EP2577029A1 - Moteur à combustion interne alimenté en carburant muni d'un circuit de recirculation des gaz d'échappement à basse pression et d'un système de production d'hydrogène supplementaire - Google Patents

Moteur à combustion interne alimenté en carburant muni d'un circuit de recirculation des gaz d'échappement à basse pression et d'un système de production d'hydrogène supplementaire

Info

Publication number
EP2577029A1
EP2577029A1 EP11727228.6A EP11727228A EP2577029A1 EP 2577029 A1 EP2577029 A1 EP 2577029A1 EP 11727228 A EP11727228 A EP 11727228A EP 2577029 A1 EP2577029 A1 EP 2577029A1
Authority
EP
European Patent Office
Prior art keywords
reformer
fuel
exhaust gas
air
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11727228.6A
Other languages
German (de)
English (en)
Inventor
Adeline Darmon
François Fresnet
Frédéric Ravet
Adrien Valenzuela
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2577029A1 publication Critical patent/EP2577029A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • a fuel-powered internal combustion engine with a low-pressure exhaust gas recirculation circuit and an additional hydrogen production system is provided.
  • the present invention relates to the field of internal combustion engines and more particularly, the field of internal combustion engines comprising a fuel reformer.
  • An embedded reformer has the function of producing a gas rich in hydrogen.
  • the reformer is a system that transforms a hydrocarbon into a mixture consisting essentially of hydrogen and carbon monoxide. This mixture is called reformate.
  • the addition of hydrogen to the fuel used by the vehicle improves the quality of combustion.
  • the combustion of hydrogen is fast and does not produce C0 2 .
  • the use of an on - board reformer is particularly interesting because the use of hydrogen to assist the combustion can then be done without impacting the current distribution network, that is to say without having to implement a distribution of hydrogen at the pump.
  • the addition of hydrogen in the reaction mixture significantly improves combustion yields by increasing the rate of combustion.
  • the addition of hydrogen will be all the more relevant for fuels with slow combustion such as methane, but also under adverse thermodynamic conditions as at startup.
  • the addition of hydrogen is also of interest when the time available for burning the reaction mixture is short, for example when the rotational speed of the engine is high.
  • the addition of hydrogen makes it possible to compensate for the slowdown effects of combustion by dilution of reagents (partial recirculation of exhaust gases called EGR). Improving the combustion efficiency limits the fuel consumption of the vehicle and therefore the C0 2 emissions.
  • the reforming can be achieved by various catalytic processes, such as partial oxidation of the fuel by oxygen, vapor reforming of the fuel with steam, or a combination of both processes (autothermal reforming).
  • the steam reforming requires a supply of water vapor, which implies the presence of a water tank.
  • the steam reforming reaction is endothermic, that is, it consumes energy. It is therefore necessary to heat the catalyst continuously (by means of a burner for example) in order to maintain its temperature.
  • Such arrangements involve increased congestion due to the presence of a water reservoir, as well as a significant energy consumption for steam generation.
  • Embedded solution vaporeforming is therefore a complex process to be controlled, bulky and requiring energy consumption that is not very compatible with the C0 2 emission requirements.
  • US patent application US 2008/023001 8 discloses a catalytic partial oxidation reforming system. However, reforming is applied to the physicochemical modification of the fuel used.
  • the reforming system comprises a reformer capable of increasing the molar mass of the fuel in the gas phase, and a reformer capable of increasing the octane number of the fuel in the liquid phase. The described system is therefore not intended for the generation of a hydrogen-rich gas.
  • US Pat. No. 4,175,523 discloses a partial oxidation reforming system coupled to an internal combustion engine using gasoline as a fuel.
  • the system of reforming is located downstream of the internal combustion engine, in order to use the heat of the exhaust gas to maintain the reforming reaction.
  • the described system has the disadvantage of requiring substantial modifications of the exhaust gas lines and increasing the size of the internal combustion engine.
  • the object of the invention is to produce a hydrogen-rich reformate gas on board a vehicle without additional energy expenditure.
  • An object of the invention is a hydrogen production system requiring little modification of the vehicle to be integrated with existing internal combustion engines.
  • Another object of the invention is a process for producing hydrogen for supplying existing internal combustion engines.
  • a fuel-powered internal combustion engine equipped with a turbocharger, a low-pressure partial exhaust gas recirculation circuit, and an additional hydrogen production system comprising a reformer.
  • the reformer is fed by an intake pipe stitched onto an air intake pipe downstream of a turbocharger compressor, and is coupled at the outlet to an outlet pipe stitched into the air intake duct. downstream of the intake pipe.
  • a hydrogen production system thus has the advantage of a smaller footprint for easier integration into a vehicle. Indeed, neither a water tank nor a carburettor is required. The size is even smaller as the hydrogen production system shares the air intake lines with the internal combustion engine. Another advantage is not to require additional energy input. Indeed, the energy required to start and maintain the reforming reaction is taken directly into the temperature of the exhaust gases and their compression.
  • the hydrogen production system according to the invention is also advantageous in that the same architecture can be adapted to engines of different technologies and using different fuels, liquid or gaseous.
  • the reformer may be provided with a liquid or gaseous fuel injector.
  • the reformer may successively comprise a mixing chamber, a combustion chamber and a catalyst chamber.
  • the reformer combustion chamber may further include a spark plug.
  • the engine may include an electronic control unit connected to a controlled exhaust gas redirection valve located at the inlet of the low pressure partial exhaust gas recirculation circuit, a control valve for redirecting the exhaust gas. air intake at the inlet line, the fuel injector in the reformer and the spark plug of the reformer.
  • the engine may further include a reformate tank connected in parallel with the outlet pipe.
  • the electronic control unit can also be connected to isolation valves of the reformate tank.
  • a method of supplying fuel to an internal combustion engine having a turbocharger, a low pressure partial exhaust recirculation circuit, and a production system is defined.
  • additional hydrogen having a reformer.
  • the reforming is done catalytically from the admission into the reformer of a mixture of partially recycled air and exhaust gas.
  • the method may include a pre - reforming step of heating the reformer by combustion of a mixture of fuel and exhaust gas partially recycled to a catalyst temperature.
  • the fuel and partially exhausted exhaust - gas - free air can be mixed for heating the reformer during the preliminary step.
  • the reformer can be maintained at the catalyst temperature by acting on the flow rate of the partially recycled exhaust gas passing through the reformer.
  • the heat released during the reforming chemical reaction helps maintain the catalyst temperature.
  • the fuel and air can be mixed in order to obtain a reforming richness greater than 1.
  • FIG. 1 illustrates the main elements of an internal combustion engine with partial recirculation of low pressure exhaust gas comprising a hydrogen production system according to a first embodiment
  • FIG. 2 illustrates the main elements of an internal combustion engine with partial recirculation of low pressure exhaust gas comprising a hydrogen production system according to a second embodiment
  • Figure 3 illustrates the main elements of a reformer used in a hydrogen production system.
  • FIG. 1 illustrates an internal combustion engine equipped with a hydrogen production system according to the invention.
  • the internal combustion engine 1 comprises an intake manifold and an exhaust manifold.
  • the exhaust manifold is connected at the output to the turbine 2a of a turbocharger 2 by a pipe exhaust 3.
  • the exhaust pipe 3 extends at the outlet of the turbocharger to a controlled valve of recirculation bypass 4a.
  • the controlled recirculation bypass valve 4a is a two-way outlet valve, one channel of which is connected by a pipe to either the silencer or the catalytic device, or to the open air, depending on the vehicle design.
  • the other path is connected to a partial exhaust gas recirculation duct 5 which is stitched on the fresh air intake duct 6, upstream of the compressor 2b of the turbocharger 2.
  • the inlet duct 6 Fresh air continues past the compressor 2b to the intake manifold of the internal combustion engine.
  • Such an internal combustion engine is supplied with fuel stored in a tank 7 connected to a regulation means 8 of the fuel pressure admitted by a fuel line 9 extending beyond the injection pump 8 to a rail injection 10 distributing the fuel between the various injectors of the cylinders.
  • the regulation means 8 of the fuel pressure admitted may be a fuel pump in the case of a liquid fuel or a pressure reducer in the case of a gaseous fuel.
  • the air intake duct 6 there is provided on the air intake duct 6 a hydrogen production system 11 and an air cooler 12 admitted.
  • the intake air cooler 12 is connected in series to the air intake pipe 6 directly at the inlet of the internal combustion engine while the hydrogen production system 11 is connected in shunt to the intake pipe 6 of air between the compressor 2b and the air cooler 12 admitted.
  • a controlled bypass valve 4b of the hydrogen production system is located immediately downstream of the connection of the intake pipe 13 to the air intake pipe 6.
  • the hydrogen production system 11 comprises as input an intake pipe 13 connected to the air intake duct 6.
  • the hydrogen production system furthermore comprises means 14 for regulating the pressure of the fuel admitted connected via a fuel intake pipe 15 to the fuel tank 7.
  • the fuel intake line 15 extends beyond the means of regulation 14 of the fuel pressure admitted to a fuel injector 16.
  • the intake pipe 13 and the fuel injector 16 are connected to the inlet of a reformer 17.
  • the reformer 17 will be more fully described in the description of FIG. 3.
  • the outlet of the reformer 17 is connected to the outlet duct 18 of the hydrogen production system, stitched on the duct 6 for admission of air between the intake air cooler 12 and the connection of the intake duct 13 to the intake duct 6 'air.
  • An electronic control unit 19 of the hydrogen production system is connected to the bypass control valve 4b of the hydrogen production system via a connection 20 and to the fuel injector 16 via the connection 21, and to the valve controlled bypass 4a by a connection 33.
  • a reservoir 23 of reformate gas may be connected in parallel to the outlet pipe 18 of the hydrogen production system.
  • Valves 31 and 32 make it possible to isolate or put in communication the tank 23 of reformate gas with the outlet pipe 18 and / or with the reformer 17. These valves are connected by a connection 24 to the electronic control unit 19 of the hydrogen production system.
  • Such a reservoir can make it possible to smooth the production of reformate, in particular in phases of driving requiring all the power of the engine or in order to avoid turning off the reformer when the addition of hydrogen is not necessary.
  • a portion of the exhaust gas is recirculated through the bypass controlled valve 4a.
  • the controlled bypass valve 4b makes it possible to take all or part of the incoming air flow comprising fresh air admitted and a part of recirculated exhaust gas.
  • the temperature of this incoming air flow is substantially higher than the temperature of the outside air due to the presence of exhaust gas in the mixture, gas having high temperature when exiting the internal combustion engine 1.
  • the incoming air stream is admitted into the reformer 17 after receiving a fuel injection through the fuel injector 16.
  • the reformer 17 comprises a catalytic reaction medium which requires a supply of energy to be able to react with the fuel. start the reforming reaction. This energy is provided through the higher or lower temperature of the intake air and the recirculated exhaust gas. Thus, it is not necessary to have means for additional energy inputs, for example a heating system.
  • FIG. 3 shows an exemplary embodiment of the reformer 17 comprising a mixing chamber 25, a combustion chamber 26 whose ignition is controlled by a spark plug 26a, the gas mixture thus obtained then passing to through a catalyst chamber 27 to obtain a reformate gas rich in hydrogen.
  • a reform gas rich in hydrogen is obtained.
  • This reformate gas is then mixed with the air admitted into the engine 1 upstream of the gas cooler 12.
  • the purpose of the gas cooler 12 is to reduce the temperature of the gases admitted to the internal combustion engine 1, the gas of reformate that can have a high temperature, in the same way as the intake air comprising a high proportion of recirculated exhaust gas.
  • the reformer is fueled with either liquid or gaseous fuel.
  • fuels are gasoline, diesel, natural gas for vehicles. Any hydrocarbon fuel can be considered.
  • the fuel / fuel mixture In order to reform the fuel, it is necessary for the fuel / fuel mixture to have a richness greater than 1. If the richness of the mixture is less than 1, the totality of the mixture is transformed into CO 2 and H 2 0, inoperable species. for combustion of the engine. It should be noted that the richness of the mixture is also called reforming richness and is related to the stoichiometry of the mixture. Typically, when methane is employed, the optimum blend richness is equal to 4, while when diesel is employed, the optimum blend richness is 2.9.
  • PCO The comburivorous power of the fuel considered.
  • comburivorous power of a fuel is meant the ratio between the amount of air and the corresponding fuel mass for complete combustion. This ratio is also called mass stoichiometric relationship.
  • the reformer is fueled to obtain a fuel / fuel mixture richness greater than 1, the exact value of which is specific to each fuel. The reformer then produces a reformate gas rich in hydrogen
  • the bypass 4b controlled valve allows to divert to the reformer 17 a portion of the intake air comprising recirculated exhaust gas.
  • the proportion of air admitted deviated is noted Vbipasse_2.
  • the bypass controlled valve 4a allows a portion of the exhaust gases to be diverted to the compressor 2b.
  • the proportion of deviated exhaust gas is denoted Vbipasse 1.
  • Vbipasse_ 1 and Vbipasse_2 can be defined according to the opening rate of the corresponding controlled valve.
  • the pressure drop between the upstream and downstream measurements of the valve
  • T the temperature upstream of the valve
  • the difference between the upstream pressure and the downstream pressure of the valve (also called pressure drop) is related to a volume in the formalism of the perfect gas equation.
  • the flow rate Q therefore results from the variation of the pressure drop, the gases not passing through the valve being directed towards the bypass outlet. It will be understood by those skilled in the art that a different formality from that of perfect gases can be applied by modifying the value of the constant k. Whatever formalism is used, the phenomenon It remains a physics that a flow is generated in the bypass outlet because of the pressure difference upstream and downstream of the valve.
  • the gas flow rate in the reformer must be regulated in order to obtain the desired mixture richness.
  • the regulation must also take into account the operating cycle of the internal combustion engine. Indeed, a loss of load in the engine air supply circuit too large would induce significant overconsumption of the engine. It is possible to compensate for such a pressure drop in the engine air supply circuit by modifying the degree of closure of the controlled partial exhaust gas recirculation valve 4a. If more exhaust is redirected to the input, the load in the engine air supply system increases. It is thus possible to compensate for the pressure drop associated with the reformer air supply.
  • the electronic control unit 1 9 is connected directly or through other control means to the various organs involved in the operation of the reformer.
  • the electronic control unit 19 is able to control in particular the flow rate of the fuel inj ection in the reformer, the degree of opening of the controlled valve 4a and the controlled valve 4b.
  • the electronic control unit 19 may be included in or be under the control of the electronic control means of the powertrain.
  • the reformer must be warmed up to reform the fuel.
  • the reformer, and more particularly the catalyst contained in the reformer must reach a temperature of between 600 ° C. and 800 ° C.
  • the catalysis temperature is however dependent on the composition of the oxidant. The greater the amount of carbon neutral species, the higher the temperature to be reached.
  • a fuel combustion is carried out within the reformer.
  • the fuel intake is carried out in the reformer taking care to maintain the wealth of mix at a level less than or equal to 1.
  • a mixture richness of less than or equal to 1 makes it possible to obtain complete combustion.
  • the advantage of complete combustion is a higher energy release than incomplete combustion, thus a faster temperature rise for less fuel consumed.
  • the controlled valve 4a is controlled so that no exhaust gas is recirculated. Indeed, the presence of exhaust gas is unfavorable to combustion.
  • the combustion phase is brief.
  • the controlled valve 4a controlling the partial recirculation of the exhaust gas is actuated so that a portion of said exhaust is redirected to compressor 2b.
  • the controlled valve 4b is also controlled to change the amount of air admitted.
  • air admitted is meant air taken downstream of the compressor 2b.
  • the withdrawn air comprises a fraction of exhaust gas.
  • the amount of air taken to feed the reformer and the fuel flow fed to the reformer are dependent on the quantity of hydrogen to be supplied and the mixture richness constraints.
  • the fuel considered is natural gas for vehicles (NGV)
  • the hydrogen requirement for the highest engine load point is estimated at 300mg / s for a volume fraction of 20% in the combustion chamber.
  • the corresponding CNG and air flow rates are respectively 1.3 g / s and 6.5 g / s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Moteur à combustion interne alimenté en carburant muni d'un circuit de recirculation des gaz d'échappement à basse pression et d'un système de production d'hydrogène supplémentaire. Moteur à combustion interne (1) alimenté en carburant muni d'un turbocompresseur (2), d'un circuit de recirculation partielle (5) des gaz d'échappement à basse pression, et d'un système de production d'hydrogène (11) supplémentaire comportant un reformeur (17) de carburant. Le reformeur (17) est alimenté par une conduite d'admission (13) piquée sur une conduite (6) d'admission d'air du moteur à combustion interne (1) en aval du compresseur (2b) du turbocompresseur (2), le reformeur comportant une conduite de sortie (18) piquée dans la conduite (6) d'admission d'air du moteur à combustion interne (1).

Description

Moteur à combustion interne alimenté en carburant muni d'un circuit de recirculation des gaz d'échappement à basse pression et d'un système de production d'hydrogène supplémentaire.
La présente invention concerne le domaine des moteurs à combustion interne et plus particulièrement, le domaine des moteurs à combustion interne comportant un reformeur de carburant.
Dans le contexte de la diversification des ressources énergétiques et du durcissement de la réglementation environnementale, les constructeurs automobiles travaillent sur le développement de moteurs équipés de reformeurs pour l ' assistance à la combustion. Un reformeur embarqué a pour fonction de produire un gaz riche en hydrogène. Le reformeur est un système qui permet de transformer un hydrocarbure en un mélange composé essentiellement d' hydrogène et de monoxyde de carbone. Ce mélange est appelé reformat.
L ' addition d' hydrogène au carburant utilisé par le véhicule permet d' améliorer la qualité de la combustion. La combustion de l ' hydrogène est rapide et ne produit pas de C02. L 'utilisation d'un reformeur embarqué est particulièrement intéressante, car l 'utilisation de l ' hydrogène pour assister la combustion peut alors se faire sans impacter le réseau de distribution actuel, c ' est-à-dire sans avoir à mettre en oeuvre une distribution d' hydrogène à la pompe.
L ' addition d ' hydrogène dans le mélange réactif permet d' améliorer significativement les rendements de combustion par augmentation de la vitesse de combustion. Ainsi, l ' addition d' hydrogène sera d' autant plus pertinente pour des carburants à combustion lente tels que le méthane, mais aussi dans des conditions thermodynamiques défavorables comme au démarrage. L ' addition d' hydrogène trouve également son intérêt quand le temps disponible pour brûler le mélange réactif est court, par exemple lorsque la vitesse de rotation du moteur est élevée. Enfin l ' addition d' hydrogène permet de compenser les effets de ralentissement de la combustion par dilution des réactifs (recirculation partielle de gaz d' échappement dits EGR) . L ' amélioration du rendement de combustion limite la consommation de carburant du véhicule et donc les émissions de C02.
Le reformage peut être obtenu par différents procédés catalytiques, notamment par oxydation partielle du carburant par l ' oxygène, par vaporeformage du combustible par de la vapeur d ' eau, ou bien par une combinaison des deux procédés (reformage autotherme) .
Le vaporeformage nécessite un approvisionnement en vapeur d' eau, ce qui implique la présence d 'un réservoir d' eau. De plus, la réaction de vaporeformage est endothermique, c ' est-à-dire qu' elle consomme de l ' énergie . Il est donc nécessaire de chauffer le catalyseur en continu (au moyen d'un brûleur par exemple) afin de le maintenir en température . De tels aménagements impliquent un encombrement accru de par la présence d'un réservoir d' eau, ainsi qu 'une consommation énergétique importante pour la génération de vapeur.
Le vaporeformage en solution embarquée est donc un procédé complexe à maîtriser, encombrant et nécessitant une consommation énergétique peu compatible avec les exigences en émissions de C02.
La demande de brevet américain US 2007/02048 13 , le brevet américain US 6 3 1 8 306 et le brevet américain US 4 066 043 décrivent des systèmes de reformage embarqués utilisant le vaporeformage comme procédé de reformage .
La demande de brevet américain US 2008/023001 8 décrit un système de reformage par oxydation partielle catalytique. Toutefois, le reformage est appliqué à la modification physicochimique du carburant utilisé . Le système de reformage comprend un reformeur apte à augmenter la masse molaire du carburant en phase gazeuse, et un reformeur apte à augmenter l ' indice d' octane du carburant en phase liquide . Le système décrit n' est donc pas prévu pour la génération d'un gaz riche en hydrogène.
Le brevet américain US 4 175 523 décrit un système de reformage par oxydation partielle couplé à un moteur à combustion interne utilisant de l ' essence comme carburant. Le système de reformage est situé en aval du moteur à combustion interne, afin d'utiliser la chaleur des gaz d'échappement pour entretenir la réaction de reformage. Toutefois, le système décrit présente l'inconvénient de demander des modifications substantielles des conduites de gaz d'échappement et d'augmenter l'encombrement du moteur à combustion interne.
Il existe un besoin pour une production d'hydrogène embarquée d'incorporation simple dans un moteur à combustion interne et ne nécessitant pas d'apport énergétique extérieur.
L'invention a pour but de produire un gaz de reformat riche en hydrogène de façon embarquée sur un véhicule sans dépense énergétique supplémentaire.
Un objet de l'invention est un système de production d'hydrogène nécessitant peu de modifications du véhicule afin d'être intégré aux moteurs à combustion interne existants.
Un autre objet de l'invention est un procédé de production d'hydrogène pour l'alimentation de moteurs à combustion interne existants.
Selon un premier aspect, on définit un moteur à combustion interne alimenté en carburant muni d'un turbocompresseur, d'un circuit de recirculation partielle des gaz d'échappement à basse pression, et d'un système de production d'hydrogène supplémentaire comportant un reformeur. Le reformeur est alimenté par une conduite d'admission piquée sur une conduite d'admission d'air en aval d'un compresseur du turbocompresseur, et est couplé en sortie à une conduite de sortie piquée dans la conduite d'admission d'air en aval du piquage de la conduite d'admission.
Un système de production d'hydrogène selon l'invention présente ainsi l'avantage d'un encombrement réduit permettant une intégration plus aisée dans un véhicule. En effet, ni un réservoir d'eau ni un carburateur ne sont requis. L'encombrement est d'autant plus réduit que le système de production d'hydrogène partage les conduites d'admission d'air avec le moteur à combustion interne. Un autre avantage est de ne pas nécessiter d ' apport d' énergie supplémentaire. En effet, l ' énergie nécessaire afin de démarrer et de maintenir la réaction de reformage est prélevée directement dans la température des gaz d' échappement et leur compression.
Le système de production d' hydrogène selon l ' invention est également avantageux par le fait qu'une même architecture peut être adaptée à des moteurs de technologies différentes et utilisant des carburants différents, liquides ou gazeux.
Le reformeur peut être muni d'un inj ecteur de carburant liquide ou gazeux.
Le reformeur peut comprendre successivement une chambre de mélange, une chambre de combustion et une chambre de catalyse.
La chambre de combustion du reformeur peut comprendre par ailleurs une bougie d' allumage .
Le moteur peut comprendre une unité de commande électronique reliée à une vanne commandée de redirection des gaz d' échappement située au niveau de l ' entrée du circuit de recirculation partielle des gaz d' échappement à basse pression, à une vanne commandée de redirection de l ' air admis située au niveau de la conduite d ' admission, à l 'inj ecteur de carburant dans le reformeur, ainsi qu' à la bougie d' allumage du reformeur.
Le moteur peut comprendre en outre un réservoir de reformat relié en parallèle de la conduite de sortie.
L 'unité de commande électronique peut être également reliée à des vannes d' isolation du réservoir de reformat.
Selon un autre aspect, on définit un procédé d' alimentation en carburant d'un moteur à combustion interne muni d 'un turbocompresseur, d 'un circuit de recirculation partielle des gaz d' échappement à basse pression, et d'un système de production d' hydrogène supplémentaire comportant un reformeur.
Selon une caractéristique générale de cet aspect, le reformage est fait par voie catalytique à partir de l ' admission dans le reformeur d'un mélange d' air et de gaz d' échappement partiellement recyclés . Le procédé peut comprendre une étape, préalable au reformage, de chauffage du reformeur par la combustion d'un mélange de carburant et d' air exempt de gaz d' échappement partiellement recyclés jusqu' à une température de catalyse.
On peut mélanger, pour le chauffage du réformeur lors de l ' étape préalable, le carburant et de l ' air exempt de gaz d ' échappement partiellement recyclés afin d' obtenir une richesse de reformage inférieure ou égale à 1 .
Lors du reformage, on peut maintenir le reformeur à la température de catalyse en agissant sur le débit des gaz d' échappement partiellement recyclés traversant le reformeur. La chaleur libérée lors de la réaction chimique de reformage contribue à maintenir la température de catalyse.
On peut mélanger, lors du reformage, le carburant et de l ' air afin d' obtenir une richesse de reformage supérieure à 1 .
D ' autres buts, caractéristiques et avantages apparaîtront à la lecture de la description suivante donnée uniquement en tant qu' exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
- la figure 1 illustre les principaux éléments d 'un moteur à combustion interne avec recirculation partielle des gaz d'échappement à basse pression comprenant un système de production d 'hydrogène selon un premier mode de réalisation ;
- la figure 2 illustre les principaux éléments d 'un moteur à combustion interne avec recirculation partielle des gaz d'échappement à basse pression comprenant un système de production d 'hydrogène selon un deuxième mode de réalisation ; et
la figure 3 illustre les principaux éléments d 'un reformeur utilisé dans un système de production d' hydrogène.
La figure 1 illustre un moteur à combustion interne muni d'un système de production d' hydrogène selon l ' invention. Le moteur à combustion interne 1 comprend un collecteur d ' admission et un collecteur d' échappement. Le collecteur d ' échappement est relié en sortie à la turbine 2a d 'un turbocompresseur 2 par une conduite d'échappement 3. La conduite d'échappement 3 se prolonge en sortie du turbocompresseur jusqu'à une vanne commandée de bipasse de recirculation 4a. La vanne commandée de bipasse de recirculation 4a est une vanne à deux voies de sortie, dont une voie est reliée par une conduite soit au silencieux, soit au dispositif catalytique, soit à l'air libre, selon la conception du véhicule. L'autre voie est reliée à une conduite 5 de recirculation partielle des gaz d'échappement qui est piquée sur la conduite 6 d'admission d'air frais, en amont du compresseur 2b du turbocompresseur 2. La conduite 6 d'admission d'air frais se poursuit au delà du compresseur 2b jusqu'au collecteur d'admission du moteur à combustion interne.
Un tel moteur à combustion interne est alimenté en carburant stocké dans un réservoir 7 relié à un moyen de régulation 8 de la pression du carburant admis par une conduite de carburant 9 se prolongeant au delà de la pompe d'injection 8 jusqu'à un rail d'injection 10 répartissant le carburant entre les différents injecteurs des cylindres. Le moyen de régulation 8 de la pression du carburant admis peut être une pompe à carburant dans le cas d'un carburant liquide ou un détendeur dans le cas d'un carburant gazeux.
Selon l'invention, il est prévu sur la conduite 6 d'admission d'air un système de production d'hydrogène 11 et un refroidisseur 12 d'air admis. Le refroidisseur 12 d'air admis est connecté en série sur la conduite 6 d'admission d'air directement en entrée du moteur à combustion interne tandis que le système de production d'hydrogène 11 est connecté en dérivation sur la conduite 6 d'admission d'air entre le compresseur 2b et le refroidisseur 12 d'air admis. Une vanne commandée de bipasse 4b du système de production d'hydrogène se situe immédiatement en aval de la connexion de la conduite d'admission 13 sur la conduite 6 d'admission d'air.
Le système de production d'hydrogène 11 comprend en entrée une conduite d'admission 13 reliée à la conduite 6 d'admission d'air. Le système de production d'hydrogène comprend par ailleurs un moyen de régulation 14 de la pression du carburant admis relié par une conduite d'admission 15 de carburant au réservoir de carburant 7. La conduite d'admission 15 de carburant se prolonge au delà du moyen de régulation 14 de la pression du carburant admis jusqu'à un injecteur de carburant 16.
La conduite d'admission 13 et l'injecteur de carburant 16 sont reliés à l'entrée d'un reformeur 17. Le reformeur 17 sera plus amplement décrit lors de la description de la figure 3. La sortie du reformeur 17 est reliée à la conduite de sortie 18 du système de production d'hydrogène, piquée sur la conduite 6 d'admission de l'air entre le refroidisseur 12 d'air admis et la connexion de la conduite d'admission 13 sur la conduite 6 d'admission d'air.
Une unité de commande électronique 19 du système de production d'hydrogène est reliée à la vanne commandée de bipasse 4b du système de production d'hydrogène par une connexion 20 et à l'injecteur de carburant 16 par la connexion 21, et à la vanne commandée de bipasse 4a par une connexion 33.
Selon un mode de réalisation alternatif illustré par la figure 2, un réservoir 23 de gaz de réformat peut être connecté en parallèle sur la conduite de sortie 18 du système de production d'hydrogène. Des vannes 31 et 32 permettent d'isoler ou de mettre en communication le réservoir 23 de gaz de réformat avec la conduite de sortie 18 et/ou avec le reformeur 17. Ces vannes sont reliées par une connexion 24 à l'unité de commande électronique 19 du système de production d'hydrogène. Un tel réservoir peut permettre de lisser la production de reformat, notamment dans des phases de conduite nécessitant toute la puissance du moteur ou afin d'éviter d'éteindre le reformeur lorsque l'addition d'hydrogène n'est pas nécessaire.
En fonctionnement, une partie des gaz d'échappement subit une recirculation par le biais de la vanne commandée de bipasse 4a. La vanne commandée de bipasse 4b permet de prélever tout ou partie du flux d'air entrant comprenant de l'air frais admis et une partie de gaz d'échappement recirculés. La température de ce flux d'air entrant est sensiblement plus élevée que la température de l'air extérieur du fait de la présence de gaz d'échappement dans le mélange, gaz présentant une température élevée lors de leur sortie du moteur à combustion interne 1 .
Le flux d' air entrant est admis dans le reformeur 17 après avoir reçu une inj ection de carburant par l ' intermédiaire de l ' inj ecteur de carburant 16. Le reformeur 17 comprend un milieu réactionnel catalytique qui requiert un apport d' énergie pour pouvoir démarrer la réaction de reformage . Cette énergie est apportée par le biais de la température plus ou moins élevée de l ' air admis et des gaz d' échappement recirculés . Ainsi, il n' est pas nécessaire de disposer de moyens d' apports d' énergie supplémentaire, par exemple un système de chauffage .
Sur la figure 3 , on peut voir un exemple de réalisation du reformeur 17 comprenant une chambre de mélange 25 , une chambre de combustion 26 dont l ' allumage est commandé par une bougie d' allumage 26a, le mélange de gaz ainsi obtenu passant alors à travers une chambre de catalyse 27 afin d' obtenir en sortie un gaz de réformat riche en hydrogène.
On obtient, en sortie du reformeur 17, un gaz de réformat riche en hydrogène . Ce gaz de réformat est alors mélangé à l ' air admis dans le moteur 1 en amont du refroidisseur de gaz 12. Le refroidisseur de gaz 12 a pour but de diminuer la température des gaz admis dans le moteur à combustion interne 1 , le gaz de réformat pouvant présenter une température élevée, au même titre que de l ' air admis comprenant une forte proportion de gaz d' échappement recirculés .
On peut prévoir la présence d'un réservoir de gaz de réformat permettant de stocker le gaz de réformat pour une utilisation différée, selon les conditions de roulage du véhicule.
Le reformeur est alimenté en carburant soit liquide, soit gazeux . On peut citer comme carburants, l ' essence, le gazole, le gaz naturel pour véhicules . Tout carburant à base d' hydrocarbures peut être considéré . Pour obtenir le reformage du carburant, il est nécessaire que la richesse du mélange carburant/comburant soit supérieure à 1 . Si la richesse du mélange est inférieure à 1 , la totalité du mélange est transformée en C02 et en H20 , espèces inexploitables pour la combustion du moteur. On notera que la richesse du mélange est également appelée richesse de réformage et est liée à la stoechiométrie du mélange. Typiquement, lorsque du méthane est employé, la richesse de mélange optimale est égale à 4, tandis que lorsque du gazole est employé, la richesse de mélange optimale est égale à 2,9.
Plus précisément, on peut calculer la richesse de mélange dans le réformeur également appelée richesse de reformage Rref par application de la formule suivante :
avec
Qre? = Le débit de fuel inj ecté dans le reformeur
^fuel
-mot Le débit de fuel inj ecté dans le moteur
\air
^ =Le débit d' air frais prévu pour le moteur
PCO = Le pouvoir comburivore du carburant considéré.
Par pouvoir comburivore d'un carburant, on entend le rapport entre la quantité d' air et la masse de carburant correspondante pour une combustion complète . Ce rapport est également appelé relation stoechiométrique massique. En d' autres termes, le reformeur est alimenté en carburant pour obtenir une richesse de mélange carburant/comburant supérieure à 1 , dont la valeur exacte est spécifique à chaque carburant. Le reformeur produit alors un gaz de reformat riche en hydrogène
La vanne commandée de bipasse 4b permet de dévier vers le reformeur 17 une partie de l ' air admis comprenant des gaz d' échappement recirculés . La proportion d' air admis dévié est notée Vbipasse_2.
Connaissant les capacités de l ' inj ecteur de carburant 14 et les impératifs de richesse de mélange, on peut déterminer et ajuster la quantité d' air admis.
On définit le débit du reformeur par l ' équation suivante : Qreformeur = (Qmoteur + Qgaz échappement * Vbipasse l) * Vbipasse_2 avec
Qreformeur = Le débit du reformeur
Qmoteur = Le débit d' air frais admis dans le moteur Qgaz échappement = Le débit des gaz d' échappement
La vanne commandée de bipasse 4a permet de dévier vers le compresseur 2b une partie des gaz d' échappement. La proportion de gaz d ' échappement déviés est notée Vbipasse_ l .
Les valeurs Vbipasse_ l et Vbipasse_2 peuvent être définies en fonction du taux d' ouverture de la vanne commandée correspondante.
Toutefois, il peut être intéressant de mesurer la température des gaz et la perte de charge entre des mesures de pression en amont et en aval de chaque vanne commandée . De telles mesures permettent non seulement de déterminer les valeurs effectives de Vbipasse_ l et Vbipasse_2 mais également d' asservir l ' ouverture des vannes au respect d'une valeur de consigne .
De façon générale, le débit de la sortie de dérivation d 'une vanne trois voies peut être défini par l ' équation suivante :
avec Q = le débit dans la sortie de dérivation
ΔΡ = la perte de charge entre les mesures amont et aval de la vanne,
T =la température en amont de la vanne
k = une constante .
Comme on peut le voir, la différence entre la pression en amont et la pression en aval de la vanne (également appelée perte de charge) est reliée à un volume dans le formalisme de l ' équation des gaz parfait. Le débit Q résulte donc de la variation de perte de charge, les gaz ne transitant pas par la vanne étant dirigé vers la sortie de dérivation. L ' homme du métier comprendra qu'un formalisme différent de celui des gaz parfaits peut être appliqué en modifiant la valeur de la constante k. Quel que soit le formalisme employé, le phénomène physique demeure qu'un débit est généré dans la sortie de dérivation à cause de la différence de pression en amont et en aval de la valve.
Le débit de gaz dans le reformeur doit être régulé afin d' obtenir la richesse de mélange souhaitée . Toutefois, la régulation doit également prendre en compte le cycle de fonctionnement du moteur à combustion interne. En effet, une perte de charge dans le circuit d' alimentation en air du moteur trop importante induirait une surconsommation du moteur non négligeable. Il est possible de compenser une telle perte de charge dans le circuit d' alimentation en air du moteur en modifiant le degré de fermeture de la vanne commandée 4a de recirculation partielle des gaz d' échappement. Si plus de gaz d' échappement sont redirigés en entrée, la charge dans le circuit d' alimentation en air du moteur augmente . On peut compenser ainsi la perte de charge liée à l ' alimentation en air du reformeur.
L 'unité de commande électronique 1 9 est reliée directement ou par l ' intermédiaire d' autres moyens de contrôle aux différents organes impliqués dans le fonctionnement du reformeur. L 'unité de commande électronique 19 est apte à commander notamment le débit de l ' inj ection de carburant dans le reformeur, le degré d' ouverture de la vanne commandée 4a et de la vanne commandée 4b . L 'unité de commande électronique 19 peut être comprise dans, ou être sous commande du moyen de commande électronique du groupe motopropulseur.
Le fonctionnement du système de production d' hydrogène va maintenant être exposé.
Le reformeur doit être mis en température pour pouvoir reformer le carburant. Le reformeur, et plus particulièrement le catalyseur contenu dans le reformeur, doit atteindre une température comprise entre 600° C et 800°C. La température de catalyse est toutefois dépendante de la composition du comburant. Plus la quantité d' espèces neutres vis-à-vis de la combustion est importante, plus la température à atteindre doit être élevée. Pour cela, on réalise une combustion de carburant au sein du reformeur. On réalise l ' admission de carburant dans le reformeur en veillant à maintenir la richesse de mélange à un niveau inférieur ou égal à 1 . Comme on l ' a vu précédemment, une richesse de mélange inférieure ou égale à 1 permet d' obtenir une combustion complète. L ' avantage d 'une combustion complète est un dégagement d' énergie plus important qu 'une combustion incomplète, donc une élévation de température plus rapide pour moins de carburant consommé. Par ailleurs, la vanne commandée 4a est commandée pour qu' aucun gaz d' échappement ne soit recirculé. En effet, la présence de gaz d' échappement est défavorable à la combustion. La phase de combustion est brève .
Lorsque le reformeur est amorcé, c ' est-à-dire que sa température est à un niveau permettant la réaction de reformage, la vanne commandée 4a commandant la recirculation partielle des gaz d' échappement est actionnée de façon qu'une partie desdits gaz d' échappement soit redirigée vers le compresseur 2b . La vanne commandée 4b est également commandée pour modifier la quantité d' air admis. Par air admis, on entend air prélevé en aval du compresseur 2b . Dans le cas où une partie des gaz d' échappement est redirigée vers le compresseur 2b, l ' air prélevé comprend une fraction de gaz d' échappement.
Dans tous les cas, la quantité d' air prélevée pour alimenter le reformeur ainsi que le débit de carburant alimentant le reformeur sont dépendants de la quantité d' hydrogène à fournir et des contraintes de richesse de mélange. Par exemple, si le carburant considéré est du gaz naturel pour véhicule (GNV), le besoin en hydrogène pour le point de plus forte charge du moteur est estimé à 300mg/s pour une fraction volumique de 20% dans la chambre de combustion. Les débits de GNV et d' air correspondants sont respectivement de 1 .3 g/s et de 6.5 g/s.

Claims

REVENDICATIONS
1. Moteur à combustion interne (1) alimenté en carburant muni d'un turbocompresseur (2), d'un circuit de recirculation partielle (5) des gaz d'échappement à basse pression, et d'un système de production d'hydrogène (11) supplémentaire comportant un reformeur (17) de carburant, caractérisé par le fait que le reformeur (17) est alimenté par une conduite d'admission (13) piquée sur une conduite (6) d'admission d'air en aval du compresseur (2b) du turbocompresseur (2), le reformeur comportant une conduite de sortie (18) piquée dans la conduite (6) d'admission d'air du moteur à combustion interne (1).
2. Moteur selon la revendication 1, dans lequel le reformeur (17) est muni d'un injecteur (16) de carburant liquide ou gazeux.
3. Moteur selon l'une quelconque des revendications 1 ou 2, dans lequel le reformeur (17) comprend successivement une chambre de mélange (25), une chambre de combustion (26) et une chambre de catalyse (27).
4. Moteur selon la revendication 3, dans lequel la chambre de combustion (26) du reformeur (17) comprend une bougie d'allumage (26a).
5. Moteur selon l'une quelconque des revendications 1 à 4, comprenant une unité de commande électronique (19) reliée à une vanne commandée (4a) de redirection des gaz d'échappement située au niveau de l'entrée du circuit de recirculation partielle (5) des gaz d'échappement à basse pression, à une vanne commandée (4b) de redirection de l'air admis située au niveau de la conduite d'admission (13), à l'injecteur (16) de carburant dans le reformeur (17), ainsi qu'à la bougie d'allumage (26a) du reformeur (17).
6. Moteur selon l'une quelconque des revendications précédentes, comprenant un réservoir de reformat (23) monté en parallèle de la conduite de sortie (18).
7. Moteur selon la revendication 6, dans lequel l'unité de commande électronique (19) est également reliée à des vannes d'isolation (31, 32) du réservoir de reformat (23).
8. Procédé d'alimentation en carburant d'un moteur à combustion interne (1) muni d'un turbocompresseur (2), d'un circuit de recirculation partielle (5) des gaz d'échappement à basse pression, et d'un système de production d'hydrogène (11) supplémentaire comportant un reformeur (17) de carburant, caractérisé par le fait que le reformage est fait par voie catalytique à partir de l'admission dans le reformeur d'un mélange d'air et de gaz d'échappement partiellement recyclés.
9. Procédé selon la revendication 8, comprenant une étape, préalable au reformage, de chauffage du reformeur (17) par la combustion d'un mélange de carburant et d'air exempt de gaz d'échappement partiellement recyclés jusqu'à une température de catalyse.
10. Procédé selon la revendication 9, dans lequel on mélange le carburant et de l'air exempt de gaz d'échappement partiellement recyclés afin d'obtenir une richesse de reformage inférieure ou égale à 1.
11. Procédé de production selon l'une quelconque des revendications 8 à 10, dans lequel, lors du reformage, on maintient le reformeur à la température de catalyse en agissant sur le débit des gaz d'échappement partiellement recyclés traversant le reformeur.
12. Procédé de production selon la revendication 11, dans lequel on mélange le carburant et de l'air afin d'obtenir une richesse de reformage supérieure à 1.
EP11727228.6A 2010-06-03 2011-05-19 Moteur à combustion interne alimenté en carburant muni d'un circuit de recirculation des gaz d'échappement à basse pression et d'un système de production d'hydrogène supplementaire Withdrawn EP2577029A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054362A FR2960915A1 (fr) 2010-06-03 2010-06-03 Moteur a combustion interne alimente en carburant muni d'un circuit de recirculation des gaz d'echappement a basse pression et d'un systeme de production d'hydrogene supplementaire.
PCT/FR2011/051129 WO2011151560A1 (fr) 2010-06-03 2011-05-19 Moteur a combustion interne alimente en carburant muni d'un circuit de recirculation des gaz d'echappement a basse pression et d'un systeme de production d'hydrogene supplementaire

Publications (1)

Publication Number Publication Date
EP2577029A1 true EP2577029A1 (fr) 2013-04-10

Family

ID=43447382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11727228.6A Withdrawn EP2577029A1 (fr) 2010-06-03 2011-05-19 Moteur à combustion interne alimenté en carburant muni d'un circuit de recirculation des gaz d'échappement à basse pression et d'un système de production d'hydrogène supplementaire

Country Status (3)

Country Link
EP (1) EP2577029A1 (fr)
FR (1) FR2960915A1 (fr)
WO (1) WO2011151560A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007469B1 (fr) * 2013-06-25 2015-07-17 Peugeot Citroen Automobiles Sa Dispositif de reintroduction de gaz d'echappement charges en hydrogene
GB2546488B (en) * 2016-01-19 2020-05-13 Ford Global Tech Llc An engine exhaust gas recirculation system with at least one exhaust recirculation treatment device
KR20180005781A (ko) * 2016-07-06 2018-01-17 현대자동차주식회사 차량용 연료 개질 시스템
DE102016008835A1 (de) * 2016-07-20 2018-01-25 Norbert Lorenz Mergel Integrierte Abgasverwertungs - und Kraftstoffvergasungsanlage für Verbrennungsmotoren aller Art
US10815912B2 (en) 2016-08-01 2020-10-27 Caterpillar Inc. Natural gas fuel reformer control for lean burn gas engines
CN113286937B (zh) * 2019-02-01 2023-04-18 株式会社Ihi 内燃机系统以及内燃机系统的控制方法
CN113417774B (zh) * 2021-05-31 2022-05-03 东风商用车有限公司 扰流对冲式文丘里集成混合器
CN114215639B (zh) * 2021-12-23 2023-03-17 江西新节氢能源科技有限公司 一种氢燃料发动机结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066043A (en) 1973-07-26 1978-01-03 Nippon Soken, Inc. Fuel reforming system for an internal combustion engine
JPS53120020A (en) * 1977-03-29 1978-10-20 Nippon Soken Inc Internal combustion engine operation method
JP4510173B2 (ja) * 1999-04-06 2010-07-21 日産自動車株式会社 燃料改質装置付き内燃機関
JP4251321B2 (ja) * 2003-01-28 2009-04-08 トヨタ自動車株式会社 内燃機関および内燃機関の運転方法
JP2006299890A (ja) * 2005-04-19 2006-11-02 Toyota Motor Corp 内燃機関
WO2007027327A2 (fr) * 2005-09-02 2007-03-08 Southwest Research Institute Dispositif et procede permettant d'augmenter la teneur en hydrogene d'un gaz d'echappement recycle dans des moteurs a injection
JP4887836B2 (ja) * 2006-03-01 2012-02-29 日産自動車株式会社 内燃機関
EP1972776A2 (fr) * 2007-03-19 2008-09-24 Nissan Motor Co., Ltd. Catalyseur à augmentation du nombre d'octanes, reformage de carburant d'un moteur à combustion interne, et moteur à combustion interne
JP4386134B2 (ja) * 2008-01-23 2009-12-16 トヨタ自動車株式会社 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011151560A1 *

Also Published As

Publication number Publication date
FR2960915A1 (fr) 2011-12-09
WO2011151560A1 (fr) 2011-12-08

Similar Documents

Publication Publication Date Title
EP2577029A1 (fr) Moteur à combustion interne alimenté en carburant muni d'un circuit de recirculation des gaz d'échappement à basse pression et d'un système de production d'hydrogène supplementaire
KR100783345B1 (ko) 수소이용 내연기관
US6463889B2 (en) POx cold start vapor system
CN101495735B (zh) 内燃机
FR2944056A1 (fr) Moteur a combustion interne et procede de fonctionnement associe a un tel moteur
FR2850430A1 (fr) Moteur a combustion interne et procede de fonctionnement du moteur a combustion interne
FR2957383A1 (fr) Moteur a combustion interne comprenant un moyen de production d'hydrogene dispose dans le flux principal de gaz d'echappement
FR2852446A1 (fr) Moteur a combustion interne avec une pile a combustible dans un systeme d'echappement
US20190203132A1 (en) Micro-gasifier array networking
FR3016921A1 (fr)
FR2510192A1 (fr) Appareil de traitement et de distribution de combustible destine a etre utilise avec un moteur a combustion interne, et procede pour alimenter en combustible une chambre de combustion
FR2860455A1 (fr) Systeme de production d'hydrogene a bord d'un vehicule en utilisant la deshydrogenation de composes organiques
FR2989736A1 (fr) Procede de purge d'une turbine a gaz
FR2896917A1 (fr) Vehicule automobile comprenant une pile a combustible et utilisation d'une telle pile
FR2941015A1 (fr) Dispositif et procede de recirculation de gaz d'echappement pour moteur a combustion interne a reformeur d'hydrogene
WO2004059769A1 (fr) Systeme de reformatage de carburant pour l’alimentation d’une pile a combustible de vehicule automobile et procede de mise en oeuvre
FR2839583A1 (fr) Installation de piles a combustible et vehicule equipe d'une telle installation
FR2928699A1 (fr) Moteur a injection directe d'essence
FR2928698A1 (fr) Systeme de controle de la production d'hydrogene par un reformeur de carburant d'un circuit de recirculation des gaz d'echappement pour un moteur a combustion interne et moteur a combustion interne comprenant un tel systeme
JP2006249981A (ja) 改質ガス利用内燃機関
FR2827632A1 (fr) Procede et dispositif de reduction d'emission polluante
EP1417997B1 (fr) Dispositif de dépollution catalytique pour un moteur de véhicule automobile et procédé de production hydrogène associé
WO2011010069A1 (fr) Procede de reformage et machine de conversion energetique comprenant un dispositif de reformage
FR2992358A1 (fr) Groupe moteur avec ligne de recirculation
FR2904476A1 (fr) Systeme de pile a combustible avec reformeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130919

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140414

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140826