie frequencies greater than 10 Hz.

Um die ordnungsgemäße Funktion des elektro-dynamischen Lautsprechers, also der Baugruppe aus aktiver Membran und zugehörigem elektro-dynamischem Aktuator zu gewährleisten, müssen daher alle Differenzdrücke mit einer Periodendauer größer als 0,1 Sek., also die statischen und quasi-statischen Druckschwankungen ausgeglichen werden. Zugleich muss sichergestellt werden, dass im relevanten Frequenzbereich ab 10 Hz die elektro-dynamisch erzeugten Wechseldrücke nicht wesentlich gemindert oder gar akustisch kurzgeschlossen werden.To ensure the proper functioning of the electro-dynamic loudspeaker, ie the assembly of active membrane and associated electro-dynamic actuator, therefore, all differential pressures with a period greater than 0.1 sec., So the static and quasi-static pressure fluctuations must be compensated , At the same time, it must be ensured that the electro-dynamically generated alternating pressures are not significantly reduced or even acoustically short-circuited in the relevant frequency range above 10 Hz.

Eine Kompensation bzw. ein Ausgleich der statischen Druckunterschiede, also der langsamen Schwankungen des atmosphärischen Luftdrucks gegenüber dem geschlossenen Rückvolumen lässt sich dadurch erreichen, dass zumindest eine relativ kleine Druckausgleichsöffnung vorgesehen wird, die das Rückvolumen mit der Umgebung des Schalldämpfer fluidisch verbindet. Unter Umständen kann hierbei bereits eine geringfügige Undichtigkeit des Gehäuses ausreichen, um die statischen Druckunterschiede auszugleichen.Compensation or compensation of the static pressure differences, ie the slow fluctuations of the atmospheric air pressure compared to the closed back volume, can be achieved by providing at least one relatively small pressure equalization opening, which fluidly connects the back volume to the surroundings of the silencer. Under certain circumstances, even a slight leakage of the housing may be sufficient to compensate for the static pressure differences.

Ein Ausgleich der quasi-statischen Druckschwankungen kann gemäß der eingangs genannten DE 10 2009 049 280 A1 durch wenigstens eine Druckausgleichsöffnung ermöglicht werden, die das Rückvolumen fluidisch mit dem Vorvolumen verbindet. Eine derartige Druckausgleichsöffnung ist dabei vergleichsweise klein dimensioniert, um einen akustischen Kurzschluss zwischen Vorvolumen und Rückvolumen zu vermeiden.A compensation of the quasi-static pressure fluctuations can according to the aforementioned DE 10 2009 049 280 A1 be made possible by at least one pressure equalization opening, which fluidly connects the back volume with the pre-volume. Such a pressure compensation opening is comparatively small dimensioned to avoid an acoustic short circuit between Vorvolumen and back volume.

Derartige Druckausgleichsöffnungen zwischen Vorvolumen und Rückvolumen sind gasdurchlässig und diffusionsoffen, wodurch insbesondere Abgas, das über das Verbindungsrohr von der Abgasanlage in das Vorvolumen gelangt, auch in das Rückvolumen eintreten kann. Hierbei tritt gleichzeitig ein Temperaturgradient auf, da das Abgas in der Abgasanlage meist höheren Temperaturen ausgesetzt ist als im Rückvolumen. Dabei entsteht das Problem, das im Abgas gebundene Feuchtigkeit, also Dampf, im kühleren Rückvolumen kondensiert. Je nach Abgaszusammensetzung ist das dabei entstehende Kondensat vergleichsweise aggressiv, insbesondere kann das Kondensat Schwefelsäure umfassen. Das aggressive Kondensat kann auf Dauer den elektro-dynamischen Aktuator sowie Anschlusskabel beschädigen. Maßnahmen zur Verbesserung der Kondensatresistenz am Lausprecher sowie der Isolierung des Kabels und der Verbindung zwischen den Kabeln und dem Aktuator sind vergleichsweise aufwändig und erhöhen die Herstellungskosten. Vermeidet man diese kostenintensiven Maßnahmen zur Verbesserung der Kondensatresistenz, lässt sich der aktive Schalldämpfer an der Abgasanlage nur im Bereich eines Endrohrs positionieren, wobei durch konstruktive Maßnahmen am jeweiligen Endrohr dafür gesorgt werden kann, dass der durch die Strömungsgeschwindigkeit hervorgerufene quasi-statische Druckunterschied zwischen Vorvolumen und Rückvolumen dann möglichst klein ist. In der Folge kann auf die Druckausgleichsöffnung zwischen Vorvolumen und Rückvolumen verzichtet werden. Dies schränkt jedoch die Gestaltung der aktiven Schalldämpfung signifikant ein und behindert bzw. verhindert den Einsatz eines aktiven Schalldämpfers an einem vom Endrohr entfernten Bereich stromauf in Richtung Motor, obwohl dort die akustische Wirksamkeit des aktiven Schalldämpfers möglicherweise besser ist.Such pressure equalization openings between the pre-volume and the rear volume are permeable to gas and open to diffusion, as a result of which exhaust gas, in particular, which enters the pre-volume via the connecting pipe from the exhaust system, can also enter the rear volume. At the same time, a temperature gradient occurs because the exhaust gas in the exhaust system is usually exposed to higher temperatures than in the rear volume. This creates the problem that condenses the moisture bound in the exhaust gas, ie steam, in the cooler rear volume. Depending on the exhaust gas composition, the resulting condensate is relatively aggressive, in particular, the condensate may include sulfuric acid. The aggressive condensate can permanently damage the electro-dynamic actuator and connection cable. Measures for improving the condensate resistance on the loudspeaker as well as the insulation of the cable and the connection between the cables and the actuator are comparatively complicated and increase the production costs. Avoiding these costly measures to improve the condensate resistance, the active silencer can be positioned on the exhaust system only in the area of a tailpipe, which can be ensured by constructive measures at each tailpipe that caused by the flow velocity quasi-static pressure difference between Vorvolumen and Back volume is then as small as possible. As a result, it is possible to dispense with the pressure compensation opening between the pre-volume and the return volume. However, this significantly restricts the design of the active silencer and obstructs or prevents the use of an active silencer at an area remote from the tailpipe upstream of the engine, although the acoustic effectiveness of the active silencer may be better there.

Die vorliegende Erfindung beschäftigt sich mit dem Problem, für einen aktiven Schalldämpfer eine verbesserte Ausführungsform anzugeben, die sich dadurch auszeichnet, dass einerseits Nachteile, die sich durch quasi-statische Differenzdrücke zwischen Vorvolumen und Rückvolumen ergeben, reduziert oder behoben oder vermieden werden, wobei gleichzeitig Nachteile, die durch Kondensatbildung im Rückvolumen entstehen können, reduziert oder behoben oder vermieden werden.The present invention addresses the problem of providing an improved muffler for an improved embodiment, which is characterized in that on the one hand disadvantages caused by quasi-static differential pressures arise between pre-volume and back volume, reduced or eliminated or avoided, at the same time disadvantages that may be caused by condensation in the back volume, reduced or eliminated or avoided.

Dieses Problem wird bei der Erfindung insbesondere durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This problem is solved in the invention in particular by the subject matters of the independent claims. Advantageous embodiments are the subject of the dependent claims.

Gemäß einer ersten Lösung beruht die Erfindung auf dem allgemeinen Gedanken, das Rückvolumen mit dem Vorvolumen über zumindest eine Kondensationsleitung fluidisch zu verbinden. Dabei ist diese Kondensationsleitung so konzipiert, dass darin im Abgas enthaltener Dampf kondensiert, wobei die Kondensationsleitung dann das darin anfallende Kondensat zum Vorvolumen leitet. Mit anderen Worten, die jeweilige Kondensationsleitung unterstützt die Kondensation derart, dass das Kondensat innerhalb der Kondensationsleitung anfällt, also während sich der Dampf vom Vorvolumen in Richtung Rückvolumen bewegt. Da das Rückvolumen geschlossen ist, kommt es zu keiner Durchströmung der Kondensationsleitung, sondern lediglich zu Diffusionsvorgängen bzw. zu sehr langsamen Volumenverschiebungen durch den jeweiligen Druckausgleich. Die große Verweildauer des Dampfes in der Kondensationsleitung, die sich einerseits durch die langsamen Gasbewegungen ergibt und andererseits durch eine entsprechend dimensionierte Leitungslänge erzielen lässt, kann die Kondensation im Wesentlichen bereits innerhalb der Kondensationsleitung stattfinden, so dass kaum Dampf in das Rückvolumen gelangt. Das bedeutet, dass das Kondensat nicht im Rückraum anfallen kann, sondern bereits auf dem Weg dahin, innerhalb der Kondensationsleitung, anfällt. Durch eine geeignete Anordnung der Kondensationsleitung kann diese das darin anfallende Kondensat leicht in das Vorvolumen leiten, wo es aufgrund der dort herrschenden Temperaturen wieder verdampft und vom Abgasstrom mitgenommen werden kann. Durch die Ausstattung des aktiven Schalldämpfers mit einer derartigen Kondensationsleitung kann somit die Entstehung von aggressivem Kondensat im Rückvolumen signifikant reduziert oder sogar vermieden werden. In der Folge reduziert sich auch die Gefahr von Beschädigungen durch aggressives Kondensat am Aktuator. Bemerkenswert ist außerdem, dass durch die mit Hilfe der Kondensationsleitung geschaffenen fluidischen Verbindung zwischen Vorvolumen und Rückvolumen gleichzeitig auch der gewünschte Druckausgleich zwischen Vorvolumen und Rückvolumen realisierbar ist. Insgesamt eröffnet die vorgeschlagene Maßnahme die Möglichkeit, den aktiven Schalldämpfer auch motornah einzusetzen, so dass quasi beliebige Positionierungen für den aktiven Schalldämpfer an der Abgasanlage realisierbar sind. Die Kondensationsleitung ersetzt dabei die aus dem Stand der Technik, vergleiche die vorstehende DE 10 2009 049 280 A1 , bekannte Druckausgleichsöffnung zwischen Vorvolumen und Rückvolumen.According to a first solution, the invention is based on the general idea of fluidically connecting the back volume with the pre-volume via at least one condensation line. In this case, this condensation line is designed so that it condenses contained in the exhaust steam, the condensation line then passes the resulting condensate to the pilot volume. In other words, the respective condensation line supports the condensation in such a way that the condensate is obtained within the condensation line, that is, while the steam moves from the pre-volume in the direction of the rear volume. Since the back volume is closed, there is no flow through the condensation line, but only to diffusion processes or very slow volume shifts by the respective pressure compensation. The long residence time of the steam in the condensation line, which results on the one hand by the slow gas movements and on the other hand can be achieved by a correspondingly dimensioned line length, the condensation can take place substantially already within the condensation line, so that hardly steam enters the back volume. This means that the condensate can not accumulate in the back room, but already on the way there, within the condensation line accumulates. By a suitable arrangement of the condensation line, this can easily lead the condensate accumulating in the pre-volume, where it evaporates again due to the prevailing temperatures there and can be taken from the exhaust stream. By equipping the active silencer with such a condensation line thus the formation of aggressive condensate in the back volume can be significantly reduced or even avoided. As a result, the risk of damage due to aggressive condensate on the actuator is reduced. It is also noteworthy that at the same time the desired pressure equalization between Vorvolumen and back volume can be realized by the created with the help of the condensation line fluidic connection between Vorvolumen and back volume. Overall, the proposed measure opens the possibility to use the active muffler close to the engine, so that virtually any positionings for the active muffler on the exhaust system can be realized. The condensation line replaces that of the prior art, compare the above DE 10 2009 049 280 A1 , known pressure equalization opening between Vorvolumen and back volume.

Gemäß einer vorteilhaften Ausführungsform kann die Kondensationsleitung darum das Rückvolumen zum Druckausgleich ohne akustischen Kurzschluss mit dem Vorvolumen fluidisch verbinden. Mit anderen Worten, die Kondensationsleitung ist so dimensioniert, dass sie für eine Übertragung dynamischer Druckschwankungen zwischen Vorvolumen und Rückvolumen ungeeignet ist, insbesondere aufgrund der in der Kondensationsleitung entstehenden Reibung. Zweckmäßig ist hierzu die Kondensationsleitung deutlich länger als ihr Innendurchmesser. Insbesondere ist die Leitungslänge wenigsten 10 mal größer als der Leitungsdurchmesser, vorzugsweise ist die Leitungslänge mindestens 100 mal größer als der Leitungsdurchmesser. Die Kondensationsleitung kann grundsätzlich geradlinig gestaltet sein. Ebenso ist eine Ausführungsform denkbar, bei welcher die Kondesationsleitung gekrümmt ist, z.B. spiralförmig und/oder schraubenförmig, um bei kurzer Baulänge eine große Leitungslänge zu realisieren.According to an advantageous embodiment, the condensation line can therefore fluidly connect the back volume for pressure equalization without an acoustic short circuit with the pre-volume. In other words, the condensation line is dimensioned such that it is unsuitable for transmitting dynamic pressure fluctuations between the pilot volume and the return volume, in particular due to the friction occurring in the condensation line. Appropriately, this is the condensation line significantly longer than its inner diameter. In particular, the cable length is at least 10 times greater than the cable diameter, preferably the cable length is at least 100 times larger than the cable diameter. The condensation line can basically be designed in a straight line. Likewise, an embodiment is conceivable in which the Kondesationsleitung is curved, for example, helical and / or helical, to realize a short length a large cable length.

Bei einer anderen vorteilhaften Ausführungsform kann die Kondensationsleitung vollständig im Inneren des Gehäuses angeordnet sein, so dass es sich um eine interne Kondensationsleitung handelt. Diese Bauweise reduziert die Gefahr von Leckagen.In another advantageous embodiment, the condensation line can be arranged completely inside the housing, so that it is an internal condensation line. This design reduces the risk of leaks.

Gemäß einer zweckmäßigen Weiterbildung kann nun ein wesentlicher Abschnitt der im Inneren des Gehäuses verlaufenden Kondensationsleitung im Rückvolumen angeordnet sein. Zweckmäßig ist mehr als die Hälfte, also mehr als 50 % der Länge der Kondensationsleitung im Rückvolumen angeordnet. Insbesondere sind mindestens 75 % der Länge der Kondensationsleitung im Rückvolumen angeordnet. Hierdurch wirkt auf einen vergleichsweise großen Anteil der Kondensationsleitung die im Rückvolumen herrschende Temperatur, so dass ein wesentlicher Abschnitt der Kondensationsleitung im Vergleich zum Abgas kühl ist und die gewünschte Kondensation bewirkt.According to an expedient development, a substantial portion of the condensation line running in the interior of the housing can now be arranged in the back volume. Suitably more than half, that is more than 50% of the length of the condensation line is arranged in the rear volume. In particular, at least 75% of the length of the condensation line are arranged in the back volume. As a result, the temperature prevailing in the rear volume acts on a comparatively large proportion of the condensation line, so that a substantial portion of the condensation line is cool in comparison with the exhaust gas and brings about the desired condensation.

Gemäß einer anderen vorteilhaften Ausführungsform kann die Kondensationsleitung einen außerhalb des Gehäuses verlaufenden Abschnitt aufweisen. Dieser Abschnitt kann zweckmäßig einen mit dem Vorvolumen verbundenen Endabschnitt der Kondensationsleitung mit einem mit dem Rückvolumen verbundenen Endabschnitt der Kondensationsleitung verbinden. Auf diese Weise wird eine zumindest teilweise extern verlaufende Kondensationsleitung geschaffen, was Möglichkeiten eröffnet, die Kondensatbildung innerhalb der Kondensationsleitung zu unterstützen.According to another advantageous embodiment, the condensation line may have a portion extending outside the housing. This section may suitably connect an end section of the condensation line connected to the pre-volume to an end section of the condensation line connected to the rear volume. In this way, an at least partially externally extending condensation line is created, which opens up possibilities to support the formation of condensation within the condensation line.

Bspw. kann gemäß einer Weiterbildung der außerhalb des Gehäuses angeordnete Abschnitt der Kondensationsleitung gekühlt sein. Denkbar ist bspw. eine rein passive Kühlung durch die in der Umgebung des Schalldämpfers herrschenden Temperaturen. Eine weitere passive Kühlung kann durch eine Umströmung des Schalldämpfers und des extern verlaufenden Abschnitts der Kondensationsleitung hervorgerufen werden, bspw. durch Fahrtwind eines mit der Brennkraftmaschine ausgestatteten Kraftfahrzeugs. Eine aktive Kühlung des außerhalb des Gehäuses verlaufenden Abschnitts der Kondensationsleitung ist ebenfalls denkbar, bspw. mit Hilfe eines Gebläses, das eine Luftströmung zur Beaufschlagung des Abschnitts erzeugt. Der Abschnitt kann dabei mit Kühlrippen oder dergleichen ausgestattet sein. Ebenso ist es möglich, besagten Abschnitt in einen Wärmeübertrager einzubinden, der außerdem in einen Kühlkreis eingebunden ist, so dass mit Hilfe des Wärmeübertragers Wärme von der Kondensationsleitung auf ein Kühlmittel des Kühlkreises übertragen werden kann.For example. can be cooled according to a development of the arranged outside the housing portion of the condensation line. It is conceivable, for example, a purely passive cooling by the ruling in the environment of the muffler temperatures. Another passive cooling can be achieved by a flow around the muffler and the externally extending portion of the condensation line be caused, for example, by wind of a motor vehicle equipped with the internal combustion engine. Active cooling of the section of the condensation line extending outside the housing is likewise conceivable, for example with the aid of a blower which generates an air flow for acting on the section. The section can be equipped with cooling fins or the like. It is also possible to incorporate said section in a heat exchanger, which is also involved in a cooling circuit, so that with the aid of the heat exchanger heat from the condensation line can be transferred to a coolant of the cooling circuit.

Gemäß einer anderen vorteilhaften Ausführungsform kann die Kondensationsleitung ein Rohr sein, das insbesondere aus einem metallischen Werkstoff hergestellt ist und sich durch eine besonders hohe Wärmeleitfähigkeit auszeichnet.According to another advantageous embodiment, the condensation line may be a tube, which is in particular made of a metallic material and is characterized by a particularly high thermal conductivity.

Gemäß einer bevorzugten Ausführungsform kann das Rückvolumen gegenüber einer Umgebung des Schalldämpfers hermetisch abgedichtet sein. Das bedeutet, dass das Gehäuse des Schalldämpfers im Bereich des Rückvolumens keine Öffnung besitzt, durch die ein Fluid in das Rückvolumen gelangen kann oder daraus austreten kann. Mit anderen Worten, das Rückvolumen ist, abgesehen von der mithilfe der Kondensationsleitung geschaffenen fluidischen Verbindung mit dem Vorvolumen, vollständig gekapselt. Insbesondere ist in diesem Fall weder eine Druckausgleichsöffnung vorhanden, die das Rückvolumen mit der Umgebung fluidisch verbindet, noch ein sontiger Anschluss vorgesehen, über den ein Fluid dem Rückvolumen zugeführt oder daraus abgeführt werden kann.According to a preferred embodiment, the back volume may be hermetically sealed from an environment of the muffler. This means that the housing of the muffler in the region of the rear volume has no opening through which a fluid can enter the back volume or escape therefrom. In other words, the back volume is completely encapsulated except for the fluidic connection with the pre-volume created by the condensation line. In particular, in this case neither a pressure equalization opening is present, which fluidly connects the back volume with the environment, nor a sontiger connection provided via which a fluid can be supplied to the back volume or discharged therefrom.

Entsprechend einer zweiten Lösung beruht die vorliegende Erfindung auf dem allgemeinen Gedanken, wenigstens eine Druckausgleichskammer vorzusehen. Eine derartige Druckausgleichskammer umschließt dabei ein Ausgleichsvolumen, das über wenigstens eine Verbindungsleitung mit dem Vorvolumen fluidisch verbunden ist. Somit herrscht im Ausgleichsvolumen der Druck des Vorvolumens. Des Weiteren ist zumindest eine passive Membran vorgesehen, die so positioniert ist, dass sie einerseits dem im Ausgleichsvolumen herrschenden Druck und andererseits dem im Rückvolumen herrschenden Druck ausgesetzt ist. Mit anderen Worten, die passive Membran verformt sich abhängig von der daran angreifenden Druckdifferenz, die durch die fluidische Kopplung zwischen Ausgleichsvolumen und Vorvolumen letztlich der Druckdifferenz zwischen Vorvolumen und Rückvolumen entspricht. Somit kann die passive Membran abhängig von ihrer Steifigkeit den im Vorvolumen herrschenden Druck auf das Rückvolumen übertragen, wodurch der gewünschte Druckausgleich mehr oder weniger realisiert wird. Bemerkenswert ist dabei, dass durch die Verbindung der passiven Membran ein Gasaustausch zwischen Vorvolumen und Rückvolumen nicht mehr möglich ist. Mit anderen Worten, bei der hier vorgestellten zweiten Lösung sind das Vorvolumen und das Rückvolumen fluidisch voneinander getrennt. In der Folge kann im Rückvolumen kein Kondensat anfallen. Insgesamt eröffnet die vorgeschlagene Maßnahme die Möglichkeit, den aktiven Schalldämpfer auch motornah einzusetzen, so dass quasi beliebige Positionierungen für den aktiven Schalldämpfer an der Abgasanlage realisierbar sind. Sofern im Ausgleichsvolumen Kondensat anfällt, kann dieses durch die Verbindungsleitung zum Vorvolumen geleitet werden.According to a second solution, the present invention is based on the general idea to provide at least one pressure compensation chamber. Such a pressure compensation chamber encloses a compensating volume, which is fluidically connected to the pre-volume via at least one connecting line is. Thus prevails in the compensation volume of the pressure of the Vorvolumens. Furthermore, at least one passive membrane is provided, which is positioned such that it is exposed on the one hand to the pressure prevailing in the compensating volume and, on the other hand, to the pressure prevailing in the rear volume. In other words, the passive membrane deforms depending on the pressure difference acting thereon, which ultimately corresponds to the pressure difference between the pre-volume and the return volume due to the fluidic coupling between the equalization volume and the pre-volume. Thus, depending on its rigidity, the passive membrane can transmit the pressure prevailing in the pre-volume to the back volume, whereby the desired pressure compensation is more or less realized. It is noteworthy that the connection of the passive membrane gas exchange between Vorvolume and back volume is no longer possible. In other words, in the second solution presented here, the pre-volume and the return volume are fluidically separated from one another. As a result, no condensate can accumulate in the back volume. Overall, the proposed measure opens the possibility to use the active muffler close to the engine, so that virtually any positionings for the active muffler on the exhaust system can be realized. If condensate accumulates in the compensation volume, this can be passed through the connecting line to the pilot volume.

Um die Effizienz der Druckausgleichskammer zu steigern, ist die passive Membran biegeweicher konzipiert als die aktive Membran des Lautsprechers. Insbesondere ist die passive Membran wenigstens doppelt so elastisch wie die aktive Membran.To increase the efficiency of the pressure compensation chamber, the passive membrane is designed to be softer than the active membrane of the loudspeaker. In particular, the passive membrane is at least twice as elastic as the active membrane.

Bei einer besonders vorteilhaften Ausführungsform kann die Druckausgleichskammer ein im Rückvolumen angeordnetes Kammergehäuse aufweisen, wobei dann die passive Membran zumindest einen Teil des Kammergehäuses bildet. Mit anderen Worten, die passive Membran trennt innerhalb des Gehäuses des Schalldämpfers das Ausgleichsvolumen vom Rückvolumen. Hierdurch können Leckageprobleme reduziert werden.In a particularly advantageous embodiment, the pressure compensation chamber may have a chamber arranged in the rear volume chamber housing, in which case the passive membrane forms at least a part of the chamber housing. In other words, the passive membrane separates the equalization volume from the back volume within the housing of the muffler. This can reduce leakage problems.

Gemäß einer vorteilhaften Weiterbildung kann die passive Membran das gesamte Kammergehäuse bilden. Mit anderen Worten, die passive Membran ist so geformt, dass sie das Kammergehäuse bildet und das Ausgleichsvolumen umschließt. Insbesondere kann das Gehäuse als elastischer Ballon oder als elastischer Faltenbalg ausgestaltet sein. In diesem Fall definiert die passive Membran die elastische Haut des Ballons bzw. den elastischen Balgkörper. Sofern die passive Membran das gesamte Kammergehäuse bildet, kann sich abhängig von der Druckdifferenz zwischen Ausgleichsvolumen und Rückvolumen das Kammergehäuse ausdehnen bzw. schrumpfen, um die Drücke zwischen Ausgleichsvolumen und Rückvolumen aneinander anzugleichen. Ein vollständiger Druckausgleich ist dabei aufgrund der inneren Spannung der passiven Membran nicht möglich. Je weicher die passive Membran dabei ist, desto näher können sich die Drücke zwischen Ausgleichsvolumen und Rückvolumen angleichen.According to an advantageous development, the passive membrane can form the entire chamber housing. In other words, the passive membrane is shaped so that it forms the chamber housing and encloses the compensation volume. In particular, the housing may be configured as an elastic balloon or as an elastic bellows. In this case, the passive membrane defines the elastic skin of the balloon or the elastic bellows body. If the passive membrane forms the entire chamber housing, depending on the pressure difference between the equalizing volume and the back volume, the chamber housing may expand or shrink to equalize the pressures between the equalizing volume and the back volume. A complete pressure equalization is not possible due to the internal tension of the passive membrane. The softer the passive membrane is, the closer the pressures between equalization volume and back volume can be.

Bei einer alternativen Ausführungsform kann die Druckausgleichskammer ein außerhalb des Rückvolumens bzw. außerhalb des Gehäuses angeordnetes Kammergehäuse aufweisen, wobei dann die passive Membran im Kammergehäuse das Ausgleichsvolumen von einem Kopplungsvolumen trennt. Eine Kopplungsleitung sorgt dann für eine fluidische Verbindung zwischen Kopplungsvolumen und Rückvolumen. Somit herrscht im Kopplungsvolumen der Druck des Rückvolumens. Eine Druckdifferenz zwischen Vorvolumen und Rückvolumen führt somit zu einer entsprechenden Druckdifferenz zwischen Ausgleichsvolumen und Kopplungsvolumen, die durch eine entsprechende Deformation der passiven Membran mehr oder weniger ausgeglichen werden kann. Auch hier gilt, dass der gewünschte Druckausgleich umso besser gelingt, je weicher die passive Membran ist.In an alternative embodiment, the pressure compensation chamber can have a chamber housing arranged outside the return volume or outside the housing, in which case the passive membrane in the chamber housing separates the compensation volume from a coupling volume. A coupling line then provides a fluidic connection between the coupling volume and the back volume. Thus prevails in the coupling volume of the pressure of the return volume. A pressure difference between the pre-volume and the back volume thus leads to a corresponding pressure difference between the compensating volume and the coupling volume, which can be more or less compensated by a corresponding deformation of the passive membrane. Again, that is true desired pressure equalization the better, the softer the passive membrane is.

Gemäß einer weiteren alternativen Ausführungsform kann die Druckausgleichskammer im Gehäuse ausgebildet sein, wobei dann die passive Membran im Gehäuse das Ausgleichsvolumen vom Rückvolumen trennt. Auch diese interne Bauform reduziert Leckageprobleme.According to a further alternative embodiment, the pressure compensation chamber may be formed in the housing, in which case the passive membrane in the housing separates the compensation volume from the rear volume. This internal design also reduces leakage problems.

Bei einer zweckmäßigen Weiterbildung kann die Verbindungsleitung im Gehäuse angeordnet sein und sich durch das Rückvolumen hindurch erstrecken. Zusätzlich oder alternativ kann vorgesehen sein, dass sich aufgrund einer entsprechend gewählten Positionierung der passiven Membran innerhalb des Gehäuses das Ausgleichsvolumen distal zum Vorvolumen befindet, so dass insbesondere das Rückvolumen zwischen dem Ausgleichsvolumen und dem Vorvolumen angeordnet ist. Ferner ist das Ausgleichsvolumen innerhalb des Gehäuses zweckmäßig so angeordnet, dass die passive Membran keinen Kontakt zum Vorvolumen besitzt.In an expedient development, the connecting line can be arranged in the housing and extend through the rear volume. Additionally or alternatively it can be provided that due to a correspondingly selected positioning of the passive membrane within the housing, the compensation volume is distal to the pre-volume, so that in particular the back volume between the compensation volume and the pre-volume is arranged. Furthermore, the compensation volume within the housing is expediently arranged so that the passive membrane has no contact with the pre-volume.

Bei einer anderen Ausführungsform kann die Verbindungsleitung so angeordnet sein, dass sie im Ausgleichsvolumen ggf. anfallendes Kondensat zum Vorvolumen leitet. Mit anderen Worten, die Verbindungsleitung ist auf die vorgesehene Einbausituation so abgestimmt, dass sie ein Gefälle in Richtung Vorvolumen besitzt.In another embodiment, the connecting line may be arranged so that it leads condensate possibly accumulating condensate to the pre-volume. In other words, the connecting line is adapted to the intended installation situation so that it has a slope in the direction of the front volume.

Eine dritte Lösung der Erfindung beruht auf dem allgemeinen Gedanken, die aufgrund einer Druckdifferenz zwischen Vorvolumen und Rückvolumen ausgebildete statische Auslenkung der aktiven Membran durch eine entsprechende Ansteuerung des Aktuators zu kompensieren. Hierzu ist der aktive Schalldämpfer mit einer Sensorik zum Messen einer Druckdifferenz zwischen Vorvolumen und Rückvolumen ausgestattet. Diese Sensorik kann bspw. einen Differenzdrucksensor umfassen, der die Druckdifferenz zwischen Vorvolumen und Rückvolumen direkt misst. Ebenso ist die Verwendung von zwei Absolutdrucksensoren denkbar, von denen der eine den Absolutdruck im Vorvolumen misst, während der andere den Absolutdruck im Rückvolumen misst. Die Differenz der beiden absoluten Drücke ergibt dann den gewünschten Differenzdruck. Die Sensorik ist ferner mit einer Steuerung gekoppelt, die zum Ansteuern des Aktuators dient. Diese Steuerung ist nun so programmiert bzw. ausgestaltet, dass sie den Aktuator abhängig von der gemessenen Druckdifferenz so ansteuert, dass dieser die aktive Membran entgegen der durch die Druckdifferenz verursachten Auslenkung auslenkt, wodurch die durch die Druckdifferenz verursachte Auslenkung der aktiven Membran mehr oder weniger kompensiert werden kann. Da eine Steuerung zum Betätigen des Aktuators im aktiven Lautsprecher ohnehin vorhanden ist, erfordert die hier vorgestellte Lösung nur eine zur Differenzdruckmessung geeignete Sensorik und eine entsprechende Kopplung in Verbindung mit einer geeigneten Programmierung. Somit lässt sich diese Ausführungsform vergleichsweise preiswert und nahezu ohne konstruktiven Aufwand realisieren. Insbesondere kommt eine derartige Ausführungsform ohne Druckausgleich zwischen Vorvolumen und Rückvolumen aus. Insbesondere kann sich diese Bauform daher dadurch charakterisieren, dass das Vorvolumen und das Rückvolumen fluidisch voneinander getrennt sind. Durch die fluidische Trennung des Rückvolumens vom Vorvolumen besteht auch die Gefahr einer Kondensatbildung im Rückvolumen nicht. Insgesamt eröffnet die vorgeschlagene Maßnahme die Möglichkeit, den aktiven Schalldämpfer auch motornah einzusetzen, so dass quasi beliebige Positionierungen für den aktiven Schalldämpfer an der Abgasanlage realisierbar sind.A third solution of the invention is based on the general idea of compensating for the static deflection of the active membrane formed by a corresponding actuation of the actuator due to a pressure difference between the pre-volume and the back volume. For this purpose, the active silencer with a sensor for measuring a pressure difference between Vorvolumen and back volume fitted. This sensor system may, for example, include a differential pressure sensor which directly measures the pressure difference between the pre-volume and the back volume. Likewise, the use of two absolute pressure sensors is conceivable, one of which measures the absolute pressure in the pre-volume, while the other measures the absolute pressure in the back volume. The difference between the two absolute pressures then gives the desired differential pressure. The sensor is further coupled to a controller which serves to drive the actuator. This control is now programmed or designed so that it controls the actuator depending on the measured pressure difference so that it deflects the active membrane against the deflection caused by the pressure difference, whereby the deflection caused by the pressure difference of the active membrane more or less compensated can be. Since a control for actuating the actuator in the active speaker is present anyway, the solution presented here only requires a sensor suitable for measuring differential pressure and a corresponding coupling in conjunction with a suitable programming. Thus, this embodiment can be comparatively inexpensive and realize almost no design effort. In particular, such an embodiment comes without pressure equalization between Vorvolumen and back volume. In particular, this design can therefore be characterized in that the pre-volume and the back volume are fluidly separated from each other. Due to the fluidic separation of the return volume from the pre-volume, there is also the risk of condensate formation in the return volume. Overall, the proposed measure opens the possibility to use the active muffler close to the engine, so that virtually any positionings for the active muffler on the exhaust system can be realized.

Gemäß einer vorteilhaften Ausführungsform kann die Steuerung ein von der gemessenen Druckdifferenz abhängiges statisches Steuersignal dynamischen Steuersignalen überlagern, mit denen die Steuerung den Aktuator zum Antreiben der aktiven Membran ansteuert, damit diese Gegenschall zur Beeinflussung, insbesondere zur Bedämpfung von im Abgas mitgeführtem Luftschall erzeugt. Mit anderen Worten, das zum Kompensieren der durch die Druckdifferenz verursachten Auslenkung der aktiven Membran erzeugte statische Steuersignal wird auf die dynamischen Steuersignale aufmoduliert, mit denen die Steuerung den Aktuator ansteuert, damit dieser die aktive Membran so ansteuert, damit diese die gewünschten Druckpulsationen in die Abgasanlage einleiten kann.According to an advantageous embodiment, the controller may superimpose a static control signal dependent on the measured pressure difference on dynamic control signals with which the controller drives the actuator activates the active membrane so that this counter-noise to influence, in particular for the damping of entrained in the exhaust air generated airborne. In other words, the static control signal generated to compensate for the deflection of the active membrane caused by the pressure differential is modulated onto the dynamic control signals with which the controller drives the actuator to drive the active diaphragm to provide the desired pressure pulsations into the exhaust system can initiate.

Eine vierte Lösung der Erfindung beruht ebenfalls auf dem allgemeinen Gedanken, die aufgrund einer Druckdifferenz zwischen Vorvolumen und Rückvolumen ausgebildete statische Auslenkung der aktiven Membran durch eine entsprechende Ansteuerung des Aktuators zu kompensieren. Abweichend von der vorstehend beschriebenen dritten Lösung wird bei der vierten Lösung nicht die Druckdifferenz gemessen, sondern die daraus resultierende Auslenkung der aktiven Membran aus deren Mittellage ermittelt, um die Auslenkung direkt als Basis für die Ansteuerung des Aktuators zu verwenden. Hierzu umfasst der Schalldämpfer eine Einrichtung zum Ermitteln einer Auslenkung der aktiven Membran aus deren Mittellage. Eine zum Ansteuern des Aktuators vorgesehene Steuerung ist mit besagter Einrichtung gekoppelt und steuert den Aktuator abhängig von der ermittelten Membranauslenkung zum Kompensieren der Membranauslenkung an. Auf diese Weise kann auf eine aufwändige Druckmessung verzichtet werden.A fourth solution of the invention is also based on the general idea of compensating for the static deflection of the active membrane formed by a corresponding actuation of the actuator due to a pressure difference between the pre-volume and the back volume. Notwithstanding the above-described third solution, the pressure difference is not measured in the fourth solution, but the resulting deflection of the active membrane is determined from its central position to use the deflection directly as a basis for the control of the actuator. For this purpose, the silencer comprises a device for determining a deflection of the active membrane from its central position. A control provided for driving the actuator is coupled to said device and controls the actuator depending on the determined diaphragm deflection for compensating the diaphragm deflection. In this way can be dispensed with a complex pressure measurement.

Die Ermittlung der Membranauslenkung kann auf unterschiedliche Weise durchgeführt werden. Beispielsweise kann die Einrichtung eine Sensorik zum Messen der Membranauslenkung aufweisen. Alternativ kann die Einrichtung die Stromaufnahme des Aktuators bei dessen Ansteuerung auswerten und in Abhängigkeit davon die Membranauslenkung ermitteln. Diese rein elektronische Maßnahme kommt ohne zusätzliche Sensorik aus. Insbesondere kann dabei die übliche, während des Schalldämpfungsbetriebs auftretende Stromaufnahme des Aktuators ausgewertet werden. Diese Maßnahme beruht auf der Überlegung, dass sich die Stromaufnahme des Aktuators abhängig von einer Auslenkung der Membran ändert, da der Aktuator gegebenenfalls mit oder gegen eine Vorspannung der Membran arbeitet. Alternativ ist ebenso denkbar, dass die Einrichtung ein Mikrofonsignal eines den von der aktiven Membran abgestrahlten Schall erfassenden Mikrofons auswertet und in Abhängigkeit davon die Membranauslenkung ermittelt. Diese Maßnahme beruht auf der Überlegung, dass sich der von der aktiven Membran abgestrahlte Schall abhängig von der Vorspannung der Membran verändert. Ein derartiges Mikrofon ist bei einem üblichen aktiven Schalldämpfungssystem ohnehin vorhanden, so dass auch bei dieser Lösung auf eine zusätzliche Sensorik verzichtet werden kann. Es ist klar, dass grundsätzlich auch andere Maßnahmen denkbar sind, um die tatsächliche Membranauslenkung zu ermitteln.The determination of the diaphragm deflection can be carried out in different ways. For example, the device may have a sensor for measuring the diaphragm deflection. Alternatively, the device can evaluate the current consumption of the actuator when it is actuated and determine the diaphragm deflection as a function of this. This purely electronic measure does not require additional sensors. In particular, the usual, occurring during the silencing operation current consumption of the actuator be evaluated. This measure is based on the consideration that the current consumption of the actuator changes depending on a deflection of the membrane, since the actuator optionally works with or against a bias of the membrane. Alternatively, it is likewise conceivable that the device evaluates a microphone signal of a microphone which detects the sound emitted by the active membrane and determines the diaphragm deflection as a function of this. This measure is based on the consideration that the sound emitted by the active membrane changes as a function of the prestressing of the membrane. Such a microphone is already present in a conventional active sound damping system, so that even with this solution can be dispensed with an additional sensor. It is clear that, in principle, other measures are conceivable in order to determine the actual diaphragm deflection.

Gemäß einer fünften Lösung beruht die vorliegende Erfindung auf dem allgemeinen Gedanken, die Druckdifferenz zwischen Vorvolumen und Rückvolumen mit Hilfe einer Fördereinrichtung auszugleichen, die zu diesem Zweck fluidisch an das Rückvolumen angeschlossen ist. Ist der Druck im Rückvolumen höher als der Druck im Vorvolumen, kann mit der Fördereinrichtung Gas bzw. Luft, aus dem Rückvolumen abgesaugt und z.B. in die Umgebung oder in das Vorvolumen gefördert werden, um den Druckausgleich zu bewirken. Ist dagegen der Druck im Rückvolumen niedriger als im Vorvolumen, kann mittels der Fördereinrichtung Gas bzw. Luft, z.B. aus der Umgebung oder aus dem Vorvolumen, angesaugt und dem Rückvolumen zugeführt werden, um den Druckausgleich zu bewirken. Als Ausgangssignal zum Ansteuern der Fördereinrichtung kann dabei ein mit der Druckdifferenz korreliertes Signal oder ein mit der Auslenkung der Membran aus deren Mittellage korreliertes Signal dienen. Die entsprechenden Einrichtungen sind bereits vorstehend beschrieben.According to a fifth solution, the present invention is based on the general idea of equalizing the pressure difference between the pre-volume and the back volume by means of a delivery device, which for this purpose is fluidically connected to the return volume. If the pressure in the back volume is higher than the pressure in the pre-volume, gas or air can be sucked out of the back volume and conveyed into the environment or into the pre-volume, for example, with the delivery device in order to bring about the pressure compensation. If, on the other hand, the pressure in the rear volume is lower than in the pre-volume, gas or air, for example from the environment or from the pre-volume, can be sucked in by means of the delivery device and supplied to the return volume in order to effect the pressure equalization. As an output signal for driving the conveyor can thereby serve a correlated with the pressure difference signal or correlated with the deflection of the diaphragm from the central position signal. The corresponding devices are already described above.

Entsprechend einer besonders vorteilhaften Ausführungsform, die insbesondere für alle vorstehend genannten Lösungen und Ausführungsformen anwendbar ist, kann zumindest eine Druckausgleichsöffnung vorgesehen sein, die das Rückvolumen fluidisch mit einer Umgebung des Gehäuses des Schalldämpfers verbindet. Mit Hilfe einer derartigen Druckausgleichsöffnung, die mit geeigneten Maßnahmen, bspw. mittels einer gasdurchlässigen und für Flüssigkeit undurchlässigen Membran, gasdurchlässig und flüssigkeitsdicht ausgestaltet sein kann, lassen sich die eingangs beschriebenen statischen Druckdifferenzen zwischen dem Rückvolumen und der atmosphärischen Umgebung ausgleichen. Die vorstehend beschriebene erste Lösung, bei welcher das Vorvolumen und das Rückvolumen durch die Kondensationsleitung miteinander fluidisch verbunden sind, kann ebenso wie die zugehörigen Ausführungsformen so ausgestaltet sein, dass das Rückvolumen von der Umgebung des Gehäuses des Schalldämpfers fluidisch getrennt ist. In diesen Fällen kann also auf eine derartige Druckausgleichsöffnung zwischen Rückvolumen und Umgebung verzichtet werden. Dagegen scheint es bei den anderen vorstehend beschriebenen Lösungen einschließlich der zugehörigen Ausführungsformen zweckmäßig zu sein, eine solche Druckausgleichsöffnung vorzusehen.According to a particularly advantageous embodiment, which is applicable in particular for all solutions and embodiments mentioned above, at least one pressure equalization opening can be provided, which fluidly connects the back volume to an environment of the housing of the muffler. With the help of such a pressure equalization opening, which can be designed with suitable measures, for example. By means of a gas-permeable and liquid impermeable membrane, gas permeable and liquid-tight, the static pressure differences between the back volume and the atmospheric environment described above can be compensated. The above-described first solution, in which the pre-volume and the back volume are fluidly connected to one another by the condensation line, as well as the associated embodiments, can be configured such that the back volume is fluidically separated from the environment of the housing of the muffler. In these cases, it is thus possible to dispense with such a pressure compensation opening between the rear volume and the environment. In contrast, it seems to be useful in the other solutions described above, including the associated embodiments, to provide such a pressure compensation opening.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawings and from the associated figure description with reference to the drawings.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.Preferred embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components.

Es zeigen, jeweils schematisch,

Figur 1
eine teilweise geschnittene isometrische Ansicht einer Abgasanlage im Bereich eines aktiven Schalldämpfers,
Figuren 2 bis 10
stark vereinfachte Prinzipdarstellungen des aktiven Schalldämpfers bei verschiedenen Ausführungsformen.
Show, in each case schematically,
FIG. 1
a partially sectioned isometric view of an exhaust system in the region of an active muffler,
FIGS. 2 to 10
highly simplified schematic diagrams of the active silencer in various embodiments.

Entsprechend Figur 1 umfasst eine Abgasanlage 1 einer hier nicht gezeigten Brennkraftmaschine einen Abgasstrang 2 sowie wenigstens einen aktiven Schalldämpfer 3, der an den Abgasstrang 2 und somit an die Abgasanlage 1 angeschlossen ist. Im Beispiel ist der Schalldämpfer 3 an eine im Betrieb der Brennkraftmaschine einen in Figur 1 durch einen Pfeil angedeuteten Abgasstrom führende Abgasleitung 5 angeschlossen, wobei hierzu im Beispiel ein Y-förmiges Anschlussstück 6 verwendet wird, das in Figur 1 nur zur Hälfte dargestellt ist. Es ist klar, dass der Schalldämpfer 3 grundsätzlich an eine beliebige Komponente der Abgasanlage 1 angeschlossen werden kann, also nicht zwangsläufig an ein Abgasrohr 5. Der aktive Schalldämpfer 3 dient dabei zur Bedämpfung von Luftschall, der in der Abgasströmung 4 mitgeführt wird bzw. sich im Abgasstrang 2 ausbreitet.Corresponding FIG. 1 an exhaust system 1 of an internal combustion engine, not shown here, an exhaust line 2 and at least one active muffler 3, which is connected to the exhaust line 2 and thus to the exhaust system 1. In the example, the silencer 3 is connected to a in the operation of the internal combustion engine in FIG. 1 connected by an arrow indicated exhaust gas flow leading exhaust pipe 5, wherein in this example a Y-shaped connector 6 is used, the in FIG. 1 only half is shown. It is clear that the muffler 3 can in principle be connected to any component of the exhaust system 1, that is not necessarily to an exhaust pipe 5. The active muffler 3 serves to dampen airborne sound that is carried in the exhaust gas flow 4 or in the Exhaust line 2 spreads.

Der Schalldämpfer 3 umfasst ein Gehäuse 7 sowie ein Verbindungsrohr 8 zum fluidischen Verbinden des Gehäuses 7 mit der Abgasanlage 1. Durch dieses Verbindungsrohr 8 hindurch erfolgt die akustische Kopplung zwischen dem Schalldämpfer 3 und der übrigen Abgasanlage 1. Das Verbindungsrohr 8 ist dabei nicht vom Abgas durchströmt. Das Abgas kann jedoch in das Verbindungsrohr 8 eintreten.The muffler 3 comprises a housing 7 and a connecting tube 8 for fluidically connecting the housing 7 with the exhaust system 1. Through this connecting tube 8 through the acoustic coupling between the Muffler 3 and the rest of the exhaust system 1. The connecting pipe 8 is not traversed by the exhaust gas. However, the exhaust gas may enter the connection pipe 8.

Entsprechend den Figuren 2 bis 10 umfasst der aktive Schalldämpfer 3 einen Lautsprecher 9, der eine aktive Membran 10 und einen Aktuator 11 umfasst. Die aktive Membran 10 trennt im Gehäuse 7 ein fluidisch mit dem Verbindungsrohr 8 verbundenes Vorvolumen 12 von einem Rückvolumen 13, das sich in den Darstellungen der Figuren 2 bis 8 an einer vom Verbindungsrohr 8 abgewandten Seite des Lautsprechers 9 befindet. Dementsprechend ist das Vorvolumen 11 dem Verbindungsrohr 8 zugewandt, während das Rückvolumen 13 vom Verbindungsrohr 8 abgewandt ist. Der Aktuator 11 arbeitet elektromagnetisch und dient zur Schwingungsanregung der aktiven Membran 10.According to the FIGS. 2 to 10 For example, the active muffler 3 includes a speaker 9 that includes an active diaphragm 10 and an actuator 11. The active membrane 10 separates in the housing 7 a fluidly connected to the connecting tube 8 Vorvolumes 12 from a back volume 13, which is shown in the illustrations of FIGS. 2 to 8 is located on a side facing away from the connecting tube 8 side of the speaker 9. Accordingly, the pre-volume 11 faces the connecting pipe 8, while the rear volume 13 faces away from the connecting pipe 8. The actuator 11 operates electromagnetically and serves for the vibration excitation of the active membrane 10.

Bei den in den Figuren 2 und 3 gezeigten Ausführungsformen ist der Schalldämpfer 3 außerdem mit wenigsten einer Kondensationsleitung 14 ausgestattet, die bevorzugt aus einem metallischen Rohrkörper gebildet ist. Grundsätzlich kann die Kondensationsleitung 14 auch als elastischer Schlauch, insbesondere aus Kunststoff, konzipiert sein. Die Kondensationsleitung 14 führt zu einer fluidischen Verbindung des Rückvolumens 13 mit dem Vorvolumen 12, wodurch es zu einem Druckausgleich zwischen Vorvolumen 12 und Rückvolumen 13 kommt. Damit dieser Druckausgleich nur für statische oder quasi-statische Druckdifferenzen und nicht für dynamische Druckdifferenzen erfolgt, ist die Kondensationsleitung 14 so ausgelegt, dass sie das Rückvolumen 13 mit dem Vorvolumen 12 ohne akustischen Kurzschluss fluidisch verbindet. Dies wird bspw. durch eine entsprechende Drosselwirkung, insbesondere durch Reibung innerhalb der Kondensationsleitung 14 erreicht. Bspw. ist eine Länge 15 der Kondensationsleitung 14 deutlich größer als ein Durchmesser 16 der Kondensationsleitung 14. Geeignete Verhältnisse sind bspw. mindestens 10:1 oder mindestens 100:1.In the in the FIGS. 2 and 3 In embodiments shown, the muffler 3 is also equipped with at least one condensation line 14, which is preferably formed from a metallic tubular body. In principle, the condensation line 14 can also be designed as an elastic hose, in particular made of plastic. The condensation line 14 leads to a fluidic connection of the rear volume 13 with the pre-volume 12, which results in a pressure equalization between the pre-volume 12 and the rear volume 13. So that this pressure compensation takes place only for static or quasi-static pressure differences and not for dynamic pressure differences, the condensation line 14 is designed so that it fluidly connects the back volume 13 with the pre-volume 12 without acoustic short circuit. This is achieved, for example, by a corresponding throttle effect, in particular by friction within the condensation line 14. For example. is a length 15 of the condensation line 14 significantly larger than a diameter 16 of the condensation line 14. Suitable conditions are, for example, at least 10: 1 or at least 100: 1.

Die Kondensationsleitung 14 ist außerdem so konzipiert, dass Dampf, der im Abgas enthalten ist, das insbesondere durch Diffusionsvorgänge in die Kondensationsleitung 14 eindringt, in der Kondensationsleitung 14 kondensiert. Außerdem ist die Kondensationsleitung 14 so angeordnet, dass das darin anfallende Kondensat zum Vorvolumen 12 fließen kann. Dementsprechend besitzt die Kondensationsleitung 14 im Einbauzustand des Schalldämpfers 3 ein Gefälle in Richtung Vorvolumen 12.The condensation line 14 is also designed so that vapor, which is contained in the exhaust gas, which penetrates in particular by diffusion processes in the condensation line 14, condenses in the condensation line 14. In addition, the condensation line 14 is arranged so that the condensate accumulating in it can flow to the pre-volume 12. Accordingly, in the installed state of the muffler 3, the condensation line 14 has a gradient in the direction of the front volume 12.

Damit die Kondensationswirkung in der Kondensationsleitung 14 in gewünschtem Umfang auftritt, kann gemäß der in Figur 2 gezeigten Ausführungsform die Kondensationsleitung 14 vollständig im Inneren des Gehäuses 7 angeordnet sein. Dabei ist zweckmäßig ein wesentlicher Abschnitt 17, der sich über wenigstens 50 % der gesamten Kondensationsleitungslänge 15 erstreckt, im Rückvolumen 13 angeordnet. Hierdurch ist ein Großteil der Kondensationsleitung 14, nämlich der wesentliche Abschnitt 17, den im Rückvolumen 13 herrschenden Temperaturen ausgesetzt, die deutlich niedriger sind als die Temperaturen des in die Kondensationsleitung 14 eintretenden Abgases. Hierdurch kann die gewünschte Kondensation von Dampf in der Kondensationsleitung 14 realisiert werden.Thus, the condensation effect occurs in the condensation line 14 to the desired extent, according to the in FIG. 2 In the embodiment shown, the condensation line 14 can be arranged completely inside the housing 7. In this case, a substantial section 17, which extends over at least 50% of the total condensation line length 15, is expediently arranged in the rear volume 13. As a result, a large part of the condensation line 14, namely the essential portion 17, is exposed to the temperatures prevailing in the rear volume 13, which are significantly lower than the temperatures of the exhaust gas entering the condensation line 14. As a result, the desired condensation of steam in the condensation line 14 can be realized.

Bei der in Figur 3 gezeigten Ausführungsform ist die Kondensationsleitung 14 so angeordnet, dass sie einem außerhalb des Gehäuses 7 verlaufenden Abschnitt 18 aufweist. Dieser außen liegende Abschnitt 18 verbindet einen mit dem Vorvolumen 12 verbundenen ersten Endabschnitt 19 der Kondensationsleitung 14 mit einem zweiten Endabschnitt 20 der Kondensationsleitung 14, der mit dem Rückvolumen 13 verbunden ist. Der außen liegende Abschnitt 18 kann bspw. mit Hilfe einer Kühlgasströmung 21 gekühlt werden, die in Figur 3 durch einen Pfeil angedeutet ist. Hierbei kann es sich um den Fahrwind handeln, der im Betrieb eines Fahrzeugs entsteht, das mit der Brennkraftmaschine ausgestattet ist, deren Abgase mit Hilfe der hier vorgestellten Abgasanlage 1 abgeführt werden. Alternativ lässt sich die Kühlgasströmung 21 bspw. auch mit Hilfe eines Gebläses 22 realisieren. Zur Verbesserung der Wärmeübertragung zwischen dem außen liegenden Abschnitt 18 und der Kühlgasströmung 21 kann die Kondensationsleitung 14 im außenliegenden Abschnitt 18 Kühlrippen 23 aufweisen. Zusätzlich oder alternativ kann die Kondensationsleitung 14 im außen liegenden Abschnitt 18 in einen Wärmeübertrager 24 eingebunden sein, der seinerseits in einen Kühlkreis 25 eingebunden ist, wobei eine Medientrennung zwischen dem Kühlmedium im Kühlkreis 25 und dem Abgas in der Kondensationsleitung 14 vorgesehen ist.At the in FIG. 3 In the embodiment shown, the condensation line 14 is arranged such that it has a section 18 extending outside the housing 7. This outer section 18 connects a first end section 19 of the condensation line 14 connected to the pre-volume 12 to a second end section 20 of the condensation line 14, which is connected to the rear volume 13. The outer portion 18 may, for example, be cooled by means of a cooling gas flow 21, which in FIG. 3 indicated by an arrow. This can be the driving wind that arises during operation of a vehicle that is equipped with the internal combustion engine whose exhaust gases be discharged with the help of the exhaust system 1 presented here. Alternatively, the cooling gas flow 21 can be realized, for example, with the aid of a blower 22. To improve the heat transfer between the outer portion 18 and the cooling gas flow 21, the condensation line 14 in the outer portion 18 may have cooling fins 23. Additionally or alternatively, the condensation line 14 may be integrated in the outer portion 18 in a heat exchanger 24, which in turn is integrated into a cooling circuit 25, wherein a media separation between the cooling medium in the cooling circuit 25 and the exhaust gas is provided in the condensation line 14.

Entsprechend den Figuren 4 bis 7 kann der Schalldämpfer 3 mit wenigstens einer Druckausgleichskammer 26 ausgestattet sein, die ein Ausgleichsvolumen 27 umschließt. Des Weiteren ist zumindest eine Verbindungsleitung 28 vorhanden, die das Ausgleichsvolumen 27 fluidisch mit dem Vorvolumen 12 verbindet. Außerdem ist wenigstens eine passive Membran 29 vorgesehen, die einerseits dem im Ausgleichsvolumen 27 herrschenden Druck und andererseits dem im Rückvolumen 13 herrschenden Druck ausgesetzt ist. Dementsprechend deformiert sich die passive Membran 29 abhängig von der Druckdifferenz zwischen Ausgleichsvolumen 27 und Rückvolumen 13. Da das Ausgleichsvolumen 27 durch die Verbindungsleitung 28 mit dem Vorvolumen 12 kommunizierend verbunden ist, entspricht der im Ausgleichsvolumen 27 herrschenden Druck dem im Vorvolumen 12 herrschenden Druck. Somit verformt sich die passive Membran 29 abhängig von der Druckdifferenz zwischen Rückvolumen 13 und Vorvolumen 12. In den Figuren 4 bis 7 ist für die passive Membran 29 mit durchgezogener Linie ein Ausgangszustand dargestellt, während gleichzeitig mit unterbrochener Linie ein Zustand wiedergegeben ist, in dem die passive Membran 29 aufgrund der Druckdifferenz zwischen Vorvolumen 12 und Rückvolumen 13 verformt ist.According to the FIGS. 4 to 7 For example, the silencer 3 may be equipped with at least one pressure compensation chamber 26, which encloses a compensation volume 27. Furthermore, at least one connecting line 28 is present, which connects the compensating volume 27 fluidically with the pre-volume 12. In addition, at least one passive membrane 29 is provided which is exposed on the one hand to the pressure prevailing in the compensating volume 27 and on the other hand to the pressure prevailing in the rear volume 13. Accordingly, the passive diaphragm 29 deforms depending on the pressure difference between the compensating volume 27 and the rear volume 13. Since the compensating volume 27 communicates with the pre-volume 12 through the connecting line 28, the pressure prevailing in the compensating volume 27 corresponds to the pressure prevailing in the pre-volume 12. Thus, the passive membrane 29 deforms depending on the pressure difference between the back volume 13 and Vorvolumen 12. In the FIGS. 4 to 7 is shown for the passive membrane 29 with a solid line an initial state, while at the same time is shown with a broken line, a state in which the passive membrane 29 is deformed due to the pressure difference between the pre-volume 12 and back volume 13.

Bei den Ausführungsformen der Figuren 4 und 5 umfasst die Druckausgleichskammer 26 ein Kammergehäuse 30, das im Rückvolumen 13 im Inneren des Gehäuses 7 angeordnet ist. Die passive Membran 29 bildet dabei zumindest einen Teil des Kammergehäuses 30. In der Folge trennt die passive Membran 29 im Inneren des Gehäuses 7 das Ausgleichsvolumen 27 vom Rückvolumen 13, so dass sie mittelbar dem Druck des Rückvolumens 13 ausgesetzt ist. In den gezeigten Beispielen ist dabei das gesamte Kammergehäuse 30 durch die passive Membran 29 gebildet. Bei der in Figur 4 gezeigten Ausführungsform ist das Kammergehäuse 30 als elastischer Ballon 30' ausgestaltet. Dieser Ballon 30' bzw. dessen Haut oder Hülle ist durch die passive Membran 29 gebildet. Bei der in Figur 5 gezeigten Ausführungsform ist das Kammergehäuse 30 als Faltenbalg 30" ausgestaltet. Der Balgkörper ist dabei durch die elastische passive Membran 29 gebildet.In the embodiments of the FIGS. 4 and 5 the pressure compensation chamber 26 comprises a chamber housing 30, which is arranged in the rear volume 13 in the interior of the housing 7. The passive membrane 29 forms at least a part of the chamber housing 30. As a result, the passive membrane 29 separates the compensation volume 27 from the rear volume 13 in the interior of the housing 7, so that it is indirectly exposed to the pressure of the return volume 13. In the examples shown, the entire chamber housing 30 is formed by the passive membrane 29. At the in FIG. 4 In the embodiment shown, the chamber housing 30 is designed as an elastic balloon 30 '. This balloon 30 'or its skin or sheath is formed by the passive membrane 29. At the in FIG. 5 In the embodiment shown, the chamber housing 30 is designed as a bellows 30 ", whereby the bellows body is formed by the elastic passive membrane 29.

Bei der in Figur 6 gezeigten Ausführungsform ist die Druckausgleichskammer 26 außerhalb des Gehäuses 7 angeordnet. Außerdem ist das Kammergehäuse 30 außerhalb des Gehäuses 7 angeordnet. Bei dieser Ausführungsform trennt die passive Membran 29 im Kammergehäuse 30 das Ausgleichsvolumen 27 von einem Kopplungsvolumen 31. Eine Kopplungsleitung 32 sorgt für eine fluidische Verbindung des Kopplungsvolumens 31 mit dem Rückvolumen 13. Im Beispiel der Figur 6 ist das Kammergehäuse 30 durch die Verbindungsleitung 28 und die Kopplungsleitung 32 beabstandet vom Gehäuse 7 des Schalldämpfers 3 angeordnet. Ebenso ist denkbar, das Kammergehäuse 30 unmittelbar an das Gehäuse 7 anzubauen, wobei sich dann die Kopplungsleitung 32 und die Verbindungsleitung 28 auf eine Verbindungsöffnung bzw. eine Kopplungsöffnung reduzieren. Die jeweilige Öffnung durchsetzt dann entweder eine Wand des Gehäuses 7 sowie eine Wand des Kammergehäuses 30 oder eine gemeinsame Wand des Gehäuses 7 und des Kammergehäuses 30. Die Verbindungsöffnung sorgt dann für die fluidische Kopplung zwischen Ausgleichsvolumen 27 und Vorvolumen 12. Die Kopplungsöffnung sorgt dann für die fluidische Kopplung zwischen Kopplungsvolumen 31 und Rückvolumen 13.At the in FIG. 6 In the embodiment shown, the pressure compensation chamber 26 is arranged outside the housing 7. In addition, the chamber housing 30 is disposed outside of the housing 7. In this embodiment, the passive membrane 29 in the chamber housing 30 separates the equalizing volume 27 from a coupling volume 31. A coupling line 32 provides a fluidic connection of the coupling volume 31 with the back volume 13. In the example of FIG. 6 the chamber housing 30 is arranged by the connecting line 28 and the coupling line 32 spaced from the housing 7 of the muffler 3. Likewise, it is conceivable to grow the chamber housing 30 directly to the housing 7, in which case the coupling line 32 and the connecting line 28 are reduced to a connection opening or a coupling opening. The respective opening then penetrates either a wall of the housing 7 and a wall of the chamber housing 30 or a common wall of the housing 7 and the chamber housing 30. The connection opening then provides for the fluidic coupling between the compensation volume 27 and Vorvolumen 12. Die Coupling opening then provides for the fluidic coupling between coupling volume 31 and back volume 13.

Bei der in Figur 7 gezeigten Ausführungsform ist die Druckausgleichskammer 26 wieder im Inneren des Gehäuses 7 ausgebildet, wobei dann die passive Membran 29 im Gehäuse 7 das Ausgleichsvolumen 27 vom Rückvolumen 13 trennt. Im Beispiel der Figur 7 reduziert sich der bauliche Aufwand für das Kammergehäuse 30 auf eine Trennwand, die in Figur 7 ebenfalls mit 30 bezeichnet ist, die innerhalb des Gehäuses 7 einen das Rückvolumen 13 enthaltenden Bereich von einem das Ausgleichsvolumen 27 enthaltenden Bereich trennt. An dieser Trennwand 30 ist die passive Membran 29 gelagert bzw. aufgehängt. Die Verbindungsleitung 28 ist ebenfalls innerhalb des Gehäuses 7 angeordnet, wobei sie sich durch das Rückvolumen 13 hindurch erstreckt, um das Ausgleichsvolumen 27 mit dem Vorvolumen 12 verbinden zu können.At the in FIG. 7 In the embodiment shown, the pressure compensation chamber 26 is again formed in the interior of the housing 7, in which case the passive diaphragm 29 in the housing 7 separates the compensation volume 27 from the back volume 13. In the example of FIG. 7 reduces the structural complexity of the chamber housing 30 on a partition, which in FIG. 7 is also designated 30, which separates within the housing 7 a region containing the back volume 13 of an area containing the compensating volume 27. At this partition 30, the passive membrane 29 is mounted or suspended. The connecting line 28 is also disposed within the housing 7, wherein it extends through the rear volume 13 to connect the compensating volume 27 with the Vorvolumen 12 can.

Bei den in den Figuren 4 bis 7 gezeigten Ausführungsformen ist die Verbindungsleitung 28 jeweils so angeordnet, dass sie Kondensat, das in der Verbindungsleitung 28 bzw. im Ausgleichsvolumen 27 anfallen kann, zum Vorvolumen 12 leitet. Hierzu kann die jeweilige Verbindungsleitung 28 im Einbauzustand ein entsprechendes Gefälle in Richtung Vorvolumen 12 besitzen.In the in the FIGS. 4 to 7 In the embodiments shown, the connecting line 28 is in each case arranged in such a way that it conducts condensate, which may occur in the connecting line 28 or in the compensating volume 27, to the pilot volume 12. For this purpose, the respective connecting line 28 in the installed state have a corresponding gradient in the direction of the pre-volume 12.

Entsprechend Figur 8 kann der Schalldämpfer 3 grundsätzlich bei allen Ausführungsformen mit einer Steuerung 33 ausgestattet sein, die über eine entsprechende Steuerleitung 34 den Aktuator 11 ansteuern kann. Der Aktuator 11 treibt dann abhängig von seiner Ansteuerung die aktive Membran 10 zum Erzeugen von Druckwellen, insbesondere Schallwellen, an.Corresponding FIG. 8 In principle, the silencer 3 may in all embodiments be equipped with a controller 33 which can actuate the actuator 11 via a corresponding control line 34. The actuator 11 then drives the active membrane 10 to generate pressure waves, in particular sound waves, depending on its activation.

Darüber hinaus kann die in Figur 8 gezeigte Ausführungsform des Schalldämpfers 3 eine Sensorik 35 aufweisen, mit deren Hilfe eine Druckdifferenz zwischen Vorvolumen 12 und Rückvolumen 13 gemessen werden kann. Im Beispiel der Figur 8 umfasst die Sensorik 35 einen Differenzdrucksensor 36, der einerseits auf geeignete Weise, z.B. über eine erste Sensorleitung 37, mit dem Vorvolumen 12 gekoppelt ist und der andererseits auf geeignete Weise, z.B. über eine zweite Sensorleitung 38, mit dem Rückvolumen 13 gekoppelt ist. Über eine Signalleitung 39 ist die Sensorik 35 mit der Steuerung 33 gekoppelt, so dass die Steuerung 33 die Druckdifferenz zwischen Vorvolumen 12 und Rückvolumen 13 kennt. Die Steuerung 33 ist nun so ausgestaltet bzw. programmiert, dass sie den Aktuator 11 abhängig von der gemessenen Druckdifferenz ansteuert. Durch die gezielte Ansteuerung des Aktuators 11 kann nun eine durch die zwischen Vorvolumen 12 und Rückvolumen 13 herrschende Druckdifferenz bewirkte Auslenkung der aktiven Membran 10 mehr oder weniger kompensiert werden. Bspw. bewirkt ein Überdruck im Vorvolumen 12 eine Auslenkung der aktiven Membran 10 in Richtung Rückvolumen 13. Durch entsprechendes Ansteuern des Aktuators 11 kann dieser die aktive Membran 10 statisch in Richtung Vorvolumen 12 antreiben und insbesondere wieder in die Ausgangsstellung zurückverstellen. Somit ist die durch die Druckdifferenz zwischen Vorvolumen 12 und Rückvolumen 13 bewirkte Auslenkung der aktiven Membran 10 im Wesentlichen neutralisiert bzw. kompensiert.In addition, the in FIG. 8 shown embodiment of the muffler 3 have a sensor 35, with the help of a pressure difference between Pre-volume 12 and back volume 13 can be measured. In the example of FIG. 8 The sensor system 35 includes a differential pressure sensor 36, which is coupled on the one hand in a suitable manner, for example via a first sensor line 37, with the pre-volume 12 and on the other hand in a suitable manner, for example via a second sensor line 38, is coupled to the rear volume 13. Via a signal line 39, the sensor 35 is coupled to the controller 33, so that the controller 33 knows the pressure difference between the pre-volume 12 and back volume 13. The controller 33 is now configured or programmed so that it controls the actuator 11 depending on the measured pressure difference. The targeted control of the actuator 11 can now more or less compensated by the prevailing between the pre-volume 12 and back volume 13 pressure difference deflection of the active membrane 10. For example. causes an overpressure in the Vorvolumen 12 a deflection of the active membrane 10 in the direction of rear volume 13. By appropriate driving of the actuator 11, this can drive the active membrane 10 statically in the direction of Vorvolumen 12 and in particular zurückverstellen back to the starting position. Thus, the deflection of the active membrane 10 caused by the pressure difference between the pilot volume 12 and the back volume 13 is substantially neutralized or compensated.

Die Steuerung 33 ist dabei zweckmäßig so konfiguriert, dass sie ein von der gemessenen Druckdifferenz abhängiges statisches Steuersignal generiert, um die gewünschte statische Verstellung der aktiven Membran 10 zur Kompensation der durch die Druckdifferenz bedingten Auslenkung der aktiven Membran 10 zu erzeugen. Im Unterschied dazu generiert die Steuerung 33 zum Erzeugen von Druckschwingungen, die über das Verbindungsrohr 8 in den Abgasstrang 2 übertragen werden sollen, dynamische Steuersignale, mit denen die Steuerung 33 den Aktuator 11 zum Antreiben der aktiven Membran 10 ansteuert. Abhängig von dieser Ansteuerung kann nun die aktive Membran 10 die gewünschten Druckschwingungen erzeugen. Insbesondere handelt es sich dabei um Gegenschall zur Bekämpfung von im Abgas mitgeführtem Luftschall. Die statischen Steuersignale, die zur Kompensation der von der Druckdifferenz verursachten Auslenkung der aktiven Membran 10 vorgesehen sind, werden nun den dynamischen Steuersignalen überlagert, die zum Erzeugen der Druckschwingungen bzw. des Gegenschalls vorgesehen sind.The controller 33 is expediently configured so that it generates a dependent of the measured pressure difference static control signal to produce the desired static adjustment of the active membrane 10 to compensate for the pressure difference caused by the deflection of the active membrane 10. In contrast, the controller generates 33 for generating pressure oscillations, which are to be transmitted via the connecting pipe 8 in the exhaust line 2, dynamic control signals with which the controller 33, the actuator 11 for driving the active diaphragm 10 drives. Depending on this activation, the active membrane 10 can now achieve the desired pressure oscillations produce. In particular, it is counter-noise to combat entrained in the exhaust airborne sound. The static control signals, which are provided to compensate for the deflection caused by the pressure difference of the active membrane 10, are now superimposed on the dynamic control signals which are provided for generating the pressure oscillations or the counter-noise.

Figur 9 zeigt eine Ausführungsform, bei der anstelle einer Druckdifferenz, die eine Auslenkung der aktiven Membran 10 aus deren Mittellage zur Folge hat, die Membranauslenkung direkt ermittelt wird und als Eingangsgröße für das statische Steuersignal zur Kompensation herangezogen wird. So kann gemäß Figur 9 eine Einrichtung 42 vorgesehen sein, mit deren Hilfe die Membranauslenkung ermittelt werden kann. Ermittelt wird die Auslenkung der aktiven Membran 10 aus deren Mittellage, die sie dann einnimmt, wenn die Drücke im Vorvolumen 12 und im Rückvolumen 13 gleich groß sind. Im Beispiel der Figur 9 umfasst die Einrichtung 42 ein Mikrofon 43, das den von der aktiven Membran 10 abgestrahlten Luftschall erfassen und messen kann. Die Mikrofonsignale werden über eine entsprechende Signalleitung 44 der Steuerung 33 zugeführt, um diese auszuwerten. Da sich die Schallabstrahlung der Membran 10 von ihrer Vorspannung bzw. von ihrer Auslenkung ändert, kann durch einen Soll-Ist-Vergleich die Membranauslenkung ermittelt werden. Alternativ kann die Einrichtung 42 gemäß Figur 10 eine Sensorik 45 aufweisen, mit deren Hilfe die Auslenkung der Membran 10 gemessen werden kann. Ein entsprechendes Signal kann dann über eine Signalleitung 46 wieder der Steuerung 33 zugeführt werden. FIG. 9 shows an embodiment in which instead of a pressure difference, which has a deflection of the active membrane 10 from the center position result, the diaphragm deflection is determined directly and is used as input to the static control signal for compensation. So according to FIG. 9 a device 42 may be provided, with the aid of which the diaphragm deflection can be determined. The deflection of the active membrane 10 is determined from its central position, which it assumes when the pressures in the pre-volume 12 and in the rear volume 13 are the same. In the example of FIG. 9 The device 42 comprises a microphone 43, which can detect and measure the airborne sound emitted by the active membrane 10. The microphone signals are supplied via a corresponding signal line 44 to the controller 33 in order to evaluate them. Since the sound radiation of the diaphragm 10 changes from its bias or from its deflection, the diaphragm deflection can be determined by a desired-actual comparison. Alternatively, the device 42 according to FIG. 10 have a sensor 45, by means of which the deflection of the membrane 10 can be measured. A corresponding signal can then be returned to the controller 33 via a signal line 46.

Figur 10 zeigt nun eine Ausführungsform, bei welcher eine Fördereinrichtung 47 vorgesehen ist, die fluidisch an das Rückvolumen 13 angeschlossen ist. Eine Steuerleitung 48 verbindet die Steuerung 33 mit der Fördereinrichtung 47. Die Fördereinrichtung 47, z.B. eine Pumpe, kann als Über- bzw. Unterdruckerzeuger dienen, um je nach Bedarf das Rückvolumen 13 mit Über- bzw. mit Unterdruck beaufschlagen zu können, derart, dass die unerwünschte statische Membranauslenkung ganz oder teilweise kompensiert wird. Als Basissignal für die Betätigung der Fördereinrichtung 47 kann dabei direkt die Membranauslenkung dienen, die wieder mit Hilfe der Einrichtung 42 ermittelt werden kann. Alternativ kann auch die Druckdifferenz zwischen Vorvolumen 12 und Rückvolumen 13 zur Ansteuerung der Fördereinrichtung 47 verwendet werden, da die Druckdifferenz mit der Membranauslenkung korreliert. Zur Ermittlung der Druckdifferenz kann wieder die Sensorik 35 herangezogen werden. Im Beispiel ist die Fördereinrichtung 47 außen am Gehäuse 7 angeordnet. Es ist klar, dass die Fördereinrichtung auch im Inneren des Gehäuses 7 angeordnet werden kann. Ferner fördert die Fördereinrichtung 47 im Beispiel in die Umgebung 41 bzw. saugt aus der Umgebung 41 an, um im Rückvolumen 13 den Druck an den im Vorvolumen 12 herrschenden Druck anzugleichen. FIG. 10 now shows an embodiment in which a conveyor 47 is provided which is fluidly connected to the rear volume 13. A control line 48 connects the controller 33 with the conveyor 47. The conveyor 47, for example, a pump can as over- or vacuum generator serve to be able to pressurize the back volume 13 with overpressure or negative pressure as needed, in such a way that the unwanted static diaphragm deflection is compensated in whole or in part. As the base signal for the actuation of the conveyor 47 can serve directly the diaphragm deflection, which can be determined again with the aid of the device 42. Alternatively, the pressure difference between pre-volume 12 and back volume 13 can be used to control the conveyor 47, since the pressure difference correlates with the diaphragm displacement. To determine the pressure difference, the sensor 35 can be used again. In the example, the conveyor 47 is arranged on the outside of the housing 7. It is clear that the conveyor can also be arranged in the interior of the housing 7. Furthermore, the conveyor 47 in the example conveys into the environment 41 or sucks from the environment 41 in order to adjust the pressure in the back volume 13 to the pressure prevailing in the pilot volume 12.

Bei den in den Figuren 4 bis 10 gezeigten Ausführungsformen ist der Schalldämpfer 3 außerdem mit zumindest einer Druckausgleichsöffnung 40 ausgestattet, die im Gehäuse 7 bzw. in einer Wandung des Gehäuses 7 ausgebildet ist und die das Rückvolumen 13 fluidisch mit einer Umgebung 41 des Schalldämpfers 3 verbindet. Dabei kann die Druckausgleichsöffnung 40 durchaus so konzipiert sein, dass sie für Gas durchlässig, jedoch für Flüssigkeit undurchlässig ist. Bspw. kann die Druckausgleichsöffnung 40 hierzu mit einer gasdurchlässigen Membran verschlossen sein, die hier jedoch nicht dargestellt ist. Bei den in den Figuren 2 und 3 gezeigten Ausführungsformen kann grundsätzlich ebenfalls eine derartige Druckausgleichsöffnung 40 vorhanden sein. Bevorzugt ist jedoch eine Ausführungsform, bei welcher auf eine derartige Druckausgleichsöffnung 40 verzichtet wird. Insbesondere ist daher bei den Ausführungsformen der Figuren 2 und 3 das Rückvolumen 13 von der Umgebung 41 entkoppelt.In the in the FIGS. 4 to 10 In embodiments shown, the muffler 3 is also equipped with at least one pressure equalization opening 40 which is formed in the housing 7 or in a wall of the housing 7 and which connects the back volume 13 fluidly with an environment 41 of the muffler 3. In this case, the pressure compensation opening 40 may well be designed so that it is permeable to gas, but impermeable to liquid. For example. For this purpose, the pressure compensation opening 40 can be closed with a gas-permeable membrane, which is not shown here. In the in the FIGS. 2 and 3 In principle, such a pressure equalization opening 40 may also be present. However, an embodiment in which such a pressure compensation opening 40 is dispensed with is preferred. In particular, therefore, in the embodiments of the FIGS. 2 and 3 the back volume 13 is decoupled from the environment 41.

Obwohl hier nicht so dargestellt, ist klar, dass Merkmale, die nur bei einer Ausführungsform gezeigt sind, auch bei den anderen Ausführungsformen realisierbar sind, soweit dies sinnvoll ist.Although not shown here, it will be understood that features shown only in one embodiment may be practiced in the other embodiments, as appropriate.

Claims (25)

Aktiver Schalldämpfer für eine Abgasanlage (1) einer Brennkraftmaschine, vorzugsweise eines Kraftfahrzeugs, - mit einem Gehäuse (7) - mit einem Verbindungsrohr (8) zum akustischen und fluidischen Verbinden des Gehäuses (7) mit der Abgasanlage (1) - mit einer aktiven Membran (10), die im Gehäuse (7) ein fluidisch mit dem Verbindungsrohr (8) verbundenes Vorvolumen (12) von einem Rückvolumen (13) trennt, - mit einem Aktuator (11) zur Schwingungsanregung der aktiven Membran (10), gekennzeichnet durch wenigstens eine Kondensationsleitung (14), die das Rückvolumen (13) fluidisch mit dem Vorvolumen (12) verbindet, in der im Abgas enthaltener Dampf kondensiert und die das anfallende Kondensat zum Vorvolumen (12) leitet. Active silencer for an exhaust system (1) of an internal combustion engine, preferably of a motor vehicle, - with a housing (7) - With a connecting tube (8) for the acoustic and fluidic connection of the housing (7) with the exhaust system (1) - With an active membrane (10) in the housing (7) a fluidly connected to the connecting tube (8) Vorvolumes (12) from a rear volume (13), - With an actuator (11) for vibrational excitation of the active membrane (10), characterized by at least one condensation line (14) which fluidly connects the back volume (13) with the pre-volume (12), condenses in the vapor contained in the exhaust gas and the accumulating condensate to the pre-volume (12) passes. Schalldämpfer nach Anspruch 1,
dadurch gekennzeichnet,
dass die Kondensationsleitung (14) das Rückvolumen (13) zum Druckausgleich ohne akustischen Kurzschluss mit dem Vorvolumen (12) fluidisch verbindet.
Silencer according to claim 1,
characterized,
in that the condensation line (14) fluidly connects the rear volume (13) for pressure compensation without an acoustic short circuit to the pre-volume (12).
Schalldämpfer nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Kondensationsleitung (14) im Inneren des Gehäuses (7) angeordnet ist.
Silencer according to claim 1 or 2,
characterized,
that the condensation conduit (14) inside the housing (7) is arranged.
Schalldämpfer nach Anspruch 3,
dadurch gekennzeichnet,
dass ein wesentlicher Abschnitt (17) der Kondensationsleitung (14) im Rückvolumen (13) angeordnet ist.
Silencer according to claim 3,
characterized,
that a significant portion (17) of said condensing duct (14) in the back volume (13).
Schalldämpfer nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Kondensationsleitung (14) einen außerhalb des Gehäuses (7) verlaufenden Abschnitt (18) aufweist, der einen mit dem Vorvolumen (12) verbundenen Endabschnitt (19) der Kondensationsleitung (14) mit einem mit dem Rückvolumen (13) verbundenen Endabschnitt (20) der Kondensationsleitung (14) verbindet.
Silencer according to claim 1 or 2,
characterized,
in that the condensation line (14) has a section (18) extending outside the housing (7), which has an end section (19) of the condensation line (14) connected to the pilot volume (12) with an end section (20) connected to the rear volume (13) ) connects the condensation line (14).
Schalldämpfer nach Anspruch 5,
dadurch gekennzeichnet,
dass der außerhalb des Gehäuses (7) angeordnete Abschnitt (18) der Kondensationsleitung (14) aktiv oder passiv gekühlt ist.
Silencer according to claim 5,
characterized,
that the outside of the housing (7) disposed portion (18) of the condensation duct (14) is actively or passively cooled.
Schalldämpfer nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Kondensationsleitung (14) ein Rohr ist.
Silencer according to one of claims 1 to 6,
characterized,
that the condensation conduit (14) is a tube.
Schalldämpfer nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die Kondensationsleitung (14) im Einbauzustand des Schalldämpfers (3) ein Gefälle in Richtung Vorvolumen (12) aufweist.
Silencer according to one of claims 1 to 7,
characterized,
that the condensation line (14) in the installed state of the muffler (3) has a slope in the direction of the pre-volume (12).
Schalldämpfer nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass das Rückvolumen (13) gegenüber einer Umgebung (41) des Schalldämpfers (3) hermetisch abgedichtet ist.
Silencer according to one of claims 1 to 8,
characterized,
that the back volume (13) to an environment (41) of the muffler (3) is hermetically sealed.
Aktiver Schalldämpfer nach dem Oberbegriff des Anspruchs 1, gekennzeichnet durch wenigstens eine Druckausgleichskammer (26), die ein Ausgleichsvolumen (27) umschließt, wobei zumindest eine Verbindungsleitung (28) das Ausgleichsvolumen (27) fluidisch mit dem Vorvolumen (12) verbindet, wobei zumindest eine passive Membran (29) vorgesehen ist, die einerseits dem im Ausgleichsvolumen (27) herrschenden Druck und andererseits dem im Rückvolumen (13) herrschenden Druck ausgesetzt ist.Active silencer according to the preamble of claim 1, characterized by at least one pressure compensation chamber (26) enclosing a compensation volume (27), wherein at least one connecting line (28) fluidly connects the compensation volume (27) with the pre-volume (12), wherein at least one passive diaphragm (29) is provided which is exposed on the one hand to the pressure prevailing in the compensating volume (27) and on the other hand to the pressure prevailing in the rear volume (13). Schalldämpfer nach Anspruch 10,
dadurch gekennzeichnet, - dass die Druckausgleichskammer (26) ein im Rückvolumen (13) angeordnetes Kammergehäuse (30) aufweist, - dass die passive Membran (29) zumindest einen Teil des Kammergehäuses (30) bildet.
Silencer according to claim 10,
characterized, in that the pressure compensation chamber (26) has a chamber housing (30) arranged in the rear volume (13), - That the passive membrane (29) forms at least a part of the chamber housing (30).
Schalldämpfer nach Anspruch 11,
dadurch gekennzeichnet,
dass die passive Membran (29) das gesamte Kammergehäuse (30) bildet.
Silencer according to claim 11,
characterized,
that the passive membrane (29) forms the entire chamber housing (30).
Schalldämpfer nach Anspruch 11 oder 12,
dadurch gekennzeichnet,
dass das Kammergehäuse (30) als elastischer Ballon (30') oder als elastischer Faltenbalg (30')' ausgestaltet ist.
Silencer according to claim 11 or 12,
characterized,
in that the chamber housing (30) is designed as an elastic balloon (30 ') or as an elastic bellows (30') '.
Schalldämpfer nach Anspruch 10,
dadurch gekennzeichnet, - dass die Druckausgleichskammer (26) ein außerhalb des Rückvolumens und/oder außerhalb des Gehäuses (7) angeordnetes Kammergehäuse (30) aufweist, - dass die passive Membran (29) im Kammergehäuse (30) das Ausgleichsvolumen (27) von einem Kopplungsvolumen (31) trennt, - dass eine Kopplungsleitung (32) das Kopplungsvolumen (31) fluidisch mit dem Rückvolumen (13) verbindet.
Silencer according to claim 10,
characterized, - that the pressure balancing chamber (26) outside the reserve volume and / or outside the housing (7) has arranged chamber housing (30), in that the passive membrane (29) in the chamber housing (30) separates the equalizing volume (27) from a coupling volume (31), - That a coupling line (32) fluidly connects the coupling volume (31) with the rear volume (13).
Schalldämpfer nach Anspruch 10,
dadurch gekennzeichnet, - dass die Druckausgleichskammer (26) im Gehäuse (7) ausgebildet ist, - dass die passive Membran (29) im Gehäuse (7) das Ausgleichsvolumen (27) vom Rückvolumen (13) trennt.
Silencer according to claim 10,
characterized, - That the pressure compensation chamber (26) in the housing (7) is formed, - That the passive membrane (29) in the housing (7) the compensating volume (27) from the rear volume (13) separates.
Schalldämpfer nach Anspruch 15,
dadurch gekennzeichnet,
dass die Verbindungsleitung (28) im Gehäuse (7) angeordnet und sich durch das Rückvolumen (13) hindurch erstreckt.
Silencer according to claim 15,
characterized,
in that the connecting line (28) is arranged in the housing (7) and extends through the rear volume (13).
Schalldämpfer nach einem der Ansprüche 10 bis 16,
dadurch gekennzeichnet,
dass die Verbindungsleitung (28) so angeordnet ist, dass sie im Ausgleichsvolumen (27) anfallendes Kondensat zum Vorvolumen (12) leitet.
Silencer according to one of claims 10 to 16,
characterized,
in that the connecting line (28) is arranged so that it leads condensate accumulating in the compensating volume (27) to the pre-volume (12).
Aktiver Schalldämpfer nach dem Oberbegriff des Anspruch 1, gekennzeichnet durch eine Sensorik (35) zum Messen einer Druckdifferenz zwischen Vorvolumen (12) und Rückvolumen (13), wobei eine zum Ansteuern des Aktuators (11) vorgesehene Steuerung (33) mit der Sensorik (35) gekoppelt ist und den Aktuator (11) abhängig von der gemessenen Druckdifferenz zum Kompensieren einer durch die Druckdifferenz verursachten Auslenkung der aktiven Membran (10) ansteuert.Active silencer according to the preamble of claim 1, characterized by a sensor system (35) for measuring a pressure difference between pre-volume (12) and return volume (13), wherein a control (33) provided for driving the actuator (11) is connected to the sensor system (35 ) and the actuator (11) depending on the measured pressure difference for compensating a caused by the pressure difference deflection of the active membrane (10) drives. Schalldämpfer nach Anspruch 18,
dadurch gekennzeichnet,
dass die Steuerung (33) ein von der gemessenen Druckdifferenz abhängiges statisches Steuersignal dynamischen Steuersignalen überlagert, mit denen die Steuerung (33) den Aktuator (11) zum Antreiben der aktiven Membran (10) ansteuert, damit diese Gegenschall zur Bedämpfung von im Abgas mitgeführtem Luftschall erzeugt.
Silencer according to claim 18,
characterized,
in that the controller (33) superimposes a static control signal, dependent on the measured pressure difference, on dynamic control signals with which the controller (33) activates the actuator (11) for driving the active diaphragm (10) so as to counteract this by damping airborne noise entrained in the exhaust gas generated.
Aktiver Schalldämpfer nach dem Oberbegriff des Anspruch 1, gekennzeichnet durch eine Einrichtung (42) zum Ermitteln einer Auslenkung der aktiven Membran (10) aus deren Mittellage, wobei eine zum Ansteuern des Aktuators (11) vorgesehene Steuerung (33) mit der Einrichtung (42) gekoppelt ist und den Aktuator (11) abhängig von der ermittelten Membranauslenkung zum Kompensieren der Membranauslenkung ansteuert.Active silencer according to the preamble of claim 1, characterized by a device (42) for determining a deflection of the active diaphragm (10) from its central position, wherein a control (33) provided for driving the actuator (11) is provided with the device (42). is coupled and the actuator (11) depending on the determined diaphragm deflection for compensating the diaphragm deflection drives. Schalldämpfer nach Anspruch 20,
dadurch gekennzeichnet,
dass die Einrichtung (42) eine Sensorik zum Messen der Membranauslenkung aufweist.
Silencer according to claim 20,
characterized,
in that the device (42) has a sensor for measuring the diaphragm deflection.
Schalldämpfer nach Anspruch 20,
dadurch gekennzeichnet,
dass die Einrichtung (42) die Stromaufnahme des Aktuators (11) bei dessen Ansteuerung auswertet und in Abhängigkeit davon die Membranauslenkung ermittelt.
Silencer according to claim 20,
characterized,
in that the device (42) evaluates the current consumption of the actuator (11) when it is actuated and determines the diaphragm deflection as a function of this.
Schalldämpfer nach Anspruch 20,
dadurch gekennzeichnet,
dass die Einrichtung (42) ein Mikrofonsignal eines den von der aktiven Membran abgestrahlten Schall erfassenden Mikrofons auswertet und in Abhängigkeit davon die Membranauslenkung ermittelt.
Silencer according to claim 20,
characterized,
in that the device (42) evaluates a microphone signal of a microphone which detects the sound emitted by the active membrane and determines the diaphragm deflection in dependence thereon.
Aktiver Schalldämpfer nach dem Oberbegriff des Anspruch 1, gekennzeichnet durch eine mit dem Rückvolumen (13) fluidisch verbundene Fördereinrichtung (47), wobei eine mit der Fördereinrichtung (47) gekoppelte Steuerung (33) die Fördereinrichtung (47) abhängig von einer Druckdifferenz zwischen Vorvolumen (12) und Rückvolumen (13) oder abhängig von einer Auslenkung der aktiven Membran (19) aus deren Mittellage zum Reduzieren der Druckdifferenz und der Membranauslenkung zum Ansaugen aus dem Rückvolumen (13) oder zum Fördern in das Rückvolumen (13) ansteuert.Active silencer according to the preamble of claim 1, characterized by a conveyor (47) fluidly connected to the rear volume (13), wherein a control (33) coupled to the conveyor (47) controls the conveyor (47) depending on a pressure difference between the preliminary volume (47). 12) and rear volume (13) or depending on a deflection of the active membrane (19) from its central position for reducing the pressure difference and the diaphragm deflection for sucking from the back volume (13) or for conveying in the back volume (13) drives. Schalldämpfer nach einem der Ansprüche 1 bis 8 und 10 bis 24, gekennzeichnet durch wenigstens eine Druckausgleichsöffnung (40), die das Rückvolumen (13) fluidisch mit einer Umgebung (41) des Gehäuses (7) des Schalldämpfers (3) verbindet.Silencer according to one of Claims 1 to 8 and 10 to 24, characterized by at least one pressure compensation opening (40) which fluidly connects the rear volume (13) to an environment (41) of the housing (7) of the silencer (3).
EP12184776.8A 2011-10-14 2012-09-18 Active acoustic baffler Active EP2581567B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011084567.4A DE102011084567C5 (en) 2011-10-14 2011-10-14 Active muffler

Publications (2)

Publication Number Publication Date
EP2581567A1 true EP2581567A1 (en) 2013-04-17
EP2581567B1 EP2581567B1 (en) 2016-01-13

Family

ID=46924313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12184776.8A Active EP2581567B1 (en) 2011-10-14 2012-09-18 Active acoustic baffler

Country Status (5)

Country Link
US (1) US9206717B2 (en)
EP (1) EP2581567B1 (en)
JP (1) JP5624596B2 (en)
CN (1) CN103114889B (en)
DE (1) DE102011084567C5 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040745A1 (en) * 2012-09-15 2014-03-20 Audi Ag Exhaust-gas system of an internal combustion engine, and method for operating an exhaust-gas system
CN104131862A (en) * 2013-05-03 2014-11-05 埃贝斯佩歇废气技术合资公司 Sound generator for an exhaust system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201725B4 (en) * 2012-02-06 2016-02-25 Eberspächer Exhaust Technology GmbH & Co. KG Active muffler
DE102012219981A1 (en) * 2012-10-31 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Actuator i.e. electrical actuator, for active exhaust system of motor vehicle, has speaker including speaker diaphragm and speaker magnet for excitation of diaphragm, and cooling device for cooling speaker magnet
DE102013217849A1 (en) * 2013-09-06 2015-03-12 Friedrich Boysen Gmbh & Co. Kg Active sound generating device
DE102013113803A1 (en) * 2013-12-10 2015-06-11 Eberspächer Exhaust Technology GmbH & Co. KG Sound generator for a system for influencing exhaust noise of a motor vehicle
DE102014202043A1 (en) * 2014-02-05 2015-08-06 Robert Bosch Gmbh Device for increasing the safety when using battery systems
DE102014101826B4 (en) * 2014-02-13 2016-08-04 Tenneco Gmbh Sounder system for a motor vehicle
DE102015119191A1 (en) * 2015-11-06 2017-05-11 Eberspächer Exhaust Technology GmbH & Co. KG Sound generator for attachment to a vehicle for influencing noises of the vehicle
CN105509292B (en) * 2016-01-25 2019-05-24 中国船舶重工集团公司第七一一研究所 A kind of active ventilated silencing apparatus
DE102017113878A1 (en) 2017-06-22 2018-12-27 Eberspächer Exhaust Technology GmbH & Co. KG Sound generation module
DE202017103871U1 (en) 2017-06-29 2017-07-21 Liang Fei Industry Co. Ltd. Additional speaker for vehicles and two-wheelers
FR3068742B1 (en) * 2017-07-07 2021-09-10 Safran Aircraft Engines TURBOMACHINE VANE INCLUDING AN IMPROVED-MOUNTED ELECTROACOUSTIC SOURCE, ROW OF OUTPUT GUIDELINES AND TURBOMACHINE INCLUDING SUCH A VANE
KR102378054B1 (en) 2017-08-25 2022-03-25 현대자동차주식회사 Exhaust sound generating device of a vehicle
DE102017127454A1 (en) * 2017-11-21 2019-05-23 Faurecia Emissions Control Technologies, Germany Gmbh Sound generating device and vehicle exhaust system
CN108333037B (en) * 2017-12-22 2020-05-15 安徽伟宏钢结构集团股份有限公司 Actuator connecting device for three-dimensional pseudo-static test
DE102018101785B4 (en) 2018-01-26 2019-07-25 Tenneco Gmbh Noise Reduction System
DE202018100447U1 (en) 2018-01-26 2018-02-09 Tenneco Gmbh Noise Reduction System
DK3467457T3 (en) * 2018-04-30 2022-10-17 Sonion Nederland Bv Vibrationssensor
DE102018112715A1 (en) * 2018-05-28 2019-11-28 Faurecia Emissions Control Technologies, Germany Gmbh Sound generation system for an exhaust system of an internal combustion engine of a motor vehicle
CN111720189B (en) * 2019-03-22 2024-01-23 广州汽车集团股份有限公司 Exhaust system sound quality adjusting device and method
CN111749754B (en) * 2019-03-27 2023-08-15 广州汽车集团股份有限公司 Exhaust system sound quality adjusting device and method
CN114363781A (en) * 2022-01-10 2022-04-15 中国船舶重工集团公司第七一一研究所 Sound source and power equipment comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019080A1 (en) * 1991-04-19 1992-10-29 Noise Cancellation Technologies, Inc. Improvements in and relating to transmission line loudspeakers
US5229556A (en) * 1990-04-25 1993-07-20 Ford Motor Company Internal ported band pass enclosure for sound cancellation
DE102009049280A1 (en) 2009-10-13 2011-04-14 J. Eberspächer GmbH & Co. KG Active muffler for exhaust system of internal-combustion engine, particularly motor vehicle, has housing, sound guidance channel, which is inserted into housing and connection support

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385972A2 (en) * 1977-04-01 1978-10-27 Anvar ACTIVE ACOUSTICAL ABSORBERS FOR DUCTS
JPH0522740Y2 (en) 1987-10-20 1993-06-11
EP0476082B1 (en) * 1990-04-09 1996-12-11 HOBELSBERGER, Max Device for improving bass reproduction in loudspeaker systems with closed housings
US5233137A (en) * 1990-04-25 1993-08-03 Ford Motor Company Protective anc loudspeaker membrane
US5319165A (en) * 1990-04-25 1994-06-07 Ford Motor Company Dual bandpass secondary source
US5619020A (en) * 1991-08-29 1997-04-08 Noise Cancellation Technologies, Inc. Muffler
US5267321A (en) * 1991-11-19 1993-11-30 Edwin Langberg Active sound absorber
US5336856A (en) * 1992-07-07 1994-08-09 Arvin Industries, Inc. Electronic muffler assembly with exhaust bypass
JPH06129227A (en) * 1992-10-15 1994-05-10 Toshiba Corp Active noise suppressing device
JPH0660717U (en) 1993-01-28 1994-08-23 カルソニック株式会社 Loudspeaker cooling system for active acoustic reduction system
US5446249A (en) 1993-07-13 1995-08-29 Digisonix, Inc. Dry acoustic system preventing condensation
US6160892A (en) * 1993-12-30 2000-12-12 Bbn Corporation Active muffler
US5541373A (en) * 1994-09-06 1996-07-30 Digisonix, Inc. Active exhaust silencer
US5693918A (en) * 1994-09-06 1997-12-02 Digisonix, Inc. Active exhaust silencer
US5930371A (en) * 1997-01-07 1999-07-27 Nelson Industries, Inc. Tunable acoustic system
JPH1124672A (en) * 1997-07-03 1999-01-29 Shinko Electric Co Ltd Muffler
US6088459A (en) * 1997-10-30 2000-07-11 Hobelsberger; Maximilian Hans Loudspeaker system with simulated baffle for improved base reproduction
US6778673B1 (en) * 1998-10-28 2004-08-17 Maximilian Hans Hobelsberger Tunable active sound absorbers
US6758304B1 (en) * 1999-09-16 2004-07-06 Siemens Vdo Automotive Inc. Tuned Helmholtz resonator using cavity forcing
US20010046300A1 (en) * 2000-04-17 2001-11-29 Mclean Ian R. Offline active control of automotive noise
US6996242B2 (en) * 2000-06-06 2006-02-07 Siemens Vdo Automotive Inc. Integrated and active noise control inlet
US6684977B2 (en) * 2001-09-13 2004-02-03 Siemens Vdo Automotive, Inc. Speaker retention assembly for an active noise control system
US7006639B2 (en) * 2001-11-20 2006-02-28 Maximilian Hans Hobelsberger Active noise-attenuating duct element
JP4454362B2 (en) 2004-03-30 2010-04-21 大阪瓦斯株式会社 Active silencer
JP4457850B2 (en) 2004-10-29 2010-04-28 日立電線株式会社 Substrate mounted thin antenna
DE102006010558A1 (en) * 2006-03-06 2007-09-13 J. Eberspächer GmbH & Co. KG Active silencer for an exhaust system
US7934580B2 (en) * 2006-04-12 2011-05-03 Ocv Intellectual Capital, Llc Long fiber thermoplastic composite muffler system
DE102006042224B3 (en) * 2006-09-06 2008-01-17 J. Eberspächer GmbH & Co. KG Active sound absorber for exhaust-gas system of internal-combustion engine particularly in motor vehicle, has anti sound generator comprises membrane drive, with which anti sound generator is coupled with external wall of sound absorber
DE102007032600A1 (en) * 2007-07-11 2009-01-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Apparatus and method for improving the attenuation of acoustic waves
DE102008018085A1 (en) 2008-04-09 2009-10-15 J. Eberspächer GmbH & Co. KG Active muffler
DE102012201725B4 (en) * 2012-02-06 2016-02-25 Eberspächer Exhaust Technology GmbH & Co. KG Active muffler
DE102013217849A1 (en) * 2013-09-06 2015-03-12 Friedrich Boysen Gmbh & Co. Kg Active sound generating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229556A (en) * 1990-04-25 1993-07-20 Ford Motor Company Internal ported band pass enclosure for sound cancellation
WO1992019080A1 (en) * 1991-04-19 1992-10-29 Noise Cancellation Technologies, Inc. Improvements in and relating to transmission line loudspeakers
DE102009049280A1 (en) 2009-10-13 2011-04-14 J. Eberspächer GmbH & Co. KG Active muffler for exhaust system of internal-combustion engine, particularly motor vehicle, has housing, sound guidance channel, which is inserted into housing and connection support

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040745A1 (en) * 2012-09-15 2014-03-20 Audi Ag Exhaust-gas system of an internal combustion engine, and method for operating an exhaust-gas system
DE102012018320B4 (en) 2012-09-15 2023-03-02 Audi Ag Exhaust system of an internal combustion engine and method for operating an exhaust system
CN104131862A (en) * 2013-05-03 2014-11-05 埃贝斯佩歇废气技术合资公司 Sound generator for an exhaust system
EP2800090A3 (en) * 2013-05-03 2015-04-15 Eberspächer Exhaust Technology GmbH & Co. KG Sound generator for an exhaust system
US9462363B2 (en) 2013-05-03 2016-10-04 Eberspächer Exhaust Technology GmbH & Co. KG Sound generator for an exhaust system
CN104131862B (en) * 2013-05-03 2017-06-09 埃贝斯佩歇废气技术合资公司 The sound generator of gas extraction system

Also Published As

Publication number Publication date
DE102011084567B4 (en) 2015-10-01
US20130092471A1 (en) 2013-04-18
JP5624596B2 (en) 2014-11-12
CN103114889B (en) 2015-06-03
CN103114889A (en) 2013-05-22
EP2581567B1 (en) 2016-01-13
US9206717B2 (en) 2015-12-08
DE102011084567C5 (en) 2019-08-14
JP2013087773A (en) 2013-05-13
DE102011084567A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
EP2581567B1 (en) Active acoustic baffler
DE102009049280B4 (en) Active muffler
DE112006000693B4 (en) Silencer for fuel cell
EP2444605B1 (en) Sound absorber
DE102013208186B4 (en) Sound generator for an exhaust system
DE102014204637B4 (en) Intake sound transmission device
EP2623737B1 (en) Active silencer
US6932189B2 (en) Device for noise structuring in a motor vehicle
SE532116C2 (en) Shock absorbers with flow channels
EP1898059A2 (en) Active silencer for an exhaust system
DE102008019488A1 (en) Fluiddruckpulsationsdämpfungsvorrichtung
US20150060192A1 (en) Exhaust system having a system for removing condensate
DE102012200712A1 (en) Exhaust device for an internal combustion engine
EP2607640A1 (en) Actuator assembly for active exhaust systems and method for operating the same
EP1211498B1 (en) Probe for measuring pressure vibrations
DE102005006914A1 (en) Device for sound coupling between an intake tract and / or engine compartment and a vehicle interior of a motor vehicle
EP1365120B1 (en) Acoustic transducer for motor vehicle
US9951722B2 (en) Chamber for reducing operating noise of purge control solenoid valve for evaporative emission control system
DE102006033053B3 (en) Motor vehicle silencer has upper side lining section consisting of textile material of synthetic fibers which deflects moisture, and bottom side lining section consisting of textile material of synthetic fibers which absorbs moisture
DE102011014908A1 (en) Tail pipe arrangement for exhaust system of vehicle, comprises inlet, by which surrounding air is introduced into exhaust flow for cooling exhaust flow
EP3209553B1 (en) Submarine
KR101037019B1 (en) Intensifier For Brake
DE102019210420A1 (en) Air conditioner with a micro-perforated soundproofing element and motor vehicle with such an air conditioner
JP4595635B2 (en) Sound increaser
US20170211439A1 (en) Exhaust gas system for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EBERSPAECHER EXHAUST TECHNOLOGY GMBH & CO. KG

17P Request for examination filed

Effective date: 20131015

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140224

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRUEGER, JAN

Inventor name: POMMERER, MICHAEL

Inventor name: NICOLAI, MANFRED

Inventor name: WIRTH, GEORG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 770673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012005701

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012005701

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

26N No opposition filed

Effective date: 20161014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160918

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 770673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012005701

Country of ref document: DE

Owner name: PUREM GMBH, DE

Free format text: FORMER OWNER: EBERSPAECHER EXHAUST TECHNOLOGY GMBH & CO. KG, 66539 NEUNKIRCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230921

Year of fee payment: 12

Ref country code: FR

Payment date: 20230918

Year of fee payment: 12

Ref country code: DE

Payment date: 20230919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 12